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Figure 1: Curated examples of images generated by DART at 2562, 5122 and 10242 pixels.

ABSTRACT

Diffusion models have become the dominant approach for visual generation. They
are trained by denoising a Markovian process which gradually adds noise to
the input. We argue that the Markovian property limits the model’s ability to
fully utilize the generation trajectory, leading to inefficiencies during training
and inference. In this paper, we propose DART, a transformer-based model that
unifies autoregressive (AR) and diffusion within a non-Markovian framework.
DART iteratively denoises image patches spatially and spectrally using an AR
model that has the same architecture as standard language models. DART does
not rely on image quantization, which enables more effective image modeling
while maintaining flexibility. Furthermore, DART seamlessly trains with both
text and image data in a unified model. Our approach demonstrates competitive
performance on class-conditioned and text-to-image generation tasks, offering a
scalable, efficient alternative to traditional diffusion models. Through this unified
framework, DART sets a new benchmark for scalable, high-quality image synthesis.

1 INTRODUCTION

Recent advancements in deep generative models have led to significant breakthroughs in visual
synthesis, with diffusion models emerging as the dominant approach for generating high-quality
images (Rombach et al., 2022; Esser et al., 2024). Diffusion models (Sohl-Dickstein et al., 2015;
Ho et al., 2020) operate by progressively adding Gaussian noise to an image and learning to reverse
this process in a sequence of denoising steps. Despite their success, these models are difficult to
train on high resolution images directly, requiring either cascaded models (Ho et al., 2022), or
multiscale approaches (Gu et al., 2023) or preprocessing of images to autoencoder codes at lower
resolutions (Rombach et al., 2022). These limitations can stem from their reliance on the Markovian
assumption, which simplifies the generative process but restricts the model only to see the generation
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Figure 2: (←) A general illustration of the proposed DART. The model autoregressively denoises
image through a Transformer until a clean image is generated. Here, whole images are shown for
visualization purpose; (→) We show the architecture details which integrates state-of-the-art designs
similar to common language models (Dubey et al., 2024).

from the previous step. This often leads to inefficiencies during training and inference, as the
individual steps of denoising are unaware of the trajectory of generations from prior steps.

In parallel, autoregressive models, such as GPT-4 (Achiam et al., 2023), have shown great success in
modeling long-range dependencies in sequential data, particularly in the field of natural language
processing. These models efficiently cache computations and manage dependencies across time
steps, which has also inspired research into adapting autoregressive models for image generation.
However, early efforts such as PixelCNN (Oord et al., 2016), while promising, suffered from high
computational costs due to pixel-wise generation. More recent models like VQ-GAN (Esser et al.,
2021a) and related work (Yu et al., 2022; Team, 2024; Tian et al., 2024) learn models of quantized
images in a compressed latent space; Li et al. (2024) propose to generate directly in such space
without quantization by employing a diffusion-based loss function. However, these methods fail
to fully leverage the progressive denoising benefits of diffusion models, resulting in limited global
context and error propagation during generation.

To address these limitations, we propose Denoising AutoRegressive Transformer (DART), a novel
generative model that integrates autoregressive modeling within a non-Markovian diffusion frame-
work (Song et al., 2021) (Fig. 2). The non-Markovian formulation in DART enables the model to
leverage the full generative trajectory during training and inference, while retaining the progressive
modeling benefits of diffusion models, resulting in more efficient and flexible generation compared
to traditional diffusion and autoregressive approaches. Additionally, DART introduces two key
improvements to address the limitations of the non-Markovian approach: (1) token-level autoregres-
sive modeling (DART-AR), which captures dependencies between image tokens autoregressively,
enabling finer control and improved generation quality, and (2) a flow-based refinement module
(DART-FM), which enhances the model’s expressiveness and smooths transitions between denoising
steps. These extensions make DART a flexible and efficient framework capable of handling a wide
range of tasks, including class conditional, text-to-image, as well as multimodal generation.

DART offers a scalable, efficient alternative to traditional diffusion models, achieving competitive
performance on standard benchmarks for class-conditioned (e.g., ImageNet (Deng et al., 2009)) and
text-to-image generation. To summarize, major contributions of our work include:

• We propose DART, a novel non-Markovian diffusion model that leverages the full denoising trajec-
tory, leading to more efficient and flexible image generation compared to traditional approaches.

• We propose two key improvements: DART-AR and DART-FM, which improve the expressiveness
and coherence throughout the non-Markovian generation process.

