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Abstract

In recent years, large language models (LLMs)001
have driven advances in natural language pro-002
cessing. Still, their growing scale has increased003
the computational burden, necessitating a bal-004
ance between efficiency and performance. Low-005
rank compression, a promising technique, re-006
duces non-essential parameters by decompos-007
ing weight matrices into products of two low-008
rank matrices. Yet, its application in LLMs009
has not been extensively studied. The key to010
low-rank compression lies in low-rank factor-011
ization and low-rank dimensions allocation. To012
address the challenges of low-rank compres-013
sion in LLMs, we conduct empirical research014
on the low-rank characteristics of large models.015
We propose a low-rank compression method016
suitable for LLMs. This approach involves pre-017
cise estimation of feature distributions through018
pooled covariance matrices and a Bayesian op-019
timization strategy for allocating low-rank di-020
mensions. Experiments on the LLaMA-2 mod-021
els demonstrate that our method outperforms022
existing strong structured pruning and low-rank023
compression techniques in maintaining model024
performance at the same compression ratio.1025

1 Introduction026

In recent years, the emergence and application of027

large language models (LLMs) have served as a028

powerful stimulant for natural language process-029

ing and artificial intelligence (OpenAI, 2022, 2023;030

Bubeck et al., 2023; Yang et al., 2023). Adhering031

to the scaling law (Kaplan et al., 2020; Hoffmann032

et al., 2022), researchers are continually seeking033

LLMs with more parameters and training data, aim-034

ing to achieve general models closer to human capa-035

bilities. However, larger language models imply a036

larger overhead of computing resources. Therefore,037

when deploying LLMs, it is necessary to strike a038

balance between efficiency and performance (Wan039

1The implementation code and model checkpoints are
available at https://github.com/anonymous.

et al., 2024). To achieve efficient LLMs, many 040

compression techniques for LLMs are proposed, 041

such as pruning (Frantar and Alistarh, 2023a; Sun 042

et al., 2024; Ma et al., 2023), quantization (Frantar 043

et al., 2023; Lin et al., 2023; Liu et al., 2023) and 044

knowledge distillation (Gu et al., 2024). 045

Among these methods, unstructured pruning and 046

quantization can reduce the number of parameters 047

or memory requirements by half or even more with- 048

out significant performance degradation, but they 049

require specialized GPU kernels to fully realize 050

their acceleration potential. In contrast, structured 051

pruning can produce lightweight models that do not 052

rely on specialized hardware. Despite extensive 053

research, the performance of structured pruning 054

still lags significantly behind that of the original 055

model. Low-rank compression (LRC) (Ben Noach 056

and Goldberg, 2020; Li et al., 2023) is another 057

promising compression technique. It decomposes 058

the weight matrix into the product of two dense 059

low-rank matrices, discarding unimportant parame- 060

ter information during the decomposition process. 061

However, LRC remains under-explored in LLMs. 062

The keys to LRC are low-rank decomposition 063

methods and low-rank dimension allocation. Exist- 064

ing decomposition methods can generally be cate- 065

gorized into two types: weight-based and feature- 066

based decomposition. The former minimizes the 067

reconstruction error of weight matrices by apply- 068

ing truncated SVD or weighted SVD (Ben Noach 069

and Goldberg, 2020; Hsu et al., 2022; Hua et al., 070

2022). However, recent research (Chen et al., 2021; 071

Yu and Wu, 2023) has discovered that the weights 072

of most Transformer-based language models are 073

typical of high rank or even close to full rank; thus, 074

direct decomposition might result in significant 075

error. In contrast, the model’s features usually ex- 076

hibit low-rank characteristics. Thus, more work 077

focuses on the feature-based decomposition (Chen 078

et al., 2021; Yu and Wu, 2023; Kaushal et al., 2023), 079

which aims to minimize the reconstruction error 080
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of features. On the other hand, allocating suitable081

