
Under review as a conference paper at ICLR 2023

LEARNING IN COMPRESSED DOMAIN VIA
KNOWLEDGE TRANSFER

Anonymous authors
Paper under double-blind review

ABSTRACT

Learning in compressed domain aims to perform vision tasks directly on com-
pressed latent representations instead of reconstructed images. Existing reports
show that learning in compressed domain can achieve a comparable performance
compared to that in pixel domain for certain compression models. However, we
observe that when using the state-of-the-art learned compression models, the per-
formance gap between compressed-domain and pixel-domain vision tasks is still
large due to the lack of some natural inductive biases in pixel-domain convolu-
tional neural networks. In this paper, we attempt to address this problem by trans-
ferring knowledge from pixel domain to compressed domain. We first modify
neural networks for pixel-domain vision tasks to better suit compressed-domain
inputs. In addition, we propose a knowledge transfer loss to narrow the gap be-
tween compressed domain and pixel domain. Experimental results on classifica-
tion and instance segmentation show that the proposed method improves the ac-
curacy of compressed-domain vision tasks significantly, which even outperforms
learning on reconstructed images while avoiding the computational cost for image
reconstruction.

1 INTRODUCTION

Deep neural networks (e.g., convolutional neural networks) have shown prominent performance
on various computer vision tasks, such as image classification (Krizhevsky et al., 2017; He et al.,
2016), object detection (Ren et al., 2016; Lin et al., 2017), and instance segmentation (He et al.,
2017). In the meantime, deep learning-based image compression methods (Ballé et al., 2017; 2018;
Minnen et al., 2018) also achieve better compression efficiency than conventional image coding so-
lutions, such as JPEG (Wallace, 1992), JPEG 2000 (Skodras et al., 2001), and BPG (Bellard, 2014).
However, image compression and computer vision are usually treated as two independent tasks in
the research community. Generally, the original images are compressed into compact latent rep-
resentations for storage and transmission, and then decompressed into RGB images before being
fed into neural networks for analysis. Such a two-step process can be simplified if it is feasible to
perform visual analysis on compressed latent representations directly, which saves the computing
resources for image reconstruction so that analysis efficiency can be improved. Related standard
activity JPEG-AI (2022) has been initiated recently, which aims to generate a single-stream, com-
pact compressed-domain representation to support both standard image reconstruction and various
computer vision tasks.

Currently, the state-of-the-art deep image compression models (Ballé et al., 2017; 2018; Minnen
et al., 2018; Cheng et al., 2020; Chen et al., 2021; Qian et al., 2020) are built on the auto-encoder
architecture (Hinton & Salakhutdinov, 2006), which are mainly composed of an encoder, a decoder,
and an entropy model. The encoder performs a nonlinear transformation on the images and generates
compressed-domain latent representations, which are quantized and transformed back into the pixel
domain by the decoder. The entropy model is used to estimate the probability distribution of latents
for entropy coding algorithms. In the scenario of compressed-domain computer vision analysis, the
quantized latent representations are directly fed into a modified neural network for inference. The
rationale behind this approach is that compressed latent representations contain enough information
to reconstruct images, and thus contain enough information for vision tasks according to the data
processing inequality (Cover, 1999). Therefore, learning in compressed domain can achieve at least
as good performance as learning in pixel domain theoretically.

1

Under review as a conference paper at ICLR 2023

Original

image

Reconstructed

image

Encoder

Compressed

representation

Pixel-domain CNN

Compressed-domain CNN

Decoder

ℒ𝑡𝑎𝑠𝑘

Feature-level

transfer

Output-level

transfer

ℒ𝑡𝑎𝑠𝑘

ℒ𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟

Figure 1: The proposed learning scheme for compressed-domain CNN. The knowledge transfer loss
Ltransfer is calculated by using the original image as input to the pixel-domain CNN.

Existing reports (Torfason et al., 2018; Wang et al., 2022) demonstrated the feasibility of learning in
compressed domain. However, it is also shown in these reports that the classification accuracy from
compressed domain still drops, especially for high bit rates. We also observe that when using the
state-of-the-art compression models (Ballé et al., 2018; Minnen et al., 2018), the performance gap
between compressed domain and pixel domain is still large on more complex tasks such as instance
segmentation. We conjecture that this is because learning in compressed domain lacks the natural in-
ductive bias of locality of convolutional neural networks (CNNs). In pixel domain, the convolutional
filters with small kernel size (e.g. 3×3) extract features layer by layer, starting from pixels, with the
reception field increasing progressively. Consequently, the early layers often learn local fine-grained
low-level features of the input images, while the later layers learn global abstract high-level features
for specific tasks. However, when learning in compressed domain, because of the downsampling op-
erations in the encoder, each element in the compressed latents actually corresponds to a large patch
of the input images. For example, the initial reception field of the compressed latents produced by
a common four-layer encoder is already 61 × 61 pixels. Therefore, the inductive bias of locality of
CNN cannot be utilized properly in the case of compressed domain, leading to worse performance.

In this paper, we propose a simple yet effective pipeline to improve the performance of compressed-
domain computer vision tasks. Figure 1 shows an overview of the proposed learning scheme. Firstly,
we design several variants of standard pixel-domain neural network architectures to support the
use of compressed representations as input. Secondly, we propose to add a knowledge transfer
loss to the original task-specific loss, which helps transfer the knowledge learned by pixel-domain
CNNs to compressed-domain CNNs. To provide sufficient constraints, we consider both feature-
level transfer and output-level transfer, and find that they are complementary to each other. We
evaluate the proposed method on two diverse computer vision tasks including image classification
and instance segmentation. For each task, we also consider the compressed latent representations
from two types of image compression models (Ballé et al., 2018; Minnen et al., 2018) to validate
the generalization ability of our method. The experimental results show that the performance of the
compressed-domain models is improved by a large margin with the proposed transfer loss, which
even outperforms the conventional models learned from reconstructed images, while enjoying lower
computational complexity as image reconstruction is not needed.