• DART achieves competitive performance in both class-conditioned and text-to-image generation
tasks, offering a scalable and unified approach for high-quality, controllable image synthesis.
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2 BACKGROUND

2.1 DIFFUSION MODELS

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2020) are latent variable
models given a pre-defined posterior distribution, and trained with a denoising objective. These
models have gained widespread use in image generation (Rombach et al., 2021; Peebles & Xie,
2022; Podell et al., 2023; Esser et al., 2024). Diffusion models produce the entire image in a non-
autoregressive manner through iterative processes. Specifically, given an image x0 ∈ R3×H×W , we
define a series of latent variables xt (t = 1, · · · , T ) with a Markovian process which gradually adds
noise to the original image x0. The transition q(xt|xt−1) and the marginal q(xt|x0) probabilities
are defined as follows, respectively:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI), q(xt|x0) = N (xt;

√
ᾱtx0, (1− ᾱt) I), (1)

where ᾱt =
∏t

τ=1(1 − βτ ), 0 < βt < 1 are determined by the noise schedule. The model learns
to reverse this process with a backward model pθ(xt−1|xt), which aims to denoise the image. The
training objective for the model is:

minLDM
θ = Et∼[1,T ],xt∼q(xt|x0)[ωt · ∥xθ(xt, t)− x0∥22], (2)

where xθ(xt, t) is a time-conditioned denoiser that learns to map the noisy sample xt to its clean
version x0; ωt is a time-dependent loss weighting, which usually uses SNR (Ho et al., 2020)
or SNR+1 (Salimans & Ho, 2022). Practically, xt can be re-parameterized with noise- or v-
prediction (Salimans & Ho, 2022) for enhanced performance, and can be applied on pixel space (Gu
et al., 2023; Saharia et al., 2022) or latent space, encoded by a VAE encoder (Rombach et al., 2021).
However, standard diffusion models are computationally inefficient, requiring numerous denoising
steps and extensive training data. Moreover, they lack the ability to leverage generation context
effectively, hindering scalability to complex scenes and long sequences like videos.

2.2 AUTOREGRESSIVE MODELS

In the field of natural language processing, Transformer models have achieved notable success in
autoregressive modeling (Vaswani et al., 2017; Raffel et al., 2020). Building on this success, similar
approaches have been applied to image generation (Parmar et al., 2018; Esser et al., 2021a; Chen et al.,
2020; Yu et al., 2022; Sun et al., 2024; Team, 2024). Different from diffusion-based methods, these
methods typically focus on learning the dependencies among discrete image tokens (e.g., through
Vector Quantization (Van Den Oord et al., 2017)). To elaborate, consider an image x ∈ R3×H×W .
The process begins by encoding this image into a sequence of discrete tokens z1:N = E(x). These
tokens are designed to approximately reconstruct the original image through a learned decoder
x̂ = D(z1:N ). An autoregressive model is then trained by maximizing the cross-entropy as follows:

maxLCE
θ =

N∑
n=1

logPθ(zn|z0:n−1), (3)

where z0 is the special start token. During the inference phase, the autoregressive model is first used
to sample tokens from the learned distribution, and then decode them into image space using D.

As discussed in Kilian et al. (2024), autoregressive models offer significant efficiency advantages over
diffusion models by caching previous steps in memory and enabling the entire generation process to
be computed in a single parallel forward pass. This reduces computational overhead and accelerates
training and inference. However, the reliance on quantization can lead to information loss, potentially
degrading generation quality. Additionally, the linear, step-by-step nature of token prediction may
overlook the global structure, making it challenging to capture long-range dependencies and holistic
coherence in complex scenes or sequences.

3 DART

3.1 NON-MARKOVIAN DIFFUSION FORMULATION

We start by revisiting the basics of diffusion models from the perspective of hierarchical variational
auto-encoders (HVAEs, Kingma & Welling, 2013; Child, 2021). Given a data-point x0, a hierarchical
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VAE models generation process pθ of a sequence of latent variables xt(t = T . . . 1)1 by maximizing
a evidence lower bound (ELBO):

maxLELBO
θ,ϕ = Ex1:T∼qϕ(x)

[
T∑

t=1

log pθ(xt−1|xt:T ) + log pθ(xT )− log qϕ(x1:T |x0)

]
, (4)

where x0 is the real data, and qϕ is a learnable inference model. As pointed out in VDM (Kingma
et al., 2021), diffusion models can essentially be seen as HVAEs with three specific modifications:

1. A fixed inference process q which gradually adds noise to corrupt data x0;
2. Markovian forward and backward process where xt depends only on xt+1 (Eq (1));
3. Noise-dependent loss weighting that reweighs ELBO with a focus on perception.

Only with all above simplifications combined, standard diffusion models can be formulated as Eq (2)
where the generator becomes Markovian pθ(xt−1|xt:T ) = pθ(xt−1|xt) so that one can randomly
sample t to learn each transition independently. This greatly simplifies modeling, enabling training
models with sufficiently large number of steps (e.g., T = 1000 for original DDPM (Ho et al., 2020))
without suffering from memory issues.

In prior research, these aspects are highly coupled, and few works attempt to disentangle them. We
speculate that the Markovian assumption might not be a necessary requirement for a high generation
quality, as long as the fixed posterior distribution and flexible loss weightings are maintained. As a
side evidence, one can achieve reasonable generation with much fewer steps (e.g., 100) at inference
time using non-Markovian HVAE. On the contrary, the Markovian modeling forces all information
compressed solely in the corrupted data from previous noise level which could be an obstacle
preventing efficient learning and require more inference steps.

