

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 QUICKSVIEWER: AN LMM FOR EFFICIENT VIDEO UNDERSTANDING VIA REINFORCED COMPRESSION OF VIDEO CUBES

Anonymous authors

Paper under double-blind review

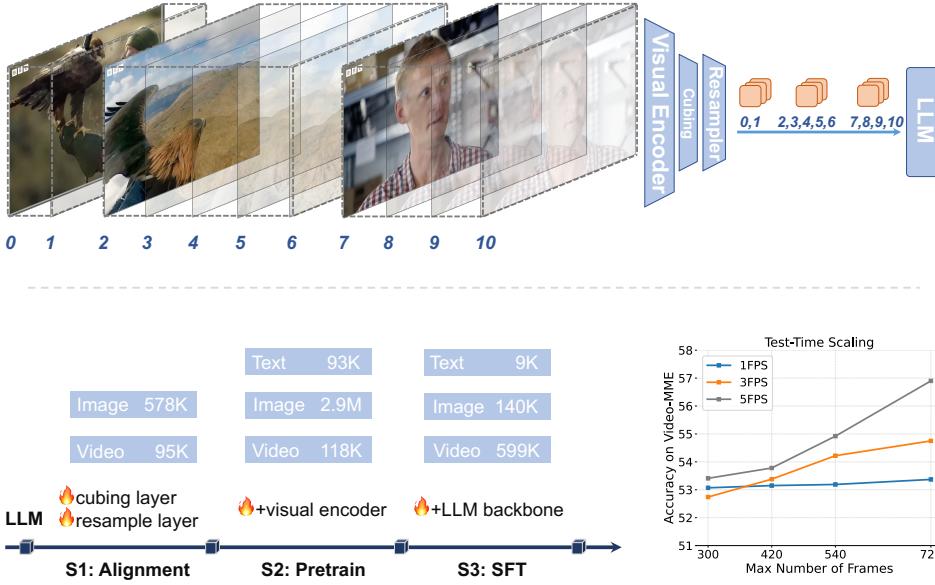


Figure 1: Quicksviewer involves a cubing network that partitions a video into nonuniform cubes, followed by a 3D resampler to gather a fixed number of visual tokens per cube. This efficiency enables **Large Receptive Field** (420 frames) with **High Compression Rate** (64 \times) during all training stages, and scaling laws on extended frames in inference.

ABSTRACT

Large Multimodal Models (LMMs) uniformly perceive video frames, creating computational inefficiency for videos with inherently varying temporal information density. This paper present **Quicksviewer**, an LMM with new perceiving paradigm that partitions a video of nonuniform density into varying cubes using Gumbel Softmax, followed by a unified resampling for each cube to achieve efficient video understanding. This simple and intuitive approach dynamically compress video online based on its temporal density, significantly reducing spatiotemporal redundancy (overall 45 \times compression rate), while enabling efficient training with large receptive field. We train the model from a language backbone through three progressive stages, each incorporating lengthy videos on average of 420s/1fps thanks to the perceiving efficiency. With only 0.8M total video-text samples for training, our model outperforms the direct baseline employing a fixed partitioning strategy by a maximum of 8.72 in accuracy, demonstrating the effectiveness in performance. On Video-MME, Quicksviewer achieves competitive performance compared to models of similar size while utilizing just up to 5% of tokens per frame required by baselines. With this paradigm, scaling up the number of input frames reveals a clear power law of the model capabilities. It is also empirically verified that the segments generated by the cubing network can help for analyzing continuous events in videos.

054
055
056
057
1 INTRODUCTION058
059
060
061
062
063
064
Large Multimodal Models (LMMs) (Deepmind, 2024; OpenAI, 2024; Bai et al., 2025) have shown
promising progress in video understanding, paving the way for general intelligence in physical world.
These models build on Large Language Models (LLMs) and are trained in stages with large-scale
image and video data, encoding video frames in the same manner as images before feeding them
into the LLM for inference. At the core of these models is the efficient perception of input videos,
which is crucial in tackling the persistent contradiction between the **temporal redundancy** of video
streams (Buckler et al., 2018; Wenger, 1997) and the **computational efficiency** of LMMs with long
context (Fu, 2024).065
066
067
068
069
070
071
Extensive studies have been striving to develop LMMs for solving this fundamental issue. Building
on devise of frame sampling methods, trailblazing efforts typically involve dedicated token merging
strategies (Bai et al., 2025; Wang et al., 2025; Shen et al., 2024; Zohar et al., 2024; Li et al., 2024d;
Zhang et al., 2025) and adapted parallel training infrastructures (Zhang et al., 2024b; Chen et al.,
2024c; Shen et al., 2025). However, the arbitrary frames sampling and tokens merging introduces
inevitable information loss, while marginal compression limits the number of frames in large-scale
pre-training.072
073
074
075
076
077
078
079
080
081
The velocity of content change in videos is inherently nonuniform, suggesting that the density varies
across different temporal cubes. For example in Figure 1, the initial short period features rapidly
changing scenes of a researcher attaching a camera to an eagle’s back, followed by an extended
sequence of stable footage from the camera, and a largely static interview. Inspired by the way that
humans adjust their perception speed based on content changes, this paper explores how LMMs
can perform video understanding on the nonuniform cubes to achieve dynamic compression, and
significantly reduce the spatiotemporal complexity and enhance the efficiency. For practical scenarios
where videos typically originate from lengthy offline recordings or online video streams, we thereby
aim for the model to (1) **learn from unlabeled data**, perform (2) **online cube partitioning**, and
establish a (3) **unified perception paradigm** for images and videos.082
083
084
085
086
087
088
089
090
091
092
093
094
We present Quicksviewer, an LMM that perceives nonuniform video cubes for efficient video
understanding. Given a video passed from a visual encoder, a small cubing network first partitions it
into nonuniform cubes based on the momentum of semantic feature differences between frames, a
process that can be conducted online in streaming scenarios. Next, a unified resampling is employed
to the cubes to gather a fixed number of tokens for adaptive compression. Finally, these visual tokens,
along with absolute timestamps, are fed into the LLM for inference. We integrates the learning
of the cubing network into the end-to-end training of the LMM using the Gumbel Softmax (Jang
et al., 2016; Herrmann et al., 2020) method with an improved noise annealing mechanism. This
reinforced approach not only enables efficient learning on videos without boundary labels but also
insures sufficient sampling over the cubes distribution with continuous gradient during training. The
nonuniform perception paradigm, which is solely driven by the properties of input video, together
with the subsequent resampling enables an efficient video encoding with $45\times$ compression reate,
large temporal receptive filed of 420 frames for pre-training, and a consistent representation for both
images and videos.095
096
097
098
099
100
101
102
103
We train our models starting from the LLM backbones through three progressive stages, each incorpo-
rating lengthy videos averaging 420s/1fps by benefiting from the efficient perception mechanism. The
resulting model, which we coined as Quicksviewer, is an efficient LMM capable of understanding
single/multi-images and long videos. We also find that our network is efficient in learning. With
only 0.8M video-text samples in total for training, our model achieves competitive performance on
Video-MME (Fu et al., 2024a) using just up to 5% of the tokens per frame required by baselines. In
addition, to facilitate training on ultra-long videos (e.g., over 1hour), we developed a training infra-
structure supporting dynamic changes of sequences lengths based on an existing effort (Chen et al., 2024c), to
further facilitate potential explorations in future.104
105
106
107
We evaluate Quicksviewer on various video understanding benchmarks, ranging the duration from 16
seconds to 1 hour. Results show that our model outperforms the direct baseline employing a fixed
partitioning strategy by a maximum of 8.72 in accuracy, suggesting the utility of the nonuniform
perception. We further analyze the cubes partitioning in videos, which demonstrates the emergence
of "Visual Lag" phenomenon when the model perceives videos phase-by-phase. We also conduct

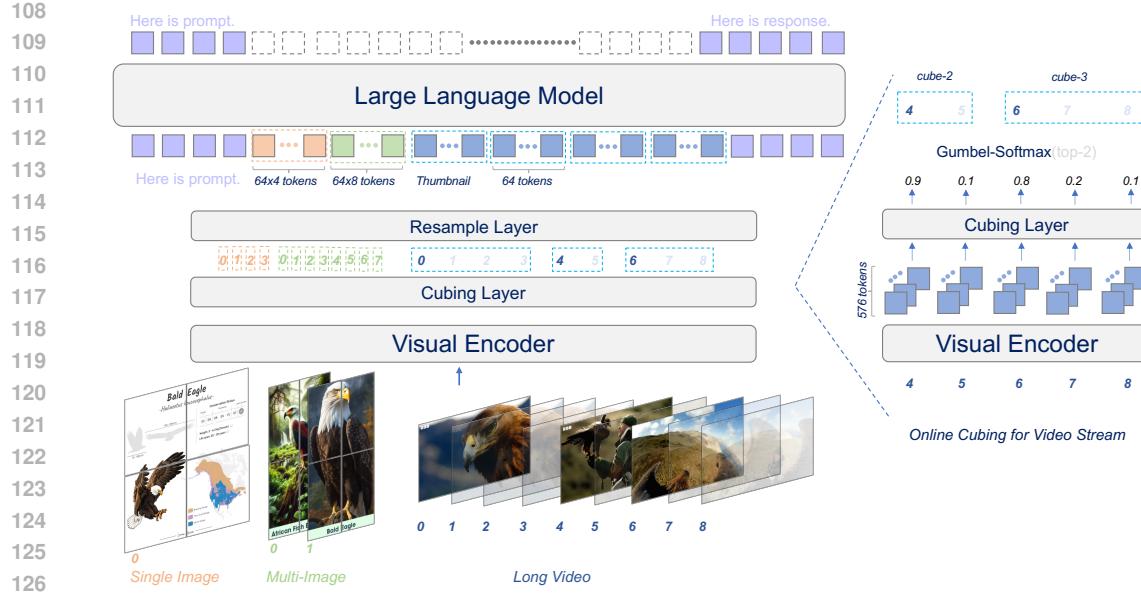


Figure 2: Left: The network architecture of Quicksviewer, that performs unified understanding of videos and images through visual tokens from cascaded modules. Right: The cubing network, that partitions an online video into nonuniform cubes based on Gumbel Softmax.

extensive ablation studies to show the effectiveness of presented components, including the cubing approach, 3D positional encoding, loss penalty, and the annealing strategy.

