
SCIAGENT: Tool-augmented Language Models for Scientific Reasoning

Anonymous ACL submission

Abstract

Scientific reasoning poses an excessive chal-001
lenge for even the most advanced Large Lan-002
guage Models (LLMs). To make this task more003
practical and solvable for LLMs, we introduce004
a new task setting named tool-augmented sci-005
entific reasoning. This setting supplements006
LLMs with scalable toolsets, and shifts the007
focus from pursuing an omniscient problem008
solver to a proficient tool-user. To facilitate009
the research of such setting, we construct a010
tool-augmented training corpus named MATH-011
FUNC which encompasses over 30,000 samples012
and roughly 6,000 tools. Building on MATH-013
FUNC, we develop SCIAGENT to retrieve, un-014
derstand and, if necessary, use tools for scien-015
tific problem solving. Additionally, we craft016
a benchmark, SCITOOLBENCH, spanning five017
scientific domains to evaluate LLMs’ abilities018
with tool assistance. Extensive experiments on019
SCITOOLBENCH confirm the effectiveness of020
SCIAGENT. Notably, SCIAGENT-MISTRAL-021
7B surpasses other LLMs with the same size022
by more than 13% in absolute accuracy. Fur-023
thermore, SCIAGENT-DEEPMATH-7B shows024
much superior performance than ChatGPT.025

1 Introduction026

Scientific reasoning (Ouyang et al., 2023; Zhao027

et al., 2023) aims to comprehend and make deci-028

sions regarding problems among STEM (Science,029

Technology, Engineering and Mathematics) do-030

mains. It is a fundamental aspect of intelligence,031

a demanding capability of Large Language Mod-032

els (LLMs), and a notoriously challenging task.033

For instance, even GPT-4 (OpenAI, 2023) achieves034

only 50% and 35% accuracy on TheoremQA (Chen035

et al., 2023b) and SciBench (Wang et al., 2023b),036

respectively. Regarding open-source LLMs such037

as LLaMA-2 (Touvron et al., 2023) and CodeL-038

lama (Rozière et al., 2023), their performances are039

only about 10% accuracy or even less.040

math + domain reasoning

LLM

sample

LLM sample

toolset

math reasoning + tool-use ability + domain tools

Figure 1: Two paradigms for scientific reasoning. Dif-
ferent colors represent different scientific domains. Left:
Collecting annotations and fine-tuning LLMs domain by
domain. Right: Our proposed tool-augmented setting.
LLMs are fine-tuned on math-related, tool-augmented
samples (color in red). When adapting LLMs to a spe-
cific domain, a pluggable and domain-specific toolset is
attached. No additional fine-tuning is further required.

The challenge in scientific reasoning arises from 041

the need for both mathematical (math) and domain- 042

specific reasoning abilities. To address the physical 043

problem in Figure 3, for example, it is necessary to 044

both understand Malus’ law (domain knowledge) 045

for analyzing the intensity of polarized light, and 046

possess quantitative ability for calculating the light 047

intensity ratios. A natural approach involves col- 048

lecting annotations and fine-tuning LLMs to en- 049

hance their math and domain-specific reasoning 050

abilities, as depicted in Figure 1 (left). However, an- 051

notating scientific reasoning problems is extremely 052

expensive. What is worse, adapting LLMs to a new 053

domain demands a fresh round of annotation and 054

fine-tuning, rendering this approach impractical. 055

In this paper, we draw inspirations from tool 056

learning (Qin et al., 2023a) to enhance LLMs’ sci- 057

entific reasoning capabilities. Instead of solving 058

scientific problem from scratch, humans have sum- 059

marized and wrapped various points as generalized 060

and well-documented functions in scientific com- 061

puting softwares, such as Matlab, WolframAlpha, 062

SymPy, etc. These functions1, which could be 063

1In this work, tools refer to Python functions. We use tools
and functions interchangeably unless otherwise specified.

1

equivalently viewed as external tools, greatly facil-064

itate math-adept users to solve difficult scientific065

problems. In analogy with humans, we do not pur-066

sue an omniscient solver across various scientific067

domains. Instead, we assume the access to domain-068

specific toolsets and purse a unified, generalized069

LLM-based tool-user as shown in the Figure 1070

(right). This approach tackles domain-specific rea-071

soning challenges by enabling LLMs learn to use072

a reusable and scalable toolkit. It alleviates the073

reasoning challenges of LLMs by concentrating074

solely on enhancing their tool-use abilities. These075

abilities are not only easier to acquire but also ap-076

plicable across a variety of scientific fields. By077

attaching domain-specific toolsets, our tool-users078

can be readily adapted to different fields without079

the need for additional in-domain fine-tuning.080

This work focuses on developing and bench-081

marking the ability of LLMs in scientific reason-082

ing with the help of tools. We envision a sce-083

nario where LLMs have access to a domain-specific084

toolset, comprising various specialized functions.085

Upon this scenario, we propose a complete frame-086

work of dataset construction, model training and087

evaluation. Given a scientific question, LLMs are088

supposed to retrieve functions from the toolset and089

optionally incorporate functions into the formu-090

lated solution. We employ an automatic pipeline091

featuring GPT-4 to compile a large-scale, math-092

related, tool-augmented training corpus named as093

MATHFUNC. This corpus is designed to enable094

LLMs to learn both essential math skills and how095

to retrieve, understand and use functions properly.096

As a result, MATHFUNC contains 31,375 samples097

and equipped with a toolset encompassing 5,981098

generalized and well-documented functions. We099

detail this training corpus in Section 3.100

We fine-tune open-source LLMs on MATHFUNC101

to develop tool-augmented agents named SCIA-102

GENT detailed in Section 4. As shown in Figure 3,103

SCIAGENT firstly generate a high-level planning104

in response to a given question. The agents then105

use this plan, along with the question, to retrieve106

functions from the given toolset. Leveraging these107

retrieved functions, the agents further complete the108

low-level action integrating natural language and109

Python code. Finally the agents execute the code110

to complete the problem at hand.111

To benchmark the tool-use abilities in scientific112

reasoning, we develop a new benchmark named113

SCITOOLBENCH as described in Section 5. Build-114

ing upon TheoremQA (Chen et al., 2023b) and115

SciBench (Wang et al., 2023b), it has 856 ques- 116

tions covering five domains: Mathematics, Phys- 117

ical, Chemistry, EECS, and Finance. It also con- 118

tains five domain-specific toolsets comprising a to- 119

tal of 2,446 functions. We evaluate SCIAGENT on 120

SCITOOLBENCH and another benchmark derived 121

from CREATOR-challenge (Qian et al., 2023). 122

Experimental results demonstrate that our agents 123

present remarkable scientific reasoning capabilities. 124

Notably, SCIAGENT-MISTRAL-7B surpasses the 125

best comparable open-source LLMs by an absolute 126

13.4% accuracy, and SCIAGENT-DEEPMATH-7B 127

outperforms ChatGPT by a large margin. We also 128

conduct an extensive analysis of the benefits and 129

limitations of SCIAGENT series, providing valu- 130

able insights for future research. 131

2 Preliminary 132

Related Work. Current methods (Chen et al., 133

2023b; Xu et al., 2023b; Ouyang et al., 2023), espe- 134

cially those based on open-source LLMs, perform 135

far from satisfactory on scientific reasoning bench- 136

marks (Chen et al., 2023b; Wang et al., 2023b). 137

We attribute it to the scarcity of annotated samples 138

across diverse scientific domains. As a comparison, 139

LLMs present much more remarkable performance 140

on math problems (Yue et al., 2023b; Gou et al., 141

2023b; Azerbayev et al., 2023) due to the abundant 142

training corpora and/or annotations. Different from 143

concurrent work (Zhang et al., 2024) which col- 144

lects physics and chemistry annotations, we do not 145

pursue a problem-solver on some specific scientific 146

domains. Instead, we consider to develop a gener- 147

alized tool-user being proficient on solving diverse 148

scientific problems with the aid of tools. Following 149

previous work on math domain (Qian et al., 2023; 150

Cai et al., 2023; Yuan et al., 2023a), the tools here 151

refer to Python functions. Please see more detailed 152

literature review in Appendix A. 153

Task Formulation. Given a scientific domain D 154

(e.g., physics), tool-augmented scientific reasoning 155

task assumes access to (1) a question q ∈ D and 156

(2) a toolset FD. FD encompasses large amounts 157

of well-documented, domain-specific functions 158

{f1, ..., fm}. Our objective is to develop an agent 159

M which selectively use functions in FD to en- 160

hance the answering for the question q. 161

3 Training Corpus: MATHFUNC 162

To our best knowledge, there are no readily avail- 163

able tool-augmented datasets in scientific reason- 164

2

To find the distance between the

foci of the hyperbola, we can follow

the steps below: (1)… (2)…….

The values in the hyperbola equation.
a_2, b_2 = 18, 2
calculate the distance between the foci.
distance = distance_between_foci_hyperbola(a_2, b_2)
Print the result.
print(distance)

Find the distance between

the foci of the hyperbola
𝒚𝟐

𝟏𝟖
−

𝒙𝟐

𝟐
= 𝟏

Answer: 𝟒 𝟓

def hyperbola_foci_distance(a_squared, b_squared):
 """
 Calculates the distance between the foci of a
hyperbola given the values of a^2 and b^2.
 """

def f(x, y):
 """
 Defines the function f(x, y) = y^2/18 - x^2/2.
 """ def distance_between_foci_hyperbola(a_squared,

b_squared):
 """
 Calculates the distance between the foci of a
hyperbola given the values of a^2 and b^2.
 """

def hyperbola_foci(center, a, b):
 """
 Finds the foci of a hyperbola with given
center, a, and b values.
 """

def hyperbola_distance_between_vertices(a_squared,
b_squared):
 """
 Finds the distance between the vertices of a
hyperbola given the values of a^2 and b^2.
 """

Retrieved functions 𝑭𝒒

Function-augmented solution 𝑺𝒒

Toolset 𝑭

Planning 𝑮𝒒 Generated functions ෩𝑭𝒒

Question 𝒒 (w. answer)
Retriever 𝑹

Self-rectification

Cross-retrieval

Figure 2: Automatic pipeline for MATHFUNC construction. Please view it starting from the bottom left corner and
proceed clockwise. We disentangle the constructions of toolset (dashed lines) and function-augmented samples
(solid lines) for more generalized annotations. We do not visualize the function-free samples for simplicity.

ing domains. Therefore, we construct a corpus165

named MATHFUNC teaching LLMs to better under-166

stand and use functions. MATHFUNC is composed167

of (1) a toolset F 2 including 5,981 generalized,168

well-documented, math-related functions and (2) a169

dataset D encompassing 31,375 samples in which170

solutions call the function from the toolset if nec-171

essary (e.g., 4⃝ in Figure 2). We build this corpus172

based on MATH (Hendrycks et al., 2021b) training173

set because we expect to teach LLMs both math174

skills and tool-use abilities.175

Sample Format. Each sample is a quintuple176

(q,Gq, Fq, Sq, aq). Here q is a question, Gq is the177

planning, Fq is the function set filtered from the178

toolset (Fq ⊂ F , |Fq| ≪ |F |), Sq is the solution179

and aq is the answer. Sq interleaves rationales Eq
3180

and programs Pq which optionally call functions181

in Fq to facilitate the problem solving.182

We employ an automatic pipeline to construct183

MATHFUNC. We illustrate the pipeline in Figure 2184

and detail the process in the following subsections.185

3.1 Planning and Toolset Construction186

This module is depicted in the top-left side of Fig-187

ure 2. Given a question q and its ground-truth so-188

lution (written in pure natural language) in MATH189

training set, we ask GPT-4 to generate (1) a high-190

level planning Gq to analyze this question, (2) one191

or more well-documented functions F̃q and (3) a so-192

lution S̃q calling the functions above. The prompt193

used is shown in Appendix F.1. In the prompt, we194

emphasize that the functions should be as compos-195

able and generalized as possible. Specifically, we196

do not hope that each question generates only one197

ad-hoc function (which could only be used by this198

2We remove the domain-specific subscript D for expres-
sion simplicity. The same below.

3Here Eq is written in natural language but formatted as
the annotation lines in the program.

question). Instead, we expect GPT-4 to generate 199

functions that follow the points in the planning Gq 200

and can be reused by other questions. Following 201

previous work (Qian et al., 2023; Pan et al., 2023), 202

we provide the error feedback to GPT-4 if the so- 203

lutions fail to execute, and ask GPT-4 to rectify 204

the errors in F̃q or S̃q. We repeat this procedure 205

until successful execution or reaching maximum 206

loop limitation. The prompt used for rectification 207

is shown in Appendix F.2. 208

We collect Gq (1⃝ in Figure 2, the same below) 209

and add F̃q to the toolset (2⃝) for question q if the 210

rectified solution S̃q leads to the correct answer ãq. 211

Regarding the toolset, it is iterated on all questions 212

and finally accumulated as below: 213

F =
⋃
q∈D

F̃q · I(ãq is correct) 214

215
3.2 Function-augmented Solutions 216

To collect function-augmented solution Sq and Fq, 217

a natural idea is to directly use the S̃q and F̃q gen- 218

erated above. However, we find that S̃q tends to 219

be contrived and specifically tailored to fit the re- 220

quirements of function-calling. Moreover, some 221

functions in F̃q tend to be ad-hoc4. For examples, 222

the function f(x, y) in Figure 2 merely parame- 223

terizes the hyperbola for a specific question. There- 224

fore we disentangle the construction of toolset and 225

function-augmented solutions. Given the devel- 226

oped toolset, we design a cross-retrieval strategy 227

to retrieve more generalized functions Fq and gen- 228

erate more qualified solutions Sq. Specifically, we 229

remove F̃q from F temporarily and then retrieve 230

new functions Fq ⊆ (F\F̃q) for question q. This 231

strategy eliminates the likelihood of calling ad-hoc 232

functions from F̃q in Sq. See examples of retrieved 233

4Despite we instruct GPT-4 to avoid generating ad-hoc
functions, there are still some ad-hoc functions in F̃q

3

def intensity_ratio(dB1, dB2):

def refraction_angle(incident_angle, refractive_index):

def malus_law_intensity(I0, theta):
 """
 Calculates the intensity of polarized light after
passing through a polarizer using Malus' Law.
 Parameters:
 - I0 (float): The intensity of polarized light before
the polarizer.
 - theta (float): The angle between the polarized
light and the polarizer in degrees.
 Returns:
 - float: The intensity of polarized light after
passing through the polarizer.
 """

Question: Unpolarized light passes through a polarizer at angle 40 degree to the first, and then another at angle

15 degree to the second. What percentage of the original intensity was the light coming out of the second polarizer?

Toolset

(1)Apply Malus’ law to calculate the intensity

of the light after each polarizer.

(2)Calculate the percentage of the original

intensity coming out of the third polarizer.

Planning

Define initial intensity
and angles of the polarizers.

I0 = 1
theta1, theta2 = 30, 50

Calculate intensity after
passing through the first
and the second polarizer.

