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Abstract

We assess LLMs’ ability to recall factual knowl-001
edge acquired during pretraining, and investi-002
gate the factors that influence this capability. To003
that end, we construct FACT-BENCH, a bench-004
mark designed with three key attributes. First,005
FACT-BENCH consists of questions with sim-006
ple, unambiguous answers that remain stable007
over time, leading to reliable and easy evalua-008
tion. Second, it covers 20 domains, 134 prop-009
erty types, various answer types and knowledge010
popularity levels. Third, FACT-BENCH is pro-011
grammatically extensible to cover additional012
factual knowledge of interest from Wikipedia013
without human annotation.014

We evaluate 24 models across six families, fo-015
cusing on three aspects of factual knowledge016
recall. First, we find that instruction-tuning017
consistently impairs knowledge recall: mod-018
els trained only with pretraining outperform019
their instruction-tuned counterparts. Second,020
we examine the impact of in-context exemplars021
using counterfactual demonstrations. These022
exemplars significantly degrade factual recall,023
particularly when they contradict knowledge024
the model already possesses. By further decou-025
pling model known and unknown knowledge–026
that is, whether the model can correctly recall a027
fact–we find the degradation is attributed to ex-028
emplars that contradict a model’s known knowl-029
edge, as well as the number of such exemplars.030
Third, we fine-tune Llama-3.1-8B under vary-031
ing conditions of known and unknown knowl-032
edge. Fine-tuning on known knowledge proves033
consistently more effective than fine-tuning on034
unknown or mixed knowledge. We will make035
our benchmark publicly available.036

1 Introduction037

Recent advancements of large language models038

(LLMs), exemplified by ChatGPT1, GPT-4 (Ope-039

nAI, 2023), are leading to their widespread adop-040

tion in various domains. Despite their remarkable041

1https://platform.openai.com/docs/models

performance, they are still plagued by the issue of 042

hallucinations (Ji et al., 2023). Therefore, it is im- 043

portant to conduct holistic assessments to learn how 044

well LLMs capture factual knowledge and what are 045

the factors that affect their ability to recall knowl- 046

edge learned from pretraining. Previous factuality 047

benchmarks created from knowledge bases (Mallen 048

et al., 2023; Yu et al., 2023) focus on a few domains 049

and property types, and questions are created from 050

templates with limited patterns (Sun et al., 2023). 051

Evaluation of LLMs on these benchmarks reveal a 052

large gap from mastery of factual knowledge. How- 053

ever, it is unclear whether such gap is caused by 054

design challenges, such as ambiguity of the ques- 055

tions and presence of multiple plausible answers, 056

which could lead to biased results. 057

In this work, we introduce FACT-BENCH, a 058

comprehensive factuality benchmark consisting of 059

20K question-answer (QA) pairs and featuring four 060

characteristics: (1) Simplicity: we create simple 061

questions from Wikidata triplets (subject, property, 062

object) using Claude 2, to elicit knowledge from 063

LLMs. (2) Validity: To make sure the answers are 064

grounded, we select triplets whose subject has a 065

Wikipedia article and whose object also appears in 066

the same article. (3) Diversity: FACT-BENCH cov- 067

ers 20 domains, 134 property types, and 3 answer 068

types (entities, dates and numbers). (4) Specificity: 069

we manually select property types that are highly 070

likely to yield unique answers and perform prompt 071

engineering to generate specific questions. 072

We benchmark 24 models across six model 073

families on FACT-BENCH. Our results reveal 074

that instruction-tuning hurts knowledge recall, as 075

pretraining-only models consistently outperform 076

their instruction-tuned counterparts. We observe 077

positive effects of model scaling — for all model 078

families, larger models outperform smaller ones 079

2https://www.anthropic.com/index/
introducing-claude. Specifically, we use
claude-v1.3-100k to generate questions.
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across all metrics. However, the best performance080