NOn-MArkovian Diffusion Models (NOMAD) In this paper, we reconsider the original form of
generator pθ(xt−1|xt:T ) of HVAEs while maintaining the modifications, 1 and 3, made by diffusion
models. More precisely, we learn the following weighted ELBO loss (Eq (4)) with adjustable ω̃t:

maxLNOMAD
θ = Ex1:T∼q(x0)

[
T∑

t=1

ω̃t · log pθ(xt−1|xt:T )

]
, (5)

where q is the pre-defined inference process. This formulation shares many similarities as autoregres-
sive (AR) models in Eq (3), where in our case, each token represents a noisy sample xt. Therefore, it
is natural to implement such process with autoregressive Transformers (Vaswani et al., 2017).

However, the Markovian inference process of standard diffusion models makes it impossible for the
generator θ to use the entire context except for xt. That is to say, even if we initiate our generator as
pθ(xt−1|xt:T ), the model only needs information in xt in order to best denoise xt−1. Therefore, it
is critical to design a fixed and non-Markovian2 inference process q(xt|x0:t−1) to sample the noisy
sequences x1:T ∼ x0. The simplest approach is to perform an independent noising process:

q(xt|x0:t−1) = q(xt|x0) = N (xt;
√
γtx0, (1− γt)I), ∀t ∈ [1, T ], (6)

where γt represents the non-Markovian noise schedule. Note that, while Eq (6) may look close to the
marginal distribution of the original diffusion models (Eq (1)), the underlying meaning is different
as xt is conditionally independent given x0. In practice, one can also choose a more complex
non-Markovian process as presented in DDIM (Song et al., 2021), and we leave this exploration in
future work. Additionally, we can show the following proposition:

Proposition 1. A non-Markovian diffusion process {xt}t with independent noising γt has a bijection
to a Markovian diffusion process {yt}t with the same number of steps and noise level {ᾱt}t; {yt}t
achieves the maximal signal-to-noise ratio when its noise level satisfies ᾱt

1−ᾱt
=
∑T

τ=t
γτ

1−γτ
.

We defer the proof to Appendix A. The above proposition indicates that we can carefully choose a
set of noise level γt to model the same information-destroying process as a comparable diffusion
baseline, while modeling with the entire generation trajectory.

1We follow the same notation of time indexing in diffusion models for consistency.
2The term non-Markovian refers to xt is not only related to the previous step xt−1.
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(a) (b) (c)

Figure 3: Attention masks for (a) DART and (b) DART-AR, highlighting their different structures.
(c) Comparison of learning curves, demonstrating the superior performance of DART-AR.

3.2 PROPOSED METHODS

Denoising AutoRegressive Transformer (DART) We propose DART – a Transformer-based
generative model that implements non-Markovian diffusion with an independent noising process (see
Figure 2). First, following DiT (Peebles & Xie, 2022), we represent each image by first extracting
the latent map with a pretrained VAE (Rombach et al., 2021), patchify, and flatten the map into a
sequence of continuous tokens xt ∈ RK×C , where K is the length, and C is the channel dimension.
When considering multiple noise levels, we concat tokens along the length dimension. Then, DART
models the generation as pθ(xt−1|xt:T ) = N

(
xt−1;

√
γt−1xθ(xt:T ), (1− γt−1)I

)
, where xθ(.) is

a Transformer network that takes in the concatenated sequence xt:T ∈ RK(T−t)×C , and predicts the
“mean” of the next noisy image. By combining with Eq (6), we simplify Eq (5) as:

minLDART
θ = Ex1:T∼q(x0)

[
T∑

t=1

ωt · ∥xθ(xt:T )− x0∥22

]
, (7)

where we define ωt =
γt−1

1−γt−1
ω̃t to simplify the notation. Similar to standard AR models, training of

T denoising steps is in parallel, where computations across different steps are shared. A chunk-based
causal mask is used to maintain the autoregressive structure (see Figure 3(a)).

It is evident from Eq (7) that the objective is similar to the original diffusion objective (Eq (2)),
demonstrating that DART can be trained as robustly as standard diffusion models. Additionally,
by leveraging the diffusion trajectory within an autoregressive framework, DART allows us to
incorporate the proven design principles of large language models (Brown et al., 2020; Dubey et al.,
2024). Furthermore, Proposition 1 indicates that we can select ωt according to its associated diffusion
process. For instance, with SNR weighting (Ho et al., 2020), ωt can be defined as ωt =

∑T
τ=t

γτ

1−γτ
.

Sampling from DART is straightforward: we simply predict the mean xθ(xt:T ), add Gaussian noise
to obtain the next step x̂t−1, and feed that to the following iteration. Unlike diffusion models,
no complex solvers are needed. Similar to diffusion models, classifier-free guidance (CFG, Ho &
Salimans, 2021) is applied to the prediction of xθ for improved visual quality. Additionally, KV-cache
is employed to enhance decoding efficiency.