low-rank dimensions to different weight matrices082

according to the target compression ratio can also083

reduce the downside on the model’s overall perfor-084

mance since they exhibit varying sensitivities to085

low-rank compression.086

When LRC is applied to LLMs, it encounters087

more new challenges. First, it is challenging for088

LLMs to maintain their generality while achiev-089

ing feature-based low-rank compression. This is090

because the feature space of LLMs is extremely091

high dimensional, making the feature distribution092

more complex, and the presence of outlier features093

may interfere with the accurate distribution estima-094

tion. Thus, we utilize the pooled covariance matrix095

instead of the sample covariance matrix, which096

enables a more accurate estimation of feature distri-097

butions (Raninen et al., 2022). Then, for low-rank098

dimension allocation, manual design struggles to099

achieve optimal results, and due to its vast search100

space, grid search requires a considerable amount101

of time. We conduct empirical studies on the low-102

rank sensitivity of different types of parameters and103

observe significant variations among them. Based104

on these findings, we categorize the parameters into105

groups, allowing each group to share the same low-106

rank dimensions. This approach effectively nar-107

rows down the search space, and furthermore, we108

utilize sample-efficient Bayesian optimization to109

determine the optimal low-rank allocation. To eval-110

uate the effectiveness of our proposed LRC method,111

we conduct experiments on two commonly used112

LLaMA-2 models (Touvron et al., 2023). Experi-113

mental results demonstrate our proposed method114

can perform better than existing strong structured115

pruning and LRC methods in LLMs. When com-116

bined with efficient post-training, our method ob-117

tains the latest state-of-art for the same settings,118

maintaining 98% of the model’s performance at the119

20% compression rate.120

Overall, our main contributions include:121

• We analyze the challenges that LLMs face in low-122

rank compression and demonstrate that LLMs123

represented by LLaMA exhibit vastly different124

sensitivities to low-rank compression across vari-125

ous parameters through empirical research.126

• We propose a novel Bayesian optimization-based127

feature low-rank compression (Bolaco).128

• Extensive experiments show that our Bolaco out-129

performs the existing strong structured pruning130

and LRC methods in LLMs.131

2 Preliminary 132

In this section, we summarily introduce the foun- 133

dation of low-rank factorization in model compres- 134

sion, and then empirically show that different lay- 135

ers of the Transformers-based generative large lan- 136

guage model have different low-rank sensitivities. 137

2.1 Weight-based and Feature-based 138

Low-rank Decomposition 139

The low-rank decomposition reduces the number 140

of parameters by decomposing the linear layer 141

weights into two low-rank matrices. Weight- 142

based factorization is one naive method. For 143

a linear layer W ∈ Rd2×d1 , according to the 144

Eckart–Young–Mirsky theorem, the trunced sin- 145

gular value decomposition (SVD) provides the op- 146

timal solution: W = UΣV T ,A = V T
r ,B = 147

U rΣr, where A ∈ Rr×d1 ,B ∈ Rd2×r, Σr is the 148

top-r largest singular values, U r and V r are the 149

corresponding singular vectors. If r < d1d2/(d1 + 150

d2), the factorization can reduce the total parameter 151

amount. However, in the vast majority of cases, the 152

weights of PLMs have a high rank, and a direct trun- 153

cated SVD decomposition on the weights would 154

lead to significant reconstruction errors (Chen et al., 155

2021). In comparison, the representation space of 156

PLMs exhibits a clear low-rank property (Yu and 157

Wu, 2023). Therefore, another line of work has 158

considered feature-based factorization: 159

min
B,A

||WX −BAX||F

s.t. rank(BA) = r.
(1) 160

For the linear layer Y = WX , Chen et al. (2021) 161

obtain the optimal solution to Eq. 1 by simultane- 162

ously performing the SVD decomposition of the 163

weight and features. Yu and Wu (2023) propose a 164

more efficient Atomic Feature Mimicking (AFM) 165

method, which utilizes the PCA decomposition to 166

find the projection matrices: 167

Cov(Y ) = UΣUT

Y − E[Y ] = U rU
T
r (WX − E[Y ]),

(2) 168

where Cov(Y ) ∈ Rd2×n, E[Y ] ∈ Rd2 is the co- 169

variance and mean of features. Thus, the original 170

linear layer can be replaced by B = U r ∈ Rd2×r, 171

A = UT
r W ∈ Rr×d1 and the bias compensation 172

b = (I−U rU
T
r )E[Y ]. We have observed that the 173

current mainstream LLMs also exhibit character- 174

istics of high-rank weights and low-rank features. 175

Therefore, in this paper, we focus on the feature- 176

based low-rank factorization. 177
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Figure 1: Sensitivity of different types of layers to low-rank compression. Each curve represents the compression of
only that parameter type, with the horizontal axis indicating the compression ratio for that specific parameter type.

2.2 Different Layers Exhibit Varying Degrees178

of Low-rank Sensitivity179

Another challenge in LRC is allocating vary-180

ing low-rank compression rates to different lay-181

ers. Previous works have empirically or theoret-182

ically demonstrated that different components of183

Transformer-based masked language models and184

visual models exhibit distinct low-rank properties,185

such as the features of the self-attention modules186

having a lower rank compared to those of the feed-187

forward modules (Dong et al., 2023; Anagnostidis188

et al., 2022). These findings provide prior guidance189

for low-rank compression. However, detailed stud-190

ies on current mainstream LLMs are still lacking.191

Therefore, we take the LLaMA-v2-7b as an exam-192

ple to study the low-rank sensitivity within each193

layer across different types of layers and the same194

type of layers. Llama-family LLMs have seven dis-195

tinct parameter categories: attn_q, attn_k, attn_v,196

attn_o, mlp_up, mlp_down, and mlp_gate. We eval-197

uate the perplexity changes on Wikitext-2 (Merity198

et al., 2016) for each category under varying low-199

rank compression ratios. As Figure 1 shows, at200

the same low-rank compression rate, distinct lay-201

ers exhibit notable performance variations. For202

attn_q and attn_k, they demonstrate robustness to203

low-rank compression, with an increase in perplex-204

ity not exceeding 2% even at a compression rate205

of 60%. In contrast, attn_v, with an equivalent206

parameter count, exhibits high sensitivity, leading207

to a significant surge in perplexity with compres-208

sion rates even below 5%. Therefore, assigning the209

same low-rank compression rate to different types210

of layers during low-rank compression of LLM is a211

sub-optimal solution. In addition to the differences,212

we also observe certain similarities, e.g., attn_q and213

attn_k have similar low-rank sensitivities. More214

empirical study results are shown in Appendix A. 215

3 Methodology 216

3.1 Feature-Based Low-Rank Decomposition 217

in High-Dimensional Spaces 218

An efficient feature-based low-rank decomposition 219

method performs PCA on features to identify the 220

optimal low-rank matrices. To achieve general 221

task-agnostic compression, we follow the setup of 222

prior work (Frantar and Alistarh, 2023b; Sun et al., 223

2023; Ma et al., 2023), utilizing a subset of the pre- 224

training data as calibration data Dcal = {xi}ni=1. 225

As described in Eq.2, we first estimate the covari- 226

ance matrix of the entire feature space distribution 227

Y with the sample covariance matrix (SCM) of the 228

calibration data features: 229

CovS(Y ) =
1

n− 1

n∑
i=1

(yi − ȳ)T (yi − ȳ), (3) 230

where yi represents the feature of xi, ȳ refers to 231

the mean of all calibration data features. How- 232

ever, LLMs typically have high-dimensional fea- 233

ture spaces (e.g., the intermediate size of LLaMA- 234

v2-7b has exceeded 10,000 dimensions). Precisely 235

estimating the covariance matrix in such high- 236

dimensional spaces has always been a statistical 237

challenge, as the SCM does not effectively esti- 238

mate the covariance of high-dimensional distribu- 239

tions. For instance, calibration data sampled from 240

pre-training datasets may introduce outlier features 241

due to low-quality text or inadequate sampling. In 242

high-dimensional spaces, these outlier features are 243

difficult to identify due to the “curse of dimension- 244

ality”, and their impact is further exacerbated in 245

estimating high-dimensional covariance matrices 246

due to the sparsity of data points. Thus, to estimate 247
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the covariance of the feature space more robustly248