2 APPROACH

The overall architecture of the presented model is shown in Figure 2. We build an efficient LMM that can receive both images and videos as input, where the video is perceived based on nonuniform cubes partitioned through a small cubing network. The model consists of four basic components: (1) a visual encoder $f_v(\cdot)$ that encode image slices or video frames into visual tokens, (2) a cubing network $f_q(\cdot)$ that partitions the video frames into N_Q cubes, (3) a resampler $f_r(\cdot)$ which compress each slice or cube into a fixed number of tokens, and (4) an LLM $f_l(\cdot)$ which accept concatenation of visual tokens and user prompt for response generation. Note that we introduce **FPQ**, the average number of frames per cube, which regulates the perception granularity and enables adaptive number of cubes N_Q according to video duration.

2.1 CUBING USING GUMBEL SOFTMAX

Visual Encoding Given an input video to our model, we first uniformly sample N_F frames with a fixed FPS to form $[F_i]_{i=1,\dots,N_F}$. And then, each frame is firstly encoded using the visual encoder f_v to obtain N_1 visual tokens $\mathbf{F}_j = [\mathbf{v}_i]_{i=1,\dots,N_1}$, where $\mathbf{v}_i \in \mathbb{R}^d$ is the token representation. The large number of visual tokens provides fine-grained semantic representations for each frame, while the concatenation of all tokens (*i.e.*, $N_F \times N_1$) across frames results in an unacceptable sequence length.

Cubing It is natural to leverage the semantic difference of features to find keyframes. For compatible with online streaming scenarios and also considering the event-level long-term changes, we utilize the momentum accumulated from the representations of previous frames to track the semantic changes. Given the visual tokens of frames, the cubing network calculate the i^{th} momentum representation as:

$$\Delta_i = \alpha(\mathbf{F}_i - \mathbf{F}_{i-1}) + (1 - \alpha)\Delta_{i-1} \quad (1)$$

162 where $\Delta_i = [\delta_j]_{j=1, \dots, N_1} \in \mathbb{R}^{N_1 \times d}$ captures the accumulated semantic changes discounted by factor
 163 $\alpha \in [0, 1]$. A 2-layers MLP with LayerNorm (Ba et al., 2016) is then applied to the mean of visual
 164 tokens momentums to quantify the significance of the frame:

$$167 \quad \mathbf{z}_i = \text{MLP}_{\times 2}(\text{LayerNorm}\left(\frac{1}{N_1} \sum_{j=1}^{N_1} \delta_j\right)), \quad \mathbf{z}_i \in \mathbb{R}^2 \quad (2)$$

170 where the 2-dimensional vector $\mathbf{z} = [w_0, w_1]$ forms a gate, and the sigmoid of their difference directly
 171 reflects the keyframe probability $p = \frac{1}{1 + \exp(w_0 - w_1)}$ (Herrmann et al., 2020). We next apply the
 172 *top-k* operation on the first dimension of $[\mathbf{z}_i]_{i=2, \dots, N_F}$ vectors to obtain the indices of $N_Q - 1$ largest
 173 values $[l_i]_{i=1, \dots, N_Q - 1}$, which are selected as keyframes. The keyframe F_{l_i} , along with its subsequent
 174 consecutive non-keyframes, forms the cube $Q_{i+1} = [F_{l_i}, \dots, F_{l_{i+1}}]$. Note that the first sampled frame
 175 consistently serves as the keyframe for deriving the first cube Q_1 .

177 **Sampling for Training** During training, we expect the model to perform sufficient sampling
 178 exploration while ensuring gradient continuity. We achieve this using Gumbel Softmax with the
 179 Straight-Through trick (Gumbel, 1954; Jang et al., 2016):

$$182 \quad \mathbf{z}_i = \text{softmax}(\mathbf{z}_i - \log(-\log(\epsilon)/\tau)), \quad \epsilon \sim U(0, 1) \quad (3)$$

184 where the log term approximates the sampling process and regulates the degree of exploration.

185 In experiments, we found that persistent exploration prevents the model from establishing a stable
 186 cubing paradigm for subsequent reasoning, leading to sustained loss oscillations. We propose to add
 187 an learning rate η before the Gumbel noise $\eta \log(-\log(\epsilon)/\tau)$, which is **annealed** from $\eta_0 = 1.0$ to
 188 $\eta_T = 0.001$ during training using a cosine scheduler.

190 2.2 RESAMPLING WITH 3D POSITIONAL ENCODING

192 Based on the partitions from cubing network, a unified 3D resampler is adopted to compress each
 193 cube of arbitrary length into a fixed number of N_2 tokens.

195 **Resampling Video Cubes** We employ the same resampler architecture as (Yao et al., 2024) to
 196 compress each cube into a fixed number of dense tokens. We extend the original 2D positional
 197 encoding by incorporating a temporal dimension to form 3D position encoding. As a result, each
 198 video token is assigned three positional coordinates (x, y, z) , representing time, width, and height. We
 199 then unfold each cube into tokens sequence along the frame dimension. After adding 3D positional
 200 embeddings, an unified resampling is performed to obtain $N_2 = 64$ visual tokens for each cube. For
 201 images, we first adopt the AnyRes (Liu et al., 2024a) to divide high resolution images into slices,
 202 and apply the same resampling to each slice to obtain visual tokens and finally concatenate the tokens.

203 **Resampling for Video Thumbnail** Using cubes quantized from the cubing network for response
 204 tokens generation introduces a fundamental problem: ***How does the NTP training objective optimize***
 205 ***the boundary prediction of the cubing network?*** We introduce video thumbnail to resolve this
 206 problem meanwhile provide effective global representation. Specifically, we first (1) multiply the 0-1
 207 discretized first dimension of vectors $[\mathbf{z}_i]_{i=1, \dots, N_F}$ with their corresponding frame representations
 208 $[\mathbf{F}_i]_{i=1, \dots, N_F}$, then (2) average across the frame dimension to obtain N_1 visual tokens. A further
 209 resampling is performed to get final thumbnail representation containing N_2 tokens. This simple
 210 approach allows gradients to be directly propagated back to the cubing boundaries. The final
 211 representation of a video is a concatenation of the representations of the thumbnail and cubes.

213 2.3 LLM INFERENCE WITH AUXILIARY LOSS

215 Following resampling of nonuniform video cubes, the tokens of each cube span varying temporal
 windows. We prepend each cube with an absolute timestamp as a float number in 0.01-second units,

216 enabling explicit temporal awareness. We also enclose the video, thumbnail, and image tokens with
 217 their corresponding special tokens to enable explicit content differentiation.
 218

219 During training, we observed that excessively large values of z cause overly high gradients, impairing
 220 convergence. To address this, we introduce an auxiliary L_2 norm loss with $\beta = 0.001$ penalty weight
 221 on them to constrain its values within a reasonable range.
 222

223 3 TRAINING PROCESS

225 We train our models with three progressive stages starting from LLM backbones, each stage incorpo-
 226 rating lengthy videos on average of 420s by benefiting from the efficient perception approach.
 227

228 **Stage-1: Multimodal Alignment** We utilize both interleaved and captioning image-text corpuses,
 229 and video-text captioning corpus to train our models, establishing fundamental alignment between
 230 visual encoder and LLM backbones with in-context learning capabilities. We sample a subset
 231 of 20K sequences from OBELICS (Laurençon et al., 2023), with each containing more than two
 232 interleaved pairs. We utilize LCS (Li et al., 2024a), a re-captioned dataset consisting of 558K detailed
 233 descriptions from the CC3M (Sharma et al., 2018). The video-text training data incorporates a
 234 sampled subset of 87K captioning pairs from FineVideo (Farré et al., 2024) and 8K captioning pairs
 235 from ANetCaptions (Krishna et al., 2017). We train parameters of the cubing network and resampler
 236 while keeping all other parameters frozen to establish a stable projection. The models are trained for
 237 1 epoch with a lr that warms up to $1e^{-4}$ over the first 2% of steps, then gradually decays to 0.
 238

239 **Stage-2: Pre-training** We employ large-scale pretraining data, primarily consisting of image-text
 240 multi-task data, to pre-train models establishing general multimodal capabilities across broad visual
 241 scenarios. We utilize a subset of 2.99M samples from LLaVA-OneVision-SingleImage (Li et al.,
 242 2024a) as training corpus, which incorporates 2.9M image-text pairs and 93K textual instruction-
 243 tuning samples from Evo-Instruct (Chen et al., 2024a). For video-text corpus, we utilize a sampled
 244 subset of 75K video QAs from FineVideo (Farré et al., 2024) and 38K captioning pairs from
 245 ShareGPT4Video (Chen et al., 2024b). To mitigate catastrophic forgetting, we retain 5% of the
 246 previous image and video data in our training corpus. Alongside the cubing network and resampler,
 247 we also unfreeze the visual encoder to improve the visual representation. We train models for 1 epoch
 248 with a $1e^{-5}$ initial learning rate, with the same warmup and decay schedule as stage-1.
 249