Limitations of Naive DART Unlike diffusion models, which can be trained with a large number
of steps T , non-Markovian modeling is constrained by memory consumption as T increases. For
example, using T = 16 on 256× 256 images will easily create over 4000 tokens even in the latent
space. This fundamentally limits the modeling capacity on complex tasks such as text-to-image
generation. However, the flexibility of the autoregressive structure allows us to enhance the capacity
without compromising scalability. In this work, we propose two methods on top of DART:

1. DART with Token Autoregressive (DART-AR) As similarly discussed by Xiao et al. (2021),
the independent Gaussian assumption of pθ(xt−1|xt:T ) is inaccurate to approximate the complex true
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Figure 4: An illustration for the generation process of DART-FM.

Figure 5: Illustrations of Kaleido-DART, an application for multi-modal generation.

distribution of q(xt−1|xt:T ), especially when T is small. A straightforward solution to model image
denoising as an additional autoregressive model pθ(xt−1|xt:T ) =

∏K
k=1 pθ(x

k
t−1|x<k

t−1,xt:T ):

minLDART-AR
θ = Ex1:T∼q(x0)

[
T∑

t=1

ωt

K∑
k=1

∥xθ(x
<k
t−1,xt:T )− xk

0∥22

]
, (8)

where x1
t−1, . . . ,x

K
t−1 are the K flatten tokens of xt−1. The autoregressive decomposition ensures

each tokens are not independent, which is strictly stronger than the original DART. We demonstrate
this by visualizing the training curve in Figure 3 (c). Training of DART-AR takes essentially the
same amount of computation as standard DART with two additional modifications at the input and
attention masks (see comparison in Figure 3 (a) (b)). At sampling time, DART-AR is relatively much
more expensive as it requires K × T AR steps before it outputs the final prediction.

2. DART with Flow Matching (DART-FM) The above approach models dependency across
tokens, while maintaining Gaussian modeling at each step. Alternatively, we can improve the
expressiveness of pθ(xt−1|xt:T ) by abandoning the Gaussian assumption, similar to Li et al. (2024).
More precisely, we first sample x̃t as in regular DART. Then, we recursively apply a continuous flow
network, vϕ(x̃t, ct, τt), over multiple iterations to bridge the gap between x̃t and xt−1 (see Figure 4).
Here, vϕ(x̃t, ct, τ) models the velocity field for the probabality flow between the distributions of
x̃t and xt−1, τ ∈ [0, 1] denotes the auxiliary flow timestep, and ct = cθ(xt:T ) represents the
features from the last Transformer block, providing contextual information across the noisy image.
Consequently, a simple MLP suffices to model vϕ, adding only a minimal overhead to the total
training cost. We train vϕ via flow matching (Liu et al., 2022; Lipman et al., 2023; Albergo et al.,
2023) due to its simplicity:

minLFM
ϕ,θ = Ex1:T∼q(x0)

T∑
t=1

Eτ∈[0,1]∥vϕ((1− τ)x̃t + τxt−1, ct, τ)− (xt−1 − x̃t)∥22, (9)

where x̃t =
√
γt−1SG [xθ(xt:T )]+

√
1− γt−1ϵ, and ϵ ∼ N (0, I). SG [] is the stop-gradient operator

to avoid trivial solutions in optimization. In practice, we combine Eq (9) with the original DART
objectives, which can be seen as an additional refinement on top of the Gaussian-based prediction.

3.3 MULTI-MODAL GENERATION

Our proposed framework, built on an autoregressive model, naturally extends to discrete token
modeling tasks. This includes discrete latent modeling for image generation (Gu et al., 2024) and
multi-modal generation (Team, 2024). By leveraging a shared architecture, we jointly optimize for
both continuous denoising and next-token prediction loss using cross-entropy for discrete latents
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which we call Kaleido-DART considering its architectual similarity as Gu et al. (2024) (see Figure 5).
To balance inference across modalities, we reweight the discrete loss (Eq (3)) according to the relative
lengths between the discrete and image tokens:

LKaleido
θ = λLCE

θ + LDART
θ , (10)

where λ = # text tokens
# image tokens . It is important to note that our approach is markedly distinct from several

concurrent works aimed at unifying autoregressive and diffusion models within a single parameter
space (Zhou et al., 2024; Xie et al., 2024; Zhao et al., 2024; Xiao et al., 2024). In these efforts, the
primary goal is to adapt language model architectures to perform diffusion tasks, without modifying
the underlying diffusion process itself to account for the shift in model design. As we have discussed,
the Markovian nature of diffusion models inherently limits their ability to leverage generation history,
a feature that lies at the core of autoregressive models. In contrast, DART is designed to merge
the advantages of both autoregressive and diffusion frameworks, fully exploiting the autoregressive
capabilities. This formulation also allows for seamless integration into LLM pipelines.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Dataset We experiment with DART on both class-conditioned image generation on ImageNet (Deng
et al., 2009) and text-to-image generation on CC12M (Changpinyo et al., 2021), where each image is
accompanied by a descriptive caption. All models are trained to synthesize images at 256× 256. For
multimodal generation tasks, we augment CC12M with synthetic captions as additional ground-truth.