and accurately, we propose using the pooled co-249

variance matrix (PCM) in place of the SCM. We250

split the calibration data into m groups. For each251

group, we can calculate the SCM CovS(Yk), then252

the pooled covariance matrix is:253

CovP (Y ) =
1

m

m∑
k=1

CovS(Y k) (4)254

3.2 Low-Rank Allocation Based on Bayesian255

Optimization256

As investigated in Section 2.2, different types of257

layers, and even each individual layer, exhibit vary-258

ing sensitivities to low-rank compression. There-259

fore, allocating distinct compression ratios to differ-260

ent layers is crucial to achieve the desired compres-261

sion rate with minimal performance degradation.262

For a LLM f(·;θ), we compress it with the set of263

low-rank compression ratios λ = {λi}ki=1. We use264

a task-agnostic evaluation dataset D to evaluate per-265

formance of the compressed model f(·;θ,λ), such266

as the perplexity on a subset of pretraining data.267

Therefore, the optimization objective of low-rank268

allocation can be formulated as:269

min
λ∈V

H(λ) = E(x,y)∼Dh(f(x;θ,λ), y)

s.t.Σλ ≤ ρ,
(5)270

where h(·, ·) is the evaluation metric, ρ is model’s271

overall compression ratio. For LLMs, searching272

the optimal low-rank allocation is a challenging273

optimization problem. First, the impact of the274

low-rank count allocated to different layers on the275

performance of the compressed model is combi-276

natorial, and optimizing any one component in-277

dependently may lead to a locally optimal solu-278

tion. Then, due to LLMs’ vast number of param-279

eters, evaluating H(λ) is very time-consuming.280

Therefore, we leverage sample-efficient Bayesian281

optimization (BO) (Xu et al., 2022) to optimize282

Eq 5. BO estimates the objective H(λ) with a283

stochastic surrogate model and updates the pos-284

terior estimation of H(λ) based on the results of285

each search step. We utilize the Gaussian process286

N (µ(·), σ2(·)) as the surrogate model. Given the287

previous t − 1 search steps {λ1, · · · ,λt−1} and288

their evaluation Ht−1 = [H(λ1), · · · , H(λt−1)],289

the surrogate model is updated as:290

µ(λ) = k(K + η2I)−1Ht−1

σ2(λ) = k(λ,λ)− kT (K + η2I)−1k,
(6)291

where k(·, ·) is a kernel function, k = 292

(k(λ,λi))i∈[t−1], K = (k(λi,λj))i,j∈[t−1], and 293

η2I is the white kernel to model observation noise. 294

After obtaining the posterior estimation of H(λ) 295

(i.e., H(λ) ∼ N (µ(λ), σ2(λ))), BO determines 296

the next compression rate allocation state through 297

the acquisition function. Expected improvement 298

(EI) is a popular and effective acquisition function: 299

α(λ) = EH(λ)

[
max

{
0, H ′ −H(λ)

}]
λt = argmax

λ
α(λ),

(7) 300

where H ′ = mini∈[t−1]H(λi), it means the mini- 301

mal value observed so far. Then, BO chooses the 302

point with the greatest EI to explore. After ob- 303

taining the optimal ratio λ∗, we can determine the 304

allocated rank: ri = (1 − λi)d1d2/(d1 + d2). To 305

fully leverage the acceleration effect of GPU matrix 306

multiplication, we adhere to Nvidia’s user guide- 307

lines2 by rounding the low-rank dimensions to the 308

nearest multiple of eight. 309

The evaluation metric and validation data play a 310

significant role in the optimization performance 311

of BO. They must meet two criteria: cost- 312

effectiveness and accurately reflect actual changes 313

in performance. To this end, we propose a sensitive- 314

based sampling method. This method randomly 315

samples n allocation schemes, calculates the vari- 316

ance of the perplexity of each sample under dif- 317

ferent allocations, and selects the top-k samples 318

as validation data. In addition, considering the 319

smaller validation set may not comprehensively re- 320

flect the LLM’s performance, potentially leading 321

to over-fitting in the validation set. To prevent BO 322

from blindly improving the compressed model’s 323

language modeling performance on the validation 324

set, we aim to make the compressed model have a 325

prediction distribution for the next word close to 326

the original model. Hence, we employ the reverse 327

KL divergence to quantify the difference: 328

L(θ,λ) = DKL(f(x; θ)||f(x; θ, λ)). (8) 329

3.3 Post-training 330

After low-rank compression, there remains a no- 331

ticeable performance gap between the compressed 332

model and the original LLM. To further bridge this 333

gap, following Ma et al. (2023), we perform effi- 334

cient low-rank subspace post-training on the com- 335

pressed model. However, if we apply the original 336

2https://docs.nvidia.com/deeplearning/performance/dl-
performance-matrix-multiplication/index.html#gpu-imple
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Feature-based LRC Evaluation

Bayesian Optimization

Explore the optimal low-rank allocation

Figure 2: Illustration of our Bolaco. It initializes a low-rank dimension allocation and compresses the model via
feature-based low-rank compression. Then, it evaluates the compression performance and optimizes the low-rank
dimension allocation through Gaussian process-based Bayesian optimization.