from GPT-4 still represents a large gap with the081

upper-bound. To identify where the gap lies, we082

conduct evaluation from multiple perspectives and083

find that LLMs struggle with long-tail entities and084

certain property types.085

In addition, we perform counterfactual in-086

context learning (ICL) experiments to examine the087

role of in-context exemplars. Our results indicate088

that counterfactual exemplars lead to significant089

degradation of factual knowledge recall for large090

models. By further decoupling model known and091

unknown knowledge, we find the degradation is092

attributed to exemplars that contradict a model’s093

known knowledge, as well as the number of such094

exemplars. Lastly, we fine-tune Llama-3.1-8B in095

different settings of known and unknown knowl-096

edge. In particular, fine-tuning on knowledge that097

is known to the model is beneficial, and consistently098

outperforms fine-tuning on knowledge that is un-099

known, which shows that fine-tuning on unknown100

knowledge teaches the model to hallucinate.101

Our contributions include: (1) A comprehen-102

sive benchmark to evaluate LLMs’ ability to re-103

call factual knowledge learned from pretraining.104

(2) Holistic assessment of the strengths and weak-105

nesses of 24 LLMs, and the factors that affect their106

recall of factual knowledge. (3) Counterfactual107

ICL experiments to study the role of in-context108

exemplars, where we find contradicting a model’s109

known knowledge leads to significant degradation110

of knowledge recall, as well as the number of such111

exemplars. (4) Fine-tuning experiments that show112

the advantage of using known knowledge over113

mixed and unknown knowledge.114

2 FACT-Bench115

2.1 Dataset Construction116

We formulate the factuality evaluation task as117

closed-book question answering (Roberts et al.,118

2020), where a question is fed to the model without119

any context, and the model needs to leverage its120

parametric knowledge to answer the question. As121

simple as the setup is, we identify four challenges:122

(1) How to make the questions simple enough so123

that it solely requires knowledge recall rather than124

complex reasoning or multi-source information?125

(2) What types of questions are fair to ask? It is126

unfair to query knowledge that does not exist in127

the pretraining data of all LLMs. (3) How to make128

the questions diverse and representative? (4) How129

to make the question specific enough so that the130

answer is unique and grounded in some knowledge 131

source? We address these challenges from the fol- 132

lowing four aspects. 133

Simplicity. Although LLMs have shown remark- 134

able performance for solving composite questions 135

(Wei et al., 2022; Zhou et al., 2023), we aim to 136

decouple the ability to reason and to recall fac- 137

tual knowledge. Therefore, we focus on a simple 138

QA setting to elicit knowledge from LLMs and 139

build up the questions based on sampled Wikidata 140

triplets3. The knowledge in Wikidata is in the for- 141

mat of (subject, property, object) triplets, where a 142

simple question can be asked for the property of 143

the subject, and the answer would be the object. 144

Validity. To benchmark model performance 145

consistently, we take care to ensure that the ques- 146

tions in FACT-BENCH are answerable using con- 147

tent likely available in the models’ pretraining 148

data. While the exact pretraining corpora of some 149

large language models (LLMs) are not publicly 150

disclosed, it is reasonable to assume that all in- 151

clude Wikipedia. We select only those knowledge 152

triplets whose object entities also appear on the 153

same Wikipedia page 4 as the subject. 154

Since LLMs may be trained on different versions 155

of Wikipedia, and factual content can change over 156

time, we further mitigate this issue by manually 157

selecting 134 properties that are highly stable and 158

unlikely to vary across Wikipedia versions. 159

Diversity. We diversify FACT-BENCH from 160

five aspects: (1) Multi-domain. We leverage the 161

knowledge domain categories from Freebase (Bol- 162

lacker et al., 2008) and select triplets whose subject 163

has a Wikipedia article page, as well as a Free- 164

base ID. We manually aggregate the 99 top-level 165

domains from Freebase into 20 general domains, 166

such as finance, travel, and literature. (2) Multi- 167

answer-type. Unlike previous work, we not only 168

include questions with textual answers, but also 169

dates and numbers. (3) Multi-property-type. We 170

manually select a total of 134 diverse properties, 171

which is much more comprehensive than previ- 172

ous benchmarks. The full list of property types 173

by answer type can be found in Appendix D. (4) 174

Multi-knowledge-popularity. Following previous 175

work (Mallen et al., 2023), we use the view count 176

of subject Wikipedia article from the whole year of 177

3We use the dump from https://dumps.wikimedia.
org/wikidatawiki/20230601/.

4We use the 20220301.en subset from the Hug-
ging Face datasets library: https://huggingface.co/
datasets/wikipedia.
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2021 to approximate the popularity of knowledge178

and sample triplets from the top-25% and bottom-179

25% most popular triplets sets within each domain.180

(5) Diverse questions. Previous benchmarks typ-181

ically use templates to construct questions from182

triplets, whereas we leverage a LLM to generate183

syntactically rich questions.184

Specificity. A challenging issue for the open-185

domain QA task is that multiple plausible answers186

may exist for certain questions. We tackle this chal-187

lenge from two levels. First, select proper triplets.188

For example, the triplet [Örjan Sandred, student of,189

Sven-David Sandström] may not be a good triplet190

since there could be multiple teachers for everyone,191

whereas the triplet [Jacob Viner, doctoral advisor,192

F. W. Taussig] is more restricted. We manually se-193

lect property types that are highly likely to yield194

unique answers. Second, ask specific questions.195

Given a proper triplet, there could be multiple ways196

to ask questions. For example, given [Dan Wick-197

line, place of birth, “Norwalk, California”], the198

question “where was Dan Wickline born?” has199

multiple valid answers such as Norwalk, and Cal-200

ifornia, even though the place of birth is unique201

for everyone. The question “What city and state202

was Dan Wickline born in?” is more specific. We203

test multiple prompts for question generation and204

select one that works best for us (prompt shown in205

Table 6). Additionally, we filter out triplets whose206

subjects contain “()” in their Wikipedia titles as207

“()” is used for disambiguation5. We also remove208

triplets that share the same subject and property.209

Lastly, for specific numerical answers, we check210

the number together with the unit. For example,211

for length, we check for 500 kilometers or 500 km212

instead of just 500, and for temperature, we check213

for 98 °C instead of just 98.214

2.2 Dataset Statistics and Evaluation Metrics215

We select 90 properties with textual answers, 22216

properties with date answers, and 22 properties217

with numerical answers. We randomly sample218

1000 triplets from each of the 20 domains, where219

500 are from the top-25% most popular triplets,220

and 500 from the bottom-25%. The resulting 20k221

QA pairs are split into training and evaluation set,222

with a size of 5K and 15K, respectively. The 5K223

training set is released to facilitate exemplar sam-224

pling for ICL and small-scale finetuning. We keep225

5https://en.wikipedia.org/wiki/Wikipedia:
Article_titles#Disambiguation

the distribution consistent for any subset, i.e., there 226

is an equal number of examples from each domain, 227

out of which half comes from the top-25% and the 228

other half from the bottom-25%. 229

For evaluation, we use standard metrics for QA 230

tasks, such as SQuAD (Rajpurkar et al., 2016): Ex- 231

act Match (EM) and F1 score. For answers that 232

are entities, we collect their aliases from Wikidata 233

as additional ground-truth answers. Dates are nor- 234

malized in the format of month, day, year. In zero- 235

shot experiments, we observe models that have 236

not been instruction-tuned tend to generate verbose 237

answers, which leads to low EM and F1 scores. 238

Therefore, we use an additional metric LLM-as-a- 239

Judge 6 (LaaJ) (Zheng et al., 2023) with a grading 240

prompt as shown in Table 12. 241

2.3 Dataset Validation 242

We provide a solid estimation of the upper-bound 243

through a collaboration of human and LLM val- 244

idation to validate that FACT-BENCH is of high 245

quality from the triplet sampling and question gen- 246

eration efforts. 247

Concretely, we sample a 2k subset from the 15k 248

evaluation set while keeping the distribution of 249

questions consistent, and manually check the valid- 250

ity and specificity of the questions by examining 251

supporting evidence from Wikipedia articles. We 252

identify 201 questions from the 2k subset that are 253

either ambiguous or not supported by Wikipedia, 254

and replace them with valid ones. 255

In addition, we construct a reading comprehen- 256

sion task in which GPT-4 answers each question 257

using only the corresponding Wikipedia evidence. 258

GPT-4 achieves an accuracy of 92.55% LaaJ score 259

on this task. Details are shown in Appendix A.1. 260

Together, these results suggest that the upper-bound 261

is 90% for the 15k set and 100% for the curated 2k 262

subset, which we denote as PREMIUM2K. 263

3 Benchmarking LLMs 264

3.1 Experimental Setup 265

We consider LLMs with different architectures, 266

sizes, pretraining-only/instruction-tuning, and con- 267

duct zero-shot and few-shot ICL experiments. 268

We benchmark GPT-4o, GPT-4o-mini7, Llama- 269

3.1/Llama-3.1-Instruct (8B, 70B) (Grattafiori et al., 270

2024), Gemma-2/Gemma-2-it (9B, 27B) (Team 271

et al., 2024), Yi-1.5/Yi-1.5-Chat (6B, 9B, 34B) 272

6We use claude-3-sonnet-20240229 to avoid grader bias.
7We access the APIs of OpenAI models gpt-4o/gpt-4o-

mini from the week of January 6th to that of July 10th, 2025.
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Models 0-shot 1-shot 5-shot 10-shot Recite 1-shot