250 **Stage-3: Supervised Fine-tuning** We primarily leverage extensive video-text paired corpus to
 251 train our models in this stage, enabling robust video understanding capabilities. We primarily utilize
 252 a subset of 476K video-text samples sourced from VideoChat2-IT (Li et al., 2024c), and a subset of
 253 79K samples from ShareGPTVideo (Zhang et al., 2024c) as the video corpus. To enhance adaptation
 254 to long video scenarios, we further integrate 5K samples from MovieChat (Song et al., 2024) and
 255 39K samples derived by (Chen et al., 2024c) from the Shot2Story dataset (Han et al., 2023). The
 256 image-text corpus incorporates a sampled subset of 100K multi-image, multi-task understanding
 257 samples from LLaVA-OneVision-MultiImages (Li et al., 2024a). We also preserve a subset of training
 258 data from the previous stage, consisting of 40K text-image pairs and 9K textual instruction-tuning
 259

	Stage-1	Stage-2	Stage-3
<i>Vision</i>			
Resolution	384×384	384×384	384×384
FPS, #Frames	1, Max 420	1, Max 420	1, Max 420
<i>Data</i>			
Image-Text	LCS, OBELICS	LLaVAOV-SingleImage	LLaVAOV-MultiImages
#samples	558K, 20K	2.99M	100K
Video-Text	FineVideo, ANetCaptions	FineVideo, ShareGPT4Video, ANetCaptions	Sec. 3. 3
#samples	87K, 8K	118K	599K
<i>Model</i>			
Trainable	Cubing, Resampler	Cubing, Resampler, ViT	Full Model
#Parameters	75M	500M	8B
<i>Training</i>			
Anneal: η_0, η_T , ratio	1.0, 0.01, 0.8	1.0, 0.01, 0.6	1.0, 0.01, 0.6
LR: $\theta_c, \theta_r, \theta_v, \theta_l$	$1e^{-4}, 1e^{-4}, -, -$	$2e^{-5}, 2e^{-5}, 2e^{-5}, -$	$1e^{-5}$
Epoch	1	1	1

260
 261 Table 1: Detailed configuration for each training stage.
 262
 263
 264
 265
 266
 267
 268
 269

270 samples. We train all parameters for 1 epoch with a learning rate that warms up to $1e^{-5}$ over the 0.02
 271 epoch, followed by gradual decay to 0 for the remaining duration.
 272

273 During training, all videos sampled at 1FPS to extract full frames. For videos exceeding 420s, we
 274 uniformly extract 420 frames to maintain computational tractability. Images are processed using
 275 AnyRes with a resolution of 384×384 . For all stages, the Gumbel noise learning rate η (initialized
 276 at 1.0) undergoes cosine annealing to 0.01 within: 0.8 epoch (Stage 1) or 0.6 epochs (Stages 2-3).
 277

278 4 EXPERIMENT

280 Models	281 Size	282 #Tokens	283 #Train	284 MMBench-Video	285 MVBench	286 MLVU	287 Video-MME
288 Duration	289 /Frame	290 V-T	291 3 min	292 16 sec	293 3~120 min	294 1~60 min	295
<i>Proprietary Models</i>							
GPT4-V (OpenAI, 2023)	-	-	-	1.53	43.7	-	60.7
GPT4-o (OpenAI, 2024)	-	-	-	1.63	64.6	66.2	77.2
<i>Open-Source Video LMMs</i>							
LLaMA-VID (Li et al., 2024e)	7B	2	0.4M	1.08	41.5	33.2	-
LongLLaVA (Wang et al., 2024c)	9B	144	0.5M	-	49.1	-	43.7
Chat-UniVI (Jin et al., 2024)	7B	112	100K	1.06	42.9	-	45.9
ShareGPT4Video (Chen et al., 2024b)	8B	144	4.8M	1.05	51.2	46.4	43.6
LLaVA-NeXT-Video (Zhang et al., 2024d)	7B	144	100K	1.14	33.7	-	46.5
VideoLLaMA2 (Cheng et al., 2024)	7B	32	10.7M	1.08	54.6	48.5	46.6
LongVA (Zhang et al. (2024b))	7B	144	-	-	-	56.3	54.3
VideoChat2 (Li et al., 2024c)	7B	64	2.8M	1.22	60.4	47.9	54.6
mPLUG-Owl3 (Ye et al., 2024)	8B	729	134K	1.35	54.5	-	53.5
Fixed-LLama3.1	8B	12.8	0.8M	0.71	45.2	50.2	45.0
Quicksviewer-LLama3.1	8B	12.8	0.8M	0.87	53.9	58.6	47.6
Quicksviewer	8B	12.8	0.8M	<u>1.24</u>	<u>55.6</u>	61.5	56.9

296 Table 2: Video benchmarking results between Quicksviewer and baselines under comparable total
 297 sequence length. Quicksviewer achieves multiple SOTA performance while using fewer tokens per
 298 frame (up to 5% of baseline) and substantially less video-text training samples.
 299

300 4.1 IMPLEMENTATION DETAILS

301 We use SigLIP (Zhai et al., 2023) (soo400m-path14-384) as our visual encoder inconsistent with
 302 previous works. We adopt Qwen2.5 (Yang et al., 2024) as the language backbone for our standard
 303 implementation (i.e., Quicksviewer), while utilizing Llama3.1 (Touvron et al., 2023a) as the alter-
 304 native LLM for another version (i.e., Quicksviewer-Llama3.1) for comprehensive exploration. We
 305 use AdamW (Loshchilov & Hutter, 2017) optimizer with a cosine scheduler for all training stages.
 306 The number of tokens generated from visual encoder and resampler are $N_1 = 576$, and $N_2 = 64$,
 307 respectively. The discounting factor of momentum is set to $\alpha = 0.9$. The penalty weight to the
 308 auxiliary loss is set to $\beta = 0.001$. We use FPQ=5 for all models. Our models is trained on 48
 309 NVIDIA A100 GPUs.
 310

311 4.2 EXPERIMENTS ON VIDEO UNDERSTANDING

312 We train a direct baseline, Fixed-Llama3.1, which utilizes uniform temporal partitioning with the
 313 same FPQ of input videos. For an unbiased comparison, we evaluate with baselines configured with
 314 comparable total sequence lengths, maintaining equivalent computational budgets.
 315

316 **Benchmarks and Metrics** We evaluate the our models on widely used video understanding
 317 benchmarks Video-MME (Fu et al., 2024a), MVBench (Li et al., 2024c), and MLVU (Zhou et al.,
 318 2024) to investigate the effectiveness. VideoMME is a general video understanding benchmark
 319 that collect videos (1min~1hour) from Youtube with manual annotations. MVBench covers 20
 320 challenging tasks ranging from perception to cognition. MLVU (3mins~2hours) refers to an long
 321 video understanding benchmark for long-term inference.
 322

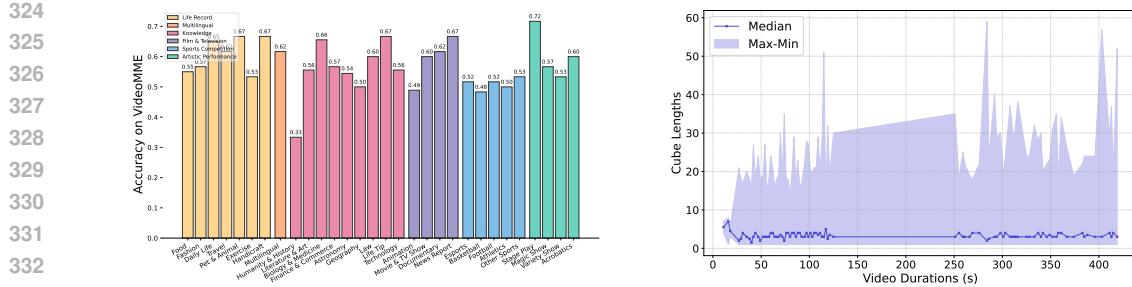


Figure 3: (a) Left: Performance of Quicksviewer on particular domains and categories of Video-MME. (b) Right: Distribution of cube lengths across Video-MME videos.

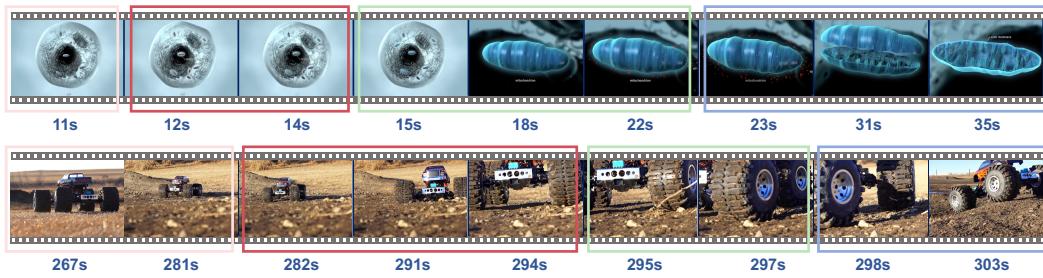


Figure 4: The "Visual Lag" phenomenon occurring during the model's cube-based segmental comprehension, where current cubes incorporate terminal frames from preceding event scenes to enable retrospective understanding.