I1 = malus_law_intensity(I0, theta1)
I2 = malus_law_intensity(I1, theta2)

Calculate the percentage of the original
intensity that was the light coming out of
the third polarizer.

percentage = (I2 / I0) * 100

Action

Retrieved Functions

Retrieval Query:

(1) Question
(2) Planning

Print the result.

print(percentage)

Figure 3: The model architecture of SCIAGENT. Given a domain-specific toolset , our agent answers the question
through four consecutive modules. (1) Planning : provides a high-level plan for this problem. (2) Retrieval :
retrieves related functions from attached toolset. (3) Action : generates a low-level solution interleaving rationale
and program. The program uses the retrieved functions if necessary. (4) Execution : calls Python executor to run
the program and outputs the final answer. Not included in this figure for simplicity.

functions, all of which are derived from other ques-234

tions, in the right side of Figure 2.235

Retriever. The cross-retrieval strategy necessities236

a retriever because it is impractical to enumerate237

thousands of functions in F\F̃q. We train a dense238

retriever R (3⃝ in Figure 2). We concatenate the239

question q and the generated planning Gq as the240

query, and view the generated functions F̃q as the241

keys. See details about R in Appendix B.1.242

Solution Generation. Upon the toolset F and the243

retriever R, we retrieve three functions as Fq:244

Fq = R([q,Gq];F\F̃q)245

Then we employ GPT-4 to write solutions which246

optionally call functions in Fq to generate the so-247

lution Sq (4⃝). The prompt used is illustrated in248

Appendix F.3. We explicitly point out in the prompt249

that f ∈ Fq should be called if and only if when250

they do lower the difficulty of problem solving. It251

mitigates the over-exploitation of function calling252

in Sq and increases the robustness of models fine-253

tuned on these samples. Specifically, we firstly254

use GPT-4 with greedy decoding to generate solu-255

tions. For those failing to yield correct answers, we256

further apply nucleus sampling (Holtzman et al.,257

2020) with 5 repeat times and 0.6 temperature. We258

filter wrong solutions and collect remaining 6,229259

samples as our function-augmented solutions.260

In parallel, we use GPT-4 to generate function-261

free solutions. Though not indispensable, we ex-262

pect them to further enhance the math reasoning,263

and accordingly the scientific reasoning, abilities264

of LLMs. We collect a total of 24,946 function-265

free solutions nucleus sampling with 5 repeat times266

and 0.6 temperature. These samples share similar267

format as ToRA-corpus (Gou et al., 2023b), and do268

not retrieve/use any functions, i.e., Fq = ∅.269

4 Model: SCIAGENT 270

We develop SCIAGENT for tool-augmented scien- 271

tific reasoning task. It could make plan, retrieve 272

functions, and leverage retrieved functions to fa- 273

cilitate the reasoning. We describe its inference 274

procedure and training approach as below. 275

4.1 Overview 276

As shown in Figure 3, SCIAGENT comprises four 277

successive modules. 278

Planning. This module provides a high-level pro- 279

file for each question: Gq = Mplanning(q). Such 280

planning instructs a more targeted retrieval process. 281

Retrieval. Given the question and generated plan- 282

ning Gq, the retriever Mretrieval is introduced to 283

retrieve related functions from the domain-specific 284

toolset: Fq = Mretrieval([q,Gq];FD) ⊆ FD. 285

Action. This module aims to generate low-level 286

solutions. Specifically, the agent produces Sq = 287

Maction(q;Fq). The solution Sq is interleaved with 288

natural language rationale Eq and program snippet 289

Pq. The program Pq call retrieved functions with 290

proper arguments if necessary. 291

Execution. This module is simply a Python Ex- 292

ecutor to run the program Pq for the final answer: 293

aq = Python-Executor(Pq). 294

4.2 Training 295

Language models are used in three out of four mod- 296

ules in SCIAGENT: planning, retrieval and action. 297

Rearding retrieval, we directly use the retriever R 298

fine-tuned in Section 3.2 as Mretrieval. For planning 299

and action modules, they share the same LLMs: 300

M = Mplanning = Maction. We fine-tune M with 301

different instructions to make it act as planning and 302

action modules, respectively. We construct instruc- 303

tions from d = (q,Gq, Fq, Sq, aq) in MATHFUNC. 304

4

Dplanning = {(Iplan(q), Gq)|d ∈ D}305

Daction = {(Iaction(q, Fq), Sq)|d ∈ D}306

Here Iplan and Iaction are instruction templates307

for planning and action modules. We show these308

instructions in Appendix B.2, and mix up them as309

the training set D = (Dplanning
⋃
Daction). Then310

we apply imitation learning on D to fine-tune M.311

LM =
∑

(X,Y)∈D

−logP(Y |X)312

313 Implementation We detail the training process of314

(1) the retriever Mretrieval and (2) the planner and315

actor M in Appendix B.1 and B.2, respectively.316

5 Benchmark: SCITOOLBENCH317

There currently exists no benchmark assessing the318

scientific reasoning capabilities of LLMs when319

aided by tools. To address this gap, we develop320

a benchmark called SCITOOLBENCH. Our bench-321

mark covers five domains: Mathematics (math)5,322

Physics, Chemistry, Finance, Electrical Engineer-323

ing and Computer Science (EECS). Each domain324

is composed of a set of questions and a domain-325

specific toolset. The toolset consists of abundant326

generalized, high-quality and well-documented327

functions. We expect LLMs to retrieve, understand328

and, if necessary, use functions in it for reasoning.329

Table 1: The statistics of our benchmark. #Func: Num-
ber of functions. #Pos./ #Neg.: The number of posi-
tive/negative functions in the toolset. FPQ (function
per question): The number of derived positive functions
from each question.

Question # Func # Pos. / # Neg. Avg. FPQ

Math 434 1072 511 / 561 1.47
Physics 156 534 243 / 291 1.63
Chemistry 118 366 155 / 211 1.34
Finance 66 253 97 / 156 1.62
EECS 82 221 97 / 124 1.68

All 856 2446 1103 / 1343 1.51

5.1 Dataset Overview.330

The statistics of SCITOOLBENCH are presented331

in Table 1. It comprises a total of 856 questions332

and 2,446 functions spanning across 5 scientific333

domains. Notably, SCITOOLBENCH differs from334

previous tool-based benchmarks, such as Creation335

5Our benchmark contains college-level questions on calcu-
lus, differential equations, group theory, etc, which are differ-
ent from the questions in our training corpus MATHFUNC.

0

100

200

300

400

500

600

1 2 3 4
#positive−function per question

F
re

qu
en

cy

0

300

600

900

1200

1500

1 2 3 4 >=5
Function Occurrence

F
re

qu
en

cy

Figure 4: Left: Histogram of FPQ (function per ques-
tion). Higher values indicate greater composability.
Right: Histogram of function occurrence. Higher val-
ues indicate more generalization and wider application.

Challenge (Qian et al., 2023), in several aspects: 336

(1) Our benchmark encompasses a diverse range 337

of scientific domains. (2) The tools provided are 338

both composable and generalized across different 339

questions. As indicated in Table 1, each question 340

requires an average of 1.51 functions for resolution. 341

And as shown in Figure 4, over 500 functions are 342

designed to be applicable to two or more questions, 343

such as integrate_function in math do- 344

main, coulombs_law in physical domain, and 345

calculate_pressure_van_der_waals 346

in chemistry domain. It signifies that the functions 347

in our toolset are not ad-hoc solutions tailored for 348

specific questions. Instead, the effective utilization 349

of the toolset demands significant reasoning 350

abilities of tool-augmented LLMs. Thus we claim 351

this benchmark challenging and practical. 352

Questions
Function Generation

……
Function Refinement

……

Function Verification

Correctness Generalization

Function Generation

……

Toolset Construction

Positive functions
Negative functions

Question Filtering

Toolset
TheoremQA

SciBench

Original Dataset

Retained

Refined

Rewritten

Figure 5: Semi-automatic annotation pipeline for SCI-
TOOLBENCH. : GPT-4. : Human annotator.

5.2 Dataset Annotation 353

We design a pipeline shown in Figure 5 to annotate 354

the benchmark. It employs both GPT-4 and human 355

annotators to combine their merits. We introduce it 356

briefly as below and leave details in Appendix D. 357

Question Filtering: We curate questions from The- 358

oremQA (Chen et al., 2023b) and SciBench (Wang 359

et al., 2023b) to collect 856 questions (1⃝ in Fig- 360

ure 5, the same below) in our benchmark. 361

Toolset Construction: We construct domain- 362

specific toolsets via two cascade modules: positive 363

and negative function construction. We define pos- 364

itive functions (2⃝) as functions directly deriving 365

from questions. The candidate positive functions 366

5

Table 2: Main results on two benchmarks. We highlight our SCIAGENT series in blue . The best results (among all
open-source LLMs, the same below) are in bold face and the second best are underlined.

Model Size Toolset CREATION SCITOOLBENCH
Math Physics Chemistry Finance EECS All

ChatGPT - ✗ 54.6 33.4 19.2 18.6 53.0 25.6 29.6
✓ 59.8 32.0 31.4 33.9 53.0 48.8 35.4

GPT-4 - ✗ 60.0 52.8 42.9 47.5 65.2 35.4 49.5
✓ 69.8 63.1 63.5 63.6 80.3 80.5 66.2

LLaMA2 7B ✓ 12.6 4.3 10.9 8.4 13.6 11.0 8.3
CodeLlama 7B ✗ 17.7 6.5 0.6 5.1 4.9 7.6 5.1
CodeLlama 7B ✓ 26.1 9.2 8.3 10.2 24.2 25.6 11.9
Llemma 7B ✗ 26.4 10.4 4.5 8.5 10.6 7.3 8.8
Llemma 7B ✓ 34.3 16.4 21.2 14.4 36.4 22.0 19.1
Mistral 7B ✗ 30.1 11.3 4.5 7.6 16.7 6.1 9.5
Mistral 7B ✓ 27.6 13.1 13.5 14.4 34.8 19.5 15.6
Deepseek-Coder 7B ✗ 36.8 20.3 8.3 5.9 22.7 12.2 15.5
Deepseek-Coder 7B ✓ 31.3 21.0 15.4 10.2 30.3 36.6 20.7
Deepseek-Math 7B ✗ 44.7 26.5 19.2 17.8 27.3 20.7 23.5
Deepseek-Math 7B ✓ 41.3 24.2 24.4 25.4 43.9 42.7 27.7
ToRA-Coder 7B ✗ 29.7 26.3 4.5 6.8 9.1 24.4 18.1
ToRA-Coder 7B ✓ 21.4 21.7 4.5 5.1 13.6 15.9 15.1
MAmmoTH-Coder 7B ✓ 21.6 14.8 18.5 11.0 25.8 40.0 19.7
SCIAGENT-CODER 7B ✓ 53.0 30.0 28.3 24.6 39.3 57.3 32.2
SCIAGENT-MISTRAL 7B ✓ 54.0 31.3 28.8 22.9 51.5 61.0 34.1
SCIAGENT-DEEPMATH 7B ✓ 60.4 41.2 54.5 44.9 57.5 51.2 46.3

LLaMA2 13B ✓ 23.3 12.2 11.5 6.8 22.7 14.6 12.4
CodeLlama 13B ✗ 23.0 9.9 3.2 1.7 9.1 6.1 7.1
CodeLlama 13B ✓ 38.9 12.7 14.7 7.6 33.3 34.1 16.0
ToRA-Coder 13B ✗ 30.9 28.6 3.8 4.2 16.7 30.5 20.0
ToRA-Coder 13B ✓ 28.0 32.0 2.6 11.9 24.2 35.4 23.6
MAmmoTH-Coder 13B ✓ 34.7 21.4 18.6 11.0 25.8 39.0 21.5
SCIAGENT-CODER 13B ✓ 54.4 35.0 32.1 28.8 42.4 51.2 35.7

(2⃝) are firstly generated from GPT-4. Then human367

annotators carefully check them and rewrite and/or368

remove the unqualified ones. We further automat-369

ically construct negative functions (3⃝) based on370

positive functions to reduce the shortcuts in our371

benchmark. We finally combine both positive and372

negative functions as the toolset in our benchmark.373

6 Experiments374

6.1 Setup375

We conduct experiments on SCITOOLBENCH to376

evaluate the tool-augmented scientific reasoning377

abilities of LLMs. We also employ CREATION378

Challenge (Qian et al., 2023) as the second bench-379

mark. It comprises a total of 2,047 samples, with380

each sample consisting of a question and a ground-381

truth function. We aggregate all functions to assem-382

ble the toolset (thus including 2,047 functions). We383

report accuracy as the metric in all experiments.384

6.2 Baselines385

We compare SCIAGENT series with eight open-386

source LLMs: (1) LLaMA-2 (Touvron et al., 2023),387

(2) CodeLlama (Rozière et al., 2023), (3) Mis-388

tral (Jiang et al., 2023), (4) Llemma (Azerbayev 389

et al., 2023), (5) Deepseek-Coder (Guo et al., 390

2024), (6) Deepseek-Math (Shao et al., 2024), (7) 391

MAmmoTH-Coder (Yue et al., 2023b) and (8) 392

ToRA-Coder (Gou et al., 2023b). We also list 393

the performance of ChatGPT and GPT-4 for ref- 394

erence. We provide all LLMs the same retriever 395

in Section 3.2 to retrieve functions from toolset (if 396

attached). Please see more details in Appendix C. 397

6.3 Main Results 398

We fine-tune CodeLlama, Mistral and Deepseek- 399

Math for yielding SCIAGENT-CODER, SCIAGENT- 400

MISTRAL and SCIAGENT-DEEPMATH. We show 401

their results in Table 2 and observe: (1) Almost all 402

LLMs present improved performance, i.e., 5.3% 403

absolute and 61.6% relative accuracy increase on 404

average, when supplemented with toolsets. It 405

validates the promise of the tool-augmented set- 406

ting for scientific reasoning. (2) The models fine- 407

tuned on math-related datasets from CodeLlama, 408

i.e., ToRA- and MAmmoTH-Coder, perform bet- 409

ter than CodeLlama itself by 5.5% abosolute ac- 410

curacy. It presents the importance of essential 411

math skills among diverse scientific domains. (3) 412

6

Table 3: Ablation study on SCITOOLBENCH. We report the accuracy of samples across (1) all domains, (2) four
domains excluding the math domain (wo. math).

Planning Function-augmented Function-free Retriever Accuracy (7B) Accuracy (13B)
solutions solutions All wo. math All wo. math

SciAgent-Coder ✓ ✓(cross-retrieval) ✓ ✓ 32.2 34.6 35.7 36.5

Intermediate variants
1-3

✗ ✓(cross-retrieval) ✓ ✓ 30.3 33.9 32.8 34.4
✗ ✓(direct-use) ✓ ✓ 17.8 17.3 26.6 31.0
✗ ✗ ✓ ✓ 26.3 26.1 30.4 31.7

CodeLlama ✗ ✗ ✗ ✓ 11.9 14.7 16.0 19.4
wo. retriever ✗ ✗ ✗ ✗ 5.1 3.8 7.1 4.3

Our agents consistently outperform other open-413

source LLMs by a large margin. Notably, SCIA-414

GENT-CODER surpasses the most competitive base-415

line, MAmmoTH-Coder, by absolute accuracy of416

12.5% and 14.2% on the 7B and 13B versions. (4)417

Our strongest agent, SCIAGENT-DEEPMATH-7B,418

substantially outperforms ChatGPT with toolset419

(46.3% v.s. 35.4%) and shows comparable results420

to GPT-4 without toolset (46.3% v.s. 49.5%). How-421

ever, it still falls significantly behind GPT-4 when422

both are provided with the same tools. Such gap423

highlights the challenges of tool-augmented scien-424

tific reasoning (and our benchmark).425

6.4 Ablation Study426

We investigate the effectiveness of components in427

our training data and agent modules. The specific428

variants we considered are as follows. (1) We re-429

move the planning module in the agent. (2) We430

additionally drop the cross-retrieval strategy intro-431

duced in Section 3.2. In its place, we construct432

function-augmented solutions directly from F̃q and433

S̃q. (3) We further remove all function-augmented434

solutions from our training data, and only keep435

the solutions without function callings (function-436

free solutions). (4) We do not fine-tune agents but437

merely use CodeLlama as Maction for inference. (5)438

We drop the retriever to disable the LLMs’ tool-use439

abilities. Equivalently, it degrades to the baseline of440

CodeLlama + PoT (Chen et al., 2023a) prompting.441

We illustrate the performance of our agents and442

their ablated variants in Table 3. We observe that443

(1) Planning module significantly improves scien-444

tific reasoning abilities. As detailed and targeted445

queries for the retriever, the generated plannings446

increase the relatedness of retrieved functions. For447

instance, the function’s Recall@3 increases from448

48.3% to 53.2% in physics domain, and from 37.3%449

to 39.8% in chemistry domain. (2) The use of the450

cross-retrieval strategy is essential. Otherwise, the451

function-augmented solutions directly from F̃q and452

S̃q degrade the performance because they are too 453

artificial and ad-hoc to teach LLMs using functions 454

properly. (3) The absence of function-augmented 455

solutions results in a performance drop (row 1 v.s. 456

row 4 in Table 3) of 5.9% and 5.3% in absolute 457

accuracy for 7B and 13B LLMs, respectively. It 458

underscores the critical role of function-augmented 459

solutions to enhance LLMs’ tool-use abilities, and 460

the necessity of our MATHFUNC corpus. (4) The 461

removal of function-free solutions (row 4 v.s. row 462

5) leads to an absolutely 14.4% accuracy decrease. 463

Specifically focusing on non-math samples, there 464

is a notable performance drop of about 12% as well. 465

This clearly demonstrates the fundamental impor- 466

tance of math skills in diverse scientific reasoning 467

tasks, and highlights how our math-related samples 468

enhance LLMs’ capabilities in this area. (5) Per- 469

formance significantly declines when the retriever 470

is removed. It illustrates that the retrieval module 471

is crucial for accessing the appropriate functions 472

from large-scale toolsets. 473

6.5 Analysis 474

Robustness of Toolsets. We acknowledge the con- 475

struction and maintenance of toolsets is sometime 476

challenging. Therefore, we stress the importance 477

of our agents’ robustness. If a sub-par toolset were 478

provided, an robust agent should at the very least 479

perform comparably, if not better, than other com- 480

petitive LLMs without tool-use. To evaluate the 481

robustness of SCIAGENT-CODER, we simulate two 482

sub-par settings. (1) weak-related: for each ques- 483

tion, we restrict the agents from retrieving func- 484

tions that are directly derived from it. This set- 485

ting greatly decreases the likelihood of retrieving 486

a proper function from the toolset. (2) unrelated: 487

we completely remove the domain-specific toolset 488

in SCITOOLBENCH. As a substitution, we provide 489

the unrelated toolset constructed in MATHFUNC. 490

We compare our agents with two competitive 491

LLMs, i.e., ToRA-Coder and MAmmoTH-Coder, 492

7

Table 4: Accuracy on SCIAGENT with sub-par toolsets.
WR: weak-related toolsets. UR: unrelated toolsets. NA:
No toolset. The subscripts indicate the difference from
the best LLMs (wo. toolsets) each column.