EM

L
aa

J

EM

L
aa

J

EM

L
aa

J

EM

L
aa

J

EM

L
aa

J

GPT-4o 51.10 72.85 61.10 71.50 62.75 73.50 64.20 73.00 0.00 75.50
GPT-4o-mini 39.20 49.40 41.15 49.25 40.95 48.90 41.55 48.70 0.00 52.40
Llama-3.1-8B 19.75 47.30 39.95 45.45 43.35 47.50 43.15 47.60 0.00 48.75
Llama-3.1-8B-Instruct 31.45 40.60 30.50 37.80 32.45 37.95 32.50 37.65 0.00 42.90
Llama-3.1-70B 30.10 63.75 57.90 64.15 61.50 66.85 62.30 67.65 0.00 64.65
Llama-3.1-70B-Instruct 52.95 61.25 51.85 58.50 53.10 59.60 53.10 59.25 0.00 64.00
Gemma-2-9B 31.65 42.15 38.75 43.30 41.05 45.40 40.80 45.35 0.00 44.90
Gemma-2-9B-it 36.70 42.95 36.20 41.85 36.95 42.70 36.90 42.80 0.00 42.90
Gemma-2-27B 33.45 42.90 42.85 48.40 45.60 50.30 45.35 50.20 0.00 49.20
Gemma-2-27B-it 42.35 49.20 41.65 48.10 43.00 49.05 43.10 48.70 0.00 48.20
Yi-1.5-9B 30.85 35.60 33.10 36.30 33.75 36.65 33.80 36.55 0.00 33.70
Yi-1.5-9B-Chat 19.20 26.80 21.90 25.60 22.85 26.50 23.20 26.25 0.00 27.10
Yi-1.5-34B 30.05 41.75 37.90 42.00 39.00 42.75 39.00 42.65 0.00 40.35
Yi-1.5-34B-Chat 16.75 40.65 28.15 38.75 24.95 38.85 27.25 38.90 0.00 40.60
Qwen-2.5-7B 28.50 34.00 30.45 34.60 31.30 35.20 31.80 35.55 0.00 36.65
Qwen-2.5-7B-Instruct 27.00 31.55 26.65 31.05 27.25 30.85 26.60 30.35 0.00 33.25
Qwen-2.5-32B 15.55 43.35 38.10 43.35 37.15 42.30 38.40 43.15 0.00 42.40
Qwen-2.5-32B-Instruct 33.60 38.80 34.25 38.90 33.95 38.80 34.35 38.65 0.00 41.50
Qwen-2.5-72B 41.50 48.50 44.50 49.80 43.00 49.30 45.10 49.70 0.00 50.20
Qwen-2.5-72BInstruct 40.30 46.05 41.75 46.95 42.30 47.05 42.55 47.20 0.00 49.10
Deepseek-V2-Lite 23.85 38.95 35.60 40.05 37.65 41.25 37.70 41.40 0.00 40.95
Deepseek-V2-Lite-Chat 23.65 37.85 28.50 34.45 29.50 36.85 31.00 37.35 0.00 37.50
Deepseek-V2 34.80 58.85 52.75 60.35 58.40 63.80 58.70 64.05 0.00 61.60
Deepseek-V2-Chat 10.05 59.65 0.95 59.20 15.65 61.50 41.10 62.15 0.00 61.55

Table 1: Benchmarking results on PREMIUM2K. Comparing instruction-tuned and their pretraining-only counterpart
pairs shown in the same color, instruction-tuned models consistently underperform.
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Figure 1: 10-shot EM by knowledge popularity. Knowledge popularity is a strong predictor of knowledge recall.
LLMs struggle with long-tail entities (Bottom-25%) as shown by the large gap with popular entities (Top-25%).

(AI et al., 2025), Qwen2.5/Qwen2.5-Instruct (7B,273

32B, 72B) (Qwen et al., 2025), and Deepseek-V2-274

Lite/Deepseek-V2 (DeepSeek-AI et al., 2024). For275

all LLMs, we use the same prompts shown in Ta-276

ble 8 and 9. The exemplars in the few-shot experi-277

ments are shared across models and are randomly278

sampled from the training set, considering cover-279

age for all 3 answer types (entities, dates and num-280

bers). All our experiments are conducted on the281

PREMIUM2K subset to reduce the cost of running282

LLMs with temperature setting up to 0.283

3.2 Results284

Benchmarking results are presented in Table 18.285

8Full results including F1 scores can be found in Ap-
pendix C.3.