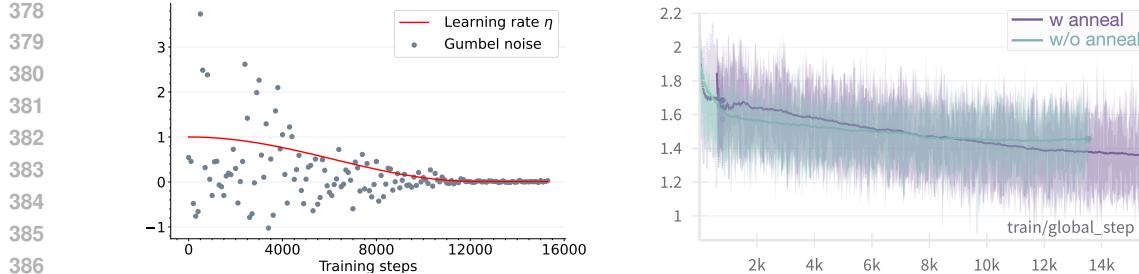
Quantitative Results We adopt empirically optimized configuration: 5 FPS with a maximum of 720 frames for all benchmarks. As the main result shown in Table 2, our standard model achieves competitive performance on Video-MME and MLVU, and the competitive performance on MVbench with significantly fewer tokens and training volumes. Specifically, our model achieves competitive performance on Video-MME, albeit with slightly inferior results on long videos. This demonstrates that the encoding paradigm harness the scaling benefits by high frame rate. In comparison with the direct baseline with fixed cubing strategy, our model obtain large improvements, suggesting the effectiveness of the cuing strategy. Our approach achieves competitive performance on MLVU while demonstrating competitive performance on MVBench, despite utilizing substantially less training data (only 28% of VideoChat2’s and 7.5% of VideoLLaMA2’s requirements). This evidences our network’s exceptional learning efficiency.

Analysis We further analyze the model performance across distinct domain categories in Video-MME, systematically examine both capability advantages and limitations. As illustrated in Figure 3 (a), bars sharing identical colors belong to the same domain. Primarily, we observe consistent model performance across all domains, with mean scores of 0.61, 0.62, 0.55, 0.60, 0.51, and 0.61 respectively, suggesting limited domain-specific variation in question difficulty. Secondly, the model demonstrates suboptimal performance (below 50%) in three categories: Humanity & History, Animation, and Basketball. This may indicate persistent challenges in fine-grained character recognition that require further improvement.

We further analyze the distribution of cube lengths on Video-MME, with results shown in Figure 3 (b). Based on the predefined FPQ, we found the median cube length approximates 5 frames. Notably, the model demonstrates a tendency to partition diverse length of cubes for longer videos, which aligns with the variable viewing speeds in human perception of lengthy videos.

4.3 ANALYSIS OF THE CUBES PARTITIONING

To investigate how the trained model partitions cubes for understanding, we analyzed two representative video cases by examining cubes relative to content transitions. As shown in Figure 3, each box



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Figure 5: (a) Left: Gumbel noise progressively anneals to 0.001 following the decaying learning rate with cosine scheduler. (b) Right: Compared to non-annealed training (cyan curve), adding Gumbel noise annealing (purple curve) yields more stable and superior loss convergence.

refers a cube spanning from its start to end timestamps (with similar intermediate frames omitted). We reveal a "**Visual Lag**" phenomenon during cube-based video perception of the model: terminal frames from preceding event scenes are incorporated into cubes containing subsequent event scenes. For example in the first video, the initial frames of cubes 2-4 respectively contain content from three event scenes: 1) cellular details, 2) mitochondrial positioning, and 3) ATP synthesis exhibiting in cubes 1-3 respectively. We posit this mechanism enables the model to retain partial memory of preceding scenes to facilitate current scene understanding.

4.4 ANALYSIS OF THE ANNEALING STRATEGY

Traditional Gumbel-Softmax training controls sampling randomness exclusively through temperature adjustment, making it unsuitable for training the cubing network as a component of an LMM. To resolve this issue, we propose annealing the Gumbel noise, which substantially improves both training stability and effectiveness. To further evaluate the performance of the proposed annealing mechanism, we examine the evolution of Gumbel noise values throughout a training epoch in with the annealed learning rate. For clear visualization, we uniformly sample training steps at 100-step intervals, as illustrated in Figure 5 (a). From the figure, we observe that in the early training stages, larger Gumbel noise effectively facilitates exploration for the cubing network. As training progresses, the Gumbel noise gradually converges to the predefined value of 0.01. This allows the model to leverage its learned segmentation mechanism for video understanding in later stages, stabilizing the training process and achieving optimal performance.

Figure 5 (b) compares the loss trajectories of models trained with and without the annealing mechanism. Initialized from the same checkpoint from Stage-2, we train parallel models using both approaches and monitor loss variations throughout one epoch to assess learning efficiency and stability. Our analysis reveals that the model benefits from the progressive annealing of Gumbel noise in the later stages. During this phase, the model effectively utilizes its learned cubing mechanism to accelerate loss minimization, achieving superior convergence efficiency, demonstrating the effectiveness and training stability.

4.5 ABLATION STUDIES

We conduct comprehensive ablation studies to evaluate the efficacy of the components leveraged in Quicksviewer. To establish a simple baseline, we first train a Llama3.1 (Touvron et al., 2023a) model through Stages 1-2 using only image-text data introduce in Sec. 3, deliberately excluding video inputs. This image-only pretrained checkpoint then serves as the initialization point for systematically investigating various Stage-3 configurations with video-text data.

Cubing network with ViT To accelerate cube processing, we investigate the feasibility of using only the initial n layers of ViT for the cubing network. Our ablation study employs the first 2 ViT layers for cube feature generation while maintaining all other model components unchanged. As demonstrated in Table 7, this configuration results in significant performance degradation, indicating that shallow visual features are insufficient for effective cubes partitioning.

432	433					434	
	435					436	437
438	439	440	441	442	443	444	445
PE	Cubing Network	Penalty	Annealing	Trainable	Overall	Long	Video-MME
					1~60 min	30~60 min	
2D	ViT first 2-layers	0.1	-	$\theta_c, \theta_r, \theta_v$	33.92	35.56	
2D	ViT full	0.1	-	$\theta_c, \theta_r, \theta_v$	41.22	38.67	
3D	ViT full	0.1	-	$\theta_c, \theta_r, \theta_v$	44.37	40.67	
3D	ViT full	0.001	-	$\theta_c, \theta_r, \theta_v$	44.66	40.44	
3D	ViT full	0.001	annealing	$\theta_c, \theta_r, \theta_v$	45.44	43.44	
3D	ViT full	0.001	annealing	All	45.96	38.44	

Table 3: Ablation results of Stage-3 training initialized from a checkpoint pretrained only with image data (Stage 1-2). The optimal configuration: 3D positional encoding, Gumbel noise annealing with 0.001 penalty weight, and full trainable parameters, demonstrating superior performance.

3D positional encoding We systematically evaluate the impact of 3D positional encoding compared to the original 2D formulation. Implementing this modification while keeping all other parameters fixed in Stage-3 training, our experiments demonstrate a consistent accuracy improvement of +3.15% (Table 7), confirming the benefits of spatiotemporal position awareness for video understanding.

Penalty weight to the auxiliary loss The penalty weight applied to the L_2 -norm of \mathbf{z} values regulates the scale of logistic outputs, consequently influencing partition behavior. Through systematic ablation while maintaining other parameters fixed, we identify $\beta = 0.001$ as the optimal weighting that simultaneously: (1) maintains \mathbf{z} values in an effective operational range, and (2) achieves superior model performance (Table 7).

The annealing strategy Having established the optimal penalty weight, we proceed to evaluate the efficacy of our proposed Gumbel noise annealing strategy. This approach systematically reduces exploration randomness during training, transitioning from aggressive parameter space exploration to fine-tuned optimization. Comparative results in Table 7 demonstrate consistent performance improvements over the fixed-noise baseline, validating the benefits of noise scheduling.

The tuning parameters We examine the impact of trainable parameters on video understanding by comparing two training regimes: (1) our baseline approach that only fine-tune the ViT and resampler parameters during Stage-3, versus (2) a full-parameter optimization strategy that additionally fine-tunes the LLM backbone. As evidenced in Table 7, comprehensive parameter training yields superior benchmark performance, suggesting that joint visual-linguistic optimization enhances multimodal alignment for video understanding tasks.

5 CONCLUSION

In this paper, we introduced Quicksviewer, an LMM designed for efficient video understanding through a nonuniform perception paradigm. By dynamically partitioning videos into nonuniform cubes and applying adaptive resampling, our approach achieves a $45\times$ compression rate while maintaining a consistent representation for both images and videos. We demonstrated that integrating the cubing network into end-to-end training via Gumbel Softmax with an improved noise annealing mechanism, enables efficient learning without boundary labels. Furthermore, our model, trained on just 0.8M videos, achieves competitive performance on VideoMME with significantly fewer tokens per frame than the baseline methods. To support training on ultra-long videos, we also developed an infra that allows dynamic sequence lengths. These contributions pave the way for efficient and scalable LMMs, facilitating future research in long video understanding.

Our approach demonstrates strong potential for future applications in video segmentation and long-sequence processing. In video tasks, cubing-based networks enable fine-grained segmentation of videos into multiple events, supporting effective video preprocessing. Moreover, our method is highly generalizable and can be adapted for various sequence segmentation and compression scenarios, providing a foundation for efficient long-sequence analysis.

486 REFERENCES
487

488 Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
489 Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language
490 model for few-shot learning. *Advances in neural information processing systems*, 35:23716–23736,
491 2022.