Evaluation In line with prior works, we report Fréchet Inception Distance (FID) (Heusel et al.,
2017) to quantify the the realism and diversity of generated images. For text-to-image generation, we
also use the CLIP score (Hessel et al., 2021) to measure how well the generated images align with
the given text instructions. To assess the zero-shot capabilities of the models, we report scores based
on the MSCOCO 2017 (Lin et al., 2014) validation set.

Architecture Following § 3.2, we experimented with three variants of the proposed model: the
default DART, along with two enhanced versions, DART-AR and DART-FM. All variants are
implemented using the same Transformer blocks for consistency. As illustrated in Figure 2, our
design is similar to Dubey et al. (2024), incorporating rotary positional encodings (RoPE, Su et al.,
2024) within the self-attention layers and SwiGLU activation (Shazeer, 2020) in the FFN layers. For
class-conditioned generation, we follow (Peebles & Xie, 2022), adding an AdaLN block to each
Transformer block to integrate class-label information. For text-to-image generation, we replace
AdaLN with additional cross-attention layers over pretrained T5-XL encoder (Raffel et al., 2020).
Since DART uses a fixed noise schedule, there is no need for extra time embeddings as long as RoPE
is active. In addition, for DART-FM, we incorporate a small flow network, implemented as a 3-layer
MLP, which increases the total parameter count by only about 1%.

Training Proposition 1 not only sets a connection between DART and standard diffusion models,
but also allows us to define the noise schedule based on any existing diffusion schedule {ᾱt}t, which
can be inversely mapped to the DART schedule {γt}t using the bijection. In this paper, we adopt the
cosine schedule ᾱt = cos (π/2 · t/T ). We set T = 16 while K = 2563 throughout all experiments
unless otherwise specified. We train all models with a batch size of 128 images, resulting in a total of
0.5M image tokens per update. We use the AdamW optimizer (Loshchilov & Hutter, 2017) with a
cosine learning rate schedule, setting the maximum learning rate to 3e-4.

4.2 RESULTS

Class-conditioned Generation We report the FID scores for conditional ImageNet generation
in Figure 7(a), following the approach of previous works. In line with Li et al. (2024), we apply a
linear CFG scheduler to DART and its variants. As shown in the figure, both -AR and -FM variants
consistently outperform the default DART across all guidance scales, demonstrating the effectiveness

3K = 256 from encoding 256× 256 images with StableDiffusion v1.4 VAE (https://huggingface.
co/stabilityai/sd-vae-ft-ema) with a patch size of 2 and C = 16 channels.
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Figure 6: (a) Uncurated samples generated by class-conditioned image DART trained on ImageNet. (b) Selected
samples generated by text-to-image DART trained on CC12M.

of the proposed improvement strategies. We also compare our methods with DiT (Peebles & Xie,
2022), using both 16 sampling steps (to match DART) and 250 steps (the suggested best setting).
Notably, DART-AR achieves the best FID score of 3.98 among all variants and significantly surpasses
DiT when using 16 steps, highlighting its advantage in leveraging generative trajectories, particularly
when the number of sampling timesteps is limited. Not surprisingly, DiT with 250 steps performs
better than DART. However, it is important to note that the official DiT model is trained for 7M steps,
which is substantially more training iterations than those used for DART.

Figure 8 presents examples of generated results on ImageNet from all models using 16 sampling
steps. DART-FM tends to produce sharper images with higher fidelity at higher CFG values. In
contrast, DART-AR demonstrates an ability to generate more realistic samples at lower CFG values
when compared to both the baselines and other variants.
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(a) FID50K on ImageNet (b) FID30K on COCO (c) CLIP score on COCO

Figure 7: Comparison of DART, DART-AR, DART-FM and baseline models with different CFG guidance
scale on different benchmarks. * denotes models implemented and trained by us.

Figure 8: Sample comparison of DARTs and baseline DiT models with different CFG gudidance scale on
ImageNet with the class label golden retriever.

Text-to-Image Generation To demonstrate the capability of DART at scale, we train the model for
text-to-image generation. We also implement an in-house DiT with cross attention to text condition in
comparison to our models, where we evaluate the performance on both 16 and 250 steps. As shown in
Figure 7, while both -AR and -FM variants still show clear improvements against the default DART,
FM achieves the best FID of 11.12, indicating its ability of handling diverse generation tasks.