Large gap with upper-bound. GPT-4o out- 286

performs the other models. However, its perfor- 287

mance of 64.20% EM and 73% LaaJ accuracy in 288

the 10-shot setting still represent a large gap with 289

the upper-bound, which shows the challenge of 290

mastering factuality, as well as the potential risks 291

of using LLMs in certain tasks. 292

Positive effect of model scaling. We observe 293

positive effects of model scaling. For all fami- 294

lies (i.e., GPT, Llama, Gemma, Yi, Qwen and 295

Deepseek), larger model sizes translate to bet- 296

ter performances across settings. Closed-source 297

GPT models significantly outperform other open- 298

source models except for Llama-3.1-70B, which 299

has smaller gap with GPT-4o in the 10-shot setting. 300

Negative impact of instruction-tuning. Com- 301

4
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Figure 2: 10-shot EM by property type. LLMs do well on certain property types, such as country-related properties,
while struggle on other property types, such as date-related properties. Due to space, we show results for GPT and
LLaMA models, and the most common property types from the full set of 134 property types.
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Figure 3: 10-shot EM by domain. Compared to knowledge popularity and property type, domain is less predictive
of knowledge recall as model performances across different domains are more flat.
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Figure 4: 10-shot EM by answer type. LLMs are less
capable on date and numerical knowledge.