492 Kirolos Ataallah, Xiaoqian Shen, Eslam Abdelrahman, Essam Sleiman, Deyao Zhu, Jian Ding, and
493 Mohamed Elhoseiny. Minigpt4-video: Advancing multimodal llms for video understanding with
494 interleaved visual-textual tokens. *arXiv preprint arXiv:2404.03413*, 2024.

495 Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. *arXiv preprint
496 arXiv:1607.06450*, 2016.

497 Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
498 Yu Han, Fei Huang, et al. Qwen technical report. *arXiv preprint arXiv:2309.16609*, 2023.

500 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
501 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
502 2025.

503 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
504 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
505 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

506 Mark Buckler, Philip Bedoukian, Suren Jayasuriya, and Adrian Sampson. Eva²: Exploiting temporal
507 redundancy in live computer vision. In *2018 ACM/IEEE 45th Annual International Symposium on
508 Computer Architecture (ISCA)*, pp. 533–546. IEEE, 2018.

509 Tyler A Chang, Catherine Arnett, Zhuowen Tu, and Benjamin K Bergen. Goldfish: Monolingual
510 language models for 350 languages. *arXiv preprint arXiv:2408.10441*, 2024.

511 Guiming Hardy Chen, Shunian Chen, Ruifei Zhang, Junying Chen, Xiangbo Wu, Zhiyi Zhang,
512 Zhihong Chen, Jianquan Li, Xiang Wan, and Benyou Wang. Allava: Harnessing gpt4v-synthesized
513 data for lite vision-language models. *arXiv preprint arXiv:2402.11684*, 2024a.

514 Lin Chen, Xilin Wei, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan,
515 Zhenyu Tang, Li Yuan, et al. Sharegpt4video: Improving video understanding and generation with
516 better captions. *Advances in Neural Information Processing Systems*, 37:19472–19495, 2024b.

517 Yukang Chen, Fuzhao Xue, Dacheng Li, Qinghao Hu, Ligeng Zhu, Xiuyu Li, Yunhao Fang, Haotian
518 Tang, Shang Yang, Zhijian Liu, et al. Longvila: Scaling long-context visual language models for
519 long videos. *arXiv preprint arXiv:2408.10188*, 2024c.

520 Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shenglong
521 Ye, Hao Tian, Zhaoyang Liu, et al. Expanding performance boundaries of open-source multimodal
522 models with model, data, and test-time scaling. *arXiv preprint arXiv:2412.05271*, 2024d.

523 Zhe Chen, Jiannan Wu, Wenhui Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
524 Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning
525 for generic visual-linguistic tasks. In *Proceedings of the IEEE/CVF conference on computer vision
526 and pattern recognition*, pp. 24185–24198, 2024e.

527 Zesen Cheng, Sicong Leng, Hang Zhang, Yifei Xin, Xin Li, Guanzheng Chen, Yongxin Zhu, Wenqi
528 Zhang, Ziyang Luo, Deli Zhao, et al. Videollama 2: Advancing spatial-temporal modeling and
529 audio understanding in video-llms. *arXiv preprint arXiv:2406.07476*, 2024.

530 Google Deepmind. Gemini 2.0. <https://deepmind.google/technologies/gemini/>,
531 2024.

532 Miquel Farré, Andi Marafioti, Lewis Tunstall, Leandro Von Werra, and Thomas Wolf. Finevideo.
533 <https://huggingface.co/datasets/HuggingFaceFV/finevideo>, 2024.

540 Chaoyou Fu, Yuhang Dai, Yongdong Luo, Lei Li, Shuhuai Ren, Renrui Zhang, Zihan Wang, Chenyu
 541 Zhou, Yunhang Shen, Mengdan Zhang, et al. Video-mme: The first-ever comprehensive evaluation
 542 benchmark of multi-modal llms in video analysis. *arXiv preprint arXiv:2405.21075*, 2024a.
 543

544 Chaoyou Fu, Haojia Lin, Zuwei Long, Yunhang Shen, Meng Zhao, Yifan Zhang, Shaoqi Dong, Xiong
 545 Wang, Di Yin, Long Ma, et al. Vita: Towards open-source interactive omni multimodal llm. *arXiv
 546 preprint arXiv:2408.05211*, 2024b.

547 Chaoyou Fu, Haojia Lin, Xiong Wang, Yi-Fan Zhang, Yunhang Shen, Xiaoyu Liu, Haoyu Cao,
 548 Zuwei Long, Heting Gao, Ke Li, et al. Vita-1.5: Towards gpt-4o level real-time vision and speech
 549 interaction. *arXiv preprint arXiv:2501.01957*, 2025.
 550

551 Yao Fu. Challenges in deploying long-context transformers: A theoretical peak performance analysis.
 552 *arXiv preprint arXiv:2405.08944*, 2024.

553 Emil Julius Gumbel. *Statistical theory of extreme values and some practical applications: a series of
 554 lectures*, volume 33. US Government Printing Office, 1954.

555 Dong Guo, Faming Wu, Feida Zhu, Fuxing Leng, Guang Shi, Haobin Chen, Haoqi Fan, Jian Wang,
 556 Jianyu Jiang, Jiawei Wang, et al. Seed1. 5-vl technical report. *arXiv preprint arXiv:2505.07062*,
 557 2025.

558 Mingfei Han, Linjie Yang, Xiaojun Chang, and Heng Wang. Shot2story20k: A new benchmark for
 559 comprehensive understanding of multi-shot videos. *arXiv preprint arXiv:2312.10300*, 2023.

560 Charles Herrmann, Richard Strong Bowen, and Ramin Zabih. Channel selection using gumbel
 561 softmax. In *European conference on computer vision*, pp. 241–257. Springer, 2020.

562 Wenyi Hong, Weihan Wang, Ming Ding, Wenmeng Yu, Qingsong Lv, Yan Wang, Yean Cheng,
 563 Shiyu Huang, Junhui Ji, Zhao Xue, et al. Cogvilm2: Visual language models for image and video
 564 understanding. *arXiv preprint arXiv:2408.16500*, 2024a.

565 Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan
 566 Wang, Yuxiao Dong, Ming Ding, et al. Cogagent: A visual language model for gui agents.
 567 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 568 14281–14290, 2024b.

569 Md Mohaiminul Islam, Tushar Nagarajan, Huiyu Wang, Gedas Bertasius, and Lorenzo Torresani.
 570 Bimba: Selective-scan compression for long-range video question answering. *arXiv preprint
 571 arXiv:2503.09590*, 2025.

572 Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. *arXiv
 573 preprint arXiv:1611.01144*, 2016.

574 Peng Jin, Ryuichi Takanobu, Wancai Zhang, Xiaochun Cao, and Li Yuan. Chat-univi: Unified
 575 visual representation empowers large language models with image and video understanding. In
 576 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 577 13700–13710, 2024.

578 Ranjay Krishna, Kenji Hata, Frederic Ren, Li Fei-Fei, and Juan Carlos Niebles. Dense-captioning
 579 events in videos. In *Proceedings of the IEEE international conference on computer vision*, pp.
 580 706–715, 2017.

581 Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov,
 582 Thomas Wang, Siddharth Karamcheti, Alexander Rush, Douwe Kiela, et al. Obelics: An open
 583 web-scale filtered dataset of interleaved image-text documents. *Advances in Neural Information
 584 Processing Systems*, 36:71683–71702, 2023.

585 Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan
 586 Zhang, Yanwei Li, Ziwei Liu, et al. Llava-onevision: Easy visual task transfer. *arXiv preprint
 587 arXiv:2408.03326*, 2024a.

594 Feng Li, Renrui Zhang, Hao Zhang, Yuanhan Zhang, Bo Li, Wei Li, Zejun Ma, and Chunyuan Li.
 595 Llava-next-interleave: Tackling multi-image, video, and 3d in large multimodal models. *arXiv*
 596 *preprint arXiv:2407.07895*, 2024b.

597 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
 598 pre-training with frozen image encoders and large language models. In *International conference*
 599 *on machine learning*, pp. 19730–19742. PMLR, 2023a.

600 KunChang Li, Yinan He, Yi Wang, Yizhuo Li, Wenhui Wang, Ping Luo, Yali Wang, Limin Wang, and
 601 Yu Qiao. Videochat: Chat-centric video understanding. *arXiv preprint arXiv:2305.06355*, 2023b.

602 Kunchang Li, Yali Wang, Yinan He, Yizhuo Li, Yi Wang, Yi Liu, Zun Wang, Jilan Xu, Guo Chen,
 603 Ping Luo, et al. Mvbench: A comprehensive multi-modal video understanding benchmark. In
 604 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 605 22195–22206, 2024c.

606 Xinhao Li, Yi Wang, Jiashuo Yu, Xiangyu Zeng, Yuhua Zhu, Haian Huang, Jianfei Gao, Kunchang
 607 Li, Yinan He, Chenting Wang, et al. Videochat-flash: Hierarchical compression for long-context
 608 video modeling. *arXiv preprint arXiv:2501.00574*, 2024d.

609 Yanwei Li, Chengyao Wang, and Jiaya Jia. Llama-vid: An image is worth 2 tokens in large language
 610 models. In *European Conference on Computer Vision*, pp. 323–340. Springer, 2024e.

611 Zhiqi Li, Guo Chen, Shilong Liu, Shihao Wang, Vibashan VS, Yishen Ji, Shiyi Lan, Hao Zhang,
 612 Yilin Zhao, Subhashree Radhakrishnan, et al. Eagle 2: Building post-training data strategies from
 613 scratch for frontier vision-language models. *arXiv preprint arXiv:2501.14818*, 2025.

614 Ji Lin, Hongxu Yin, Wei Ping, Pavlo Molchanov, Mohammad Shoeybi, and Song Han. Vila: On
 615 pre-training for visual language models. In *Proceedings of the IEEE/CVF conference on computer*
 616 *vision and pattern recognition*, pp. 26689–26699, 2024.