Efficiency We compare both the actual inference speed (measured by wall-clock time with batch
size 32 on a single H100) as well as the theoretical computation (measured by GFlops) in 9(a).
Since DART, DART-AR, DART-FM share the same encoder-decoder Transformer architecture,
their flops are roughly the same. However, DART-AR has high wall clock inference time due to
its large autoregressive steps, which have not been well parallelized in our current implementation.
Integrated with recent advances in autoregressive LLMs, DART-AR can be deployed in a more
efficient and we leave this for future investigations. DART-FM also have a inference time overhead
due to the iterations of flow net in inference. Compared to DART, DiT has less flops for a single pass.
However, it requires sufficient many number of iterations to generate high quality samples. DART
has comparable flops and inference time as DiT with 16 sampling timesteps, while DART achieves
better performance than DiT (16) on ImageNet and COCO, showing the efficiency benefits of DART.

Scalibility We show the scalability of our DART by training models of different sizes including
small (S), base (B), large (L), and extra large (XL) on CC12M, where the configurations are listed in
Appendix B.1. Figure 9(b) illustrates how the performance changes as model size increase. Across all
the four models, CLIP score significantly improves by increasing the number of parameters in DART.
Besides, the perform steadily increases as more training iterations are applied. This demonstrates
that our proposed generative paradigm benefits from scaling as previous generative models like
diffusion (Peebles & Xie, 2022) and autoregressive models (Li et al., 2024).

Effects of noise levels. We experiment with different noise levels, where we vary the number
of total noise levels in our denoising framework (Figure 9(c)). A total of T = 4 or 8 noise levels

9
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(a) Inference speed & flops (b) Comparison of model sizes (c) Comparison of # of steps

Figure 9: (a) Inference flops and wall clock time of different models. (b) Performance of DART of different
sizes. (c) Effect of number of noise levels on DART.

Figure 10: Examples of multi-modal generation with Kaleido-DART.

are trained in comparison with standard 16 noise levels. Not surprisingly, less noise levels lead to
gradually degraded performance. However, with as few as 4 noise levels, DART can still generate
plausible samples, indicating the capabilities of deploying DART in a more efficient way. Variants in
noise levels provides a potential option for finding the optimal computation and performance trade-off
especially when compute is limited.

Multimodal Generation We showcase the capabilities of our proposed method in the joint genera-
tion of discrete text and continuous images, as introduced in § 3.3. Figure 10 provides examples of
multimodal generation using the Kaleido-DART framework. Given an input, the model generates
rich descriptive texts along with corresponding realistic images, demonstrating its ability to produce
diverse samples with intricate details. Notably, unlike Gu et al. (2024), our approach processes both
text and images through the same model, utilizing a unified mechanism to handle both modalities.
This unified framework can potentially be integrated into any multimodal language models.

5 CONCLUSION

We presented DART, a novel model that integrates autoregressive denoising with non-Markovian
diffusion to improve the efficiency and scalability of image generation. By leveraging the full
generation trajectory and incorporating token-level autoregression and flow matching, DART achieves
competitive performance on class-conditioned and text-to-image tasks. This approach offers a unified
and flexible solution for high-quality visual synthesis.

Our current model is restricted by the number of tokens in the denoising process. One direction is to
explore architectures for long context modeling which enables application to problems like video
generations. Also, current work only conduct preliminary investigates on multimodal generation.
Future work may train a multimodal generative model based on the framework of the decoder-only
language model to handle a wide variety of problems with one unified model.
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A PROOF OF PROPOSITION 1

Proof. Due to q(xt|x0) = N (xt;
√
γtx0, (1− γt)I), we can write xt =

√
γtx0 +

√
1− γtϵt.

With certain coefficient {λt
s}Ts=t, let us define:

yt ≜
T∑

s=t

λt
sxs, (11)

We study when the signal-to-noise ratio of yt achieves its maximal value:

yt =

(
T∑

s=t

λt
s

√
γs

)
x0 +

T∑
s=t

λt
s

√
1− γsϵs (12)

⇒ SNR(yt) =

(∑T
s=t λ

t
s
√
γs

)2
∑T

s=t λ
t
s
2(1− γs)

≤
T∑

s=t

γs
1− γs

, (13)

which follows from Titu’s lemma and the Cauchy-Schwarz inequality. It becomes an equality when:

λt
s ∝

√
γs

1− γs
,∀s ∈ [t, T ] (14)

Next, we demonstrate that {yt}t follows a Markov property when achieving the maximal signal-to-
noise ratio for each yt. From Eq (14), let λt

s = ρt
√
γs

1−γs
, ρt > 0, and ηt =

γt

1−γt
, η̄t =

∑T
s=t ηs, we

have:

yt = ρt

(
η̄tx0 +

T∑
s=t

√
ηsϵs

)
(15)

= ρt
(
η̄tx0 +

√
η̄tϵ

′
t

)
, (16)

where we use ϵ′t ∼ N (0, I) to equivalently simplify the noise term. When ρt = 1
/√

η̄2t + η̄t, {yt}t
is variance preserving (VP). Next, let us assume

ŷ =
ρt+1η̄t+1

ρtη̄t
yt + σϵ, ϵ ∼ N (0, I) (17)