2 RELATED WORK

Learning in Compressed Domain Compressed-domain computer vision analysis is not a brand-
new field of study. Some efforts focused on the compressed-domain representations from conven-
tional codecs, e.g., the blockwise Discrete Cosine Transform (DCT) coefficients computed from
JPEG codec (Wallace, 1992). Gueguen et al. (2018) demonstrated that performing image classifica-
tion directly on DCT coefficients can achieve lower error rates than the baseline model with higher
inference speed. Ehrlich & Davis (2019) proposed a general method for expressing convolutional
networks in the JPEG domain. Xu et al. (2020) proposed to reshape the images in the frequency
domain to better preserve image information in the pre-processing stage.

2

Under review as a conference paper at ICLR 2023

Recently, deep learning-based compression models have shown better performance than conven-
tional codecs. Torfason et al. (2018) first proposed to perform image understanding on learned com-
pressed representations. Mei et al. (2021) designed a bridge transform network to map compressed-
domain features to vision task-friendly features for object detection, where the transform network
is trained jointly with the compression model. Liu et al. (2021) investigated compressed-domain
face alignment. Wang et al. (2022) proposed to learn from the compressed domain for original-size
images. These efforts demonstrate the feasibility of learning from deep compressed representations,
but the accuracy still drops significantly in some cases.

Knowledge Transfer Knowledge transfer is the process of transferring knowledge from one deep
neural network (the teacher) to another (the student). When the teacher model is a larger model or
an ensemble of nets, it is also known as knowledge distillation. Existing methods can be mainly
divided into two types: logit-based transfer (Hinton et al., 2015; Zhao et al., 2022), and feature-
based transfer (Romero et al., 2015; Heo et al., 2019; Park et al., 2019; Tian et al., 2020). Logit-
based methods transfer knowledge to students by matching the softmax outputs, while feature-based
methods consider matching the feature representations or the relationship between feature samples.

3 METHOD

3.1 COMPRESSED REPRESENTATION

Given an RGB image x of shape H ×W × 3 and a compression model, we can get the compressed
representation ŷ = Q(E(x)) and the reconstructed image x̂ = D(ŷ), where E, D, and Q represent
encoder, decoder, and quantization, respectively. The compressed latent ŷ produced by learning-
based compression models (Ballé et al., 2017; 2018; Minnen et al., 2018) is generally of shape
H/16×W/16×M , where M is the number of channels and usually set as 192 or 320 according to
the target bit rate. In the context of compressed-domain image understanding, the quantized latent
ŷ is directly fed into the inference models and the decoder is not needed.

3.2 COMPRESSED-DOMAIN IMAGE CLASSIFICATION

3.2.1 MODEL ARCHITECTURE

We select ResNet-50 (He et al., 2016) as our baseline model for pixel-domain image classification.
The standard ResNet-50 architecture consists of a stem block and four stages, which are named
conv2, conv3, conv4, and conv5. Each stage contains several bottleneck blocks, as reported in
Table 1. We also report the output size of different stages and the computational cost of the whole
model when the size of input images is 256× 256.

For an image of size 256×256, the size of the corresponding compressed representation is 16×16×
M , which is equal to the output size of conv4 in the spatial dimension. Therefore, for compressed-
domain ResNet, we remove the first two stages conv2 and conv3, and disable the downsampling
operation in the first layer of conv4. In order to match the computational cost of the pixel-domain
ResNet, we add more residual blocks in conv4 and replace the original stem block with three stacked
residual blocks. See Appendix A.1 for a more detailed description of the proposed model. Then we
obtain a compressed-domain ResNet architecture with similar depth and FLOPs to the pixel-domain
ResNet.

3.2.2 TRAINING LOSS

For simplicity, we use superscripts to indicate the source model when referring to features or model
outputs in this section and Section 3.3, where “p” is for pixel domain and “c” is for compressed
domain. The pixel-domain ResNet takes image x or x̂ as input, and output classification probability
vector pp or p̂p, as shown in Figure 1. Similarly, the compressed-domain ResNet accepts ŷ as input
and outputs probability vector pc.

For pixel-domain classification, cross entropy loss is used by default. For compressed-domain classi-
fication, we observe that only cross entropy loss is insufficient (see Section 4). An additional trans-
fer loss is proposed to transfer the knowledge learned from RGB images to compressed-domain

3

Under review as a conference paper at ICLR 2023

Table 1: Structure of pixel-domain and compressed-domain ResNet. The output size and FLOPs
are reported for RGB images of size 256 × 256 × 3 and for compressed representations of size
16× 16× 192. The stem block and final output layer are omitted.

stage name conv2 x conv3 x conv4 x conv5 x FLOPs
output size 64× 64 32× 32 16× 16 8× 8
pixel domain 3 4 6 3 5.37× 109

compressed domain none none 13 3 5.29× 109

network. Considering the information loss in the compression process, we use the pixel-domain
ResNet trained on original images x as the teacher model, while the compressed-domain ResNet is
set as the student model. Inspired by the recent success of knowledge distillation techniques (Hin-
ton et al., 2015; Romero et al., 2015; Heo et al., 2019), we consider both feature-level transfer and
output-level transfer. For feature-level transfer, we extract the features fC5 before the final ReLU
activation function of conv5 from both teacher and student models, and calculate the L2 distance be-
tween them. For output-level transfer, Kullback–Leibler (KL) Divergence between the distributions
pp and pc is adopted as the loss function. Therefore, the entire loss function for compressed-domain
classification can be written as:

Lcomp cls = Ltask + λLtransfer = LCE + λ(Lfeature + Loutput)

= LCE + λ(D(f c
C5,f

p
C5) +DKL(p

p||pc))

=
1

N

N∑
i

[−
C∑
j

lij log p
c
ij + λ(||f c

C5 − fp
C5||2 +

C∑
j

ppij log
ppij
pcij

)],

(1)

where LCE is the cross entropy loss between predictions and one-hot ground-truth labels l, C is the
number of classes, N is the number of training samples in a mini-batch, and λ is used to balance
different loss terms.

3.3 COMPRESSED-DOMAIN INSTANCE SEGMENTATION

3.3.1 MODEL ARCHITECTURE

For instance segmentation, we adopt the Mask RCNN (He et al., 2017) architecture as the baseline
model, which is mainly composed of a Region Proposal Network (RPN) for object bounding box
proposal and an ROI head for class, box offset, and binary mask prediction. Specifically, we adopt
the Feature Pyramid Network (FPN) (Lin et al., 2017) as the backbone, which uses a top-down struc-
ture with lateral connections to build a feature pyramid. When based on pixel-domain ResNet, FPN
utilizes the feature maps output from all the four stages, which are denoted as {fp

C2,f
p
C3,f

p
C4,f

p
C5},

and outputs the final feature pyramid {fp
P2,f

p
P3,f

p
P4,f

p
P5,f

p
P6} by an iterative top-down merging

process.

For compressed-domain instance segmentation, we reuse the model architecture proposed in Sec-
tion 3.2.1. However, because there are no conv2 and conv3 stages, we need to modify the model
structure to generate multi-scale features. Specifically, we divide the conv4 stage into three sub-
stages, each containing 3, 4, and 6 bottleneck blocks, as shown in Figure 2. Then we extract features
{f c

C4−1,f c
C4−2,f c

C4} from conv4, and fC5 from conv5. The features f c
C4−1 and f c

C4−2 have strides
of 16 pixels with respect to the input images, while the features fp

C2 and fp
C3 have strides of 4 and

8 pixels, respectively. Therefore, to match the resolution of the feature maps from pixel-domain
ResNet, we utilize sub-pixel convolution (Shi et al., 2016) to upsample the features f c

C4−1 and
f c
C4−2, which consists of a 1×1 convolution layer and a periodic shuffling operator. Other compo-

nents such as the RPN module and the ROI head in the compressed-domain Mask RCNN keep the
same as those for the pixel-domain network.

3.3.2 TRAINING LOSS

The original Mask RCNN is trained using a multi-task loss, which includes the RPN loss LRPN

for the whole image and the RoI loss LRoI for each RoI proposal. The RPN module outputs a set

4

Under review as a conference paper at ICLR 2023

conv4-1

conv4-2

conv4-3

conv5 1×1 conv, 256

1×1 conv, 256

1×1 conv, 256×22,PS

1×1 conv, 256×42,PS
𝒇𝐶4−1(16)

𝒇𝐶4−2(16)

𝒇𝐶4(16)

𝒇𝐶5(32)

𝒇𝑃6(64)

𝒇𝑃5(32)

𝒇𝑃4(16)

𝒇𝑃3(8)

𝒇𝑃2(4)
stem features

Figure 2: Illustration of the FPN structure for compressed-domain ResNet. The conv4 stage is
divided into three sub-stages, i.e., conv4-1, conv4-2, and conv4-3. “1× 1 conv, K” indicates a 1×1
convolution layer with K output channels. “PS” represents the periodic shuffling operator in Shi
et al. (2016). The numbers in parentheses are the strides of feature maps with respect to the input
image. We obtain fP6 by simply downsampling fP5 as in Lin et al. (2017).

of bounding box coordinate offsets tprpn based on the predefined anchors, each with an objectness
score pp

obj . For each candidate object, the RoI head outputs a K+1-dimensional class prediction pp,
along with refined bounding box offsets tproi and object masks mp for each of the K classes.

We design the output-level transfer loss Loutput based on the loss functions LRPN and LRoI of the
pixel-domain Mask RCNN. The formulations of LRPN and LRoI are provided in Appendix A.2.
Similar to Section 3.2.2, we use the predictions of the teacher models as soft labels, and replace the
cross entropy loss with the KL Divergence loss. The ROI head of the teacher model uses the same
proposal locations as the student model, while the input features are from the teacher backbone. The
entire output-level transfer loss is defined as:

Loutput =LBCE(p
c
obj ,p

p
obj) + SmoothL1(t

c
rpn, t

p
rpn)

+DKL(p
p,pc) + SmoothL1

(tcroi, t
p
roi) + LBCE(m

c,mp),
(2)

where LBCE represents the binary cross entropy loss. Note that the transfer loss is calculated on all
the bounding boxes and masks predicted by the models, instead of only the positive ones, which is
different from the original task loss.

The feature-level transfer loss Loutput is simpler, which is defined on the feature pyramid output
from the FPN backbone. L2 distance is used to align the features between student and teacher
models. The loss term is written as:

Lfeature =

6∑
i=2

||f c
P i − fp

Pi||2. (3)

Combining the task-specific loss and transfer loss, the entire loss function for compressed-domain
instance segmentation is formulated as:

Lcomp seg = Ltask + λLtransfer = LRPN + LRoI + λ(Lfeature + Loutput), (4)

where λ is a balancing weight.