617 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances in*
 618 *neural information processing systems*, 36:34892–34916, 2023.

619 Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
 620 Llavanext: Improved reasoning, ocr, and world knowledge, 2024a.

621 Zhijian Liu, Ligeng Zhu, Baifeng Shi, Zhuoyang Zhang, Yuming Lou, Shang Yang, Haocheng Xi,
 622 Shiyi Cao, Yuxian Gu, Dacheng Li, et al. Nvila: Efficient frontier visual language models. *arXiv*
 623 *preprint arXiv:2412.04468*, 2024b.

624 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint*
 625 *arXiv:1711.05101*, 2017.

626 Muhammad Maaz, Hanooma Rasheed, Salman Khan, and Fahad Shahbaz Khan. Video-chatgpt:
 627 Towards detailed video understanding via large vision and language models. *arXiv preprint*
 628 *arXiv:2306.05424*, 2023.

629 OpenAI. Gpt-4v(ision) system card. <https://openai.com/research/gpt-4v-system-card>, 2023.

630 OpenAI. Hello gpt-4o. <https://openai.com/index/hello-gpt-4o/>, 2024.

631 Ji Qi, Ming Ding, Weihan Wang, Yushi Bai, Qingsong Lv, Wenyi Hong, Bin Xu, Lei Hou, Juanzi Li,
 632 Yuxiao Dong, et al. Cogcom: Train large vision-language models diving into details through chain
 633 of manipulations. *arXiv preprint arXiv:2402.04236*, 2024.

634 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 635 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 636 models from natural language supervision. In *International conference on machine learning*, pp.
 637 8748–8763. PMLR, 2021.

638 Shuhuai Ren, Sishuo Chen, Shicheng Li, Xu Sun, and Lu Hou. Testa: Temporal-spatial token
 639 aggregation for long-form video-language understanding. *arXiv preprint arXiv:2310.19060*, 2023.

648 Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu Soricut. Conceptual captions: A cleaned,
 649 hypernymed, image alt-text dataset for automatic image captioning. In *Proceedings of the 56th*
 650 *Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp.
 651 2556–2565, 2018.

652 Xiaoqian Shen, Yunyang Xiong, Changsheng Zhao, Lemeng Wu, Jun Chen, Chenchen Zhu, Zechun
 653 Liu, Fanyi Xiao, Balakrishnan Varadarajan, Florian Bordes, et al. Longvu: Spatiotemporal adaptive
 654 compression for long video-language understanding. *arXiv preprint arXiv:2410.17434*, 2024.

655 Yunhang Shen, Chaoyou Fu, Shaoqi Dong, Xiong Wang, Peixian Chen, Mengdan Zhang, Haoyu Cao,
 656 Ke Li, Xiawu Zheng, Yan Zhang, et al. Long-vita: Scaling large multi-modal models to 1 million
 657 tokens with leading short-context accuray. *arXiv preprint arXiv:2502.05177*, 2025.

658 Min Shi, Fuxiao Liu, Shihao Wang, Shijia Liao, Subhashree Radhakrishnan, Yilin Zhao, De-An
 659 Huang, Hongxu Yin, Karan Sapra, Yaser Yacoob, et al. Eagle: Exploring the design space for
 660 multimodal llms with mixture of encoders. *arXiv preprint arXiv:2408.15998*, 2024.

661 Yan Shu, Zheng Liu, Peitian Zhang, Minghao Qin, Junjie Zhou, Zhengyang Liang, Tiejun Huang,
 662 and Bo Zhao. Video-xl: Extra-long vision language model for hour-scale video understanding.
 663 *arXiv preprint arXiv:2409.14485*, 2024.

664 Enxin Song, Wenhao Chai, Guanhong Wang, Yucheng Zhang, Haoyang Zhou, Feiyang Wu, Haozhe
 665 Chi, Xun Guo, Tian Ye, Yanting Zhang, et al. Moviechat: From dense token to sparse memory for
 666 long video understanding. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 667 *Pattern Recognition*, pp. 18221–18232, 2024.

668 Guangzhi Sun, Wenyi Yu, Changli Tang, Xianzhao Chen, Tian Tan, Wei Li, Lu Lu, Zejun Ma, Yuxuan
 669 Wang, and Chao Zhang. video-salmonn: Speech-enhanced audio-visual large language models.
 670 *arXiv preprint arXiv:2406.15704*, 2024.

671 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 672 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 673 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023a.

674 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
 675 Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
 676 and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023b.

677 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 678 Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the
 679 world at any resolution. *arXiv preprint arXiv:2409.12191*, 2024a.

680 Weihang Wang, Qingsong Lv, Wenmeng Yu, Wenyi Hong, Ji Qi, Yan Wang, Junhui Ji, Zhuoyi Yang,
 681 Lei Zhao, Song XiXuan, et al. Cogvilm: Visual expert for pretrained language models. *Advances*
 682 *in Neural Information Processing Systems*, 37:121475–121499, 2024b.

683 Xidong Wang, Dingjie Song, Shunian Chen, Chen Zhang, and Benyou Wang. Longllava: Scal-
 684 ing multi-modal llms to 1000 images efficiently via a hybrid architecture. *arXiv preprint*
 685 *arXiv:2409.02889*, 2024c.

686 Yi Wang, Kunchang Li, Yizhuo Li, Yinan He, Bingkun Huang, Zhiyu Zhao, Hongjie Zhang, Jilan
 687 Xu, Yi Liu, Zun Wang, et al. Internvideo: General video foundation models via generative and
 688 discriminative learning. *arXiv preprint arXiv:2212.03191*, 2022.

689 Yi Wang, Kunchang Li, Xinhao Li, Jiashuo Yu, Yinan He, Guo Chen, Baoqi Pei, Rongkun Zheng,
 690 Zun Wang, Yansong Shi, et al. Internvideo2: Scaling foundation models for multimodal video
 691 understanding. In *European Conference on Computer Vision*, pp. 396–416. Springer, 2024d.

692 Yi Wang, Xinhao Li, Ziang Yan, Yinan He, Jiashuo Yu, Xiangyu Zeng, Chenting Wang, Changlian
 693 Ma, Haian Huang, Jianfei Gao, et al. Internvideo2. 5: Empowering video mllms with long and rich
 694 context modeling. *arXiv preprint arXiv:2501.12386*, 2025.

695 Stephan Wenger. Video redundancy coding in h. 263+. In *1997 International Workshop on Audio-
 696 Visual Services over Packet Networks*. Citeseer, 1997.

702 Lin Xu, Yilin Zhao, Daquan Zhou, Zhiping Lin, See Kiong Ng, and Jiashi Feng. Pllava: Parameter-free
 703 llava extension from images to videos for video dense captioning. *arXiv preprint arXiv:2404.16994*,
 704 2024a.

705 Mingze Xu, Mingfei Gao, Zhe Gan, Hong-You Chen, Zhengfeng Lai, Haiming Gang, Kai Kang, and
 706 Afshin Dehghan. Slowfast-llava: A strong training-free baseline for video large language models.
 707 *arXiv preprint arXiv:2407.15841*, 2024b.

708 Fuzhao Xue, Yukang Chen, Dacheng Li, Qinghao Hu, Ligeng Zhu, Xiuyu Li, Yunhao Fang, Haotian
 709 Tang, Shang Yang, Zhiping Liu, et al. Longvila: Scaling long-context visual language models for
 710 long videos. *arXiv preprint arXiv:2408.10188*, 2024.

711 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 712 Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. *arXiv preprint
 713 arXiv:2412.15115*, 2024.

714 Yuan Yao, Tianyu Yu, Ao Zhang, Chongyi Wang, Junbo Cui, Hongji Zhu, Tianchi Cai, Haoyu Li,
 715 Weilin Zhao, Zhihui He, et al. Minicpm-v: A gpt-4v level mllm on your phone. *arXiv preprint
 716 arXiv:2408.01800*, 2024.

717 Jiabo Ye, Haiyang Xu, Haowei Liu, Anwen Hu, Ming Yan, Qi Qian, Ji Zhang, Fei Huang, and Jingren
 718 Zhou. mplug-owl3: Towards long image-sequence understanding in multi-modal large language
 719 models. *arXiv preprint arXiv:2408.04840*, 2024.

720 Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
 721 image pre-training. In *Proceedings of the IEEE/CVF international conference on computer vision*,
 722 pp. 11975–11986, 2023.

723 Boqiang Zhang, Kehan Li, Zesen Cheng, Zhiqiang Hu, Yuqian Yuan, Guanzheng Chen, Sicong Leng,
 724 Yuming Jiang, Hang Zhang, Xin Li, et al. Videollama 3: Frontier multimodal foundation models
 725 for image and video understanding. *arXiv preprint arXiv:2501.13106*, 2025.

726 Pan Zhang, Xiaoyi Dong, Yuhang Zang, Yuhang Cao, Rui Qian, Lin Chen, Qipeng Guo, Haodong
 727 Duan, Bin Wang, Linke Ouyang, et al. Internlm-xcomposer-2.5: A versatile large vision language
 728 model supporting long-contextual input and output. *arXiv preprint arXiv:2407.03320*, 2024a.

729 Peiyuan Zhang, Kaichen Zhang, Bo Li, Guangtao Zeng, Jingkang Yang, Yuanhan Zhang, Ziyue
 730 Wang, Haoran Tan, Chunyuan Li, and Ziwei Liu. Long context transfer from language to vision.
 731 *arXiv preprint arXiv:2406.16852*, 2024b.