paring models in their pretraining-only form and302

their instruction-tuned counterparts in the few-shot303

setting, all instruction-tuned models display infe-304

rior performance for all metrics. In the zero-shot305

setting, pretraining-only models tend to generate306

verbose answers, leading to low EM scores. This307

empirically verifies the hypothesis that most LLM308

knowledge is learned during pretraining, and align-309

ment only helps with output style and format. We310

hypothesize that the alignment tax (Ouyang et al.,311

2022) from instruction-tuning leads to the perfor-312

mance drop. Overall, the best performance for each313

model family is achieved by few-shot ICL with the314

pretraining-only version of the model. One way315

to mitigate such tax is to have the model recite316

relevant knowledge before giving the answer. Com-317

pared to simple 1-shot, recite 1-shot greatly reduce 318

the performance gap for instruction-tuning models. 319

Table 10 shows the recite 1-shot prompt. 320

Diminishing returns from adding more exem- 321

plars. Going from zero-shot to 1-shot, all open- 322

source models benefit learning from the answer for- 323

mat of the in-context exemplar, which is reflected 324

in their improved EM scores. This is especially 325

the case for pretraining-only models. By the LaaJ 326

metric, the results are mixed. As k increases from 0 327

to 10, most models don’t show significant changes. 328

3.3 Fine-grained Evaluation 329

To gain a better understanding of where the gap 330

with the upper-bound lies, we examine model per- 331

formances from multiple perspectives. 332

Knowledge popularity and property type are 333

predictive of knowledge recall. Figure 1 shows 334

10-shot performance by knowledge popularity and 335

Figure 2 by property type. We observe that knowl- 336

edge popularity and property type are strong pre- 337

dictors of knowledge recall. LLMs struggle with 338

long-tail entities (Bottom-25%) as shown by the 339

large gap with popular entities (Top-25%). This 340

result suggests that knowledge distribution of the 341

pretraining data (if known to the model user) can 342

potentially be leveraged as a predictor for factual 343

knowledge recall. LLMs do well on certain prop- 344

5



erty types, such as country-related properties, while345

struggle on other property types, such as date-346

related properties. Further results by answer type347

(Figure 4) show that LLMs are less capable on date348

and numerical knowledge.349

Domain is less predictive of knowledge recall.350

On the other hand, domain is not a strong predictor351

of model performance as shown in Figure 3, where352

model performances across different domains are353

more flat compared to knowledge popularity levels354

and property types.355

4 The Role of In-context Exemplars356

Previous work (Min et al., 2022) suggests that357

ground-truth labels play an insignificant role for358

ICL, such that replacing ground-truth labels with359

random labels on classification and multi-choice360

tasks only results in marginal loss of accuracy.361

Compared to classification and multi-choice tasks,362

the label space of our task is much larger. We de-363

sign a set of experiments to investigate how coun-364

terfactual in-context exemplars affect a model’s365

ability to recall factual knowledge.366

4.1 Counterfactual ICL367

Experimental setup. In this set of experiments,368

we replace the ground-truth answers of our regu-369

lar 10-shot exemplars with random answers cho-370

sen from the 5k training set. We impose an addi-371

tional constraint that the random answer is chosen372

within the same property type, denoted as shuffle.373

For example, we change the ground-truth answer374

for “In which military branch did Henry Curtis375

serve?” from “Royal Navy” to the counterfactual376

answer “United States Marine Corps”. Without377

prior knowledge required to answer the question,378

the new input-label pair looks reasonable but is379

actually not factual.380

Results. Figure 5 shows the results. Notably,381

LLAMA-3.1-70B experiences a major drop from382

62.3% EM (regular 10-shot) to 32.65%, followed383

by Gemma-2-27B from 45.35% to 16.70%, Qwen-384

2.5-72B from 48.9% to 43.2%, and Deepseek-V2385

from 58.7% to 36.65%. These models have an386

average 25.6% drop, whereas most smaller mod-387

els from each family (LLAMA-3.1-8B, Qwen-2.5-388

7B, Deepseek-V2-Lite) have a much smaller drop.389

In addition, we observe that all instruction-tuned390

models are less affected by counterfactual exem-391

plars, indicating that they are less capable than their392

pretraining-only counterparts at overriding seman-393

tic priors.394

4.2 Counterfactual ICL with known and 395

unknown Knowledge 396

Results in the previous section show that counter- 397

factual exemplars lead to significant degradation of 398

factual knowledge recall for pretraining-only mod- 399

els. However, it is not clear what factors lead to 400

this behavior besides model scale and instruction 401

tuning. We further decouple known and unknown 402

knowledge of the exemplars to study their role. In- 403

tuitively, if the model have no knowledge regarding 404

the exemplars, it should make no difference to the 405

model whether the answers are shuffled or not. 406

Experimental setup. We conducted controlled 407

experiments with the largest model from each fam- 408

ily. To approximate model known and unknown 409

knowledge, we sample k = 30 questions that are 410

correctly answered by each model as known knowl- 411

edge, and k = 30 incorrectly answered as unknown 412

knowledge. We corrupt the exemplars with the 413

same shuffling method as the previous experiment. 414

Contradicting LLMs’ known knowledge 415

teaches them to lie. Results are shown in Figure 6. 416

Comparing known-shuffle with unknown-shuffle 417

in the 10-shot setting, the performance drops sig- 418

nificantly for all pretraining-only models (Llama- 419

3.1-70B from 61.95% to 34.30%, Gemma-2-27B 420

from 46.10% to 11.60%, Yi-1.5-34B from 40.45% 421

to 19.25%, Qwen-2.5-72B 46.8% to 13.4% and 422

Deepseek-V2 from 58.25% to 19.3%) with known- 423

shuffle while the drop with unknown-shuffle is 424

much less significant with an average 1.49%. 425

As we increase k, the gap between known- and 426

unknown-shuffle becomes increasingly deep. The 427

average drop for these five models is 31.14% for 428

10-shot, 40.39% for 20-shot and 41.77% for 30- 429

shot. Although instruction-tuned counterparts for 430

these models show robustness against counterfac- 431

tual exemplars as shown in Figure 5 (an average 432

of 0.73% drop), known-shuffle exemplars still sig- 433

nificant impact the factual knowledge recall perfor- 434

mance, with an average drop of 2.5% for 10-shot, 435

5.58% for 20-shot, and 9.01% for 30-shot. 436

The results suggest that the degradation in fac- 437

tual knowledge recall is primarily due to exem- 438

plars that contradict models’ known knowledge, 439

i.e., counterfactual ICL with known knowledge is 440

essentially teaching LLMs to lie, leading to unex- 441

pected results. Additionally, the number of counter- 442

factual exemplars also plays a prominent role. As 443

k increases, models experience sharper drops. In 444

practical applications, it is therefore important to 445
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Figure 6: Counterfactual few-shot with known and unknown knowledge, evaluated by Exact Match. Result shows
that the degradation in factual knowledge recall is primarily due to exemplars that contradict models’ known
knowledge, and the number of such exemplars.

pair in-context exemplars with the correct answers446

if known to the model, in order to maximally elicit447

their parametric knowledge. Finally, we observe448

comparable performances for known-unshuffle and449

unknown-unshuffle across different models.450

5 Fine-tuning451

In this section, we examine how fine-tuning affects452

a model’s ability to recall factual knowledge and453

use Llama-3.1-8B to conduct experiments.454

5.1 Regular Fine-tuning455

Experimental setup. We fine-tune Llama-3.1-8B456

on the 5k training set and sample 4k additional457

examples using the same procedure described in458

Section 2 as the validation set. We train for 40459

steps where training stabilizes based on validation460

loss and report results on the PREMIUM2K subset.461

For model input and output, we use the same input-462

label format as in the prompting experiments (i.e.,463

input consists of an instruction and a question, and464

output is the answer to the question).465

Results. In the zero-shot setting, we compare466

models using the LaaJ metric instead of EM since 467

the predictions of pretraining-only Llama are ver- 468

bose. Table 2 shows that our fine-tuning Llama-3.1- 469

8B does not bring extra gains over the pretraining- 470

only Llama. Results of this experiment further 471

verify the hypothesis that a model’s knowledge is 472

mostly learned from pretraining, and instruction- 473

tuning only helps align the answer format. 474

Models zero-shot
EM F1 LaaJ

Llama-3.1-8B 19.75 33.98 47.30
Llama-3.1-8B-Instruct 31.45 39.29 40.60
Llama-3.1-8B (fine-tuned) 42.50 49.21 47.05

Table 2: Comparison of Llama-3.1-8B, Llama-3.1-8B-
Instruct and our fine-tuned Llama-3.1-8B.

5.2 Counterfactual Fine-tuning 475

Experimental setup. In the counterfactual ICL 476

experiments (Section 4), our experiment results in- 477

dicate that Llama-3.1-8B is negatively impacted by 478

counterfactual exemplars. We set up similar exper- 479

iments in the fine-tuning setting, where we corrupt 480

7



the training data with inner-property-shuffle.481

Results. Table 3 shows the results. Factuality of482

in-context exemplars plays a critical role for fine-483

tuning. The model can recover part of its capability484

as training goes on. However, its performance is485

still significantly worse than that from regular fine-486

tuning (32.65% EM vs 42.50%).487

Setup for fine-tuning zero-shot
EM F1 LaaJ

Regular fine-tuning 42.50 49.21 47.05
Counterfactual fine-tuning 32.65 37.01 37.40

Table 3: Fine-tuning Llama-3.1-8B with counterfactual
knowledge.

5.3 Fine-tuning with known, unknown and488

mixed Knowledge489

Experimental setup. We fine-tune Llama-3.1-8B490

with three types of factual knowledge separately:491

(1) known. (2) unknown. (3) mixed. To approxi-492

mate known and unknown knowledge, we use the493

same method described in Section 4.2. We use494

our evaluation set (not including PREMIUM2K) as495

the candidate pool to select training data since we496

need to distinguish between known and unknown497

knowledge, and 5k is insufficient. We then ran-498

domly choose 2.5k training examples for known499

and unknown knowledge, respectively.500

Results. Table 4 shows the results. Training with501

known knowledge outperforms training with mixed502

knowledge, and training with unknown knowledge503

leads to the worst performance. The results show504

that fine-tuning on knowledge unknown to the505

model teaches the model to hallucinate.506

Setup for fine-tuning zero-shot
EM F1 LaaJ

Known knowledge 44.40 51.51 47.90
Unknown knowledge 40.90 47.28 45.40
Mixed knowledge 42.00 49.34 46.40

Table 4: Fine-tuning Llama-3.1-8B with known, un-
known and mixed knowledge.