4 EXPERIMENTS

4.1 LEARNED COMPRESSION MODELS

We consider two state-of-the-art learned compression models (Ballé et al., 2018; Minnen et al.,
2018) to generate compressed representations ŷ and reconstructed images x̂. Ballé et al. (2018) uses
a hyperprior as additional side information to capture the spatial dependencies among the latents ŷ
and the latents ŷ are modeled as a Gaussian distribution conditioned on the hyperprior. Minnen et al.
(2018) extends the hyperprior architecture with an auto-regressive context model, which utilizes the
causal context of each latent ŷi to further improve the accuracy of the entropy model. We denote
the compression model in Ballé et al. (2018) as hyperprior and that in Minnen et al. (2018) as
hyperprior-context.

5

Under review as a conference paper at ICLR 2023

0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
Bit rate (bpp)

71

72

73

74

75

To
p

1
Ac

cu
ra

cy
 (%

)
pixel domain
compressed domain (w/o Ltransfer)
compressed domain (w/ Ltransfer)

(a)

0.15 0.20 0.25 0.30 0.35 0.40 0.45
Bit rate (bpp)

71

72

73

74

75

To
p

1
Ac

cu
ra

cy
 (%

)

pixel domain
compressed domain (w/o Ltransfer)
compressed domain (w/ Ltransfer)

(b)

Figure 3: Classification accuracy for different input types and training losses. The compression
models are (a) hyperprior (Ballé et al., 2018) and (b) hyperprior-context (Minnen et al., 2018),
respectively.

In the experiments, we use the pre-trained compression models with a range of quality levels in the
CompressAI (Bégaint et al., 2020) library. The parameters of the compression models are fixed dur-
ing the training process of both the pixel-domain and compressed-domain models to avoid affecting
the compression performance of these well-trained compression models.

4.2 IMAGE CLASSFICATION

Dataset For classification, we evaluate our method on the ImageNet dataset (Russakovsky et al.,
2015), which is a large-scale classification dataset covering 1000 classes with 1.2M training images
and 50K validation images.

Experimental setup Because hyperprior-based compression models require the size of input im-
ages to be an integer multiple of 64, images are resized and cropped to the size of 256 × 256 for
training and evaluation to avoid extra padding operations. For compressed-domain classification,
the size of the compressed representations is 16 × 16 × 192, correspondingly. For the calculation
of the transfer loss for compressed-domain classification, we use the pre-trained ResNet-50 model
in the PyTorch (Paszke et al., 2019) library as the teacher model. The teacher features and output
logits are extracted from original images by the teacher model. The weight λ in loss function (1) is
set to 1.0 by default. All the models in this experiment are trained with the same strategy for a fair
comparison. Refer to Appendix A.3 for more training details.

Results We compare the classification accuracy of pixel-domain and compressed-domain models
at four compression operating points. The results are shown in Figure 3. When training with only the
cross entropy loss, the performance of compressed-domain models drops significantly, especially at
higher bit rates. The proposed knowledge transfer loss improves the performance of compressed-
domain models by a large margin at all bit rates. The average top-1 accuracy gains are 1.7 and 1.4
for hyperprior and hyperprior-context, respectively.

4.3 INSTANCE SEGMENTATION

Dataset For instance segmentation, we conduct experiments on the COCO 2017 dataset (Lin et al.,
2014). The train2017 split contains 118K images, and the val2017 split contains 5K images.

Experimental setup Following He et al. (2017), images are resized to a maximum size of
800× 1333 without changing the aspect ratio. The corresponding compressed representations have
a maximum size of 50×84. The pre-trained Mask RCNN with ResNet-50-FPN backbone in the De-
tectron2 (Wu et al., 2019) library is used as the teacher model when training the compressed-domain
models. The weight λ in loss function (4) is set to 1.0 by default. The detailed training schedule is
provided in Appendix A.4.

6

Under review as a conference paper at ICLR 2023

0.100 0.125 0.150 0.175 0.200 0.225 0.250 0.275
Bit rate (bpp)

32

33

34

35

36

M
as

k
AP

 (%
)

pixel domain
compressed domain (w/o Ltransfer)
compressed domain (w/ Ltransfer)

(a)

0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24
Bit rate (bpp)

32

33

34

35

36

M
as

k
AP

 (%
)

pixel domain
compressed domain (w/o Ltransfer)
compressed domain (w/ Ltransfer)

(b)

Figure 4: Instance segmentation results for different input types and training losses. The compres-
sion models are (a) hyperprior (Ballé et al., 2018) and (b) hyperprior-context (Minnen et al., 2018),
respectively.

Table 2: Computational cost for pixel-domain and compressed-domain inference. We denote the
decoders of hyperprior and hyperprior-context as ‘decoderhp” and “decoderhc”, respectively.

input size pixel domain compressed domain
256×256 ResNet decoderhp totalhp decoderhc totalhc ResNet (total)

FLOPs (×109) 5.37 10.01 15.38 21.57 26.94 5.29
800×1280 FPN decoderhp totalhp decoderhc totalhc FPN (total)

FLOPs (×109) 137.15 156.41 293.56 337.05 474.2 155.25

Results The instance segmentation results for pixel-domain and compressed-domain models are
shown in Figure 4. We report the standard mask average precision (AP) metric, which averages
APs over IoU thresholds from 0.5 to 0.95 with an interval of 0.05. Without the transfer loss, the
performance gap between compressed-domain and pixel-domain models is larger than that in clas-
sification. It is because instance segmentation requires more fine-grained pixel-level information,
which is difficult to directly learn from compressed-domain representations. By transferring the se-
mantic information learned by pixel-domain models, the performance of compressed-domain mod-
els improves notably. Our method improves the mask AP by an average of 2.9 for both compression
models, and outperforms pixel-domain models by more than 1.0 mask AP on average. We also
report the bounding box AP on object detection in Appendix A.5.