Model Toolset Accuracy (7B) Accuracy (13B)
All wo.math All wo. math

SciAgent
-Coder

WR 18.8+0.7 18.0+8.3 24.6+4.6 19.9+7.6

UR 14.7−3.7 10.7+1.0 20.3+0.3 14.7+2.4

MAmmo-C NA 12.7 9.0 16.4 12.3
ToRA-C NA 18.1 9.7 20.0 11.1

in above two settings. As shown in Table 4, (1)493

SCIAGENT series with unrelated toolsets present494

comparable performance with the two LLMs. In495

other words, our tool-augmented agents are un-496

likely to degrade the performance even under the497

extreme scenarios. (2) Our agents with weak-498

related toolsets significantly outperform the two499

LLMs, which further validates the robustness.500

The Effect of Retriever Quality. We explore501

the effect of retriever quality on the ending per-502

formance. We substitute our fine-tuned retriever503

in SCIAGENT series by two competitive variants:504

SimCSE (Gao et al., 2021) and Contriever (Izac-505

ard et al., 2021). As shown in Figure 6 (top), our506

retriever surpasses the other two. It shows that fine-507

tuning on the math domain benefits the retrieval of508

tools in the generalized scientific domains.509

20

25

30

35

40

7B 13B

A
cc

ur
ac

y

SimCSE Contriever Ours

20

25

30

35

40

0% 20% 40% 60% 80% 100%
Recall@3 of retrieved functions

A
cc

ur
ac

y

SciAgent−Coder−7B
SciAgent−Coder−13B

Figure 6: Top: Performance of SCIAGENT-CODER
on SCITOOLBENCH with different retriever variants.
Bottom: Relationship between the performance and the
hit@3 of retrieved functions (artificially controlled).

We further dive deep into the relationship be-510

tween the hit ratio of tools and the agents’ perfor-511

mance. To this end, we manually control the hit@3512

ratio by artificially adding/removing the positive513

functions to/from the retrieved list. Results in Fig-514

ure 6 (bottom) show a clearly positive correlation515

between the hit ratio and the task accuracy. It il-516

lustrates that the retrieved functions facilitate the517

reasoning of scientific problems. However, we still518

observe a limit (40% accuracy) when the hit ratios 519

reaching 100%, showing the challenge of scientific 520

reasoning even when aided by tools. We hope the 521

future work to bridge this performance gap. 522

SciAgent−Coder MAmmoTH−Coder

0

10

20

30

40

50

Use funcs Not use funcs
7B

A
cc

ur
ac

y

0

10

20

30

40

50

Use funcs Not use funcs
13B

A
cc

ur
ac

y

Figure 7: The performance of SCIAGENT-CODER (w.
toolset) and MAmmoTH-Coder (wo. toolset) on sam-
ples which (1) use and (2) not use retrieved functions.

How the Retrieved Functions Benefit. To assess 523

how the retrieved functions aid in the reasoning 524

process of LLMs, we divided the samples into two 525

subsets based on whether our agents use the re- 526

trieved functions to solve the problems. We eval- 527

uate the performance of these two subsets respec- 528

tively, comparing with MAmmoTH-Coder series 529

(without tool-use). The results in Figure 7 reveal 530

a two-fold benefit: (1) For samples where func- 531

tions are explicitly called to solve the questions, 532

our agents demonstrate a substantial 25% improve- 533

ment in absolute accuracy over LLMs that do not 534

have access to functions. (2) Even for samples 535

that do not directly use functions in their written 536

program, we still observe a slight improvement. 537

It suggests that our agents are capable of learn- 538

ing from retrieved functions as a reference, and 539

then imitate these functions to write their own pro- 540

grams. For instance, example in Figure 12 shows 541

the agents learn how to use scipy.integrate 542

by observing the retrieved function aver- 543

age_value_of_function(...). 544

7 Conclusion 545

This work proposes tool-augmented scientific rea- 546

soning, a task aiming to solve challenging scien- 547

tific problems aided by generalized and scalable 548

tools. To facilitate and evaluate the scientific tool- 549

use abilities of LLMs, we construct a math-related, 550

tool-augmented training corpus MATHFUNC and a 551

benchmark SCITOOLBENCH covering 5 scientific 552

domains. Additionally, we develop open-source 553

agents, SCIAGENT series, as competitive baselines. 554

Extensive experiments reveal that our agents ex- 555

hibit tool-use abilities exceeding ChatGPT in sci- 556

entific reasoning tasks. 557

8

Limitations558

The primary limitation of our work comes from the559

way we compile the toolsets in SciToolBench.560

These tools are constructed directly based on the561

benchmark’s questions, raising concerns about po-562

tential information leakage. To address this, we563

invest significant human effort in our annotation564

process as detailed in Appendix D.2. We manually565

review and, if necessary, revise all derived func-566

tions to ensure their generalizability and quality.567

As shown in Figure 6 (bottom), our agents achieve568

only about 40% accuracy when we provide each569

question the exact function from which it derives570

(i.e., 100% hit ratio). It not only highlights the in-571

herent challenge of scientific reasoning tasks, but572

also suggests that our benchmark suffers minimal573

impact from the potential information leakage.574

We partly attribute this limitation to the absence575

of a training corpus among scientific (excluding576

math) domains. The scarcity of annotated solu-577

tions for scientific reasoning problems makes it578

unfeasible to set aside a portion of questions in579

our benchmark for tool creation. In future work,580

we plan to collect diverse and high-quality scien-581

tific annotations which enable us to develop a more582

practical and robust tool-augmented benchmark.583

Ethics Statement584

We ensure that SCITOOLBENCH was constructed585

in compliance with the terms of use of all source586

materials and with full respect for the intellectual587

property and privacy rights of the original authors588

of the texts. We also provide details on the charac-589

teristics and annotation steps of SCITOOLBENCH590

in Section 5 and Appendix D. We believe our cre-591

ated datasets do not cause any potential risks.592

References593

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster,594
Marco Dos Santos, Stephen McAleer, Albert Q.595
Jiang, Jia Deng, Stella Biderman, and Sean Welleck.596
2023. Llemma: An open language model for mathe-597
matics.598

Andres M Bran, Sam Cox, Oliver Schilter, Carlo Baldas-599
sari, Andrew D White, and Philippe Schwaller. 2023.600
Chemcrow: Augmenting large-language models with601
chemistry tools.602

Tianle Cai, Xuezhi Wang, Tengyu Ma, Xinyun Chen,603
and Denny Zhou. 2023. Large language models as604
tool makers.605

Wenhu Chen, Xueguang Ma, Xinyi Wang, and 606
William W. Cohen. 2023a. Program of thoughts 607
prompting: Disentangling computation from reason- 608
ing for numerical reasoning tasks. Transactions on 609
Machine Learning Research. 610

Wenhu Chen, Ming Yin, Max Ku, Pan Lu, Yixin Wan, 611
Xueguang Ma, Jianyu Xu, Xinyi Wang, and Tony 612
Xia. 2023b. TheoremQA: A theorem-driven question 613
answering dataset. In Proceedings of the 2023 Con- 614
ference on Empirical Methods in Natural Language 615
Processing, pages 7889–7901, Singapore. Associa- 616
tion for Computational Linguistics. 617

Zhipeng Chen, Kun Zhou, Beichen Zhang, Zheng Gong, 618
Xin Zhao, and Ji-Rong Wen. 2023c. ChatCoT: 619
Tool-augmented chain-of-thought reasoning on chat- 620
based large language models. In Findings of the 621
Association for Computational Linguistics: EMNLP 622
2023, pages 14777–14790, Singapore. Association 623
for Computational Linguistics. 624

Ethan Chern, Haoyang Zou, Xuefeng Li, Jiewen Hu, Ke- 625
hua Feng, Junlong Li, and Pengfei Liu. 2023. Gener- 626
ative ai for math: Abel. https://github.com/ 627
GAIR-NLP/abel. 628

Yin Fang, Xiaozhuan Liang, Ningyu Zhang, Kangwei 629
Liu, Rui Huang, Zhuo Chen, Xiaohui Fan, and Hua- 630
jun Chen. 2023. Mol-instructions: A large-scale 631
biomolecular instruction dataset for large language 632
models. 633

Shen Gao, Zhengliang Shi, Minghang Zhu, Bowen Fang, 634
Xin Xin, Pengjie Ren, Zhumin Chen, Jun Ma, and 635
Zhaochun Ren. 2023. Confucius: Iterative tool learn- 636
ing from introspection feedback by easy-to-difficult 637
curriculum. 638

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021. 639
SimCSE: Simple contrastive learning of sentence em- 640
beddings. In Proceedings of the 2021 Conference 641
on Empirical Methods in Natural Language Process- 642
ing, pages 6894–6910, Online and Punta Cana, Do- 643
minican Republic. Association for Computational 644
Linguistics. 645

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, 646
Yujiu Yang, Nan Duan, and Weizhu Chen. 2023a. 647
Critic: Large language models can self-correct with 648
tool-interactive critiquing. 649

Zhibin Gou, Zhihong Shao, Yeyun Gong, yelong shen, 650
Yujiu Yang, Minlie Huang, Nan Duan, and Weizhu 651
Chen. 2023b. Tora: A tool-integrated reasoning 652
agent for mathematical problem solving. 653

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai 654
Dong, Wentao Zhang, Guanting Chen, Xiao Bi, 655
Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wen- 656
feng Liang. 2024. Deepseek-coder: When the large 657
language model meets programming – the rise of 658
code intelligence. 659

Shibo Hao, Tianyang Liu, Zhen Wang, and Zhiting Hu. 660
2023. Toolkengpt: Augmenting frozen language 661
models with massive tools via tool embeddings. 662

9

http://arxiv.org/abs/2310.10631
http://arxiv.org/abs/2310.10631
http://arxiv.org/abs/2310.10631
http://arxiv.org/abs/2304.05376
http://arxiv.org/abs/2304.05376
http://arxiv.org/abs/2304.05376
http://arxiv.org/abs/2305.17126
http://arxiv.org/abs/2305.17126
http://arxiv.org/abs/2305.17126
https://doi.org/10.18653/v1/2023.emnlp-main.489
https://doi.org/10.18653/v1/2023.emnlp-main.489
https://doi.org/10.18653/v1/2023.emnlp-main.489
https://doi.org/10.18653/v1/2023.findings-emnlp.985
https://doi.org/10.18653/v1/2023.findings-emnlp.985
https://doi.org/10.18653/v1/2023.findings-emnlp.985
https://doi.org/10.18653/v1/2023.findings-emnlp.985
https://doi.org/10.18653/v1/2023.findings-emnlp.985
https://github.com/GAIR-NLP/abel
https://github.com/GAIR-NLP/abel
https://github.com/GAIR-NLP/abel
http://arxiv.org/abs/2306.08018
http://arxiv.org/abs/2306.08018
http://arxiv.org/abs/2306.08018
http://arxiv.org/abs/2306.08018
http://arxiv.org/abs/2306.08018
http://arxiv.org/abs/2308.14034
http://arxiv.org/abs/2308.14034
http://arxiv.org/abs/2308.14034
http://arxiv.org/abs/2308.14034
http://arxiv.org/abs/2308.14034
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.emnlp-main.552
http://arxiv.org/abs/2305.11738
http://arxiv.org/abs/2305.11738
http://arxiv.org/abs/2305.11738
http://arxiv.org/abs/2309.17452
http://arxiv.org/abs/2309.17452
http://arxiv.org/abs/2309.17452
http://arxiv.org/abs/2401.14196
http://arxiv.org/abs/2401.14196
http://arxiv.org/abs/2401.14196
http://arxiv.org/abs/2401.14196
http://arxiv.org/abs/2401.14196
http://arxiv.org/abs/2305.11554
http://arxiv.org/abs/2305.11554
http://arxiv.org/abs/2305.11554

Dan Hendrycks, Collin Burns, Steven Basart, Andy663
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-664
hardt. 2021a. Measuring massive multitask language665
understanding. In 9th International Conference on666
Learning Representations, ICLR 2021, Virtual Event,667
Austria, May 3-7, 2021. OpenReview.net.668

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul669
Arora, Steven Basart, Eric Tang, Dawn Song, and670
Jacob Steinhardt. 2021b. Measuring mathematical671
problem solving with the math dataset. NeurIPS.672

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and673
Yejin Choi. 2020. The curious case of neural text674
degeneration. In 8th International Conference on675
Learning Representations, ICLR 2020, Addis Ababa,676
Ethiopia, April 26-30, 2020. OpenReview.net.677

Yuzhen Huang, Yuzhuo Bai, Zhihao Zhu, Junlei678
Zhang, Jinghan Zhang, Tangjun Su, Junteng Liu,679
Chuancheng Lv, Yikai Zhang, Jiayi Lei, Yao Fu,680
Maosong Sun, and Junxian He. 2023. C-eval: A681
multi-level multi-discipline chinese evaluation suite682
for foundation models.683

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Se-684
bastian Riedel, Piotr Bojanowski, Armand Joulin,685
and Edouard Grave. 2021. Unsupervised dense infor-686
mation retrieval with contrastive learning.687

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-688
sch, Chris Bamford, Devendra Singh Chaplot, Diego689
de las Casas, Florian Bressand, Gianna Lengyel, Guil-690
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,691
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,692
Thibaut Lavril, Thomas Wang, Timothée Lacroix,693
and William El Sayed. 2023. Mistral 7b.694

Qiao Jin, Yifan Yang, Qingyu Chen, and Zhiyong Lu.695
2023. Genegpt: Augmenting large language models696
with domain tools for improved access to biomedical697
information.698

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick699
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and700
Wen-tau Yih. 2020. Dense passage retrieval for open-701
domain question answering. In Proceedings of the702
2020 Conference on Empirical Methods in Natural703
Language Processing (EMNLP), pages 6769–6781,704
Online. Association for Computational Linguistics.705

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-706
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,707
Luke Zettlemoyer, and Veselin Stoyanov. 2019.708
Roberta: A robustly optimized bert pretraining ap-709
proach.710

Yuliang Liu, Xiangru Tang, Zefan Cai, Junjie Lu,711
Yichi Zhang, Yanjun Shao, Zexuan Deng, Helan Hu,712
Zengxian Yang, Kaikai An, Ruijun Huang, Shuzheng713
Si, Sheng Chen, Haozhe Zhao, Zhengliang Li, Liang714
Chen, Yiming Zong, Yan Wang, Tianyu Liu, Zhi-715
wei Jiang, Baobao Chang, Yujia Qin, Wangchunshu716
Zhou, Yilun Zhao, Arman Cohan, and Mark Gerstein.717
2023. Ml-bench: Large language models leverage718
open-source libraries for machine learning tasks.719

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai- 720
Wei Chang, Ying Nian Wu, Song-Chun Zhu, and 721
Jianfeng Gao. 2023. Chameleon: Plug-and-play com- 722
positional reasoning with large language models. 723

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian- 724
guang Lou, Chongyang Tao, Xiubo Geng, Qingwei 725
Lin, Shifeng Chen, and Dongmei Zhang. 2023. Wiz- 726
ardmath: Empowering mathematical reasoning for 727
large language models via reinforced evol-instruct. 728