732 Ruohong Zhang, Liangke Gui, Zhiqing Sun, Yihao Feng, Keyang Xu, Yuanhan Zhang, Di Fu,
 733 Chunyuan Li, Alexander Hauptmann, Yonatan Bisk, et al. Direct preference optimization of video
 734 large multimodal models from language model reward. *arXiv preprint arXiv:2404.01258*, 2024c.

735 Y Zhang, B Li, H Liu, Y Lee, L Gui, D Fu, J Feng, Z Liu, and C Li. Llava-next: A strong zero-shot
 736 video understanding model. 2024d.

737 Yuanhan Zhang, Jinming Wu, Wei Li, Bo Li, Zejun Ma, Ziwei Liu, and Chunyuan Li. Video
 738 instruction tuning with synthetic data. *arXiv preprint arXiv:2410.02713*, 2024e.

739 Junjie Zhou, Yan Shu, Bo Zhao, Boya Wu, Shitao Xiao, Xi Yang, Yongping Xiong, Bo Zhang,
 740 Tiejun Huang, and Zheng Liu. Mlvu: A comprehensive benchmark for multi-task long video
 741 understanding. *arXiv preprint arXiv:2406.04264*, 2024.

742 Orr Zohar, Xiaohan Wang, Yann Dubois, Nikhil Mehta, Tong Xiao, Philippe Hansen-Estruch,
 743 Licheng Yu, Xiaofang Wang, Felix Juefei-Xu, Ning Zhang, et al. Apollo: An exploration of video
 744 understanding in large multimodal models. *arXiv preprint arXiv:2412.10360*, 2024.

745

746

747

748

749

750

751

752

753

754

755

756
757
758
759

Appendix

760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775

A RELATED WORKS

776
777
778
779
780
781
782
783
784
785
786

LMMs for General Vision Understanding Building upon pretrained large language models (Brown et al., 2020; Touvron et al., 2023a;b) and vision foundation models (Radford et al., 2021; Zhai et al., 2023) with exceptional capabilities, Large Multimodal Models (LMMs) (Alayrac et al., 2022; Li et al., 2023a; Liu et al., 2023; Bai et al., 2023; Wang et al., 2024b; Yao et al., 2024) were initially proposed to learn mappings from visual inputs to linguistic representations through training on vast amounts of image-text paired data. These models have demonstrated remarkable visual-language understanding abilities. Subsequent studies has witnessed significant advancements in this field, with notable contributions including superior visual grounding Qi et al. (2024); Wang et al. (2024a), for web content recognition and visual agents (Hong et al., 2024b), enhanced multimodal reasoning capabilities (Chen et al., 2024e;d; Fu et al., 2024b; 2025; Shi et al., 2024; Zhang et al., 2024a), and the efforts contributed substantially to the open-source community (Lin et al., 2024; Liu et al., 2024b; Li et al., 2024a;b). These developments collectively represent substantial progress in expanding the applicability and performance of multimodal systems across diverse scenarios. Recent research has witnessed a surge of work developing LMMs with video understanding capabilities by incorporating video frames as training data (Chen et al., 2024d; Hong et al., 2024a; Ye et al., 2024; Yang et al., 2024; Wang et al., 2022; 2024d; Guo et al., 2025; Li et al., 2025; 2023b; 2024c).

787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804

LMMs for Efficient Video Understanding To handle longer video inputs, numerous efficient LMMs have been proposed. Early optimizations drew inspiration from long-context techniques in language models, including the adoption of sequence parallelism frameworks (Zhang et al., 2024b; Xue et al., 2024; Shen et al., 2025). Subsequently, a series of token merging techniques were developed to reduce spatiotemporal redundancy by consolidating the expanded token sequences resulting from longer video input (Li et al., 2024e; Maaz et al., 2023; Xu et al., 2024a; Shen et al., 2024; Sun et al., 2024; Shu et al., 2024; Ren et al., 2023). Additionally, significant research efforts have focused on video frame sampling strategies to minimize inter-frame redundancy (Ataallah et al., 2024; Zhang et al., 2024e; Xu et al., 2024b; Zohar et al., 2024; Chen et al., 2024b; Chang et al., 2024). More recently, novel architectures with enhanced long-sequence memory capabilities have emerged to facilitate the understanding of extended video sequences (Wang et al., 2024c; Islam et al., 2025).

805
806
807
808
809

B LIMITATIONS

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
100100
100101
100102
100103
100104
100105
100106
100107
100108
100109
100110
100111
100112
100113
100114
100115
100116
100117
100118
100119
100120
100121
100122
100123
100124
100125
100126
100127
100128
100129
100130
100131
100132
100133
100134
100135
100136
100137
100138
100139
100140
100141
100142
100143
100144
100145
100146
100147
100148
100149
100150
100151
100152
100153
100154
100155
100156
100157
100158
100159
100160
100161
100162
100163
100164
100165
100166
100167
100168
100169
100170
100171
100172
100173
100174
100175
100176
100177
100178
100179
100180
100181
100182
100183
100184
100185
100186
100187
100188
100189
100190
100191
100192
100193
100194
100195
100196
100197
100198
100199
100200
100201
100202
100203
100204
100205
100206
100207
100208
100209
100210
100211
100212
100213
100214
100215
100216
100217
100218
100219
100220
100221
100222
100223
100224
100225
100226
100227
100228
100229
100230
100231
100232
100233
100234
100235
100236
100237
100238
100239
100240
100241
100242
100243
100244
100245
100246
100247
100248
100249
100250
100251
100252
100253
100254
100255
100256
100257
100258
100259
100260
100261
100262
100263
100264
100265
100266
100267
100268
100269
100270
100271
100272
100273
100274
100275
100276
100277
100278
100279
100280
100281
100282
100283
100284
100285
100286
100287
100288
100289
100290
100291
100292
100293
100294
100295
100296
100297
100298
100299
100300
100301
100302
100303
100304
100305
100306
100307
100308
100309
100310
100311
100312
100313
100314
100315
100316
100317
100318
100319
100320
100321
100322
100323
100324
100325
100326
100327
100328
100329
100330
100331
100332
100333
100334
100335
100336
100337
100338
100339
100340
100341
100342
100343
100344
100345
100346
100347
100348
100349
100350
100351
100352
100353
100354
100355
100356
100357
100358
100359
100360
100361
100362
100363
100364
100365
100366
100367
100368
100369
100370
100371
100372
100373
100374
100375
100376
100377
100378
100379
100380
100381
100382
100383
100384
100385
100386
100387
100388
100389
100390
100391
100392
100393
100394
100395
100396
100397
100398
100399
100400
100401
100402
100403
100404
100405
100406
100407
100408
100409
100410
100411
100412
100413
100414
100415
100416
100417
100418
100419
100420
100421
100422
100423
100424
100425
100426
100427
100428
100429
100430
100431
100432
100433
100434
100435
100436
100437
100438
100439
100440
100441
100442
100443
100444
100445
100446
100447
100448
100449
100450
100451
100452
100453
100454
100455
100456
100457
100458
100459
100460
100461
100462
100463
100464
100465
100466
100467
100468
100469
100470
100471
100472
100473
100474
100475
100476
100477
100478
100479
100480
100481
100482
100483
100484
100485
100486
100487
100488
100489
100490
100491
100492
100493
100494
100495
100496
100497
100498
100499
100500
100501
100502
100503
100504
100505
100506
100507
100508
100509
100510
100511
100512
100513
100514
100515
100516
100517
100518
100519
100520
100521
100522
100523
100524
100525
100526
100527
100528
100529
100530
100531
100532
100533
100534
100535
100536
100537
100538
100539
100540
100541
100542
100543
100544
100545
100546
100547
100548
100549
100550
100551
100552
100553
100554
100555
100556
100557
100558
100559
100560
100561
100562
100563
100564
100565
100566
100567
100568
100569
100570
100571
100572
100573
100574
100575
100576
100577
100578
100579
100580
100581
100582
100583
100584
100585
100586
100587
100588
100589
100590
100591
100592
100593
100594
100595
100596
100597
100598
100599
100600
100601
100602
100603
100604
100605
100606
100607
100608
100609
100610
100611
100612
100613
100614
100615
100616
100617
100618
100619
100620
100621
100622
100623
100624
100625
100626
100627
100628
100629
100630
100631
100632
100633
100634
100635
100636
100637
100638
100639
100640
100641
100642
100643
100644
100645
100646
100647
100648
100649
100650
100651
100652
100653
100654
100655
100656
100657
100658
100659
100660
100661
100662
100663
100664
100665
100666
100667
100668
100669
100670
100671
100672
100673
100674
100675
100676
100677
100678
100679
100680
100681
100682
100683
100684
100685
100686
100687
100688
100689
100690
100691
100692
100693
100694
100695
100696
100697
100698
100699
100700
100701
100702
100703
100704
100705
100706
100707
100708
100709
100710
100711
100712
100713
100714
100715
100716
100717
100718
100719
100720
100721
100722
100723
100724
100725
100726
100727
100728
100729
100730
100731
100732
100733
100734
100735
100736
100737
100738
100739
100740
100741
100742
100743
100744
100745
100746
100747
100748
100749
100750
100751
100752
100753
100754
100755
100756
100757
100758
100759
100760
100761
100762
100763
100764
100765
100766
100767
100768
100769
100770
100771
100772
100773
100774
100775
100776
100777
100778
100779
100780
100781
100782
100783
100784
100785
100786
100787
100788
100789
100790
100791
100792
100793
100794
100795
100796
100797
100798
100799
100800
100801
100802
100803
100804
100805
100806
100807
100808
100809
100810
100811
100812
100813
100814
100815
100816
100817
100818
100819
100820
100821
100822
100823
100824
100825
100826
100827
100828
100829
100830
100831
100832
100833
100834
100835
100836
100837
100838
100839
100840
100841
100842
100843
100844
100845
100846
100847
100848
100849
100850
100851
100852
100853
100854
100855
100856
100857
100858
100859
100860
100861
100862
100863
100864
100865
100866
100867
100868
100869
100870
100871
100872
100873
100874
100875
100876
100877
100878
100879
100880
100881
100882
100883
100884
100885
100886
100887
100888
100889
100890
100891
100892
100893
100894
100895
100896
100897
100898
100899
100900
100901
100902
100903
100904
100905
100906
100907
100908
100909
100910
100911
100912
100913
100914
100915
100916
100917
100918
100919
100920
100921
100922
100923
100924
100925
100926
100927
100928
100929
100930
100931
100932
100933
100934
100935
100936
100937
100938
100939
100940
100941
100942
100943
100944
100945
100946
100947
100948
100949
100950
100951
100952
100953
100954
100955
100956
100957
100958
100959
100960
100961
100962
100963
100964
100965
100966
100967
100968
100969
100970
100971
100972
100973
100974
100975
100976
100977
100978
100979
100980
100981
100982
100983
100984
100985
100986
100987
100988
100989
100990
100991
100992
100993
100994
100995
100996
100997
100998
100999
1001000
100101
100102
100103
100104
100105
100106
100107
100108
100109
100110
100111
100112
100113
100114
100115
100116
100117
100118
100119
100120
100121
100122
100123
100124
100125
100126
100127
100128
100129
100130
100131
100132
100133
100134
100135
100136
100137
100138
100139
100140
100141
100142
100143
100144
100145
100146
100147
100148
100149
100150
100151
100152
100153
100154
100155
100156
100157
100158
100159
100160
100161
100162
100163
100164
100165
100166
100167
100168
100169
100170
100171
100172
100173
100174
100175
100176
100177
100178
100179
100180
100181
100182
100183
100184
100185
100186
100187
100188
100189
100190
100191
100192
100193
100194
100195
100196
100197
100198
100199
100200
100201
100202
100203
100204
100205
100206
100207
100208
100209
100210
100211
100212
100213
100214
100215
100216
100217
100218
100219
100220
100221
100222
100223
100224
100225
100226
100227
100228
100229
100230
100231
100232
100233
100234
100235
100236
100237
100238
100239
100240
100241
100242
100243
100244
100245
100246
100247
100248
100249
100250
100251
100252
100253
100