4.4 COMPUTATIONAL COST ANALYSIS

The most important advantage of learning in compressed domain is that the computational cost
of the image decoder can be saved. Table 2 reports the computational cost for pixel-domain and
compressed-domain inference. For classification, given an image of size 256×256, the pixel-domain
ResNet-50 requires about 5.37 GFLOPs, and the proposed compressed-domain ResNet-50 requires
5.29 GFLOPs. However, to reconstruct an image of size 256× 256 from a compressed latent of size
16× 16× 192, the computational complexity of the decoders of hyperprior and hyperprior-context
are 10.01 GFLOPs and 21.57 GFLOPs, respectively, which are far more than that of inference
models. Considering that real-world images to be compressed can be of much larger resolutions,
learning in compressed domain is essential for a low-latency computer vision system.

For instance segmentation, the computational cost of Mask RCNN is highly dependent on the num-
ber of object candidates, which varies according to the content of images and the performance of
models. Therefore, we only compare the computational cost of the FPN backbone. For an image of
size 800 × 1280, the pixel-domain FPN backbone requires 137.15 GFLOPs, and the compressed-
domain FPN backbone requires 155.25 GFLOPs. The extra complexity of compressed-domain FPN
mainly comes from the sub-pixel convolutions introduced in Section 3.3.1. However, to reconstruct
an image of size 800 × 1280, the decoders of hyperprior and hyperprior-context require 156.41
GFLOPs and 337.05 GFLOPs, respectively. Therefore, the total computational cost of the pixel-
domain model is still much higher than that of the compressed-domain model.

7

Under review as a conference paper at ICLR 2023

Table 3: Ablation analysis of the transfer loss on compressed-domain classification and instance
segmentation. The compression model is hyperprior with a quality level of 4.

λ Lfeature Loutput Top 1 (%) Top 5 (%) bbox AP (%) mask AP (%)

1.0

73.5 91.5 37.7 33.8
✓ 74.6 92.0 40.2 36.3

✓ 74.8 92.3 39.8 35.8
✓ ✓ 75.2 92.4 40.8 36.7

0.2 ✓ ✓ 74.4 91.8 40.5 36.4
5.0 ✓ ✓ 75.1 92.4 40.4 36.5

4.5 ABLATION STUDY

Type of transfer loss In this experiment, we perform knowledge transfer at feature level and out-
put level separately to better analyze the effects of different types of knowledge transfer. The results
are shown in Table 3. We observe that both losses can improve the performance of compressed-
domain models individually, and it seems that they are complementary to each other. For image
classification, the performance gain from output-level transfer is larger than that from feature-level
transfer, while for instance segmentation, the feature-level transfer seems more important. This is
reasonable because instance segmentation heavily depends on the quality of the multi-scale features
to accurately locate and segment objects, while the knowledge contained in the output probability
distributions is more closely associated with classification.

For classification, We also consider calculating the feature-level transfer loss on both the conv4 and
conv5 features, while the output-level transfer loss keeps the same. The resulting top-1 and top-5
accuracy are 74.9 and 92.3, respectively, which are worse than using only the conv5 features.

Weight of transfer loss We adjust the weight λ in loss function (1) and (4). The results are shown
in the last two rows of Table 3. We observe that the results are insensitive to the values of λ. The best
performance is achieved when λ is 1.0. Finer tuning of the weights may further boost performance,
but it is not the focus of this work.

Stem block We simplify the proposed compressed-domain ResNet by replacing the stacked resid-
ual blocks in the stem block with a single 1×1 convolution layer. Such a simplification reduces the
computational complexity, but only has a minor impact on the accuracy. The detailed results are
provided in Appendix A.6.

4.6 COMPARISON WITH EXISTING METHODS

There are few methods focusing on learning in compressed domain. The most related methods are
proposed by Torfason et al. (2018) and Wang et al. (2022). They designed different variants of the
ResNet-50 model for compressed-domain inputs and trained the models with original task-specific
loss. Following the setting in previous methods, the input images are resized and cropped to a size
of 224× 224 for classification. The corresponding sizes of compressed-domain representations are
28× 28 for Torfason et al. (2018) and 14× 14 for Wang et al. (2022) and ours.

The results on ImageNet are shown in Figure 5. Our method outperforms existing methods sig-
nificantly. Note that Wang et al. (2022) use the compression model in Choi et al. (2019), which is
comparable to the hyperprior model we used. The image reconstruction quality of different methods
is reported in Appendix A.7.