OpenAI. 2023. Gpt-4 technical report. 729

Siru Ouyang, Zhuosheng Zhang, Bing Yan, Xuan Liu, 730
Jiawei Han, and Lianhui Qin. 2023. Structured chem- 731
istry reasoning with large language models. 732

Liangming Pan, Alon Albalak, Xinyi Wang, and 733
William Wang. 2023. Logic-LM: Empowering large 734
language models with symbolic solvers for faithful 735
logical reasoning. In Findings of the Association 736
for Computational Linguistics: EMNLP 2023, pages 737
3806–3824, Singapore. Association for Computa- 738
tional Linguistics. 739

Shishir G. Patil, Tianjun Zhang, Xin Wang, and 740
Joseph E. Gonzalez. 2023. Gorilla: Large language 741
model connected with massive apis. 742

Baolin Peng, Michel Galley, Pengcheng He, Hao Cheng, 743
Yujia Xie, Yu Hu, Qiuyuan Huang, Lars Liden, Zhou 744
Yu, Weizhu Chen, and Jianfeng Gao. 2023. Check 745
your facts and try again: Improving large language 746
models with external knowledge and automated feed- 747
back. 748

Cheng Qian, Chi Han, Yi Fung, Yujia Qin, Zhiyuan 749
Liu, and Heng Ji. 2023. CREATOR: Tool creation 750
for disentangling abstract and concrete reasoning of 751
large language models. In Findings of the Associa- 752
tion for Computational Linguistics: EMNLP 2023, 753
pages 6922–6939, Singapore. Association for Com- 754
putational Linguistics. 755

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen, 756
Ning Ding, Ganqu Cui, Zheni Zeng, Yufei Huang, 757
Chaojun Xiao, Chi Han, Yi Ren Fung, Yusheng Su, 758
Huadong Wang, Cheng Qian, Runchu Tian, Kunlun 759
Zhu, Shihao Liang, Xingyu Shen, Bokai Xu, Zhen 760
Zhang, Yining Ye, Bowen Li, Ziwei Tang, Jing Yi, 761
Yuzhang Zhu, Zhenning Dai, Lan Yan, Xin Cong, 762
Yaxi Lu, Weilin Zhao, Yuxiang Huang, Junxi Yan, 763
Xu Han, Xian Sun, Dahai Li, Jason Phang, Cheng 764
Yang, Tongshuang Wu, Heng Ji, Zhiyuan Liu, and 765
Maosong Sun. 2023a. Tool learning with foundation 766
models. 767

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan 768
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang, 769
Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian, 770
Ruobing Xie, Jie Zhou, Mark Gerstein, Dahai Li, 771
Zhiyuan Liu, and Maosong Sun. 2023b. Toolllm: 772
Facilitating large language models to master 16000+ 773
real-world apis. 774

10

https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
https://openreview.net/forum?id=rygGQyrFvH
http://arxiv.org/abs/2305.08322
http://arxiv.org/abs/2305.08322
http://arxiv.org/abs/2305.08322
http://arxiv.org/abs/2305.08322
http://arxiv.org/abs/2305.08322
https://arxiv.org/abs/2112.09118
https://arxiv.org/abs/2112.09118
https://arxiv.org/abs/2112.09118
http://arxiv.org/abs/2310.06825
http://arxiv.org/abs/2304.09667
http://arxiv.org/abs/2304.09667
http://arxiv.org/abs/2304.09667
http://arxiv.org/abs/2304.09667
http://arxiv.org/abs/2304.09667
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/2311.09835
http://arxiv.org/abs/2311.09835
http://arxiv.org/abs/2311.09835
http://arxiv.org/abs/2304.09842
http://arxiv.org/abs/2304.09842
http://arxiv.org/abs/2304.09842
http://arxiv.org/abs/2308.09583
http://arxiv.org/abs/2308.09583
http://arxiv.org/abs/2308.09583
http://arxiv.org/abs/2308.09583
http://arxiv.org/abs/2308.09583
http://arxiv.org/abs/2303.08774
http://arxiv.org/abs/2311.09656
http://arxiv.org/abs/2311.09656
http://arxiv.org/abs/2311.09656
https://doi.org/10.18653/v1/2023.findings-emnlp.248
https://doi.org/10.18653/v1/2023.findings-emnlp.248
https://doi.org/10.18653/v1/2023.findings-emnlp.248
https://doi.org/10.18653/v1/2023.findings-emnlp.248
https://doi.org/10.18653/v1/2023.findings-emnlp.248
http://arxiv.org/abs/2305.15334
http://arxiv.org/abs/2305.15334
http://arxiv.org/abs/2305.15334
http://arxiv.org/abs/2302.12813
http://arxiv.org/abs/2302.12813
http://arxiv.org/abs/2302.12813
http://arxiv.org/abs/2302.12813
http://arxiv.org/abs/2302.12813
http://arxiv.org/abs/2302.12813
http://arxiv.org/abs/2302.12813
https://doi.org/10.18653/v1/2023.findings-emnlp.462
https://doi.org/10.18653/v1/2023.findings-emnlp.462
https://doi.org/10.18653/v1/2023.findings-emnlp.462
https://doi.org/10.18653/v1/2023.findings-emnlp.462
https://doi.org/10.18653/v1/2023.findings-emnlp.462
http://arxiv.org/abs/2304.08354
http://arxiv.org/abs/2304.08354
http://arxiv.org/abs/2304.08354
http://arxiv.org/abs/2307.16789
http://arxiv.org/abs/2307.16789
http://arxiv.org/abs/2307.16789
http://arxiv.org/abs/2307.16789
http://arxiv.org/abs/2307.16789

Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley,775
Shaden Smith, and Yuxiong He. 2021. Zero-infinity:776
Breaking the gpu memory wall for extreme scale777
deep learning. In Proceedings of the International778
Conference for High Performance Computing, Net-779
working, Storage and Analysis, SC ’21, New York,780
NY, USA. Association for Computing Machinery.781

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle,782
Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi783
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom784
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish785
Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wen-786
han Xiong, Alexandre Défossez, Jade Copet, Faisal787
Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier,788
Thomas Scialom, and Gabriel Synnaeve. 2023. Code789
llama: Open foundation models for code.790

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,791
Junxiao Song, Mingchuan Zhang, Y. K. Li, Y. Wu,792
and Daya Guo. 2024. Deepseekmath: Pushing the793
limits of mathematical reasoning in open language794
models.795

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li,796
Weiming Lu, and Yueting Zhuang. 2023. Hugging-797
gpt: Solving ai tasks with chatgpt and its friends798
in huggingface. In Advances in Neural Information799
Processing Systems.800

Yifan Song, Weimin Xiong, Dawei Zhu, Wenhao Wu,801
Han Qian, Mingbo Song, Hailiang Huang, Cheng802
Li, Ke Wang, Rong Yao, Ye Tian, and Sujian Li.803
2023. Restgpt: Connecting large language models804
with real-world restful apis.805

Liangtai Sun, Yang Han, Zihan Zhao, Da Ma, Zhennan806
Shen, Baocai Chen, Lu Chen, and Kai Yu. 2023. Sci-807
eval: A multi-level large language model evaluation808
benchmark for scientific research.809

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-810
bert, Amjad Almahairi, Yasmine Babaei, Nikolay811
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti812
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton813
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,814
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,815
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-816
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan817
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,818
Isabel Kloumann, Artem Korenev, Punit Singh Koura,819
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-820
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-821
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-822
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-823
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,824
Ruan Silva, Eric Michael Smith, Ranjan Subrama-825
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-826
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,827
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,828
Melanie Kambadur, Sharan Narang, Aurelien Ro-829
driguez, Robert Stojnic, Sergey Edunov, and Thomas830
Scialom. 2023. Llama 2: Open foundation and fine-831
tuned chat models.832

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2019. 833
Representation learning with contrastive predictive 834
coding. 835

Ke Wang, Houxing Ren, Aojun Zhou, Zimu Lu, Sichun 836
Luo, Weikang Shi, Renrui Zhang, Linqi Song, 837
Mingjie Zhan, and Hongsheng Li. 2023a. Mathcoder: 838
Seamless code integration in llms for enhanced math- 839
ematical reasoning. 840

Xiaoxuan Wang, Ziniu Hu, Pan Lu, Yanqiao Zhu, Jieyu 841
Zhang, Satyen Subramaniam, Arjun R. Loomba, 842
Shichang Zhang, Yizhou Sun, and Wei Wang. 843
2023b. Scibench: Evaluating college-level scientific 844
problem-solving abilities of large language models. 845

Xingyao Wang, Zihan Wang, Jiateng Liu, Yangyi Chen, 846
Lifan Yuan, Hao Peng, and Heng Ji. 2023c. Mint: 847
Evaluating llms in multi-turn interaction with tools 848
and language feedback. 849

Chenfei Wu, Shengming Yin, Weizhen Qi, Xiaodong 850
Wang, Zecheng Tang, and Nan Duan. 2023. Visual 851
chatgpt: Talking, drawing and editing with visual 852
foundation models. 853

Qiantong Xu, Fenglu Hong, Bo Li, Changran Hu, 854
Zhengyu Chen, and Jian Zhang. 2023a. On the 855
tool manipulation capability of open-source large 856
language models. 857

Yiheng Xu, Hongjin Su, Chen Xing, Boyu Mi, Qian 858
Liu, Weijia Shi, Binyuan Hui, Fan Zhou, Yitao Liu, 859
Tianbao Xie, Zhoujun Cheng, Siheng Zhao, Ling- 860
peng Kong, Bailin Wang, Caiming Xiong, and Tao 861
Yu. 2023b. Lemur: Harmonizing natural language 862
and code for language agents. 863

Rui Yang, Lin Song, Yanwei Li, Sijie Zhao, Yixiao Ge, 864
Xiu Li, and Ying Shan. 2023. Gpt4tools: Teaching 865
large language model to use tools via self-instruction. 866

Da Yin, Faeze Brahman, Abhilasha Ravichander, Khy- 867
athi Chandu, Kai-Wei Chang, Yejin Choi, and 868
Bill Yuchen Lin. 2023. Lumos: Learning agents 869
with unified data, modular design, and open-source 870
llms. 871

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, 872
Zhengying Liu, Yu Zhang, James T Kwok, Zhen- 873
guo Li, Adrian Weller, and Weiyang Liu. 2023. 874
Metamath: Bootstrap your own mathematical ques- 875
tions for large language models. ArXiv preprint, 876
abs/2309.12284. 877

Lifan Yuan, Yangyi Chen, Xingyao Wang, Yi R. Fung, 878
Hao Peng, and Heng Ji. 2023a. Craft: Customiz- 879
ing llms by creating and retrieving from specialized 880
toolsets. 881

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting 882
Dong, Keming Lu, Chuanqi Tan, Chang Zhou, and 883
Jingren Zhou. 2023b. Scaling relationship on learn- 884
ing mathematical reasoning with large language mod- 885
els. 886

11

https://doi.org/10.1145/3458817.3476205
https://doi.org/10.1145/3458817.3476205
https://doi.org/10.1145/3458817.3476205
https://doi.org/10.1145/3458817.3476205
https://doi.org/10.1145/3458817.3476205
http://arxiv.org/abs/2308.12950
http://arxiv.org/abs/2308.12950
http://arxiv.org/abs/2308.12950
http://arxiv.org/abs/2402.03300
http://arxiv.org/abs/2402.03300
http://arxiv.org/abs/2402.03300
http://arxiv.org/abs/2402.03300
http://arxiv.org/abs/2402.03300
http://arxiv.org/abs/2306.06624
http://arxiv.org/abs/2306.06624
http://arxiv.org/abs/2306.06624
http://arxiv.org/abs/2308.13149
http://arxiv.org/abs/2308.13149
http://arxiv.org/abs/2308.13149
http://arxiv.org/abs/2308.13149
http://arxiv.org/abs/2308.13149
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/1807.03748
http://arxiv.org/abs/1807.03748
http://arxiv.org/abs/1807.03748
http://arxiv.org/abs/2310.03731
http://arxiv.org/abs/2310.03731
http://arxiv.org/abs/2310.03731
http://arxiv.org/abs/2310.03731
http://arxiv.org/abs/2310.03731
http://arxiv.org/abs/2307.10635
http://arxiv.org/abs/2307.10635
http://arxiv.org/abs/2307.10635
http://arxiv.org/abs/2309.10691
http://arxiv.org/abs/2309.10691
http://arxiv.org/abs/2309.10691
http://arxiv.org/abs/2309.10691
http://arxiv.org/abs/2309.10691
http://arxiv.org/abs/2303.04671
http://arxiv.org/abs/2303.04671
http://arxiv.org/abs/2303.04671
http://arxiv.org/abs/2303.04671
http://arxiv.org/abs/2303.04671
http://arxiv.org/abs/2305.16504
http://arxiv.org/abs/2305.16504
http://arxiv.org/abs/2305.16504
http://arxiv.org/abs/2305.16504
http://arxiv.org/abs/2305.16504
http://arxiv.org/abs/2310.06830
http://arxiv.org/abs/2310.06830
http://arxiv.org/abs/2310.06830
http://arxiv.org/abs/2305.18752
http://arxiv.org/abs/2305.18752
http://arxiv.org/abs/2305.18752
http://arxiv.org/abs/2311.05657
http://arxiv.org/abs/2311.05657
http://arxiv.org/abs/2311.05657
http://arxiv.org/abs/2311.05657
http://arxiv.org/abs/2311.05657
https://arxiv.org/abs/2309.12284
https://arxiv.org/abs/2309.12284
https://arxiv.org/abs/2309.12284
http://arxiv.org/abs/2309.17428
http://arxiv.org/abs/2309.17428
http://arxiv.org/abs/2309.17428
http://arxiv.org/abs/2309.17428
http://arxiv.org/abs/2309.17428
http://arxiv.org/abs/2308.01825
http://arxiv.org/abs/2308.01825
http://arxiv.org/abs/2308.01825
http://arxiv.org/abs/2308.01825
http://arxiv.org/abs/2308.01825

Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng,887
Ruoqi Liu, Ge Zhang, Samuel Stevens, Dongfu888
Jiang, Weiming Ren, Yuxuan Sun, Cong Wei, Botao889
Yu, Ruibin Yuan, Renliang Sun, Ming Yin, Boyuan890
Zheng, Zhenzhu Yang, Yibo Liu, Wenhao Huang,891
Huan Sun, Yu Su, and Wenhu Chen. 2023a. Mmmu:892
A massive multi-discipline multimodal understand-893
ing and reasoning benchmark for expert agi.894

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao895
Huang, Huan Sun, Yu Su, and Wenhu Chen. 2023b.896
Mammoth: Building math generalist models through897
hybrid instruction tuning.898

Dan Zhang, Ziniu Hu, Sining Zhoubian, Zhengxiao899
Du, Kaiyu Yang, Zihan Wang, Yisong Yue, Yuxiao900
Dong, and Jie Tang. 2024. Sciglm: Training scien-901
tific language models with self-reflective instruction902
annotation and tuning.903

Wenxuan Zhang, Sharifah Mahani Aljunied, Chang Gao,904
Yew Ken Chia, and Lidong Bing. 2023a. M3exam:905
A multilingual, multimodal, multilevel benchmark906
for examining large language models.907

Yifan Zhang, Jingqin Yang, Yang Yuan, and Andrew908
Chi-Chih Yao. 2023b. Cumulative reasoning with909
large language models.910

Yilun Zhao, Hongjun Liu, Yitao Long, Rui Zhang, Chen911
Zhao, and Arman Cohan. 2023. Knowledgemath:912
Knowledge-intensive math word problem solving in913
finance domains.914

Aojun Zhou, Ke Wang, Zimu Lu, Weikang Shi, Sichun915
Luo, Zipeng Qin, Shaoqing Lu, Anya Jia, Linqi Song,916
Mingjie Zhan, and Hongsheng Li. 2023. Solving917
challenging math word problems using gpt-4 code918
interpreter with code-based self-verification.919