LoRA (Hu et al., 2022) to the low-rank compressed337

model, the tunable low-rank parameters may not be338

in the same subspace as the low-rank compressed339

model parameters, leading to an increase of the pa-340

rameters’ rank after merging. Therefore, inspired341

by the ELoRA (Kopiczko et al., 2024), we select342

the subspace of compressed model parameters as343

fixed low-rank matrices and adjust the subspace by344

trainable vectors:345

Y = (BA+ΛbBr′ΛdAr′)X, (9)346

where Br′ ∈ Rd2×r′ and Ar′ ∈ Rr′×d1 are fixed347

subspace of B and A, Λb and Λd are diagonal348

matrices. During the post-training, we only tune349

elements on the diagonal of Λb and Λd.350

4 Experiments351

4.1 Baseline and Datasets352

We compare our method with the competitive struc-353

tured pruning and low-rank compression methods354

in LLMs: LLM-Pruner (Ma et al., 2023), FLAP355

(An et al., 2023), SliceGPT (Ashkboos et al., 2024),356

LoRD (Kaushal et al., 2023), ASVD (Yuan et al.,357

2023). We provide the detailed description of base-358

line methods in Appendix B.359

To evaluate the effectiveness of our proposed360

low-rank compression method in the task-agnostic361

setting, we conduct experiments in seven zero-shot362

common sense reasoning datasets: BoolQ (Clark363

et al., 2019), PIQA (Bisk et al., 2020), HellaSwag364

(Zellers et al., 2019), WinoGrande (Sakaguchi et al.,365

2021), ARC-easy/challenge (Clark et al., 2018) and366

OpenbookQA (Mihaylov et al., 2018). We also367

report the perplexity of the compressed model on368

the WikiText2 (Merity et al., 2016), PTB (Marcus369

et al., 1993), and C4 (Raffel et al., 2020) datasets370

to evaluate its language modeling capabilities.371

4.2 Experimental Details 372

In our main experiments, we apply our method 373

to LLaMA-v2-7b and LLaMA-v2-13b. We ran- 374

domly select 1,024 samples from the training set 375

of C4 as the calibration data. Each sample has 376

a sequence length of 4,096. To estimate the co- 377

variance matrix while saving memory usage, we 378

employ the Welford’s online algorithm (Welford, 379

1962). For the pooled covariance matrix, we parti- 380

tion the calibrated data into 32 groups. During the 381

Bayesian optimization, we utilize the Matern ker- 382

nel as the covariance function.We randomly sample 383

20 low-rank allocation schemes and select the top- 384

100 samples with greatest perplexity variance of 385

Wikipedia as the evaluation data. Each sample has 386

a sequence length of 4,096 (4k tokens). Consider- 387

ing that Bayesian optimization is not well-suited 388

for high-dimensional scenarios, we conduct experi- 389

ments with two settings based on the observations 390

in Section 2.2: (a) 5 × 1: We allow attn_q and 391

attn_k to share a low-rank dimension, and the 392

same type of parameters across different layers to 393

also share a low-rank dimension, thus BO only op- 394

timizes 5 parameters; (b) 5 × 4: Building on the 395

setup of (a), we divide the model’s layers into 4 396

groups in sequence, with no parameter sharing be- 397

tween different groups, resulting in BO needing to 398

optimize 20 parameters. Moreover, given that the 399

parameters of the FFN module are more sensitive 400

to low-rank compression than those of the attention 401

module, we set the length scale for the attention 402

and FFN parameters in the Matern kernel to 1.0 and 403

0.8, respectively, to emphasize the more significant 404

impact of FFN parameters’ rank changes on model 405

performance. We run 50 epochs BO to search the 406

optimal low-rank allocation. At the post-training 407

stage, following LLM-Pruner, we use the Alpaca 408
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Figure 3: The perplexity of WikiText2 on LLaMA 2-7b
with different compression ratios.

dataset (Taori et al., 2023) and train 2 epochs. More409

details can be found in the Appendix C.410

4.3 Main Results411

We report the perplexity of language modeling for412

various compression methods at different compres-413

sion ratios in Figure 3 and 6, and the zero-shot414

common sense reasoning results in Table 1 and415

5 (in Appendix). In terms of language modeling416

capabilities, FLAP demonstrates strong competi-417

tiveness, particularly when the compression rate418

exceeds 30%, where FLAP’s perplexity is slightly419

better than our Bolaco (5× 1). However, in the 7b420

model, Bolaco (5× 4) achieves the best language421

modeling performance at high compression rates.422

Nevertheless, in the 13b model, despite Bolaco423

(5× 4) still leading other compression techniques,424

it maintains a certain gap from FLAP. For zero-425

shot tasks, our method significantly outperforms all426

baselines without any further post-training, achiev-427

ing an average performance increase of 1.5-2%428

across seven datasets. After post-training with only429

about 1‰ parameters and 3 hours, our method430

further narrows down the performance difference431

between the compressed model and the original432

model. It retains 96%-98% of the original model’s433

performance at the 20% compression ratio, and at434

a 30% compression ratio, it maintains 91%-95% of435

the performance. Comparing the 5× 1 and 5× 4436

setting, we find that the performance difference be-437

tween the two is not significant. At the 20% com-438

pression ratio, simply allocating different low-rank439

dimensions to different types of parameters suffices440

to achieve the best current performance. However,441

at the 30% compression rate, the 5 × 4 setting442

outperforms the 5× 1, indicating that more gran-443

ular low-rank assignments contribute to enhanced444

performance in compressed models at higher com- 445

pression rates. 446

5 Analysis and Discussion 447

5.1 Impact of Calibration Data and 448

Covariance Estimation 449

Accurate estimation of feature distribution is cru- 450

cial for the feature-based low-rank decomposition, 451

which primarily depends on the number of calibra- 452

tion samples and the accuracy of the covariance 453

matrix estimation. Thus, we investigate the im- 454

pact of the two factors on LLaMA-v2-7b at the 455

20% compression ratio. In this experiment, we do 456

not account for the effects of low-rank dimensions 457

allocation, and maintain consistency with the set- 458

tings of LoRD. As results shown in Table 2, as 459

the calibration dataset size gradually increases, we 460

observe a consistent improvement in both the lan- 461

guage modeling capabilities and the performance 462

on downstream tasks of the compressed model. 463

Therefore, given sufficient data and computational 464

resources, expanding the calibration dataset is a 465

reliable method for enhancing the performance of 466

compressed models. On the other hand, comparing 467

the two covariance estimation methods, there is no 468

significant difference in their language modeling 469

capabilities. However, for downstream common 470

sense reasoning tasks, the pooled SCM achieves 471

an average improvement of 0.3 points across seven 472

datasets without any additional burden. 473

5.2 Impact of Objective Function 474

We explore the impact of the objective function in 475

the Bayesian optimization stage. We conduct exper- 476

iments on LLaMA-v2-7b and report results in Ta- 477

ble 3. Overall, incorporating the reverse KL diver- 478

gence (RKL) between the compressed model and 479

the original model’s predictive distribution into the 480

objective function can lead to a better low-rank di- 481

mensions allocation. Especially in the 5×4 setting, 482

which is more difficult to optimize for Bayesian op- 483

timization, the performance gains from RKL term 484

are even more obvious. We suppose that the RKL 485

term may serve two roles. Firstly, as a regulariza- 486

tion term, it prevents overfitting on smaller vali- 487

dation sets during BO. Although the compressed 488

model exhibits a slight increase in perplexity on 489

the language modeling dataset at the 20% compres- 490

sion rate with the 5 × 4 setting, there is a signifi- 491

cant improvement in performance on downstream 492

tasks. Secondly, incorporating the RKL term may 493
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Ratio Methods BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average
0% LLaMA-v2-7b 77.74 78.07 75.97 68.98 76.30 46.33 44.20 66.80