5 LEARNING IN PIXEL DOMAIN VIA KNOWLEDGE TRANSFER

As shown in Figure 1, the pixel-domain CNN can use both original images and reconstructed images
as input. When the model is trained on reconstructed images, the performance of vision tasks drops
significantly as the quality of images degrades (see Figure 3 and Figure 4). In this section, we
extend the proposed method to improve the performance of pixel-domain models. Specifically, the
model trained on original images is used as the teacher model, whose knowledge is transferred to

8

Under review as a conference paper at ICLR 2023

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Bit rate (bpp)

55.0

57.5

60.0

62.5

65.0

67.5

70.0

72.5

75.0

To
p

1
Ac

cu
ra

cy
 (%

)
Torfason et al.
Wang et al.
Ours

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Bit rate (bpp)

78

80

82

84

86

88

90

92

To
p

5
Ac

cu
ra

cy
 (%

)

Torfason et al.
Wang et al.
Ours

(b)

Figure 5: Image classification accuracy on ImageNet, comparing with existing methods Torfason
et al. (2018) and Wang et al. (2022). Our compression model is hyperprior.

Table 4: Comparison of the effects of the transfer loss on pixel-domain and compressed-domain
tasks. The compression model is hyperprior.

Input Ltransfer Top 1 (%) Top 5 (%) bbox AP (%) mask AP (%)

Quality = 1
image 70.4 89.7 36.2 32.5

✓ 71.8 90.4 37.8 34.0

latent 70.6 89.6 35.0 31.4
✓ 72.4 90.6 38.2 34.3

Quality = 4
image 74.8 92.1 39.8 36.0

✓ 76.0 92.9 41.0 37.0

latent 73.5 91.5 37.7 33.8
✓ 75.2 92.4 40.8 36.7

the models trained on compressed images in the same way as in Section 3.2.2 and Section 3.3.2.
We conduct experiments on both classification and instance segmentation, and use the hyperprior
models at two compression operation points.

Table 4 shows the effect of the knowledge transfer loss on pixel-domain models, where the results
in compressed domain are also provided for comparison. With the proposed transfer loss, the per-
formance on compressed images is also improved, which illustrates that the original task loss is not
sufficient for training a model on the lossy compressed images. In other words, the information
contained in the compressed images cannot be fully utilized with the conventional training loss even
the models have the capacity to perform better.

Another observation is that when both trained with the transfer loss, the performance of compressed-
domain models is still better than that of pixel-domain models at high compression ratio (quality =
1) on both tasks, which shows another advantage of learning in compressed domain.

6 CONCLUSION

In this paper, we consider learning from the compressed-domain representations produced by
learned state-of-the-art compression models directly. We first modify the architectures of standard
ResNet and Feature Pyramid Network to support compressed-domain image classification and in-
stance segmentation. In order to narrow the performance gap between compressed-domain and
pixel-domain models, we propose to transfer the knowledge learned by pixel-domain models to
compressed-domain models, which is implemented by an additional knowledge transfer loss. Ex-
periments on ImageNet and COCO datasets demonstrate the effectiveness and generalization ability
of our proposed method, which improves the performance of compressed-domain models signifi-
cantly and has even superior accuracy to learning on reconstructed images. In addition, because
image reconstruction is not required, our method has much lower computational complexity than
learning in the pixel domain, which is crucial for a low-latency computer vision system. We also
extend the proposed method to pixel-domain models, and demonstrate that it can alleviate the per-
formance degradation caused by compression artifacts under low bit rates.

9

Under review as a conference paper at ICLR 2023

REPRODUCIBILITY STATEMENT

Our experiments are based on the open-source libraries Pytorch (Paszke et al., 2019), Compress AI
(Bégaint et al., 2020) and Detectron2 (Wu et al., 2019). The experimental settings are described in
Section 4.1, 4.2, and 4.3. The details of data processing steps and training process are provided in
Appendix A.3 and A.4.

REFERENCES

Johannes Ballé, Valero Laparra, and Eero P Simoncelli. End-to-end optimized image compression.
In International Conference on Learning Representations, 2017.

Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin Hwang, and Nick Johnston. Variational
image compression with a scale hyperprior. In International Conference on Learning Represen-
tations, 2018.

Jean Bégaint, Fabien Racapé, Simon Feltman, and Akshay Pushparaja. Compressai: a py-
torch library and evaluation platform for end-to-end compression research. arXiv preprint
arXiv:2011.03029, 2020.

Fabrice Bellard. BPG image format, 2014. URL https://bellard.org/bpg/.

Tong Chen, Haojie Liu, Zhan Ma, Qiu Shen, Xun Cao, and Yao Wang. End-to-end learnt image
compression via non-local attention optimization and improved context modeling. IEEE Trans-
actions on Image Processing, 30:3179–3191, 2021.

Zhengxue Cheng, Heming Sun, Masaru Takeuchi, and Jiro Katto. Learned image compression with
discretized gaussian mixture likelihoods and attention modules. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 7939–7948, 2020.

Yoojin Choi, Mostafa El-Khamy, and Jungwon Lee. Variable rate deep image compression with a
conditional autoencoder. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 3146–3154, 2019.

Thomas M Cover. Elements of information theory. John Wiley & Sons, 1999.

Max Ehrlich and Larry S Davis. Deep residual learning in the jpeg transform domain. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 3484–3493, 2019.

Lionel Gueguen, Alex Sergeev, Ben Kadlec, Rosanne Liu, and Jason Yosinski. Faster neural net-
works straight from jpeg. Advances in Neural Information Processing Systems, 31, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In Proceedings of the
IEEE international conference on computer vision, pp. 2961–2969, 2017.

Byeongho Heo, Jeesoo Kim, Sangdoo Yun, Hyojin Park, Nojun Kwak, and Jin Young Choi. A
comprehensive overhaul of feature distillation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 1921–1930, 2019.

Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2(7), 2015.

Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with neural
networks. science, 313(5786):504–507, 2006.

JPEG-AI. Final call for proposals for jpeg ai, January 2022. SO/IEC JTC 1/SC29/WG1 N100095.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. Communications of the ACM, 60(6):84–90, 2017.