12

http://arxiv.org/abs/2311.16502
http://arxiv.org/abs/2311.16502
http://arxiv.org/abs/2311.16502
http://arxiv.org/abs/2311.16502
http://arxiv.org/abs/2311.16502
http://arxiv.org/abs/2309.05653
http://arxiv.org/abs/2309.05653
http://arxiv.org/abs/2309.05653
http://arxiv.org/abs/2401.07950
http://arxiv.org/abs/2401.07950
http://arxiv.org/abs/2401.07950
http://arxiv.org/abs/2401.07950
http://arxiv.org/abs/2401.07950
http://arxiv.org/abs/2306.05179
http://arxiv.org/abs/2306.05179
http://arxiv.org/abs/2306.05179
http://arxiv.org/abs/2306.05179
http://arxiv.org/abs/2306.05179
http://arxiv.org/abs/2308.04371
http://arxiv.org/abs/2308.04371
http://arxiv.org/abs/2308.04371
http://arxiv.org/abs/2311.09797
http://arxiv.org/abs/2311.09797
http://arxiv.org/abs/2311.09797
http://arxiv.org/abs/2311.09797
http://arxiv.org/abs/2311.09797
http://arxiv.org/abs/2308.07921
http://arxiv.org/abs/2308.07921
http://arxiv.org/abs/2308.07921
http://arxiv.org/abs/2308.07921
http://arxiv.org/abs/2308.07921

A Detailed Related Work920

A.1 Scientific Reasoning921

Scientific reasoning can be roughly categorized922

into two branches: (1) mathematical reasoning and923

(2) reasoning across other scientific domains.924

Mathematical Reasoning. Mathematical (math)925

reasoning has attracted much more attentions re-926

cently. Thanks to abundant training datasets and927

corpus, there are intensive studies for more pow-928

erful math-oriented LLMs by prompt engineer-929

ing (Qian et al., 2023; Zhang et al., 2023b; Zhou930

et al., 2023), instruction-tuning (Yuan et al., 2023b;931

Yue et al., 2023b; Gou et al., 2023b; Yu et al., 2023;932

Wang et al., 2023a) and even pre-training (Luo933

et al., 2023; Azerbayev et al., 2023; Chern et al.,934

2023). Regarding instruction-tuning, we notice935

that recent studies have automatically constructed936

high-quality instructions from GPT-4, i.e., fine-937

tuning open-source LLMs by Program-of-thought938

(PoT; Chen et al. 2023a) prompting. It enables939

open-source LLMs to present remarkable perfor-940

mance, even comparable with GPT-4.941

Reasoning across Other Domains. There have942

been intensive works on scientific LLMs (Bran943

et al., 2023; Jin et al., 2023; Fang et al., 2023) and944

benchmarks (Hendrycks et al., 2021a; Huang et al.,945

2023; Zhang et al., 2023a; Yue et al., 2023a; Sun946

et al., 2023). However, they primarily target on947

problems involving less complicated reasoning like948

knowledge retrieval or simple tool utilization.949

Regarding complicated scientific reasoning prob-950

lems (Chen et al., 2023b; Wang et al., 2023b),951

questions are scattered among diverse topics and952

each topic additionally requires domain-specific953

knowledge. So annotating questions and their so-954

lutions domain by domain is much more labor-955

consuming. Most current benchmarks (Chen et al.,956

2023b; Wang et al., 2023b; Zhao et al., 2023)957

merely include hundreds of questions (in all; less958

for each single domain) from textbooks and provide959

no training samples. A concurrent work (Zhang960

et al., 2024) develop a large-scale scientific training961

corpus, but only focuses three common domains:962

math, physical and chemistry. Accordingly, the963

progress of reasoning tasks in these domains is964

slower than that in math domain: the most com-965

petitive approach only achieves 50% and 35% on966

TheoremQA and SciBench, respectively, not to967

mention methods built on open-source LLMs. In-968

stead of developing an omniscient and proficient969

LLMs on reasoning tasks across various scientific 970

domains, we believe it is more practical to teach 971

LLMs the ability to use domain-specific tools to 972

facilitate their reasoning abilities in some domain 973

when external functions (toolset) are attached. 974

A.2 Tool Learning 975

LLMs, both proprietary ones and open-source ones, 976

demonstrate promising capabilities leveraging ex- 977

ternal tools to solve problems beyond their lim- 978

its (Qin et al., 2023a). Combined with specific 979

tools, these tool-augmented LLMs achieve great 980

success on various tasks such as machine learn- 981

ing (Wu et al., 2023; Shen et al., 2023; Patil et al., 982

2023; Yang et al., 2023; Liu et al., 2023), question 983

answering (Peng et al., 2023; Gou et al., 2023a), 984

daily assistance (Xu et al., 2023a; Qin et al., 2023b; 985

Song et al., 2023; Gao et al., 2023), etc. 986

Previous work usually pre-defines several tools, 987

e.g., equation solver or calculator, to facilitate math 988

reasoning tasks (Gou et al., 2023a; Lu et al., 2023; 989

Hao et al., 2023; Chen et al., 2023c; Wang et al., 990

2023c; Xu et al., 2023b; Yin et al., 2023). Cai 991

et al. (2023) generalize the concept of tools to 992

Program functions. Following this concept, CRE- 993

ATOR (Qian et al., 2023) scale up the function 994

number towards thousand level. However, these 995

ad-hoc, argument-free functions are more like so- 996

lution wrapper rather than well-generalized tools. 997

CRAFT (Yuan et al., 2023a) targetedly design an 998

automatic pipeline to extract generalized functions 999

for tool-use. Though leading to improvement, these 1000

functions are still not generalized enough and serve 1001

more as reference rather than as tools for direct 1002

calling. Ouyang et al. 2023 ask LLM to generate 1003

chemistry formulae as knowledge reference to as- 1004

sist the following reasoning and achieve enhanced 1005

performance on chemistry questions in SciBench. 1006

Similar as our attached toolset, Zhao et al. (2023) 1007

maintain a knowledge bank in which saves more 1008

than 900 financial definitions/equations/models as 1009

the format of functions for retrieval and use. To our 1010

best knowledge, our work is the first which (1) fine- 1011

tunes open-source, tool-augmented LLM agents 1012

for scientific reasoning tasks and (2) provides a 1013

benchmark covering multiple scientific domains to 1014

evaluate LLMs’ tool-use abilities. 1015

13

B Training Details1016

B.1 Retriever1017

To fine-tune a retriever, we construct the training1018

samples from MATHFUNC. We concatenate the1019

question and its planning as the query, and view the1020

generated functions as the keys. We finally collect1021

a total of 8603 query-key pairs for training, and1022

split 10% training samples as validation set.1023

query = [q;Gq]1024

key = f ∈ F̃q1025

We follow DPR (Karpukhin et al., 2020) to train1026

a dense retriever R. We use ROBERTA-BASE (Liu1027

et al., 2019) as the backbone. We set the training1028

step as 500, the batch size as 128 and the learning1029

rate as 2e-5. We also set the temperature coefficient1030

of the InfoNCE loss (van den Oord et al., 2019) as1031

0.07. We run this experiment on a single NVIDIA1032

Quadro RTX8000 GPU. The whole training pro-1033

cess lasts for about 20 minutes.1034

B.2 Planning and Action1035

We fine-tune CodeLlamA (Rozière et al., 2023),1036

Mistral (Jiang et al., 2023) and DeepMath (Shao1037

et al., 2024) on MATHFUNC to develop the plan-1038

ning and action modules in our tool-augmented1039

agents SCIAGENT series, yielding SCIAGENT-1040

CODER, SCIAGENT-MISTRAL and SCIAGENT-1041

DEEPMATH respectively. We set the global batch1042

size as 128. We use the learning rate as 2e-5 for1043

CodeLlama, 2e-6 for Mistral, and 5e-6 for Deep-1044

Math. We use a cosine scheduler with a 3% warm-1045

up period for 2 epochs. We train all models with1046

ZeRO Stage3 (Rajbhandari et al., 2021) on 8 V1001047

GPUs. The whole training process lasts for about 31048

hours for 7B LLMs and 7.5 hours for 13B LLMs.1049

The planning and action modules share the same1050

model but act differently with different input in-1051

structions. We detail the format of planning and1052

action instructions as below:1053

Planning. Given a question q, we construct a plan-1054

ning sample as (Iplan(q), Gq), where Iplan(q) is the1055

input instruction, Gq is the output, and Iplan(.) is1056

the template for planning module. We provide an1057

example of planning instruction as below:1058

Listing 1: An example of the planning sample. We
separate the input instruction and output answer by the
dashed line.

1059

Read the following question and provide 1060
a high-level, step-by-step plan for 1061
this problem. 1062

Question: Two complementary angles are 1063
in a ratio of $3:2$. What is the 1064
measure, in degrees, of the smaller 1065
angle? 1066

1067
Answer: 1068
-- 1069
To solve this problem, we need to 1070

perform the following steps: 1071
- Set up an equation using the given 1072

ratio and the fact that the angles 1073
are complementary. 1074

- Solve the equation for the variable 1075
representing the ratio. 1076

- Calculate the measure of the smaller 1077
angle using the found variable value. 1078

10791080

Action. Given a question q, we construct an action 1081

sample as (Iaction(q, Fq), Sq), where Iaction(q, Fq) 1082

is the input instruction, Sq is the output answer, 1083

and Iaction(.) is the template for action module. Fq 1084

are retrieved functions from the toolset in MATH- 1085

FUNC. We adopt the retriever in Appendix B.1 to 1086

retrieve three functions in the toolset. We provide 1087

an example of action instruction as below: 1088

Listing 2: An example of the action sample. We separate
the input instruction and output answer by the dashed
line. We only show one retrieved function in this sample
for visualization convenience.

1089
Read the following mathematical question 1090

and answer it. Please note that you 1091
could (optionally, not required) 1092

call the following functions when 1093
writing the code: 1094

1095
def angle_ratio_to_degrees(ratio): 1096

""" 1097
Computes the angle measures in 1098

degrees given their ratio. 1099
1100

Parameters: 1101
- ratio (tuple): The ratio of the 1102

angles. 1103
1104

Returns: 1105
- tuple: The angle measures in 1106

degrees. 1107
1108

Formula: 1109
- angle_1 = ratio[0] * x 1110
- angle_2 = ratio[1] * x 1111
- angle_3 = ratio[2] * x 1112
- where x is the common variable such 1113

that angle_1 + angle_2 + angle_3 1114
= 180 degrees 1115

""" 1116
sum_ratios = sum(ratio) 1117
x = 180 / sum_ratios 1118
return tuple(angle * x for angle in 1119

ratio) 1120
1121

14

[...Two more retrieved functions...]1122
1123
1124

Question: Two complementary angles are1125
in a ratio of $3:2$. What is the1126
measure, in degrees, of the smaller1127
angle?1128

1129
Answer:1130
--1131
Define the ratio of the angles.1132
ratio = (3, 2)1133
Since the angles are complementary,1134

they add up to 90 degrees.1135
We can find the value of each part of1136

the ratio by dividing 90 by the sum1137
of the parts of the ratio.1138

value_of_each_part = 90 / sum(ratio)1139
The measure of the smaller angle is1140

the value of each part times the1141
smaller part of the ratio.1142

smaller_angle = value_of_each_part * min1143
(ratio)1144

Print the result.1145
print(smaller_angle)11461147

C Evaluation Details1148

We evaluate (1) the tool-use abilities of LLMs in1149

scientific reasoning task, and (2) their performance1150

when supplemented without any toolsets for com-1151

parison. We detail these two settings as below:1152

With Toolsets. We use the unified PoT-based1153

prompt (Chen et al., 2023a) for all pretraining-1154

based models and our SCIAGENT series. The uni-1155

fied prompt consists of a short task description and1156

two demonstrations. We show the prompt in Ap-1157

pendix F.4. For each question, we provide three re-1158

trieved functions and instruct LLMs to use them if1159

(and only if) necessary. Note that we use the same1160

retriever, i.e., fine-tuned from MATHFUNC, for all1161

LLMs. For MAmmoTH-Coder and ToRA-Coder1162

which are fine-tuned on specific (tool-agnostic) in-1163

structions, we try to enable them to use retrieved1164

tools while keeping the formats of their original1165

instructions as much as possible. Specifically, we1166

append a short tool-augmented description at the1167

end of their original prompts:1168
1169

[original prompt]1170
1171

Please note that you could (optionally,1172
not required) call the following1173
functions when writing the program:1174

1175
[retrieved functions]11761177

Without Toolsets. Similar as above, we use the uni-1178

fied PoT-based prompt (Chen et al., 2023a) shown1179

in Appendix F.5 for all pretraining-based models1180

and our SCIAGENT series. And we follow the orig-1181

inal instructions used for MAmmoTH-Coder and 1182

ToRA-Coder to evaluate their performance. 1183

D Details of SCITOOLBENCH Annotation 1184

We provide a more thorough description about SC- 1185

ITOOLBENCH construction in this section. This 1186

semi-automatic annotation pipeline involves both 1187

GPT-4 and humans to balance the quality and cost. 1188

Specifically, we enlist two authors to serve as hu- 1189

man annotators. Both of them are graduate students 1190

with proficiency in English. Additionally, they hold 1191

Bachelor of Science and/or Engineering degrees 1192

and have completed undergraduate-level courses 1193

in the five scientific domains corresponding to our 1194

benchmark. We detail the three subsequent sub- 1195

modules in our annotation pipeline, i.e., question 1196

filtering, positive function construction and nega- 1197

tive function construction, as below. 1198

D.1 Question Filtering 1199

We curate the questions from TheoremQA (Chen 1200

et al., 2023b) and SciBench (Wang et al., 2023b), 1201

both of which are available under the MIT Li- 1202

cense. Among 1495 questions in these original 1203

two datasets, we remove three kinds of questions. 1204

Image-required: There are 37 questions from The- 1205

oremQA which include images and necessitate vi- 1206

sual understanding abilities. We remove these sam- 1207

ples because our benchmark is text-oriented. 1208

Reasoning-agnostic: There are some multi-choice 1209

questions from TheoremQA which merely requires 1210

the memorization of knowledge points but involves 1211

little reasoning process. For example: 1212

Question: The open mapping theorem can be
proved by
(a) Baire category theorem.
(b) Cauchy integral theorem.
(c) Random graph theorem.
(d) None of the above.

1213

We manually check each samples and remove 1214

68 such kind of samples. 1215

Over-difficult: Too hard questions confuse all 1216

models and weaken the discrimination of our 1217

benchmark. To balance the difficulty and discrim- 1218

ination, we employ 4 advanced proprietary mod- 1219

els 6 to generate related functions and function- 1220

augmented program solutions. We generate 6 so- 1221

6gpt-4, gpt4-32k, gpt-3.5-turbo, gpt-3.5-
turbo-16k

15

lutions for each model (one generated by greedy1222

decoding and the other five by nucleus sampling1223

with 0.6 temperature) and 24 solutions in all. We1224

view questions that are answered incorrectly by1225

all 24 solutions as over-difficult questions. We re-1226

move all over-difficult questions, and retain 73.5%1227

questions in TheoremQA and 47.8% in SciBench.1228

By removing three kinds of samples mentioned1229

above, there are a total of 865 questions in our1230

SCITOOLBENCH benchmark.1231

D.2 Positive Function Construction1232

Function Generation1233

In practice, we merge this sub-module to the pro-1234

cess of over-difficult question identification. We1235

randomly sample one set of functions which yield1236

correct solutions for each question. As a result, we1237

collect a total of 1216 candidates for the next ver-1238

ification sub-module. We additionally save other1239

functions leading to correct solutions and use them1240

as reference in the refinement sub-module.1241

Function Verification1242

We verify the generated functions from both cor-1243

rectness and generalizations. We detail them sepa-1244

rately as below.1245

1. Correctness: Since all candidate functions lead1246

to correct solutions, we speculate that almost all of1247

them are correct. We randomly sample 100 func-1248

tions (20 per domain) and manually check their1249

correctness. The results shown in Table 5 validate1250

our speculation. Therefore, we assume all candi-1251

date functions are correct and retain them.1252

Table 5: The correctness of 100 randomly sampled func-
tions across five domains.