= ρt+1η̄t+1x0 + ρt+1η̄t+1/
√
η̄tϵ

′
t + σϵ (18)

= ρt+1

(
η̄t+1x0 +

√
η̄2t+1

η̄t
+

σ2

ρ2t+1

ϵ′′

)
, (19)

where we use ϵ′′ to replace the noise term. So if we let ŷ match the distribution of yt+1, then
η̄2t+1

η̄t
+

σ2

ρ2t+1

= η̄t+1 (20)

⇒ σ2 = ρ2t+1

η̄t+1ηt
η̄t

> 0 (21)

The above equation has root that σ = ρt+1

√
η̄t+1ηt

/
η̄t, This implies that we can find an independent

noise term added to yt to obtain yt+1, establishing that ytt constitutes a Markovian forward process.

p(yt+1|yt) = N
(
ρt+1η̄t+1

ρtη̄t
yt, ρ

2
t+1

η̄t+1ηt
η̄t

I

)
(22)

What’s more, {xt}t sequence can be uniquely determined from {yt}t via

xt =


(
yt

ρt
− yt+1

ρt+1

)
1− γt√

γ
t

, if t < T

yt

ρt

1− γt√
γ
t

, if t = T.
(23)

Therefore, the two processes {xt}t and {yt}t has a one-to-one correspondence.
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B IMPLEMENTATION DETAILS

B.1 ARCHITECTURE

Table 1 lists the parameters of different model sizes for DART. For DART-FM, we implements the
flow net as three feed-forward networks (FFNs) with additional adaptive LayerNorm for modulation.
Also unlike common FFNs in Transformer, the hidden size stays unchanged in our implementation.

Table 1: Configurations of DART.
Model # Layers Hidden dim # Heads # Params

DART-S 12 384 6 48M
DART-B 12 768 12 141M
DART-L 24 1024 16 464M
DART-XL 28 1280 20 812M

B.2 TRAINING

All models are trained with the following settings.

default training config:
batch_size=128
optimizer=’AdamW’
adam_beta1=0.9
adam_beta2=0.95
adam_eps=1e-8
learning_rate=3e-4
warmup_steps=10_000
weight_decay=0.01
gradient_clip_norm=2.0
ema_decay=0.9999
mixed_precision_training=bf16

C RESULTS ON IMAGENET-256

Table 2 lists the performance of our proposed DART in comparison to recent generative models on
ImageNet-256. The reproduced results use the official codebase and checkpoint and we follow the
best performing cfg scale reported in the original papers. We report reproduced results of DiT (Peebles
& Xie, 2022), SiT (Ma et al., 2024), and MAR Li et al. (2024) with 16 sampling times which is
the same as our vanilla DART. Our model achieves competitive performance when compared with
diffusion models like LDM (Rombach et al., 2021) and AR models like VQGAN (Esser et al., 2021a)
and RQ-Transformer (Lee et al., 2022). Admittedly, there is a gap between DART and SOTA visual
generative models (like VAR (Tian et al., 2024) and MAR (Li et al., 2024)). However, we want to
point out that many baselines are trained with significantly more FLOPs. For example, DiT (Peebles
& Xie, 2022) is trained for 7M iterations whereas DART is only trained for 500k iterations. Also,
baselines like VAR and MAR employ larger models than our DART. In particular, VAR deploys
a 2B model while the largest DART model is approximately 800M. Besides, in our reproduced
results, when using only 16 sampling steps as the setting of our vanilla DART, our model show
significantly better performance than DiT, SiT and MAR. Also, we report MAR-AR (Li et al., 2024),
a variant of MAR which generate tokens in an autoregressive manner instead of masked modeling
which is applied in standard MAR models. DART which generates samples through autoregressive
denoising shows better performance than MAR-AR. These results further validate the effectiveness
of leveraging the whole denoising trajectory.
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Table 2: Generative models on class-conditional ImageNet 256× 266. *: reproduced from official
codebase and checkpoints.

Type Model FID↓ IS↑ #params Steps

Diff.

ADM (Dhariwal & Nichol, 2021) 10.94 101.0 554M 250
CDM (Ho et al., 2022) 4.88 158.7 - 8100
LDM (Rombach et al., 2021) 3.60 247.7 400M 250
DiT (Peebles & Xie, 2022) 2.27 278.2 675M 250
SiT (Ma et al., 2024) 2.06 277.5 675M 250

AR

VQGAN (Esser et al., 2021b) 15.78 74.3 1.4B 256
RQTran (Lee et al., 2022) 3.80 323.7 3.8B 68
MAR-AR (Li et al., 2024) 4.69 244.6 479M 256
MAR (Li et al., 2024) 1.55 303.7 943M 256
VAR (Tian et al., 2024) 1.73 350.2 2.0B 10

Reprod.
DiT* (Peebles & Xie, 2022) 19.52 125.9 675M 16
SiT* (Ma et al., 2024) 6.98 122.9 675M 16
MAR* (Li et al., 2024) 6.37 221.3 943M 16

Ours
DART 5.62 231.7 812M 16
DART-AR 3.98 256.8 812M 4096
DART-FM 3.82 263.8 820M 16

D ADDITIONAL TEXT-TO-IMAGE RESULTS

We here show more text-to-image generative examples from DART-AR and DART-FM at resolution
256× 256 in Figure 13.