10

https://bellard.org/bpg/

Under review as a conference paper at ICLR 2023

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European
conference on computer vision, pp. 740–755. Springer, 2014.

Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie.
Feature pyramid networks for object detection. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pp. 2117–2125, 2017.

Jinming Liu, Heming Sun, and Jiro Katto. Learning in compressed domain for faster machine
vision tasks. In 2021 International Conference on Visual Communications and Image Processing
(VCIP), pp. 01–05. IEEE, 2021.

Yixin Mei, Fan Li, Li Li, and Zhu Li. Learn a compression for objection detection-vae with a bridge.
In 2021 International Conference on Visual Communications and Image Processing (VCIP), pp.
1–5. IEEE, 2021.

David Minnen, Johannes Ballé, and George Toderici. Joint autoregressive and hierarchical priors
for learned image compression. In NeurIPS, 2018.

Wonpyo Park, Dongju Kim, Yan Lu, and Minsu Cho. Relational knowledge distillation. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3967–3976,
2019.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems 32, pp.
8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

Yichen Qian, Zhiyu Tan, Xiuyu Sun, Ming Lin, Dongyang Li, Zhenhong Sun, Hao Li, and Rong
Jin. Learning accurate entropy model with global reference for image compression. arXiv preprint
arXiv:2010.08321, 2020.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: towards real-time object
detection with region proposal networks. IEEE transactions on pattern analysis and machine
intelligence, 39(6):1137–1149, 2016.

Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and
Yoshua Bengio. Fitnets: Hints for thin deep nets. In International Conference on Learning
Representations, 2015.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. International journal of computer vision, 115(3):211–252, 2015.

Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz, Andrew P Aitken, Rob Bishop, Daniel
Rueckert, and Zehan Wang. Real-time single image and video super-resolution using an efficient
sub-pixel convolutional neural network. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 1874–1883, 2016.

Athanassios Skodras, Charilaos Christopoulos, and Touradj Ebrahimi. The jpeg 2000 still image
compression standard. IEEE Signal processing magazine, 18(5):36–58, 2001.

Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive representation distillation. In Inter-
national Conference on Learning Representations, 2020.

Robert Torfason, Fabian Mentzer, Eirikur Agustsson, Michael Tschannen, Radu Timofte, and Luc
Van Gool. Towards image understanding from deep compression without decoding. In Interna-
tional Conference on Learning Representations, 2018.

11

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

Under review as a conference paper at ICLR 2023

Gregory K Wallace. The jpeg still picture compression standard. IEEE transactions on consumer
electronics, 38(1):xviii–xxxiv, 1992.

Zhenzhen Wang, Minghai Qin, and Yen-Kuang Chen. Learning from the cnn-based compressed
domain. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision,
pp. 3582–3590, 2022.

Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick. Detectron2.
https://github.com/facebookresearch/detectron2, 2019.

Kai Xu, Minghai Qin, Fei Sun, Yuhao Wang, Yen-Kuang Chen, and Fengbo Ren. Learning in the
frequency domain. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 1740–1749, 2020.

Borui Zhao, Quan Cui, Renjie Song, Yiyu Qiu, and Jiajun Liang. Decoupled knowledge distillation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
11953–11962, 2022.

12

https://github.com/facebookresearch/detectron2

Under review as a conference paper at ICLR 2023

A APPENDIX

A.1 MODEL ARCHITECTURE

Table 5 shows the detailed architectures of pixel-domain and compressed-domain ResNet-50. For
pixel-domain ResNet, downsampling is performed by conv3 1, conv4 1, and conv5 1 with a stride of
2. For compressed-domain ResNet, downsampling is only performed by conv5 1. The output sizes
of different stages and the FLOPs of models are reported for RGB images of size 256× 256× 3 and
for compressed latent representations of size 16× 16× 192.

Table 5: Architectures for pixel-domain and compressed-domain ResNet-50. Building blocks are
shown in brackets, with the numbers of blocks stacked.

stage name output size pixel domain compressed domain

stem 64× 64 (pixel)
16× 16 (compressed)

7× 7, 64, stride 2
3× 3 max pool, stride 2

[
3× 3, 192
3× 3, 192

]
× 3

conv2 x 64× 64

[
1× 1, 64
3× 3, 64
1× 1, 256

]
× 3 none

conv3 x 32× 32

[
1× 1, 128
3× 3, 128
1× 1, 512

]
× 4 none

conv4 x 16× 16

[
1× 1, 256
3× 3, 256
1× 1, 1024

]
× 6

[
1× 1, 256
3× 3, 256
1× 1, 1024

]
× 13

conv5 x 8× 8

[
1× 1, 512
3× 3, 512
1× 1, 2048

]
× 3

[
1× 1, 512
3× 3, 512
1× 1, 2048

]
× 3

1× 1 average pool, 1000-d fc, softmax
FLOPs 5.37× 109 5.29× 109

A.2 LOSS FUNCTIONS OF MASK RCNN

In this section, we provide a brief introduction of the loss functions used in Mask RCNN (He et al.,
2017). For the RPN of Mask RCNN, we denote the predicted bounding box coordinate offsets as
tprpn and the predicted objectness score as pp

obj . Then the RPN loss is formulated as:

LRPN = Lobj(p
p
obj ,p

p∗
obj) + pp∗

obj · Lreg(t
p
rpn, t

p∗
rpn), (5)

where pp∗
obj and tp∗rpn represent the ground-truth labels, the classification loss Lobj is the binary cross

entropy loss, and the regression loss Lreg is the smooth L1 loss, which is only calculated for positive
bounding boxes.