Correct Partially Correct Wrong All

Math 18 2 0 20
Physics 19 1 0 20
Chemistry 20 0 0 20
Finance 19 0 1 20
EECS 17 3 0 20

All 93 6 1 100

2. Generalization: We encounter the similar prob-1253

lem as the function construction in MATHFUNC,1254

i.e., some of the auto-generated functions are not1255

generalized enough. If ad-hoc functions were in1256

the provided toolsets of our benchmark, they would1257

cause a significant overestimation of LLMs’ tool-1258

use abilities. To mitigate it as much as possible,1259

we manually check all candidate functions to en-1260

sure their generalization. Specifically, we design1261

a binary classification task and assign each func- 1262

tion a label in {Retained, Refined}. We la- 1263

bel a function as refined if it had one of the 1264

problems listed below: (1) a pure solution wrapper. 1265

(2) merely defining a non-generalized expression 1266

(likely only occur in this question). (3) the argu- 1267

ment names or document describing the special 1268

scenario of corresponding question and not being 1269

generalized/abstractive enough. (4) including ad- 1270

hoc constants or code snippets. The annotators 1271

firstly co-annotate 100 functions. We calculate Co- 1272

hen’s kappa value of their annotation results as 1273

0.85, illustrating an ideal agreement. Therefore, 1274

the annotators separately annotate the remaining 1275

functions. It takes about 6 hours per annotator 1276

to classify about 650 functions. We show some 1277

Refined function cases in Figure 10, and the an- 1278

notation interface in Figure 8. 1279

As a result, we collect 1012 Retained and 1280

206 Refined functions. We keep all Retained 1281

as the component of positive functions. We also 1282

feed the Refined functions to next refinement 1283

sub-module to modify them as much as possible. 1284

Function Refinement 1285

This sub-module aims to rewrite 206 Refined 1286

functions to make them qualified. To this end, we 1287

associate each function with (1) the question from 1288

which it is derived, (2) the function-augmented so- 1289

lutions, and (3) the alternative functions from the 1290

generation sub-module (if have). Then we pro- 1291

vide them to the annotators. The annotators are 1292

asked to rewrite the functions to improve their 1293

generalization as much as possible. If one func- 1294

tion were successfully rewritten, we also require 1295

the annotator to write a solution involving the new 1296

function to the related question. The solution must 1297

yield correct answer to ensure the correctness of the 1298

rewritten function. We show some rewritten cases 1299

in Figure 10, and the screenshot of the annotation 1300

interface in Figure 9. 1301

It takes approximately 12 hours per annotator 1302

to check each Refined function and, if appli- 1303

cable, rewrite it. As a consequence, we success- 1304

fully rewrite 91 Refined functions and drop the 1305

remaining ones. We combine these 91 rewritten 1306

functions and the 1012 Retained functions to 1307

construct 1103 positive functions. 1308

D.3 Negative Function Construction 1309

The positive functions constructed above have sat- 1310

isfied the minimum requirements of the toolset in 1311

our benchmark. However, we find that such kind of 1312

16

benchmark contains shortcuts for LLM to retrieve1313

and use functions. Take a physical question about1314

frequency-angular conversion as example, the pre-1315

vious modules construct a positive function named1316

angular_from_frequency(...) to solve this1317

question. Without any other similar functions, the1318

LLMs could readily select and use the only func-1319

tion by superficial shortcuts. These shortcuts sig-1320

nificantly weaken the function-understanding and1321

-use abilities evaluation of our benchmark. To miti-1322

gate this problem, we design an additional module1323

to eliminate the shortcuts by constructing some1324

(hard) negative functions for each positive func-1325

tion, like frequency_from_angular(...) and1326

frequency_from_energy(...) in the above1327

example. Among three similar functions, LLMs1328

are forced to understand their usages and choose1329

proper ones to use. In summary, we add negative1330

functions into the toolset to simulate a more chal-1331

lenging scenario and better evaluate LLMs’ tool-1332

use abilities.1333

Listing 3: Prompt for constructing negative functions
1334

Given a function about the {subfield}1335
field, could you please write two1336
more functions which satisfy:1337

- The functions should be in the same1338
field with the provided function,1339
while the knowledge point is not1340
compulsorily the same.1341

- The functions should be similar, but1342
not identical with the provided1343
function.1344

- The new written functions should be1345
wrapped as the below format:1346

1347
New function 1:1348
```python1349
[new_written_function_1]1350
```1351

1352
New function 2:1353
```python1354
[new_written_function_2]1355
```13561357

Specifically, we employ GPT-4 for each positive1358

function to generate two similar but not identical1359

functions as the negative functions. The prompt1360

used is shown as below. We do not validate the cor-1361

rectness of negative functions for simplicity, as they1362

are not intended to be used for any question. We1363

filter the duplicated functions and retain the other1364

1343 functions in all. By merging the 1103 positive1365

functions and 1343 negative functions, we finally1366

collect a total of 2446 functions in our toolset.1367

17

Figure 8: The screenshot of our annotation interface to evaluate functions’ generalization.

Figure 9: The screenshot of our annotation interface to rewrite functions. We provide no alternative functions in this
example for convenience of visualization.

18

def birge_vieta(p, tol=1e-3, max_iter=100):
 """
 Finds a real root of the polynomial x^3 - 11x^2 + 32x - 22 using the Birge-Vieta method.

 Parameters:
 - p (float): The initial guess for the root.
 - tol (float, optional): The desired tolerance for the root. Default is 1e-3.
 - max_iter (int, optional): The maximum number of iterations. Default is 100.

 Returns:
 - float: The real root of the polynomial found using the Birge-Vieta method.
 """
 for _ in range(max_iter):
 p_new = p - polynomial(p) / polynomial_derivative(p)
 if abs(p_new - p) < tol:
 return p_new
 p = p_new
 raise ValueError("Birge-Vieta method did not converge within the maximum number of iterations.")

def birge_vieta_iteration(polynomial, p, tol=1e-3, max_iter=100):
 """
 Finds a real root of a polynomial using the Birge-Vieta method.

 Parameters:
 - polynomial (sympy expression): The polynomial for which the root is to be
found.
 - p (float): The initial guess for the root.
 - tol (float): The desired tolerance for the root.
 - max_iter (int): The maximum number of iterations allowed.

 Returns:
 - float: The real root of the polynomial, if found within the maximum number
of iterations.
 Raises a ValueError if the root is not found within the maximum
number of iterations.
 """

 from sympy import lambdify, diff
 import numpy as np

 # Extract the variable from the polynomial
 variables = list(polynomial.free_symbols)
 if not variables:
 raise ValueError("No variables found in the polynomial.")
 if len(variables) > 1:
 raise ValueError("The polynomial contains more than one variable.")
 variable = variables[0]

 # Compute the derivative of the polynomial
 derivative = diff(polynomial, variable)

 # Convert the polynomial and its derivative to functions
 f = lambdify(variable, polynomial, 'numpy')
 f_prime = lambdify(variable, derivative, 'numpy')

 # Iterate using the Birge-Vieta method
 for _ in range(max_iter):
 p_new = p - f(p) / f_prime(p)
 if np.abs(p_new - p) < tol:
 return p_new
 p = p_new

 raise ValueError("Maximum number of iterations reached without convergence.")

Function before rewriting Function after rewriting

Rewrite the specific polynomial (and its derivative) to an
argument of the function

def calculate_emptying_time(height, radius, side_length, g=9.81):
 """
 Calculates the time it takes for a cylindrical tank to go from full to empty.

 Parameters:
 - height (float): The height of the cylindrical tank.
 - radius (float): The radius of the cylindrical tank.
 - side_length (float): The length of the side of the square hole in the bottom of the tank.
 - g (float): The acceleration due to gravity.

 Returns:
 - float: The time it takes for the tank to empty.
 """
 from math import pi, sqrt
 # Calculate the area of the tank and the hole
 tank_area = pi * radius**2
 hole_area = side_length**2

 # Use Torricelli's law to calculate the time
 time = (2 * height * tank_area) / (sqrt(2*g*height) * hole_area)
 return time

def calculate_drain_time(volume, area, gravity=9.81):
 """
 Calculates the time it takes for a cylindrical object to drain using
Torricelli's Law.

 Parameters:
 - volume (float): The volume of the cylindrical object.
 - area (float): The area of the hole through which the object is draining.
 - gravity (float): The acceleration due to gravity.

 Returns:
 - float: The time it takes for the object to drain.
 """
 from math import sqrt
 return volume / (area * sqrt(2*gravity))

Function before rewriting Function after rewriting

1. Abstract the function description by changing “tank”
to “object”
2. Decompose the area calculation and Torricelli’s law

Function before rewriting Function after rewriting
def is_log_concave():
 """
 Determines if the cumulative distribution function (CDF) of the standard Gaussian distribution
is log-concave.

 Returns:
 - int: 1 if the CDF is log-concave, 0 otherwise.

 Note:
 - The second derivative of the natural logarithm of the CDF of the standard Gaussian
distribution is always non-positive.
 Therefore, the function is log-concave, and we can return 1 without performing any
calculations.
 """
 return 1

def is_log_concave(f, x):
 """
 Determines if a given function `f` with respect to variable `x` is log-
concave.

 Parameters:
 - f (sympy expression): The function for which the log-concavity is to be
checked.
 - x (sympy symbol): The variable with respect to which log-concavity is to be
checked.

 Returns:
 - bool: True if the function is log-concave, False otherwise.
 """

 from sympy import diff, log, simplify, solveset, S
 from sympy.calculus.util import continuous_domain

 # Compute the first derivative of the logarithm of the function
 first_derivative = diff(log(f), x)

 # Compute the second derivative of the logarithm of the function
 second_derivative = diff(first_derivative, x)

 # Simplify the second derivative
 second_derivative_simplified = simplify(second_derivative)

 # Check if the second derivative is nonpositive (<= 0)
 # We check if the second_derivative is nonpositive for all x in the domain of
f
 # For a general solution, we attempt to prove the second derivative is always
nonpositive
 return solveset(second_derivative_simplified<=0,
domain=S.Reals)==continuous_domain(second_derivative_simplified, x, S.Reals)

Rewrite the specific function (and its variable) to an argument
of the function

Figure 10: Three examples of Refined functions (before rewriting) and their rewritten functions (after rewriting).
We also briefly describe the modifications for each example (color in red).

19

E Examples1368

Problem & Planing

Read the following mathematical question and answer it. Please note that you could (optionally, not
required) call the following functions when writing the code:

Question:Suppose a stock has the following information. It is listed on the London stock exchange and
operates throughout Europe. The yield on a UK 10 year treasury is 2.8%. The stock in question will earn
8.6% as per historical data. The Beta for the stock is 1.4, i.e., it is 140% volatile to the changes in
the general stock market. What is the expected rate of return?

(1) Calculate the expected return based on the beta and the yield on a UK 10 year treasury.
(2) Add the stock's historical return to the expected return.

Retrieved Functions

def expected_return(rf, beta, rm):
"""
Computes the expected return using the Capital Asset Pricing Model (CAPM) formula.

Parameters:
- rf (float): The risk-free rate.
- beta (float): The beta of the portfolio.
- rm (float): The return on the market.

Returns:
- float: The expected return.
"""
return rf + beta * (rm - rf)

def expected_stock_return(true_prob, u, d):
"""
Calculates the expected return of the stock in a one-period binomial model.

Parameters:
- true_prob (float): The true probability of the stock price going up.
- u (float): One plus the rate of capital gain on the stock if the price goes up.
- d (float): One plus the rate of capital loss on the stock if the price goes down.

Returns:
- float: The expected return of the stock.
"""
return true_prob * u + (1 - true_prob) * d

...

Solution

Given values.
rf = 0.028 # The yield on a UK 10 year treasury
beta = 1.4 # The stock is 140% volatile to the changes in the general stock market
rm = 0.086 # The stock in question will earn 8.6% as per historical data
Calculate the expected return .
expected_return = expected_return(rf, beta, rm)
Print the result.
print(expected_return)

Figure 11: An example of direct function call.

20

Problem & Planing

Read the following mathematical question and answer it. Please note that you could (optionally, not
required) call the following functions when writing the code:

Question:The linear density in a rod $8 \mathrm{~m}$ long is $12 / \sqrt{x+1} \mathrm{~kg} / \mathrm{m}$
, where x is measured in meters from one end of the rod. Find the average density of the rod.

(1) Integrate the linear density function with respect to x from 0 to 8.
(2) Divide the result by the length of the rod.

Retrieved Functions

def average_value_of_function(f, a, b):
"""
Calculates the average value of a function `f` on the interval `[a, b]`.
Parameters: - f (sympy expression): The function for which the average value is to be found.
- a (float): The lower limit of the interval.
- b (float): The upper limit of the interval.
Returns: float: The average value of the function on the interval.
"""
from sympy import integrate, symbols
x = symbols('x')
integral = integrate(f, (x, a, b))
average_value = integral / (b - a)
return average_value

def avg_distance(vectors):
"""
Finds the average distance from the origin that can be reached by adding and subtracting the given
vectors.
Parameters: - vectors (list of numpy arrays): The vectors.
Returns: float: The average distance.
"""
from itertools import product
import numpy as np
total_distance = 0
count = 0
for signs in product([-1, 1], repeat=len(vectors)):

resultant = sum(v * s for v, s in zip(vectors, signs))
distance = np.linalg.norm(resultant)
total_distance += distance
count += 1

return total_distance / count

...

Solution

The linear density is given by 12 / sqrt(x+1) kg/m.
The average density is the total mass of the rod divided by its length.
The total mass of the rod is the integral of the linear density times the length of the rod from 0 to
8.
from sympy import symbols, integrate
x = symbols('x')
length = 8
Define the linear density function.
linear_density = 12 / (x + 1)**0.5
Calculate the total mass of the rod.
total_mass = integrate(linear_density, (x, 0, length))
Calculate the average density by dividing the total mass by the length.
average_density = total_mass / length
print(average_density)

Figure 12: An example of implicitly using functions as a reference.

21

F Prompts1369

F.1 Tool/Function Collection1370

Listing 4: Prompt used for planning and function collection
1371

Given the question and the reference solution, do the following things:1372
1373

- Think about what math knowledge points are required to solve this problem step by1374
step.1375

- write some python one or more functions to abstract the solution. Please note that1376
the functions should be well-documented as much as possible and not too1377

specific (for example, do not write the values in this problem within the1378
functions. Pass them as the function arguments). We hope your written functions1379
could be re-used in anywhere else.1380

-Instantiate these functions to solve the problem. The last line of your program1381
should be a 'print' command to print the final answer1382

1383
Here are some examples you may refer to:1384

1385
Question: There are integers b,c for which both roots of the polynomial $x^2-x-1$1386

are also roots of the polynomial x^5-bx-c. Determine the product bc.1387
Answer: Let r be a root of x^2-x-1. Then, rearranging, we have\n$$r^2 = r+1.1388

$$Multiplying both sides by r and substituting gives\n\\begin{align*}\nr^3 &=1389
r^2+r \\\\\n&= (r+1)+r \\\\\n&= 2r+1.\n\\end{align*}Repeating this process twice1390
more, we have\n\\begin{align*}\nr^4 &= r(2r+1) \\\\\n&= 2r^2+r \\\\\n&= 2(r+1)+1391

r \\\\\n&= 3r+2\n\\end{align*}and\n\\begin{align*}\nr^5 &= r(3r+2) \\\\\n&= 3r1392
^2+2r \\\\\n&= 3(r+1)+2r \\\\\n&= 5r+3.\n\\end{align*}Thus, each root of $x^2-x1393
-1$ is also a root of x^5-5x-3, which gives $bc = 5\\cdot 3 = \\boxed{15}$.1394

Think: To solve this question, we can follow the steps below: (1) Find the roots of1395
the polynomial x^2-x-1. (2) Substitute them into the the polynomial x^5-bx-c1396
and obtain two equations. (3) Solve the equations.1397

Functions:1398
```function 11399
def find_roots_of_polynomial(polynomial, variable):1400

"""1401
Finds the roots of a given polynomial using the sympy library.1402

1403
Parameters:1404
- polynomial (sympy expression): The polynomial whose roots are to be found.1405
- variable (sympy symbol): The variable of the polynomial.1406

1407
Returns:1408
- list: The roots of the polynomial.1409
"""1410

1411
from sympy import solve1412
roots = solve(polynomial, variable)1413
return roots1414

```1415
1416

```function 21417
def substitute_roots_into_polynomial(roots, polynomial, variable):1418

"""1419
Substitutes the given roots into the polynomial and returns the resulting1420

expressions.1421
1422

Parameters:1423
- roots (list): The list of roots to be substituted into the polynomial.1424
- polynomial (sympy expression): The polynomial into which the roots are to be1425

substituted.1426
- variable (sympy symbol): The variable of the polynomial.1427

1428
Returns:1429
- list: The resulting expressions after substituting the roots into the1430

polynomial.1431
"""1432

1433
return [polynomial.subs(variable, root) for root in roots]1434