6 Related Work507

Factuality Benchmarks Question answering508

datasets, such as Natural Questions (Kwiatkowski509

et al., 2019), TriviaQA (Joshi et al., 2017), We-510

bQuestions (Berant et al., 2013), TruthfulQA (Lin511

et al., 2022) have been used to evaluate factuality512

of language models. LAMA (Petroni et al., 2019,513

2020) leverages 4 knowledge sources and converts514

fact triplets into cloze-style questions. More recent515

works, such as POPQA (Mallen et al., 2023) and516

KoLA (Yu et al., 2023), construct benchmarks from 517

Wikidata using templates and cover a limited set 518

of property types and domains. Head-to-Tail (Sun 519

et al., 2023) creates their benchmark from DBpe- 520

dia (Auer et al., 2007) with a focus on evaluating 521

LLM in knowledge at different popularity levels. 522

SimpleQA (Wei et al., 2024) questions are adversar- 523

ially collected against GPT-4 responses. Compared 524

to previous benchmarks, FACT-BENCH is more 525

diverse and representative, covering 134 property 526

types, 20 general domains and 3 answer types. We 527

strictly filter Wikidata triplets and generate valid 528

and specific questions whose answers are grounded 529

in Wikipedia. 530

The role of in-context exemplars Min et al. 531

(2022) studies the role of in-context exemplars and 532

shows that ground-truth labels are not required for 533

ICL. Yoo et al. (2022) revisits the findings and pro- 534

poses additional metrics to reveal the importance of 535

ground-truth labels. Wei et al. (2023) conducts sim- 536

ilar experiments and finds that overriding semantic 537

priors is an emergent ability of large models. Our 538

counterfactual ICL experiments corroborate this 539

finding, where large models suffer from significant 540

degradation of knowledge recall. We additionally 541

find that contradicting a model’s known knowl- 542

edge is the primary factor leading to this behavior, 543

along with the number of such exemplars. Pan et al. 544

(2023) separates task recognition from task learn- 545

ing in studying how ICL leverages demonstrations, 546

and find that task recognition does not drastically 547

improve with model scaling and more exemplars, 548

while task learning does. 549

7 Conclusion 550

In this paper, we introduce FACT-BENCH, a com- 551

prehensive benchmark that focuses on evaluating 552

factual knowledge of LLMs. We conduct experi- 553

ments on 24 models from six model families and 554

investigate the factors that affect their knowledge 555

recall. We find that instruction-tuning can hurt 556

knowledge recall. In studying the effects of coun- 557

terfactual in-context exemplars, we highlight the 558

role of known and unknown knowledge. We also 559

conduct fine-tuning experiments, where we high- 560

light the importance of factuality in the training 561

data. We hope that release of our benchmark will 562

be beneficial to the community and help facilitate 563

future research. 564
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8 Limitations565

In this work, we strive to benchmark and analyze as566

many popular LLMs as resource allows. However,567

due to the fast pace at which models are released568

and limited resource, we pick representative and569

available models at the time of our experimenta-570

tion. Additionally, distinguishing between model571

known knowledge and unknown knowledge is an572

ongoing research topic and in Section 4.2 and 5,573

we check if the model can answer the question cor-574

rectly as a proxy for model known and unknown575

knowledge. Finally, our work specifically targets576

the evaluation of simple factual knowledge, delib-577

erately excluding reasoning. We view factual recall578

as a foundational capability that underpins more579

complex forms of question answering. Evaluat-580

ing how LLMs leverage this factual knowledge in581

reasoning-intensive tasks is an important and com-582

plementary direction, which we leave for future583

work.584
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A Benchmark Construction1080

A.1 Benchmark Validation1081

For benchmark validation, we have one person and1082

use GPT-4 to perform the same reading comprehen-1083

sion task given supporting evidence derived from1084

Wikipedia. The prompt is shown in Table 7.1085

To derive the supporting evidence from the1086

Wikipedia, we first extract the corresponding1087

Wikipedia page of the subject. We find the index of1088

the first occurrence of the ground-truth answer, and1089

take 300 preceding and 300 following characters.1090

Of note, this context is not 100% accurate as the1091

ground-truth answer could appear multiple times1092

and the first occurrence may not be the actual loca-1093

tion providing the answer, especially for numerical1094

answers. Therefore, this performance can be seen1095

as the lower-bound of the upper-bound.1096

For human validation, we identify 201 questions1097

from the 2k subset that are either ambiguous or1098

not supported by Wikipedia. GPT-4 achieves an 1099

accuracy of 92.55% LaaJ score on this task. Both 1100

approaches echo with each other and show that 1101

FACT-BENCH is of high quality. 1102

A.2 Comparison with Existing Benchmark 1103

We compare FACT-BENCH with several widely 1104

recognized benchmarks, including TriviaQA (Joshi 1105

et al., 2017), Natural Questions (Kwiatkowski et al., 1106

2019), TruthfulQA (Lin et al., 2022), and Pinocchio 1107

(Hu et al., 2024), as shown in Table 5. A defining 1108

characteristic of FACT-BENCH is its explicit focus 1109

on disentangling knowledge recall from reasoning. 1110

Unlike other benchmarks that often conflate these 1111

two abilities, FACT-BENCH is designed to assess 1112

factual recall in isolation, without requiring com- 1113

plex reasoning. Furthermore, FACT-BENCH aims 1114

to be both time-agnostic and model-invariant: it 1115

supports fair and consistent evaluation across cur- 1116

rent and future language models, independent of 1117

their architecture or release date, as the construc- 1118

tion of FACT-BENCH only consider facts that are 1119

unlikely to change over time. 1120

B Task Instructions 1121

Table 6, 7, 8, 9, 10, 11, 12 show the prompts 1122

of question generation, reading comprehension 1123

for question validation, zero-shot, 10-shot, 1-shot 1124

recitation, counterfactual 10-shot for question an- 1125

swering, and LLM-as-a-Judge for grading, respec- 1126

tively. 1127

C Experimental Settings 1128

C.1 Zero-Shot and Few-Shot ICL 1129

Experiments 1130

For open models, we use Python version 3.10, 1131

Torch version 2.0.0, and the Hugging Face Trans- 1132

formers library (Wolf et al., 2020) with version 1133

4.31.0. We use greedy decoding for reproducibility. 1134

Batch size is set to 4 and sequences are left-padded 1135

with [PAD] token set to [EOS] token if it’s not al- 1136

ready set. All our experiments were conducted on 1137

A100 GPUs with 40GB of RAM. 1138

C.2 Fine-tuning Experiments 1139

For fine-tuning Llama-3.1-8B, we use the AdamW 1140

optimizer with a learning rate of 0.0001 and a co- 1141

sine learning rate scheduler. Effective batch size is 1142

set to 512 and sequence length to 256. We train for 1143

40 steps, where we observe the training stabilizes 1144

based on validation set performance. 1145
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Dataset Construction Reasoning Feature AnswerType

TriviaQA Questions are from
trivia website

Yes Large-scale reading comprehension
dataset, which requires cross-sentence
reasoning to find answers

free-form text

Natural Language User queries submitted
to Google

Yes Find long/short answers from Wikipedia
pages for real-life user queries

free-form text

TruthfulQA Authors write questions Yes Questions that some humans would an-
swer falsely due to a false belief or mis-
conception

free-form text

Pinocchio Human rewrite claims
into questions

Yes Examine multi-facts, structured and un-
structured facts, facts that change over
time, facts in different languages

free-form text

FACT-BENCH All questions are
grounded by Wikipedia
triplets

No Simple and unambiguous facts recall
without context, doesn’t change over
time.