For each candidate object, the RoI head of Mask RCNN outputs a class prediction pp, bounding box
offsets tproi, and object masks mp. Then the RoI loss can be written as:

LRoI = Lcls(p
p,pp∗) + pp∗ · Lreg(t

p
roi, t

p∗
roi) + pp∗ · Lmask(m

p,mp∗), (6)

where Lcls is the cross entropy loss, Lreg is the smooth L1 loss, and Lmask is the average pixel-wise
binary cross entropy loss. The loss terms Lreg and Lmask are also only calculated for foreground
proposals, and only defined on the k-th bounding box and k-th mask for an RoI associated with
ground-truth class k.

A.3 TRAINING DETAILS FOR CLASSIFICATION

For training the classification models, images are randomly cropped and the cropped patches are
resized to 256 × 256. Random horizontal flipping is used for data augmentation. For evaluation,
images are resized first to make the shorter size 256, and then center cropping is used to generate
square images of 256× 256. The corresponding size of compressed representations is 16× 16. We

13

Under review as a conference paper at ICLR 2023

use the SGD optimizer with a batch size of 256. The learning rate starts from 0.1 and is divided
by 10 every 30 epochs. The momentum of SGD is 0.9 and the weight decay is 0.0001. All the
models are trained for a total of 100 epochs. We use the automatic mixed precision (amp) package
in PyTorch to accelerate training.

A.4 TRAINING DETAILS FOR INSTANCE SEGMENTATION

The instance segmentation models are trained following the default configurations in Detectron2
(Wu et al., 2019). Images are resized with their shorter edges randomly sampled in (640, 672, 704,
736, 768, 800) for training. As for evaluation, images are resized such that the shorter edge is 800
pixels. The models are trained for 270K iterations with a batch size of 16. The SGD optimizer is
applied with a weight decay of 0.0001 and a momentum of 0.9. The initial learning rate is 0.02, and
is divided by 10 at 210K and 250K iterations. The automatic mixed precision technique is also used
in training.

A.5 RESULTS ON OBJECT DETECTION

Figure 6 shows the results on object detection, which is similar to the results on instance seg-
mentation. By transferring the knowledge learned by pixel-domain models, the performance of
compressed-domain models improves significantly. Our method improves the bounding box AP by
an average of 3.0 for both compression models, and outperforms pixel-domain models by more than
1.3 box AP on average.

0.100 0.125 0.150 0.175 0.200 0.225 0.250 0.275
Bit rate (bpp)

35

36

37

38

39

40

41

Bo
un

di
ng

 b
ox

 A
P

(%
)

pixel domain
compressed domain (w/o Ltransfer)
compressed domain (w/ Ltransfer)

(a)

0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24
Bit rate (bpp)

35

36

37

38

39

40

Bo
un

di
ng

 b
ox

 A
P

(%
)

pixel domain
compressed domain (w/o Ltransfer)
compressed domain (w/ Ltransfer)

(b)

Figure 6: Object detection results for different input types and training losses. The compression
models are (a) hyperprior (Ballé et al., 2018) and (b) hyperprior-context (Minnen et al., 2018),
respectively.

A.6 ABLATION STUDY OF THE STEM BLOCK

We consider replacing the original stem block in the proposed compress-domain ResNet with a
simple 1×1 convolution layer. Results on classification and instance segmentation are shown in
Table 6. The numbers of FLOPs are reported for compressed-domain ResNet with latents of size
16 × 16 as input. The simplified model has fewer FLOPs, but the accuracy for both tasks is still
comparable to the original model.

Table 6: The results of compressed-domain models with different stem blocks. The compression
model is hyperprior.

stem block Top 1 (%) Top 5 (%) bbox AP (%) mask AP (%) FLOPs

Quality = 1 ResBlocks 72.4 90.6 38.2 34.3 5.29× 109

1×1 Conv 72.0 90.6 38.1 34.3 4.91× 109

Quality = 4 ResBlocks 75.2 92.4 40.8 36.7 5.29× 109

1×1 Conv 75.0 92.3 40.6 36.6 4.91× 109

14

Under review as a conference paper at ICLR 2023

A.7 IMAGE RECONSTRUCTION PERFORMANCE

Figure 7 compares the image reconstruction performance of the compression models used in our
experiments and existing methods (Torfason et al., 2018; Wang et al., 2022). We use the hyperprior
model in Ballé et al. (2018), which is comparable to the compression model (Choi et al., 2019) used
in Wang et al. (2022).

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Bit rate (bpp)

22

24

26

28

30

32

34

PS
NR

 (d
B)

Torfason et al.
Wang et al.
Ours

Figure 7: Image reconstruction results on ImageNet validation set, comparing with existing methods
Torfason et al. (2018) and Wang et al. (2022). Our compression model is hyperprior.

15

	Introduction
	Related Work
	Method
	Compressed Representation
	Compressed-domain Image Classification
	Model Architecture
	Training Loss

	Compressed-domain Instance Segmentation
	Model Architecture
	Training Loss

	Experiments
	Learned Compression Models
	Image Classfication
	Instance Segmentation
	Computational Cost Analysis
	Ablation Study
	Comparison with Existing Methods

	Learning in Pixel Domain via Knowledge Transfer
	Conclusion
	Appendix
	Model Architecture
	Loss Functions of Mask RCNN
	Training Details for Classification
	Training Details for Instance Segmentation
	Results on Object Detection
	Ablation Study of the Stem Block
	Image Reconstruction Performance