```1435

22

1436
```function 3 1437
def solve_equations(equations, variables): 1438

""" 1439
Solves a system of equations for the specified variables using the sympy library. 1440

1441
Parameters: 1442
- equations (list of sympy expressions or a single sympy expression): 1443

The equations to be solved. If solving a single equation, this can be a single 1444
expression. 1445

- variables (list of sympy symbols or a single sympy symbol): 1446
The variables for which the solution is to be found. If solving for a single 1447

variable, this can be a single symbol. 1448
1449

Returns: 1450
- list of dictionaries: Each dictionary represents a solution, with keys being 1451

the variables and values being their corresponding values. 1452
If there's only one solution, the list will contain a single dictionary. 1453

""" 1454
1455

from sympy import solve 1456
solution = solve(equations, variables, dict=True) 1457
return solution 1458

``` 1459
1460

Solution: 1461
```python 1462
# Import required functions and classes from sympy 1463
from sympy import symbols, Eq 1464

1465
# Define the variable and the polynomials 1466
x, b, c = symbols('x b c') 1467
polynomial1 = x**2 - x - 1 1468
polynomial2 = x**5 - b*x - c 1469

1470
# Find the roots of the first polynomial 1471
roots = find_roots_of_polynomial(polynomial1, x) 1472

1473
# Substitute the roots into the second polynomial 1474
resulting_expressions = substitute_roots_into_polynomial(roots, polynomial2, x) 1475

1476
# Set up the equations based on the resulting expressions 1477
equations = [Eq(expr, 0) for expr in resulting_expressions] 1478

1479
# Solve the system of equations for b and c 1480
solutions = solve_equations(equations, (b, c)) 1481
# This linear system has only one solution 1482
solution = solutions[0] 1483

1484
# Calculate the product bc 1485
product_bc = solution[b] * solution[c] 1486
print(product_bc) 1487
``` 1488

1489
--- 1490

1491
Question: Medians $\\overline{DP}$ and $\\overline{EQ}$ of $\\triangle DEF$ are 1492

perpendicular. If $DP= 18$ and $EQ = 24$, then what is ${DE}$? 1493
Answer: Point G is the centroid of $\\triangle DEF$, so $DG:GP = EG:GQ = 2:1$. 1494

Therefore, $DG = \\frac23(DP) = 12$ and $EG = \\frac23(EQ) =16$, so applying the 1495
Pythagorean Theorem to $\\triangle EGD$ gives us $DE = \\sqrt{EG^2 + GD^2} = \\ 1496

boxed{20}$. 1497
Think: Given two perpendicular medians in a triangle, we need to perform the 1498

following steps: (1) Identify the relationship between the segments of medians 1499
and the centroid. (2) Use the ratios provided to determine the lengths of the 1500
individual segments from the centroid to the vertices. (3) Use the Pythagorean 1501
theorem to determine the length of the side connecting the two vertices from 1502
which the medians originate. 1503

Functions: 1504
```function 1 1505

23



def median_segments_length(median_length, ratio):1506
"""1507
Computes the lengths of the segments of a median split by the centroid.1508

1509
Parameters:1510
- median_length (float): Total length of the median.1511
- ratio (tuple): Ratio in which the centroid splits the median. Default is (2,1)1512

for standard triangles.1513
1514

Returns:1515
- tuple: Lengths of the two segments.1516

1517
Formula:1518
- segment_1 = ratio[0]/sum(ratio) * median_length1519
- segment_2 = ratio[1]/sum(ratio) * median_length1520
"""1521
segment_1 = ratio[0] / sum(ratio) * median_length1522
segment_2 = ratio[1] / sum(ratio) * median_length1523
return segment_1, segment_21524

```1525
1526

```function 21527
def pythagorean_theorem(a, b):1528

"""1529
Computes the hypotenuse of a right triangle given two legs.1530

1531
Parameters:1532
- a, b (float): Lengths of the two legs.1533

1534
Returns:1535
- float: Length of the hypotenuse.1536

1537
Formula:1538
- c = sqrt(a^2 + b^2)1539
"""1540
from sympy import sqrt1541
return sqrt(a**2 + b**2)1542

```1543
1544

Solution:1545
```python1546
# Given values1547
DP = 181548
EQ = 241549

1550
# Point $G$ is the centroid.1551
ratio = (2,1)1552
# Determine the lengths of the segments split by the centroid1553
DG, GP = median_segments_length(DP, ratio)1554
EG, GQ = median_segments_length(EQ, ratio)1555

1556
# Use Pythagoras theorem to determine DE1557
DE = pythagorean_theorem(EG, DG)1558
print(DE)1559
```15601561

F.2 Self-rectification1562

Listing 5: Prompt used for self-rectification
1563
1564

{1565
"role": "system",1566
"content": "Suppose you are writing Python programs to solve mathematical1567

questions. Your original program, however, can not run normally for some1568
reasons. Given the error message returned from the interpreter, please debug1569
your program carefully and generate the new program. Your generated1570
correction MUST FOLLOW the following format:\n```function 1\n[the first1571
created function]\n```\n...\n```function N\n[the N-th created function]\n```\n1572

24


```python\n[solution]\n```.\nDO NOT only quote your output as ```python\n[ 1573
solution]\n```" 1574

}, 1575
{ 1576

"role": "user", 1577
"content": "Original Program:\n```function 1\ndef solve_quadratic(a, b, c):\n 1578

from sympy import symbols, Eq, solve\n x = symbols('x')\n quadratic = Eq(a * 1579
x**2 + b * x + c, 0)\n solutions = solve(quadratic, x)\n return solutions\n 1580
```\n\n```python\ndef find_d_values():\n a, b, c, d = symbols('a b c d')\n eq1 1581
= Eq(6 * a * d, a + d)\n eq2 = Eq((6 * d - 1) * (1 - a), a + d)\n eq3 = Eq(a, 1582
4 * d - 1)\n solution = solve([eq1, eq2, eq3], (a, b, c, d), dict=True)\n 1583

d_values = [sol[d] for sol in solution]\n return d_values\nd_values = 1584
find_d_values()\nprint(d_values)\n```\n\nError Message:\nFile <string>:15\n\ 1585
nFile <string>:9, in find_d_values()\n\nNameError: name 'Eq' is not defined" 1586

}, 1587
{ 1588

"role": "assistant", 1589
"content": "Analysis: The error is occurring because the Eq function from the 1590

sympy module is not recognized in the find_d_values function. This is 1591
happening because the ```from sympy import symbols, Eq, solve``` line is only 1592
inside the ```solve_quadratic``` function, so Eq and other imported functions 1593
and classes are only available within the scope of that function. To fix this, 1594
you should claim import statement within the ```find_d_values``` function as 1595

well.\n\nNew Program:\n```function 1\ndef solve_quadratic(a, b, c):\n from 1596
sympy import symbols, Eq, solve\n x = symbols('x')\n quadratic = Eq(a * x**2 1597
+ b * x + c, 0)\n solutions = solve(quadratic, x)\n return solutions\n```\n\n 1598
```python\ndef find_d_values():\n from sympy import symbols, Eq, solve\n a, b, 1599
c, d = symbols('a b c d')\n eq1 = Eq(6 * a * d, a + d)\n eq2 = Eq((6 * d - 1600

1) * (1 - a), a + d)\n eq3 = Eq(a, 4 * d - 1)\n solution = solve([eq1, eq2, 1601
eq3], (a, b, c, d), dict=True)\n d_values = [sol[d] for sol in solution]\n 1602
return d_values\nd_values = find_d_values()\nprint(d_values)\n```" 1603

}, 1604
{ 1605

"role": "user", 1606
"content": "finished" 1607

}, 1608
{ 1609

"role": "user", 1610
"content": "Original Program:\n```function 1\ndef matrix_square(matrix):\n from 1611

sympy import Matrix\n if not isinstance(matrix, Matrix):\n matrix = Matrix( 1612
matrix)\n return matrix * matrix\n```\n\n```function 2\ndef solve_equations( 1613
equations, variables): \n from sympy import solve \n solution = solve( 1614
equations, variables, dict=True) \n return solution \n```\n\n```function 3\ 1615
ndef count_solutions(solutions):\n return len(solutions)\n```\n\n```python\ 1616
nfrom sympy import symbols, Eq \na, d = symbols('a d') \nmatrix = [[a, 3], 1617
[-8, d]] \nsquared_matrix = matrix_square(matrix) \nidentity_matrix = [[1, 0], 1618
[0, 1]] \nequations = [Eq(squared_matrix[i][j], identity_matrix[i][j]) for i 1619
in range(2) for j in range(2)] \nsolution = solve_equations(equations, [a, d 1620

]) \nans = count_solutions(solution)\nprint(ans)\n```\n\nError Message:\nFile 1621
<string>:17\n\nFile <string>:17, in <listcomp>(.0)\n\nTypeError: 'Add' 1622

object is not subscriptable" 1623
}, 1624
{ 1625

"role": "assistant", 1626
"content": "Analysis: The error message is occurring because when you are 1627

creating the list of equations with the list comprehension, squared_matrix[i 1628
][j] is not working as expected. The squared_matrix is a SymPy Matrix object, 1629
and you should use the .row and .col methods.\n\nNew Program:\n```function 1\ 1630

ndef matrix_square(matrix):\n from sympy import Matrix\n if not isinstance( 1631
matrix, Matrix):\n matrix = Matrix(matrix)\n return matrix * matrix\n```\n\n 1632
```function 2\ndef solve_equations(equations, variables): \n from sympy 1633
import solve \n solution = solve(equations, variables, dict=True) \n return 1634
solution \n```\n\n```function 3\ndef count_solutions(solutions):\n return len(1635
solutions)\n```\n\n```python\nfrom sympy import symbols, Eq \na, d = symbols(' 1636
a d') \nmatrix = [[a, 3], [-8, d]] \nsquared_matrix = matrix_square(matrix) \ 1637
nidentity_matrix = [[1, 0], [0, 1]] \nequations = [Eq(squared_matrix.row(i)[j 1638
], identity_matrix[i][j]) for i in range(2) for j in range(2)] \nsolution = 1639
solve_equations(equations, [a, d]) \nans = count_solutions(solution)\nprint(1640
ans)\n```" 1641

}, 1642

25

{1643
"role": "user",1644
"content": "finished"1645

},1646
{1647

"role": "user",1648
"content": "Original Program:\n```function 1\ndef sum_to_product_cos(alpha, beta)1649

:\n return (cmath.cos(alpha - beta) + cmath.cos(alpha + beta)) / 2\n```\n\n```1650
function 2\ndef simplify_expression(expression): \n from sympy import1651
simplify \n return simplify(expression) \n```\n\n```python\nfrom sympy import1652
symbols, cos\n\nx = symbols('x')\nexpr = cos(x) + cos(3*x) + cos(7*x) + cos1653
(9*x)\n\n# Apply sum-to-product formula\nexpr1 = 2 * sum_to_product_cos(5*x,1654
4*x)\nexpr2 = 2 * sum_to_product_cos(5*x, 2*x)\n\n# Simplify the expression\1655
nsimplified_expr = simplify_expression(expr1 + expr2)\n\n# Extract the values1656
of a, b, c, and d and sum them up\na, b, c, d = 4, 1, 3, 5\nans = a + b + c1657
+ d\nprint(ans)\n```\n\nError Message:\nFile <string>:12\n\nFile <string>:2,1658
in sum_to_product_cos(alpha, beta)\n\nNameError: name 'cmath' is not defined"1659

},1660
{1661

"role": "assistant",1662
"content": "Analysis: The error message is occurring because the cmath module is1663

being used in the sum_to_product_cos function but it has not been imported.1664
You can fix this by importing the cmath module in this function. New Program1665
:\n```function 1\ndef sum_to_product_cos(alpha, beta):\n import cmath\n1666
return (cmath.cos(alpha - beta) + cmath.cos(alpha + beta)) / 2\n```\n\n```1667
function 2\ndef simplify_expression(expression): \n from sympy import1668
simplify \n return simplify(expression)\n``` \n\n```python\nfrom sympy import1669
symbols, cos\n\nx = symbols('x')\nexpr = cos(x) + cos(3*x) + cos(7*x) + cos1670
(9*x)\n\n# Apply sum-to-product formula\nexpr1 = 2 * sum_to_product_cos(5*x,1671
4*x)\nexpr2 = 2 * sum_to_product_cos(5*x, 2*x)\n\n# Simplify the expression\1672
nsimplified_expr = simplify_expression(expr1 + expr2)\n\n# Extract the values1673
of a, b, c, and d and sum them up\na, b, c, d = 4, 1, 3, 5\nans = a + b + c1674

+ d\nprint(ans)\n```"1675
},1676
{1677

"role": "user",1678
"content": "Error message:\nTraceback (most recent call last):\n File, line 9, in1679

<module>\n exec(\n File '<string>', line 13, in <module>\n File '<string>',1680
line 3, in sum_to_product_cos\n File, line 356, in __complex__\n return1681
complex(float(re), float(im))\n File, line 351, in __float__\n raise1682
TypeError('Cannot convert expression to float')\nTypeError: Cannot convert1683
expression to float\n"1684

},1685
{1686

"role": "assistant",1687
"content": "Analysis: The error occurs because you are trying to use cmath.cos1688

function (which expects float or complex numbers as arguments) with SymPy1689
symbolic expressions (5x and 4x, 5x and 2x are symbolic expressions). To fix1690
this, you should use SymPy's cos function instead of cmath.cos function to1691
work with symbolic expressions.\n\nNew Program:\ndef sum_to_product_cos(alpha,1692
beta):\n from sympy import cos\n return (cos(alpha - beta) + cos(alpha +1693

beta)) / 2\ndef simplify_expression(expression): \n from sympy import1694
simplify \n return simplify(expression) \nfrom sympy import symbols, cos\n\nx1695
= symbols('x')\nexpr = cos(x) + cos(3*x) + cos(7*x) + cos(9*x)\n\n# Apply1696

sum-to-product formula\nexpr1 = 2 * sum_to_product_cos(5*x, 4*x)\nexpr2 = 2 *1697
sum_to_product_cos(5*x, 2*x)\n\n# Simplify the expression\nsimplified_expr =1698
simplify_expression(expr1 + expr2)\n\n# Extract the values of a, b, c, and d1699
and sum them up\na, b, c, d = 4, 1, 3, 5\nans = a + b + c + d\nprint(ans)"1700

},1701
{1702

"role": "user",1703
"content": "finished"1704

},1705
{1706

"role": "user",1707
"content": "Original Program:\n```function 1\ndef tan_double_angle(tan_theta):\n1708

return 2 * tan_theta / (1 - tan_theta**2)\n```\n\n```function 2\ndef1709
tan_triple_angle(tan_theta):\n return (3 * tan_theta - tan_theta**3) / (1 - 31710
* tan_theta**2)\n```\n\n```function 3\ndef solve_polynomial(polynomial, x):\n1711
from sympy import solve\n return solve(polynomial, x)\n```\n\n```python\nfrom1712

26

sympy import symbols\ntan_theta = symbols('tan_theta')\ntan_2_theta = 1713
tan_double_angle(tan_theta)\ntan_3_theta = tan_triple_angle(tan_theta)\ 1714
nequation = tan_theta + tan_2_theta + tan_3_theta\nsimplified_equation = 1715
simplify_expression(equation)\ntan_theta_solutions = solve_polynomial(1716
simplified_equation, tan_theta)\n\n# Find the solution in the given range (0 1717
< tan_theta < 1)\ntan_theta_value = [solution for solution in 1718
tan_theta_solutions if 0 < solution < 1][0]\nprint(tan_theta_value)\n```\n\ 1719
nError Message:\nFile <string>:13\n\nNameError: name 'simplify_expression' is 1720
not defined" 1721