810
811
812
C TRAINING DATA DETAILS

Modality	Task	# Samples	Dataset
Image-Text	Interleaved Pairs	20K	OBELICS
	Single-Image Captioning	558K	LCS
Video-Text	Captioning	95K	FineVideoCaptions, ANetCaptions

818
819
820
821
Table 4: Training data statistics for the alignment stage.

Modality	Task	# Samples	Dataset
Text	Instruction	93K	Evo-Instruct
Image-Text	Interleaved Pairs	20K	OBELICS
	Single-Image Captioning	50K	LCS
	Single-Image Tasks	2.8M	LLaVAOneVision
Video-Text	Captioning	5K	FineVideoCaptions, AnetCaptions
	VQA	75K	FineVideoQAs
	Dense Captioning	38K	ShareGPT4Video

832
833
834
835
Table 5: Training data statistics for the pre-training stage.

Modality	Task	# Samples	Dataset
Text	Instruction	9K	Evo-Instruct
Image-Text	Single-Image Tasks	40K	LLaVA-OneVision-SingleImage
	Multi-Images Tasks	100K	LLaVA-OneVision-MultiImages
Video-Text	Captioning	52K	TextVR, MovieChat, YouCook2
	Dense Captioning	4K	ShareGPT4Video
	Classification	1K	Kinetics-710
	VQA	354K	NExT-QA, CLEVRER, EgoQA TGIF, ShareGPTVideo, FineVideoQAs
	Instruction	188K	VideoChatGPT, VideoChat, LongVILA

848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
Table 6: Training data statistics for the supervised fine-tuning stage.

864 **D ADDITIONAL EVALUATIONS**

867 Model	868 NExT-QA		869 ActivityNet-QA		870 Video-ChatGPT			
	871 acc	872 acc	873 Correctness	874 Detail	875 Context	876 Temporal	877 Consistency	
878 LLaMA-VID (7B)	879 -	880 47.4/3.3	881 2.96	882 3.00	883 3.53	884 2.46	885 2.51	
886 Chat-UniVi (7B)	887 -	888 46.1/3.3	889 2.89	890 2.91	891 3.46	892 2.89	893 2.81	
894 Video-LLaVA (7B)	895 -	896 45.3/3.3	897 2.87	898 2.94	899 3.44	900 2.45	901 2.51	
902 VideoChat2 (7B)	903 68.6	904 49.1/3.3	905 3.16	906 3.08	907 3.69	908 2.56	909 3.14	
910 VideoLLaMA2 (7B)	911 75.6	912 50.2/3.3	913 3.30	914 33.18	915 3.78	916 2.66	917 3.12	
918 LLaVA-NeXT-Video (7B)	919 78.2	920 53.5/3.2	921 3.39	922 3.29	923 3.92	924 2.60	925 3.12	
926 Quicksviewer (8B)	927 77.5	928 47.6/2.7	929 3.10	930 3.11	931 3.09	932 2.48	933 3.04	

874 Table 7: Evaluation results on more benchmarks.

875 **E QUALITATIVE ANALYSIS**

876 Our unified perception paradigm demonstrates efficient visual understanding capabilities, successfully
 877 processing: 1) lengthy videos, 2) high-resolution single images, and 3) multi-image contextual
 878 reasoning tasks. Through representative qualitative analysis, we validate the model’s performance
 879 across these diverse inputs. Specifically, we evaluate the video understanding capabilities of our
 880 model through documentary recording and sports competitions, while the image understanding
 881 proficiency across diverse domains including outdoor road scenes, physics/biological/historical
 882 knowledge systems, and multi-image geographical analysis.

883 In the documentary depicting a penguin chick’s perilous encounter and subsequent escape, our model
 884 demonstrates comprehensive video understanding by: (1) identifying the nature of the unexpected
 885 attack, (2) precisely locating its temporal occurrence, and (3) summarizing the eventual outcome -
 886 showcasing its advanced capabilities in long-form video understanding, including temporal action
 887 recognition, event narrative abstraction, and exact timestamp localization.

888 In a lacrosse match video documenting a scoring play, our model precisely identifies the initiating
 889 player when queried about the offensive sequence, subsequently describing the play development
 890 and correctly specifying both the scoring player’s identity and jersey number. This demonstrates
 891 the model’s dual capability of (1) recognizing individual athletes in sports footage and (2) logically
 892 summarizing dynamic game situations.

893 We further validate our model’s image understanding capabilities across extensive scenarios. As
 894 illustrated in Figure 6, these include: 1) traffic sign recognition in driving environments, 2) physics
 895 problem solving, 3) biological image interpretation and association, 4) historical scene identification,
 896 and 5) multi-image geographical reasoning. These examples demonstrate that while exhibiting strong
 897 video understanding, our model maintains robust image understanding capabilities. Benefiting from
 898 interleaved image-text training data, the model additionally acquires in-context learning capabilities
 899 for complex reasoning tasks.

900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917

918
919
920
921
922

User: What is the main incident that happened in this video?

Quicksviewer: The main incident that happened in the video is a group of penguins standing on the snow, while a bird approaches them. The bird tries to attack one of the penguins, but it fails.

User: During what time period (HH:MM:SS - HH:MM:SS) did the attack occur? Were any penguins injured?

Quicksviewer: The attack occurred between 0:47 and 0:53, and no penguins were injured during the incident.

923
924
925
926
927
928
929

User: Which White team player started the last offensive sequence?

Quicksviewer: 13, Barger.

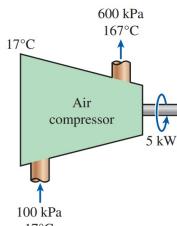
User: What happened next?

Quicksviewer: He passed the ball to his teammate, who then passed it to another teammate. White 7 Miller shot and scored a goal. The teammates celebrated by hugging and cheering.

930
931
932
933

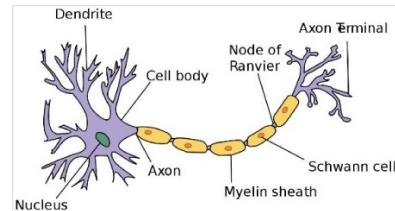
User: Where can I go by turning left?

Quicksviewer: Las Vegas.



User: Describe the process shown in the diagram including the specific values.

Quicksviewer: The thermodynamic process involves an air compressor of 5kW. The input values are 100 kPa and 17°C, while the output values are 167 kPa and 176°C.



User: Identify the biological structure and specify its computational counterpart in CS disciplines.

Quicksviewer: The image depicts a neuron, a fundamental structure in nervous tissue. The corresponding concept in computer science would be the neuron in artificial neural networks.

934

User: Where is it located?

Quicksviewer: This is the Longmen Grottoes, located in Luoyang, Henan, China.

User: What are the species of the birds, and which one inhabits the red area marked in the first map?

Quicksviewer: The first bird is a South American ostrich, the second is an African ostrich, and the third is a cassowary. The African ostrich inhabits the red area marked in the first map.

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Figure 6: Qualitative analysis shows that Quicksviewer effectively understands lengthy documentary and sports videos, as well as informative single and multiple images.