20%

LLM-Pruner 63.27 76.12 67.93 64.80 68.73 38.65 40.00 59.93
LLM-Pruner (w/ PT) 66.45 76.28 70.90 65.75 70.62 39.59 43.20 61.83
FLAP 70.21 75.24 69.34 66.30 67.30 39.42 37.40 60.74
SliceGPT 46.73 69.04 58.98 64.33 60.31 35.07 40.40 53.55
LoRD 72.60 73.56 63.70 65.90 69.70 37.71 39.20 60.34
ASVD 73.61 71.93 66.05 64.17 65.24 36.26 37.40 59.24
Bolaco (5× 1) 72.17 75.52 66.76 67.72 73.02 38.74 40.60 62.08
Bolaco (5× 1 w/ PT) 73.79 77.53 72.72 68.11 73.19 42.24 43.60 64.45
Bolaco (5× 4) 75.05 75.46 67.12 67.01 72.05 38.91 42.40 62.57
Bolaco (5× 4 w/ PT) 75.84 76.61 71.70 65.67 72.60 41.81 45.00 64.18

30%

LLM-Pruner 52.51 71.93 59.49 58.72 61.41 33.96 36.60 53.52
LLM-Pruner (w/ PT) 63.30 76.01 65.23 64.25 66.62 37.20 40.20 58.97
FLAP 66.88 72.74 63.80 64.01 60.65 34.47 36.40 56.99
SliceGPT 39.11 63.38 49.16 62.47 55.72 31.48 32.80 47.73
LoRD 69.63 70.46 55.87 64.17 63.80 32.59 35.00 55.93
ASVD 59.42 55.93 35.05 52.25 34.30 26.45 26.60 41.43
Bolaco (5× 1) 68.26 72.09 57.46 65.87 65.19 32.85 37.20 56.99
Bolaco (5× 1 w/ PT) 70.34 74.32 67.81 65.04 69.02 38.31 41.80 60.95
Bolaco (5× 4) 70.37 71.44 59.62 64.80 66.46 34.39 38.60 57.95
Bolaco (5× 4 w/ PT) 71.83 75.19 68.03 65.67 69.15 38.74 42.40 61.57

Table 1: Zero-shot performance of the compressed LLaMA-v2-7b models. w/ PT means the method with post-
training. Bold denotes the best result at the same compression ratio, while underline indicates the second best result.

Wikitext (↓) PTB (↓) C4 (↓) ZS (↑)
Covariance estimate
Naive SCM 9.96 54.69 11.46 60.34
Pooled SCM 9.93 54.68 11.45 60.64
# Samples
128 10.55 56.29 11.99 60.26
256 10.24 55.42 11.88 60.16
512 10.30 55.03 11.61 60.56
1,024 9.93 54.68 11.45 60.64

Table 2: Impact of different covariance estimation meth-
ods and the number of calibration data. “ZS” denotes
the average performance on seven zero-shot common
sense reasoning datasets.

smooth the objective function, enabling the Gaus-494

sian process surrogate model to more accurately495

approximate the real black-box objective function.496

5.3 The Transferability of Rank Allocation497

In practical applications, we may utilize a variety498

of fine-tuned models based on the LLaMA founda-499

tion model. If we perform Bayesian optimization500

from scratch to optimize the low-rank allocation501

for each model, it will waste a significant amount502

of time and computational resources. Hence, we503

investigate whether the low-rank allocation of the504

base model can be transferred to the correspond-505

ing fine-tuned models. We transfer the allocation506

of LLaMA-v2-7b/13b to LLaMA-v2-7b/13b-chat,507

respectively. We consider two migration strategies:508

Wikitext (↓) PTB (↓) Zero-shot (↑)
20%
PPL (5× 1) 8.36 48.42 61.70
w/ RKL (5× 1) 8.27 47.06 62.08
PPL (5× 4) 8.07 47.96 60.98
w/ RKL (5× 4) 7.96 45.84 62.57
30%
PPL (5× 1) 13.78 71.50 56.97
w/ RKL (5× 1) 13.41 70.52 56.99
PPL (5× 4) 12.65 68.85 57.57
w/ RKL (5× 4) 13.70 72.14 57.95

Table 3: Results under different objective function.

a) directly reusing the low-rank allocation of the 509

base model and b) using the low-rank allocation 510

of the base model as the initial value for Bayesian 511

optimization and then optimizing only 20 epochs. 512

As Figure 4 shows, direct reusing can achieve re- 513

sults that outperform all baseline methods, even the 514

Bayesian optimization from scratch. If 20 epochs 515

of Bayesian optimization follow reuse, there is a 516

chance to find an even better low-rank allocation. 517

5.4 The Effectiveness of Validation Data 518

Sampling 519

Table 4 shows results on LLaMA-v2-7b at 20% 520

compression ratios under Wikipedia and its sam- 521

pled data. The top-100 and bottom-100 represent 522

the 100 samples with the highest and lowest per- 523
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Figure 4: The average performance on zero-shot tasks
about the transferability of rank allocation.

plexity variances, respectively. BO can optimize524

a good result when using Wikipedia and the top-525

100 sampled data for validation, showing that our526

method can sample a smaller subset for improv-527

ing validation efficiency while maintaining perfor-528

mance comparable to the entire dataset. Conversely,529

with the bottom-100 sampled data, BO’s optimiza-530

tion performance is significantly inferior, with per-531

formance similar to unoptimized LoRD. Further-532

more, we observe that the top-100 samples (6.09533

ppl) have higher perplexity than the bottom-100534

samples (3.25 ppl) in the original LLaMA-v2-7b,535

indicating that the bottom-100 samples are already536

well-modeled and are very robust to model com-537

pression. This data may not truly reflect the per-538

formance change caused by model compression.539

Therefore, we suggest selecting validation data that540

is more sensitive to compression, typically sam-541

ples with slightly worse language modeling per-542

formance. Similar to the “buckets effect”, these543

samples may represent the performance boundaries544

of LLMs. Considering the performance of these545

samples in the optimization process can maximize546

the overall performance of the compressed model.547

6 Related work548

A common technique for low-rank factorization is549

SVD, which retains only the top-r largest singu-550

lar values and their corresponding singular vectors551

to obtain two rank-r matrices. Ben Noach and552

Goldberg (2020) first combine SVD with knowl-553

edge distillation, applying it to compress BERT. Di-554

rectly applying SVD decomposition implies an as-555

sumption that each parameter in the weight matrix556

equally affects the model performance. This contra-557

dicts many previous research, therefore, FWSVD558

(Hsu et al., 2022) and TFWSVD (Hua et al., 2022)559

consider weighting the weight matrix using Fisher560

Wikitext (↓) PTB (↓) Zero-shot (↑)
Wikipedia 7.98 46.85 62.27
Top-100 7.96 45.84 62.57
Bottom-100 8.38 50.41 60.90