Wikipedia enti-
ties, dates, num-
bers

Table 5: Comparison with Existing Benchmarks.

Instruction: given a triplet in the form of (subject, property, object), generate a question about the subject.

Requirement:
1. The object must be the unique answer to the question!!
2. The question must be specific regarding the nature or category of the object so that the object is the only answer!! For
example, if the answer is a city, ask for city; If the answer is city and state, ask for city and state, and so on.
3. The question should not include the object!!
4. If the property is height or elevation above sea level, ask for meters. If the property is area, ask for square kilometers.
If the property is length or width, ask for kilometers. If the answer is temperature, ask for celsius.
5. Your response should strictly follow the format:

Question:<question> Answer: <answer>.
Triplet: triplet

Table 6: Prompt for question generation.

C.3 Full Benchmarking Results on1146

PREMIUM2K1147

Table 13 shows zero-shot, 1-shot, 6-shot, and 10-1148

shot results on PREMIUM2K for all 24 models we1149

consider.1150

D List of Properties1151

Table 14, 15, and 16 show the 134 property types1152

by answer type (date, number, and entity).1153
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Instruction: answer the following question with the context. If the context doesn’t contain the answer, use your own
knowledge to answer the question. Don’t include explanations. Keep the answer as concise as possible.
Question: {QUESTION}
Context: {CONTEXT}
Answer:

Table 7: Prompt of reading comprehension for data validation.

Instruction: answer the following question. Don’t include explanation. Keep the answer as concise as possible.
Question: {QUESTION}
Answer:

Table 8: Prompt for zero-shot.

Instruction: answer the following question. Don’t include explanation. Keep the answer as concise as possible.
Question: In which military branch did Henry Curtis serve?
Answer: Royal Navy

Question: Which Australian rules football club was Simon Madden a member of?
Answer: Essendon Football Club

Question: What architectural style is Pine Bloom Plantation?
Answer: Greek Revival architecture

Question: On what date was Ed Hooper born?
Answer: March 10, 1964

Question: Who founded Tangerine Dream?
Answer: Edgar Froese

Question: Who is the performer of ’Hollywood’s Not America’?
Answer: Ferras

Question: What company manufactured the AMC Gremlin?
Answer: American Motors Corporation

Question: In what year was the Whistler House Museum of Art officially opened?
Answer: 1908

Question: What is Ellen S. Baker’s mother’s name?
Answer: Claire Shulman

Question: How many floors above ground does Premier Tower have?
Answer: 78

Question: {QUESTION}
Answer:

Table 9: Prompt for few-shot (10-shot).
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Instruction: answer the following question. You need to recite knowledge that is relevant to the question, and end your
response with the final answer. You must return in the format of “Recitation: <recitation> Answer: <answer>”

Question: Who is the performer of ’Hollywood’s Not America’?
Recitation: “Hollywood’s Not America” is a song by American pop singer/songwriter Ferras and is featured on his
debut studio album, Aliens & Rainbows. It was released on January 29, 2008, as the lead single from that album.
Answer: Ferras

Question: {QUESTION}

Table 10: Prompt for one-shot recitation.

Instruction: answer the following question. Don’t include explanation. Keep the answer as concise as possible.
Question: In which military branch did Henry Curtis serve?
Answer: United States Marine Corps

Question: Which Australian rules football club was Simon Madden a member of?
Answer: Tennessee Volunteers football

Question: What architectural style is Pine Bloom Plantation?
Answer: Art Nouveau

Question: On what date was Ed Hooper born?
Answer: October 12, 1876

Question: Who founded Tangerine Dream?
Answer: Frank Varga

Question: Who is the performer of ’Hollywood’s Not America’?
Answer: Damien Bodie

Question: What company manufactured the AMC Gremlin?
Answer: Kalem Company

Question: In what year was the Whistler House Museum of Art officially opened?
Answer: 1832

Question: What is Ellen S. Baker’s mother’s name?
Answer: Empress Dayi

Question: How many floors above ground does Premier Tower have?
Answer: 164

Question: {QUESTION}
Answer:

Table 11: Prompt for counterfactual few-Shot (10-shot).

You are a teacher grading quiz. You will be given a question, a reference answer and a student’s response. Check
whether the student’s response is correct or not regarding the answer. Respond with Yes/No without explanation.

Question: {QUESTION}
Reference Answer: {ANSWER}
Student Response: {RESPONSE}

Table 12: Prompt for LLM-as-a-Judge.
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Models zero-shot 1-shot 5-shot 10-shot