}, 1722
{ 1723

"role": "assistant", 1724
"content": "Analysis: The error message is occurring because there is no function 1725

named simplify_expression defined in your script. To fix this, you can 1726
define such a function that uses SymPy's simplify function to simplify 1727
expressions.\n\nNew Program:\n```function 1\ndef simplify_expression(1728
expression): \n from sympy import simplify \n return simplify(expression)\n 1729
```\n\n```function 2\ndef tan_double_angle(tan_theta):\n return 2 * tan_theta 1730
/ (1 - tan_theta**2)\n```\n\n```function 3\ndef tan_triple_angle(tan_theta):\n 1731
return (3 * tan_theta - tan_theta**3) / (1 - 3 * tan_theta**2)\n```\n\n``` 1732

function 4\ndef solve_polynomial(polynomial, x):\n from sympy import solve\n 1733
return solve(polynomial, x)\n```\n\n```python\nfrom sympy import symbols\ 1734
ntan_theta = symbols('tan_theta')\ntan_2_theta = tan_double_angle(tan_theta)\ 1735
ntan_3_theta = tan_triple_angle(tan_theta)\nequation = tan_theta + 1736
tan_2_theta + tan_3_theta\nsimplified_equation = simplify_expression(equation 1737
)\ntan_theta_solutions = solve_polynomial(simplified_equation, tan_theta)\n\n 1738
# Find the solution in the given range (0 < tan_theta < 1)\ntan_theta_value = 1739
[solution for solution in tan_theta_solutions if 0 < solution < 1][0]\nprint 1740

(tan_theta_value)\n```" 1741
}, 1742
{ 1743

"role": "user", 1744
"content": "finished" 1745

} 17461747

F.3 Function-augmented Solutions 1748

Listing 6: Prompt used for the generation of function-augmented solutions (cross-retrieval strategy)
1749

You will encounter a mathematical problem and are required to write a piece of 1750
Python code to solve this problem. 1751

1752
Now we have a suite of wrapped functions. Take note: 1753
- The newly provided wrapped functions have NOT been verified. They may be 1754

irrelevant or potentially flawed. 1755
- It's essential that the solution doesn't overly depend on wrapped functions. 1756
You're welcome to utilize one or more functions from the new set in your solution 1757

but only after you've determined: 1758
(1) Their accuracy. 1759
(2) Their inclusion significantly streamlines the problem-solving approach. 1760

1761
Additionally take note that 1762

(1) The last line of your written code shall be a 'print' command to print the 1763
final answer. 1764

(2) The wrapped functions should not be duplicated within your code. Instead, 1765
call them directly if needed. 1766

(3) Should you need to create custom functions, do so without adding 1767
documentation comments for the sake of brevity. 1768

(4) Write simple but clear annotations interleaving your code solution. 1769
1770

""" 1771
Retrieved functions: 1772
[List of called function names from the new set] 1773

1774
```python 1775
[Your Written Python Code.] 1776
``` 1777
""" 1778

1779

27



For example:1780
---1781
Question: What is the 100th digit to the right of the decimal point in the decimal1782

representation of $\frac{13}{90}$?1783
1784

New provided functions:1785
```New Function 01786
def decimal_representation(numerator, denominator, max_digits=1000):1787

"""1788
Computes the decimal representation of a fraction.1789

1790
Parameters:1791
- numerator (int): The numerator of the fraction.1792
- denominator (int): The denominator of the fraction.1793
- max_digits (int): The maximum number of decimal digits to compute.1794

1795
Returns:1796
- str: The decimal representation of the fraction as a string.1797
"""1798

1799
result = ""1800
remainder = numerator % denominator1801
for _ in range(max_digits):1802

remainder *= 101803
result += str(remainder // denominator)1804
remainder %= denominator1805
if remainder == 0:1806

break1807
return result1808

```1809
1810

```New Function 11811
def decimal_to_scientific(decimal_number):1812

from sympy import log, floor1813
exponent = -floor(log(decimal_number, 10))1814
coefficient = decimal_number * 10**(-exponent)1815
return coefficient, exponent1816

```1817
1818

```New Function 21819
def repeating_decimal_representation(numerator, denominator):1820

"""1821
Computes the repeating decimal representation of a fraction.1822

1823
Parameters:1824
- numerator (int): The numerator of the fraction.1825
- denominator (int): The denominator of the fraction.1826

1827
Returns:1828
- str: The repeating decimal representation of the fraction as a string.1829
"""1830

1831
Initialize the result string and a dictionary to store remainders.1832
result = ""1833
remainders = {}1834

1835
Perform long division to find the decimal representation.1836
while numerator != 0:1837

If the remainder has been seen before, we found the repeating block.1838
if numerator in remainders:1839

start = remainders[numerator]1840
return result[:start] + "(" + result[start:] + ")"1841

Otherwise, store the remainder and continue the division.1842
remainders[numerator] = len(result)1843
numerator *= 101844
result += str(numerator // denominator)1845
numerator %= denominator1846

1847
return result1848

```1849

28



1850
```New Function 3 1851
def nth_digit_of_decimal_representation(numerator, denominator, n): 1852

""" 1853
Computes the nth digit after the decimal point of the decimal representation of a 1854

fraction. 1855
1856

Parameters: 1857
- numerator (int): The numerator of the fraction. 1858
- denominator (int): The denominator of the fraction. 1859
- n (int): The position of the digit after the decimal point. 1860

1861
Returns: 1862
- int: The nth digit after the decimal point of the decimal representation of the 1863

fraction. 1864
""" 1865

1866
Get the repeating decimal representation of the fraction. 1867
decimal_representation = repeating_decimal_representation(numerator, denominator) 1868

1869
Remove the parentheses from the repeating block. 1870
decimal_representation = decimal_representation.replace("(", "").replace(")", "") 1871

1872
Calculate the nth digit using the repeating block. 1873
return int(decimal_representation[(n - 1) % len(decimal_representation)]) 1874

``` 1875
1876

Retrieved functions: 1877
[decimal_representation, nth_digit_of_decimal_representation] 1878

1879
```python 1880
Use the nth_digit_of_decimal_representation function to find the 100th digit 1881
numerator = 13 1882
denominator = 90 1883
n = 100 1884

1885
Call the function and print the result 1886
result = nth_digit_of_decimal_representation(numerator, denominator, n) 1887
print(result) 1888
``` 1889

1890
1891

--- 1892
Question: The square root of $x$ is greater than 3 and less than 4. How many integer 1893

values of $x$ satisfy this condition? 1894
1895

New provided functions: 1896
```New Function 0 1897
def solve_square_root_equation(a, b, c): 1898

""" 1899
Solves a square root equation of the form sqrt(ax - b) = c. 1900

1901
Parameters: 1902
- a (float): Coefficient of x inside the square root. 1903
- b (float): Constant term inside the square root. 1904
- c (float): Constant term on the right side of the equation. 1905

1906
Returns: 1907
- float: The value of x that satisfies the equation. 1908

1909
Formula: 1910
- x = (c^2 + b) / a 1911
""" 1912
return (c**2 + b) / a 1913

``` 1914
1915

```New Function 1 1916
def find_integer_square_less_than_double(): 1917

""" 1918
Finds the only integer whose square is less than its double. 1919

29

1920
Returns:1921
- int: The integer that satisfies the condition.1922

1923
Method:1924
- Iterate through integers starting from 1, and check if the square of the1925

integer is less than its double.1926
- If the condition is satisfied, return the integer.1927
- If the condition is not satisfied for any integer up to a certain limit, return1928

None.1929
"""1930
limit = 1001931
for x in range(1, limit):1932

if x**2 < 2*x:1933
return x1934

return None1935
```1936

1937
```New Function 21938
def solve_equation():1939

"""1940
Solves the equation (x-2)^(25-x^2) = 1 for integer solutions.1941

1942
Returns:1943
- list: A list of integer solutions for x.1944
"""1945
solutions = []1946

1947
Case 1: Exponent is 0 (25 - x^2 = 0)1948
x1 = 51949
x2 = -51950
solutions.extend([x1, x2])1951

1952
Case 2: Base is 1 (x - 2 = 1)1953
x3 = 31954
solutions.append(x3)1955

1956
Case 3: Base is -1 and exponent is even (x - 2 = -1 and 25 - x^2 = 2n for some1957

integer n)1958
x4 = 11959
solutions.append(x4)1960

1961
return solutions1962

```1963
1964

```New Function 31965
def count_integers_in_range(lower_bound, upper_bound, exclude_zero=True):1966

"""1967
Counts the number of integers within a given range.1968

1969
Parameters:1970
- lower_bound (int): The lower bound of the range.1971
- upper_bound (int): The upper bound of the range.1972
- exclude_zero (bool): Whether to exclude 0 from the count. Default is True.1973

1974
Returns:1975
- int: The number of integers within the range.1976
"""1977
count = upper_bound - lower_bound + 11978
if exclude_zero and lower_bound <= 0 and upper_bound >= 0:1979

count -= 11980
return count1981

```1982
1983

Retrieved functions:1984
[]1985

1986
```python1987
The lower and upper bounds of x for which sqrt(x) > 3 and sqrt(x) < 41988
lower_bound = 91989

30

upper_bound = 16 1990
1991

Counting the number of integers between 9 (exclusive) and 16 (exclusive) 1992
num_integers = len([x for x in range(lower_bound + 1, upper_bound)]) 1993

1994
Printing the result 1995
print(num_integers) 1996
``` 19971998

F.4 Evaluation with Toolsets 1999

Listing 7: Prompt used for evaluation (setting with toolsets)
2000

Read the following questions and answer them. For each question, you are required to 2001
write a Python program to solve it. 2002

Please note that we provide you several functions for each question. You could ( 2003
optionally, not required) call the functions to help you to solve the question 2004
if necessary. 2005

Note that the last line of your program should be a 'print' command to print the 2006
final answer 2007

2008
---------------------------------------------------- 2009
Question: 2010
What is the 100th digit to the right of the decimal point in the decimal 2011

representation of $\\frac{13}{90}$? 2012
2013

Functions: 2014
def repeating_decimal_representation(numerator, denominator): 2015

""" 2016
Computes the repeating decimal representation of a fraction. 2017

2018
Parameters: 2019
- numerator (int): The numerator of the fraction. 2020
- denominator (int): The denominator of the fraction. 2021

2022
Returns: 2023
- str: The repeating decimal representation of the fraction as a string. 2024
""" 2025

2026
# Initialize the result string and a dictionary to store remainders. 2027
result = "" 2028
remainders = {} 2029

2030
# Perform long division to find the decimal representation. 2031
while numerator != 0: 2032

# If the remainder has been seen before, we found the repeating block. 2033
if numerator in remainders: 2034

start = remainders[numerator] 2035
return result[:start] + "(" + result[start:] + ")" 2036

# Otherwise, store the remainder and continue the division. 2037
remainders[numerator] = len(result) 2038
numerator *= 10 2039
result += str(numerator // denominator) 2040
numerator %= denominator 2041

2042
return result 2043

2044
2045

def nth_digit_of_decimal_representation(numerator, denominator, n): 2046
""" 2047
Computes the nth digit after the decimal point of the decimal representation of a 2048

fraction. 2049
2050

Parameters: 2051
- numerator (int): The numerator of the fraction. 2052
- denominator (int): The denominator of the fraction. 2053
- n (int): The position of the digit after the decimal point. 2054

2055
Returns: 2056

31



- int: The nth digit after the decimal point of the decimal representation of the2057
fraction.2058

"""2059
2060

# Get the repeating decimal representation of the fraction.2061
decimal_representation = repeating_decimal_representation(numerator, denominator)2062

2063
# Remove the parentheses from the repeating block.2064
decimal_representation = decimal_representation.replace("(", "").replace(")", "")2065

2066
# Calculate the nth digit using the repeating block.2067
return int(decimal_representation[(n - 1) % len(decimal_representation)])2068

2069
2070

def decimal_representation(numerator, denominator, max_digits=1000):2071
"""2072
Computes the decimal representation of a fraction.2073

2074
Parameters:2075
- numerator (int): The numerator of the fraction.2076
- denominator (int): The denominator of the fraction.2077
- max_digits (int): The maximum number of decimal digits to compute.2078

2079
Returns:2080
- str: The decimal representation of the fraction as a string.2081
"""2082

2083
result = ""2084
remainder = numerator % denominator2085
for _ in range(max_digits):2086

remainder *= 102087
result += str(remainder // denominator)2088
remainder %= denominator2089
if remainder == 0:2090

break2091
return result2092

2093
2094

Solution:2095
# find the 100th digit.2096
numerator = 132097
denominator = 902098
n = 1002099

2100
# Call the function and print the result.2101
result = nth_digit_of_decimal_representation(numerator, denominator, n)2102
print(result)2103

2104
2105

----------------------------------------------------2106
Question:2107
The square root of $x$ is greater than 3 and less than 4. How many integer values of2108

$x$ satisfy this condition?2109
2110

Functions:2111
def count_integers_in_range(lower_bound, upper_bound, exclude_zero=True):2112

"""2113
Counts the number of integers within a given range.2114

2115
Parameters:2116
- lower_bound (int): The lower bound of the range.2117
- upper_bound (int): The upper bound of the range.2118
- exclude_zero (bool): Whether to exclude 0 from the count. Default is True.2119

2120
Returns:2121
- int: The number of integers within the range.2122
"""2123
count = upper_bound - lower_bound + 12124
if exclude_zero and lower_bound <= 0 and upper_bound >= 0:2125

count -= 12126

32



return count 2127
2128
2129

def find_integer_square_less_than_double(): 2130
""" 2131
Finds the only integer whose square is less than its double. 2132

2133
Returns: 2134
- int: The integer that satisfies the condition. 2135

2136
Method: 2137
- Iterate through integers starting from 1, and check if the square of the 2138

integer is less than its double. 2139
- If the condition is satisfied, return the integer. 2140
- If the condition is not satisfied for any integer up to a certain limit, return 2141

None. 2142
""" 2143
limit = 100 2144
for x in range(1, limit): 2145

if x**2 < 2*x: 2146
return x 2147

return None 2148
2149
2150

def solve_square_root_equation(a, b, c): 2151
""" 2152
Solves a square root equation of the form sqrt(ax - b) = c. 2153

2154
Parameters: 2155
- a (float): Coefficient of x inside the square root. 2156
- b (float): Constant term inside the square root. 2157
- c (float): Constant term on the right side of the equation. 2158

2159
Returns: 2160
- float: The value of x that satisfies the equation. 2161

2162
Formula: 2163
- x = (c^2 + b) / a 2164
""" 2165
return (c**2 + b) / a 2166

2167
2168

Solution: 2169
# We need to find the integer values of x for which sqrt(x) > 3 and sqrt(x) < 4. To 2170

this end, we can count the number of integers in the range (9, 16) directly. 2171
result = 0 2172
for x in range(10, 16): 2173

if 9 < x < 16: 2174
result += 1 2175

print(result) 21762177

F.5 Evaluation without Toolsets 2178

Listing 8: Prompt used for evaluation (setting without toolsets)
2179

Read the following questions and answer them. For each question, you are required to 2180
write a Python program to solve it. 2181

Please note that we provide you several functions for each question. You could ( 2182
optionally, not required) call the functions to help you to solve the question 2183
if necessary. 2184

Note that the last line of your program should be a 'print' command to print the 2185
final answer 2186

2187
---------------------------------------------------- 2188
Question: 2189
What is the 100th digit to the right of the decimal point in the decimal 2190

representation of $\\frac{13}{90}$? 2191
2192

Solution: 2193

33



from decimal import Decimal, getcontext2194
2195

# Set the precision to 101 (100 digits after decimal + 1 digit before decimal)2196
getcontext().prec = 1012197

2198
# Calculate the decimal representation of 13/902199
dec = Decimal(13) / Decimal(90)2200

2201
# Convert the decimal to a string2202
dec_str = str(dec)2203

2204
# Get the 100th digit to the right of the decimal point2205
digit_100th = dec_str[101]2206

2207
print(digit_100th)2208

2209
----------------------------------------------------2210
Question:2211
The square root of $x$ is greater than 3 and less than 4. How many integer values of2212

$x$ satisfy this condition?2213
2214

Solution:2215
# We need to find the integer values of x for which sqrt(x) > 3 and sqrt(x) < 4. To2216

this end, we can count the number of integers in the range (9, 16) directly.2217
result = 02218
for x in range(10, 16):2219

if 9 < x < 16:2220
result += 12221

print(result)22222223

34


	Introduction
	Preliminary
	Training Corpus: MathFunc
	Planning and Toolset Construction
	Function-augmented Solutions

	Model: SciAgent
	Overview
	Training

	Benchmark: SciToolBench
	Dataset Overview.
	Dataset Annotation

	Experiments
	Setup
	Baselines
	Main Results
	Ablation Study
	Analysis

	Conclusion
	Detailed Related Work
	Scientific Reasoning
	Tool Learning

	Training Details
	Retriever
	Planning and Action

	Evaluation Details
	Details of SciToolBench Annotation
	Question Filtering
	Positive Function Construction
	Negative Function Construction

	Examples
	Prompts
	Tool/Function Collection
	Self-rectification
	Function-augmented Solutions
	Evaluation with Toolsets
	Evaluation without Toolsets