Table 4: Results under different validation data.

information. Chen et al. (2021) observe that 561

PLMs’ weights are not inherently low-rank ma- 562

trices. Therefore, directly applying SVD will result 563

in significant reconstruction loss. However, they 564

find that the product of data representation and 565

weights is low-rank. Hence, they perform a global 566

low-rank decomposition on it. Following this ob- 567

servation, Yu and Wu (2023) propose the atomic 568

feature mimicking (AFM) method to decompose 569

the output features. Ren and Zhu (2023) also ob- 570

serve the high rank phenomenon of PLM weights. 571

They utilize iterative first-order unstructured prun- 572

ing to reduce the rank of the weight matrix, and 573

then apply Fisher information-weighted SVD de- 574

composition for low-rank compression. For LLMs, 575

low-rank compression has not yet received the at- 576

tention it deserves. LoRD (Kaushal et al., 2023) 577

applies AFM to code LLMs, demonstrating the 578

potential of low-rank decomposition in compress- 579

ing LLM. Recently, Sharma et al. (2023) conduct 580

an in-depth study on the weight decomposition of 581

LLMs and discover that the low-rank components 582

of the weights encapsulate low-frequency informa- 583

tion. By meticulously selecting low-rank compo- 584

nents, it is possible to eliminate interfering signals 585

and further improve LLMs’ performance. However, 586

their research does not propose a practical low-rank 587

compression algorithm. 588

7 Conclusion 589

In this paper, we attempt to unearth the potential 590

of low-rank compression for lightweight univer- 591

sal LLMs. We thoroughly investigate the chal- 592

lenges of low-rank compression in LLMs and the 593

low-rank characteristics of features within LLMs. 594

We propose a Bayesian optimization-based feature 595

low-rank compression to address these challenges, 596

incorporating pooled covariance estimation and 597

Bayesian optimization for more precise feature dis- 598

tribution estimation and low-rank dimension allo- 599

cation, respectively. Experimental results on the 600

LLaMA 2 model demonstrate that our method sig- 601

nificantly outperforms existing structured pruning 602

and other low-rank compression techniques. 603
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Limitations604

Although our proposed Bolaco has made significant605

progress in low-rank compression for LLMs, there606

are still some limitations:607

• Due to computational resource constraints, we608

only conduct thorough experiments on two com-609

monly used LLaMA 2 models, lacking investiga-610

tion into larger models (such as LLaMA 2-70B),611

other architectures (such as the OPT and T5 fam-612

ilies), and multimodal models.613

• To improve the efficiency of Bayesian optimiza-614

tion, we reduced the parameter dimensions by615

sharing parameters of different types and layers616

using low-rank dimensions. This may limit the617

potential performance of the model. We plan to618

use more advanced methods to find better low-619

rank allocation while maintaining flexibility.620

• Compared to state-of-the-art structured pruning,621

low-rank compression falls short in highly com-622

pressed language models, but exhibits better zero-623

shot performance on downstream tasks. These624

observations inspire us to investigate how to ef-625

fectively combine these two approaches to capi-626

talize on their advantages in the future.627
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A More Experiments on Low-rank860