EM F1

L
aa

J

EM F1

L
aa

J

EM F1

L
aa

J

EM F1

L
aa

J

gpt-4o 51.10 63.52 72.85 61.10 69.74 71.50 62.75 71.43 73.50 64.20 72.54 73.00
gpt-4o-mini 39.20 48.43 49.40 41.15 49.59 49.25 40.95 49.91 48.90 41.55 50.53 48.70
meta-llama/Llama-3.1-8B 19.75 33.98 47.30 39.95 46.10 45.45 43.35 50.62 47.50 43.15 50.65 47.60
meta-llama/Llama-3.1-8B-Instruct 31.45 39.29 40.60 30.50 36.18 37.80 32.45 38.77 37.95 32.50 38.60 37.65
meta-llama/Llama-3.1-70B 30.10 46.37 63.75 57.90 64.71 64.15 61.50 68.68 66.85 62.30 69.20 67.65
meta-llama/Llama-3.1-70B-Instruct 52.95 61.24 61.25 51.85 59.03 58.50 53.10 60.46 59.60 53.10 60.45 59.25
google/gemma-2-9b 31.65 38.57 42.15 38.75 45.02 43.30 41.05 48.50 45.40 40.80 48.15 45.35
google/gemma-2-9b-it 36.70 44.12 42.95 36.20 42.81 41.85 36.95 44.24 42.70 36.90 43.93 42.80
google/gemma-2-27b 33.45 40.64 42.90 42.85 49.84 48.40 45.60 53.03 50.30 45.35 52.73 50.20
google/gemma-2-27b-it 42.35 50.22 49.20 41.65 49.06 48.10 43.00 50.67 49.05 43.10 50.44 48.70
01-ai/Yi-1.5-9B 30.85 37.23 35.60 33.10 39.05 36.30 33.75 40.51 36.65 33.80 40.36 36.55
01-ai/Yi-1.5-9B-Chat 19.20 27.35 26.80 21.90 29.86 25.60 22.85 30.66 26.50 23.20 30.95 26.25
01-ai/Yi-1.5-34B 30.05 38.81 41.75 37.90 44.67 42.00 39.00 45.68 42.75 39.00 45.65 42.65
01-ai/Yi-1.5-34B-Chat 16.75 29.34 40.65 28.15 38.26 38.75 24.95 39.51 38.85 27.25 40.36 38.90
Qwen/Qwen2.5-7B 28.50 35.79 34.00 30.45 37.36 34.60 31.30 38.62 35.20 31.80 39.14 35.55
Qwen/Qwen2.5-7B-Instruct 27.00 34.60 31.55 26.65 34.02 31.05 27.25 34.90 30.85 26.60 34.22 30.35
Qwen/Qwen2.5-32B 15.55 29.32 43.35 38.10 45.56 43.35 37.15 45.57 42.30 38.40 46.28 43.15
Qwen/Qwen2.5-32B-Instruct 33.60 41.19 38.80 34.25 41.55 38.90 33.95 42.02 38.80 34.35 42.22 38.65
Qwen/Qwen2.5-72B 41.50 49.04 48.50 44.50 51.76 49.80 43.00 51.77 49.30 45.10 52.76 49.70
Qwen/Qwen2.5-72B-Instruct 40.30 48.19 46.05 41.75 49.29 46.95 42.30 49.95 47.05 42.55 50.18 47.20
deepseek-ai/DeepSeek-V2-Lite 23.85 33.47 38.95 35.60 42.32 40.05 37.65 44.72 41.25 37.70 44.59 41.40
deepseek-ai/DeepSeek-V2-Lite-Chat 23.65 32.77 37.85 28.50 35.39 34.45 29.50 38.67 36.85 31.00 39.79 37.35
deepseek-ai/DeepSeek-V2 34.80 47.49 58.85 52.75 60.38 60.35 58.40 65.31 63.80 58.70 65.47 64.05
deepseek-ai/DeepSeek-V2-Chat 10.05 43.59 59.65 0.95 45.55 59.20 15.65 51.60 61.50 41.10 59.32 62.15

Table 13: Full benchmarking results on PREMIUM2K.

• date of birth (P569)

• date of death (P570)

• inception (P571)

• time of discovery or invention
(P575)

• publication date (P577)

• first flight (P606)

• UTC date of spacecraft launch
(P619)

• UTC date of spacecraft land-
ing (P620)

• date of disappearance (P746)

• date of first performance
(P1191)

• date of official opening
(P1619)

• production date (P2754)

• date of official closure (P3999)

• recording date (P10135)

• dissolved, abolished or demol-
ished date (P576)

• start time (P580)

• end time (P582)

• service entry (P729)

• service retirement (P730)

• discontinued date (P2669)

• debut date (P10673)*

• date of incorporation
(P10786)*

Table 14: List of 22 date properties. The ones with asterisk do not appear in PREMIUM2K.
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• maximum capacity (P1083)

• atomic number (P1086)

• total produced (P1092)

• number of cylinders (P1100)

• floors above ground (P1101)

• number of platform tracks
(P1103)

• number of episodes (P1113)

• number of deaths (P1120)

• neutron number (P1148)

• minimum number of players
(P1872)

• maximum number of players
(P1873)

• number of children (P1971)

• length (P2043)

• elevation above sea level
(P2044)

• area (P2046)

• height (P2048)

• width (P2049)

• mass (P2067)

• melting point (P2101)

• chromosome count (P5230)

• number of seats in legislature
(P1410)*

• memory capacity (P2928)*

Table 15: List of 22 number properties. The ones with asterisk do not appear in PREMIUM2K.
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• member of political party
(P102)

• taxon rank (P105)

• occupation (P106)

• location of creation (P1071)

• founded by (P112)

• airline hub (P113)

• home venue (P115)

• league (P118)

• place of burial (P119)

• publisher (P123)

• owned by (P127)

• located in the administrative
territorial entity (P131)

• participant in (P1344)

• winner (P1346)

• movement (P135)

• genre (P136)

• operator (P137)

• capital of (P1376)

• licensed to broadcast to
(P1408)

• IUCN conservation status
(P141)

• languages spoken, written or
signed (P1412)

• affiliation (P1416)

• present in work (P1441)

• architectural style (P149)

• country for sport (P1532)

• headquarters location (P159)

• transport network (P16)

• producer (P162)

• award received (P166)

• country (P17)

• creator (P170)

• parent taxon (P171)

• performer (P175)

• manufacturer (P176)

• crosses (P177)

• developer (P178)

• endemic to (P183)

• doctoral advisor (P184)

• place of birth (P19)

• collection (P195)

• place of death (P20)

• cuisine (P2012)

• basin country (P205)

• located in or next to body of
water (P206)

• father (P22)

• military branch (P241)

• mother (P25)

• record label (P264)

• country of citizenship (P27)

• production company (P272)

• location (P276)

• programmed in (P277)

• designed by (P287)

• vessel class (P289)

• continent (P30)

• operating system (P306)

• capital (P36)

• part of (P361)

• space launch vehicle (P375)

• parent astronomical body
(P397)

• mouth of the watercourse
(P403)

• position played on team / spe-
ciality (P413)

• original broadcaster (P449)

• color (P462)

• occupant (P466)

• animal breed (P4743)

• court (P4884)

• country of origin (P495)

• author (P50)

• cause of death (P509)

• school district (P5353)

• member of sports team (P54)

• director (P57)

• screenwriter (P58)

• conflict (P607)

• discoverer or inventor (P61)

• highest point (P610)

• sport (P641)

• drafted by (P647)

• educated at (P69)

• diocese (P708)

• location of formation (P740)

• parent organization (P749)

• distributed by (P750)

• historic county (P7959)

• country of registry (P8047)

• architect (P84)

• composer (P86)

• filming location (P915)

• allegiance (P945)

Table 16: List of 90 entity properties.
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