E MULTI-RESOLUTION GENERATION

DART (including both the -AR and -FM variants) is a highly flexible framework that can be easily
extended and applied in various scenarios with minimal changes in the formulation. For example,
instead of learning a fixed resolution of images, one can learn a joint distribution of pθ({xi

0}Ni=1)
where xi

0 ∈ RKi×C is x0 with a different resolution. Following the approaches proposed in (Gu et al.,
2022; 2023; Zheng et al., 2023) for diffusion models, a single DART — referred to as Matryoshka-
DART — can model multiple resolutions by representing each image with its corresponding noisy
sequence {xk

t }t separately, then flattening and concatenating these sequences for sequential prediction.
As shown in Figure 11, we model the NOMAD objective in Eq (5) as

maxLMatryoshka
θ = E{{xi

t}
Ti
t=0}N

i=1∼q(x0)

[
N∑
i=1

T∑
t=1

ω̃i
t · log pθ(xi

t−1|xi
t:T ,x

<i
1:T )

]
, (24)

where the above can be implemented using any DART variant. Note that xi
0 is not directly conditioned

on x<i
0 , which not only avoids the need to handle shape changes at the boundaries but also mitigates

potential error propagation, a common issue in learning cascaded diffusion (Ho et al., 2022). All
low-resolution information is processed through self-attention.

By this approach, the model can balance the number of noise levels with the total number of tokens
to achieve better efficiency. Additionally, learning resolutions can be progressively increased by
finetuning low-resolution models with extended sequences.

Figure 12 visualizes the generative process of an image at resolution 256× 256 and its upsampling to
512×512 by Matryoshka-DART. DART first iteratively refines the generative results for 16 denoising
steps at resolution 256× 256. It then upsamples images at resolution 512× 512 and 1024× 1024
through iterative denoising as well. Since the generation of high resolution is conditioned on the
previous low-resolution samples, it needs less denoising steps at high resolution to generate realistic
images. In particular, we add 4 denoising steps for generating 512× 512 images and further add 2
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Figure 11: Illustrations of Matryoshka-DART. By joint training models, DART can perform multi-
resolution.

Table 3: Comparison of DART variants.

Model Attn Mask #AR steps #FM steps

DART Block-wise Causal 16 0
DART-AR Causal 4096 0
DART-FM Block-wise Causal 16 1600

denoising steps for generating 1024× 1024 images. Figures 14 and 15 show examples at resolution
512× 512 and 1024× 1024 from Matryoshka-DART finetuned from DART-FM at 256× 256.

F COMPARISON OF DART VARIANTS

We here further clarify the differences and connections between the variants of DART. Table 3 lists
the major comparison between DART, DART-AR, and DART-FM. Conceptually, DART predicts the
denoised value and adds independent noise to acquire a less noisy image at each step. It conducts
this denoising process autoregressively until the clean image is generated. DART-AR applies a
token-wise autoregression instead of block-wise autoregressive in vanilla DART, which conduct
denoising generation in a more fine-grained granularity. DART-FM, on the other hand, keeps the
block-wise autoregression while introduces an additional flow network to conduct flow-mating-based
refinement for generated tokens. Both DART-AR and DART-FM improve the performance over
vanilla DART. In general, DART-FM demonstrates a better tradeoff between generation quality and
inference efficiency.

Kaleido-DART is for multimodal text-image generation, which integrates next-token prediction for
text and next-denoising prediction for images (proposed in our DART). In image generation, it can
seamlessly adapt all three variants of proposed methods: DART, DART-AR, DART-FM. Similarly,
Matryoshka-DART, which enables multi-resolution generation, also adapts to all the three DART
variants. Since in Matryoshka-DART, one can simply concatenate high-resolution image tokens after
the low-resolution ones, which doesn’t affect the denoising modeling in these variants.
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Figure 12: Visualization of the generation process (left: latent maps, right: decoded RGB images) for
256× 256 (T = 16) and its upsampling to 512× 512 (T = 4) using Matryoshka-DART.
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Figure 13: Additional samples from DART varints on text-to-image generation at 256× 256 pixels
given various captions.
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Figure 14: Samples from DART-FM with Matryoshka-DART fine-tuning on text-to-image generation
at 512× 512 and 1024× 1024 pixels given various captions.
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Figure 15: Samples from DART-FM with Matryoshka-DART fine-tuning on text-to-image generation
at 512× 512 and 1024× 1024 pixels given various captions.
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