Sensitivity861

As shown in Figure 5. We further reduce the pa-862

rameters by 50% on LLaMA-v2-7b by low-rank863

compression for each layer and test its perplexity864

on WikiText2. We observe that the low-rank sen-865

sitivity varies significantly across different types866

of parameters. Compression of attn_q and attn_k867

seemingly has negligible impact on overall per-868

formance across all layers. In contrast, the up-869

per layers of mlp are more sensitive compared to870

the lower and middle layers. We also conduct ex-871

periments on LLaMA-7b-chat and OPT-6.7b and872

find significant variability between all the different873

types of parameters. However, for OPT-6.7b, the874

differences between them are less pronounced than875

for LLama, especially for attn_v, which does not876

show an explosive increase in perplexity.877

B Baselines878

LLM-Pruner (Ma et al., 2023) is a dependency-879

aware one-shot structured pruning method. It eval-880

uates the importance of each structure through a881

first-order Taylor expansion and prunes the struc-882

tures with the lowest scores. After pruning, it uses883

LoRA post-training to recover performance.884

FLAP (An et al., 2023) is an one-shot retraining-885

free structured pruning method. It utilizes a886

fluctuation-based metric to measure the impact of887

pruning on features and employs a bias term to888

compensate for the pruning loss.889

SliceGPT (Ashkboos et al., 2024) is a post-training890

sparsification method. It replaces each weight ma-891

trix with a smaller matrix, reducing the embedding892

dimension of the network.893

LoRD (Kaushal et al., 2023) is a naive feature-894

based low-rank compression method for code895

LLMs. It does not take into account the low-rank896

allocation of varying parameters. We migrate it to897

generic LLaMA-family LLMs.898

ASVD (Yuan et al., 2023) is a training-free SVD-899

based LLM compression method. It manages acti-900

vation outliers by scaling the weight matrix based901

on the activation distribution.902

C Implementation Details903

For LoRD, due to the absence of reference settings904

for its application on the LLaMA, we manually905

search a good low-rank allocation for it. At the 20%906

compression ratio, we do not compress attn_v, and907

reduce the parameter count of attn_q/k by 30%,908

with a 20% reduction in the remaining parameters. 909

At the 30% ratio, we reduce the parameter count 910

of attn_q/k by 45%, with a 30% reduction in the 911

remaining parameters except attn_v. 912

At the post-training stage, we only add fine- 913

tunable low-rank matrices for the compressed pa- 914

rameters. We set the low-rank dimension r′ = 256, 915

the learning rate is 2e-3, and the batch size is 64. 916

D Discussion on compute intensive about 917

Bolaco 918

The computational cost of our method is divided 919

into three parts: 920

PCA decomposition Our method requires only one 921

PCA decomposition of the obtained representations 922

and truncates them according to the assigned rank 923

during the rank allocation process to generate var- 924

ious compressed models. The computational cost 925

here is the same as that of the existing low-rank 926

decomposition method LORD. 927

Obtaining evaluation results In our experiments, 928

the validation set we selected is not large, about 34k 929

tokens, so the validation process takes less time, 930

and the total validation time spent by llama-2-7b is 931

about 40-45min on a 40G A100. 932

Bayesian Optimization The computational time 933

for 50 epochs of Bayesian optimization is approxi- 934

mately 45-50 minutes, which is considered accept- 935

able in practical applications. Compared to iterative 936

pruning, Bayesian optimization is more memory- 937

efficient, as it only requires the memory overhead 938

of forward propagation without storing gradients, 939

momentum, or other optimizer states. Furthermore, 940

as discovered in Section 5.5, the low-rank config- 941

urations optimized on a base model can be trans- 942

ferred directly, or with few rounds of Bayesian 943

optimization, to variant models with the same ar- 944

chitecture. It implies that we can quickly obtain a 945

well-performing, low-rank compressed model for 946

fine-tuned LLMs on different datasets in practice. 947

E Statistics of the Compressed Model 948

We report the statistic of original and compressed 949

models in Table 7, including the parameter count, 950

MACs and memory requirements. Statistical evalu- 951

ation is conducted using the inference mode, where 952

the model is fed a sentence consisting of 64 tokens. 953

To aid subsequent researchers in reproducing our 954

results, Table 8 provides the low-rank allocations 955

of Bolaco. The elements of the array represent 956

the low-rank dimensions for attn_q/k, attn_o, 957
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Ratio Methods BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average
0% LLaMA-v2-13b 80.52 79.05 79.38 72.14 79.42 49.23 45.20 69.27

20%

LLM-Pruner 66.33 78.18 74.47 64.48 72.26 45.90 44.20 63.69
LLM-Pruner (w/ PT) 67.06 78.94 75.92 67.32 72.69 44.28 44.60 64.40
FLAP 71.28 76.55 74.67 69.53 72.56 44.03 42.00 64.37
SliceGPT 45.44 71.00 62.86 68.35 71.09 41.72 41.20 57.38
ASVD 79.36 76.61 72.82 69.69 74.54 43.00 44.60 65.80
LoRD 78.47 76.01 69.58 71.03 74.33 40.87 44.40 64.96
Bolaco (5× 1) 80.00 76.50 73.25 70.24 76.18 43.86 45.20 66.46
Bolaco (5× 1 w/ PT) 81.22 77.69 76.66 71.59 77.31 46.93 44.00 67.91
Bolaco (5× 4) 80.58 76.22 71.44 71.19 75.38 42.49 44.00 65.90
Bolaco (5× 4 w/ PT) 80.95 77.64 75.84 69.93 75.25 45.14 44.20 67.00

30%

LLM-Pruner 62.45 75.90 67.90 60.22 65.45 40.36 44.60 59.55
LLM-Pruner (w/ PT) 68.29 76.66 72.03 64.09 69.20 41.13 45.40 62.40
FLAP 65.54 74.81 70.29 67.48 67.38 38.23 40.00 60.53
SliceGPT 38.84 64.47 52.34 65.51 59.51 36.86 39.20 50.96
ASVD 70.34 68.01 53.41 60.93 59.72 32.00 36.60 54.43
LoRD 75.05 73.88 63.08 69.46 69.78 39.16 38.60 61.29
Bolaco (5× 1) 79.20 74.97 65.23 67.32 72.35 39.25 41.20 62.79
Bolaco (5× 1 w/ PT) 78.78 76.17 73.04 68.51 74.75 43.60 44.00 65.55
Bolaco (5× 4) 80.24 74.48 66.77 69.14 72.18 41.13 41.00 63.56
Bolaco (5× 4 w/ PT) 80.40 76.66 73.42 69.06 73.74 45.14 43.40 65.97

Table 5: Zero-shot performance of the compressed LLaMA-v2-13b models. w/ PT means the method with post-
training. Bold denotes the best result at the same compression ratio, while underline indicates the second best result.

Ratio Methods BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average
0% Mistral-7B-v0.1 83.67 80.52 81.03 73.80 80.85 54.01 43.8 71.10

20%

LLM-Pruner 70.06 77.31 72.50 68.35 69.11 38.23 41.80 62.48
LORD 73.82 74.86 65.53 69.22 71.55 41.13 36.20 61.76
Bolaco (5× 1) 74.13 76.01 66.26 69.69 74.24 42.15 39.40 63.13
Bolaco (5× 4) 77.58 76.12 67.44 70.09 74.96 42.41 39.40 64.00

Table 6: Zero-shot performance of the compressed Mistral-7B-v0.1 models. Bold denotes the best result at the same
compression ratio, while underline indicates the second best result.

mlp_gate, mlp_up, and mlp_down, respectively.958

‘NA’ denotes that the parameter is not compressed.959

F Language Modeling Capabilities for960

Compressed Models961

Figure 6 illustrates the perplexity changes on Wiki-962

Text, PTB, and C4 datasets for different compres-963

sion methods on LLaMA-v2-7b and 13b as the964

compression rate increases.965

G Case Study966

We showcase the generation results of the LLaMA-967

v2-7b and its compression model via Bolaco in Ta-968

ble 9. We observe that models compressed via Bo-969

laco tend to produce brief and repetitive responses970

to prompts without post-training. However, this971

issue can be resolved after efficient post-training,972

resulting in smooth and informative replies.973

G.1 The Generalization of Validation Data 974

To verify the generalizability of the Bayesian op- 975

timization used in Bolaco across various valida- 976

tion data, we sample subsets from the Wikitext, 977

C4, ArXiv, and Wikipedia pre-training datasets to 978

serve as Bolaco’s validation data. Table 10 presents 979

the results of Bolaco on these validation data at 980

20% compression ratio. We observe that models 981

optimized on different validation data exhibit dif- 982

ferent performance on a single test set, particu- 983

larly in language modeling capabilities, likely due 984

to the diverse linguistic features of the validation 985

data. However, the average performance across 986

multiple common sense reasoning datasets remains 987

nearly identical, demonstrating the robustness of 988

our method in general capabilities across different 989

validation data. 990
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Method Ratio #Params MACs Memory
LLaMA 2-7b 0% 6.74B 423.98G 12.62GiB
LLM-Pruner 20% 5.42B 340.48G 10.16GiB
FLAP 20% 5.45B 342.30G 10.22GiB
LoRD 20% 5.45B 370.12G 10.32GiB
Bolaco (5× 1) 20% 5.44B 388.95G 10.28GiB
Bolaco (5× 4) 20% 5.44B 391.18G 10.25GiB
LLM-Pruner 30% 4.84B 302.83G 9.17GiB
FLAP 30% 4.80B 300.72G 9.04GiB
LoRD 30% 4.79B 341.91G 9.07GiB
Bolaco (5× 1) 30% 4.79B 359.48G 9.04GiB
Bolaco (5× 4) 30% 4.80B 356.03G 9.06GiB
LLaMA 2-13b 0% 13.02B 824.26G 24.45GiB
LLM-Pruner 20% 10.48B 662.95G 19.75GiB
FLAP 20% 10.48B 663.85G 19.64GiB
LoRD 20% 10.49B 717.86G 19.79GiB
Bolaco (5× 1) 20% 10.48B 777.58G 19.71GiB
Bolaco (5× 4) 20% 10.48B 772.16G 19.69GiB
LLM-Pruner 30% 9.21B 581.40G 17.35GiB
FLAP 30% 9.21B 582.72G 17.29GiB
LoRD 30% 9.21B 663.15G 17.38GiB
Bolaco (5× 1) 30% 9.21B 708.16G 17.36GiB
Bolaco (5× 4) 30% 9.21B 694.58G 17.35GiB

Table 7: Statistics of the compressed model.

Model Method Ratio Low rank allocation

LLaMA-v2-7b

Bolaco (5× 1) 20% [744, 1616, 2512, 2408, NA]

Bolaco (5× 4) 20%

[[680, 1728, 2960, NA, NA],
[968, 1888, 2536, 2640, 2632],
[408, 1488, NA, 2272, 2864],
[656, 496, 2824, 2448, 2280]]

Bolaco (5× 1) 30% [656, 1392, 2128, 2352, 2312]

Bolaco (5× 4) 30%

[[1016, 1632, 2376, 2384, 2384],
[840, 1632, 2384, 2376, 2384],
[408, 992, 2376, 2384, 2384],
[408, 560, 2384, 1896, 1792]]

LLaMA-v2-13b

Bolaco (5× 1) 20% [696, 1920, 2304, NA, 2504]

Bolaco (5× 4) 20%

[[792, 1696, 2864, 2880, 2976],
[944, 1440, 2512, 2296, 2920],
[656, 1112, 2496, 2480, 2912],
[1312, 904, 2264, NA, 1960]]

Bolaco (5× 1) 30% [512, 1264, 2384, 2328, 2304]

Bolaco (5× 4) 30%

[[528, 1536, 2384, 2376, 2384],
[1232, 1624, 2376, 2352, 2344],
[800, 1624, 2064, 2368, 2344],
[408, 408, 2352, 1936, 1680]]

Table 8: The low-rank allocation of our Bolaco.
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Model Generated Sentences

LLaMA 2-7b

Instruction: I sit in front of a computer all day. How do I manage and mitigate eye strain?
Response: Eye strain is a common complaint among computer users. It is caused by the eye’s inability to focus on the computer screen.
This is due to the fact that the computer screen is too close to the eyes. The eyes are also strained by the glare from the computer screen.
The best way to manage and mitigate eye strain is to take frequent breaks from the computer. This will allow the eyes to rest and relax.

Instruction: Translate the sentence ’I have no mouth but I must scream’ into Spanish.
Response: No tengo boca pero debo gritar.

Instruction: Who is Donald Trump?
Response: Donald Trump is the 45th President of the United States.

Bolaco (20%)
(w/o tune)

Instruction: I sit in front of a computer all day. How do I manage and mitigate eye strain?
Response: Most of the eye strain in this population is from staring at a computer monitor, which does not affect eye strain nearly as much
as looking at a printed page. I recommend that people sit with their computer at arm’s length, in a room that has adequate lighting, and not
looking at a monitor for prolonged periods. If the screen is too bright, it causes glare and eye strain. If the room is bright, it also causes eye
strain. The eyes don’t work well with bright light.

Instruction: Translate the sentence ’I have no mouth but I must scream’ into Spanish.
Response: Mi boca no has a voz y tengo que scream.

Instruction: Who is Donald Trump?
Response: Trump is the president of the United States.

Bolaco (20%)
(w/ tune)

Instruction: I sit in front of a computer all day. How do I manage and mitigate eye strain?
Response: Here are some tips to help you manage and mitigate eye strain:
1. Position your monitor correctly: Make sure that your monitor is at least 20-25 inches away from you. If it’s too close, your eyes will have to
strain to focus on it, which can lead to headaches, eye strain, and fatigue.
2. Use a monitor filter: You can install a monitor filter that blocks ultraviolet rays from your monitor, which can help reduce eye strain and fatigue.
3. Talk to your doctor: If you have been experiencing symptoms of eye strain, headaches, or fatigue, talk to your doctor. He or she may recommend
eye drops, glasses, or other solutions to manage your symptoms.

Instruction: Translate the sentence ’I have no mouth but I must scream’ into Spanish.
Response: No tengo boca pero debo gritar.

Instruction: Who is Donald Trump?
Response: Donald Trump is a U.S. president who was elected in 2016. He is the 45th president of the United States of America.

Table 9: Generated Examples from LLaMA-v2-7b and Bolaco.

Wikitext (↓) PTB (↓) Zero-shot (↑)
Wikipedia 7.96 45.84 62.57
Wikitext 7.61 48.37 62.14
C4 7.65 44.56 62.07
Arxiv 8.46 46.77 62.11

Table 10: Results under different validation data.
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(b) Sensitivity of different types of layers to low-rank compression on the LLaMA-v2-7b-chat.
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(c) Sensitivity of different types of layers to low-rank compression on the OPT-6.7b.

Figure 5: More results on low-rank sensitivity.
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(b) The perplexity of WikiText2 on LLaMA-v2-13b
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(c) The perplexity of C4 on LLaMA-v2-7b
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(d) The perplexity of C4 on LLaMA-v2-13b
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(e) The perplexity of PTB on LLaMA-v2-7b
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(f) The perplexity of PTB on LLaMA-v2-13b

Figure 6: Language modeling capabilities at different compression ratios.
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