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Abstract

We consider the problem of causal structure learning in the setting of heterogeneous1

populations, i.e., populations in which a single causal structure does not adequately2

represent all population members, as is common in biological and social sciences.3

To this end, we introduce a distance covariance-based kernel designed specifically4

to measure the similarity between the underlying nonlinear causal structures of5

different samples. This kernel enables us to perform clustering to identify the6

homogeneous subpopulations. Indeed, we prove the corresponding feature map is7

a statistically consistent estimator of nonlinear independence structure, rendering8

the kernel itself a statistical test for the hypothesis that sets of samples come from9

different generating causal structures. We can then use existing methods to learn10

a causal structure for each of these subpopulations. We demonstrate using our11

kernel for causal clustering with an application in genetics, allowing us to reason12

about the latent transcription factor networks regulating measured gene expression13

levels.14

1 Introduction15

Learning causal relationships from observational and experimental data is one of the fundamental16

goals of scientific research, and causal inference methods are thus used in a wide variety of fields. The17

resulting variety of applications nevertheless share some common difficulties, such as causal inference18

from complex time-series data (Eichler, 2012) or the underlying causal structure being obscured19

by unmeasured confounders (Greenland et al., 1999). Another common difficulty, especially for20

applications in the biological and social sciences, is causal inference from heterogeneous populations21

(Xie, 2013; Brand and Thomas, 2013)—addressing this difficulty is our main motivation.22

In general terms, we understand a heterogeneous population to be one whose members are not23

adequately described by a single model but rather better described by a collection of models. Within24

our context of causal structure learning, this means a population is heterogeneous if some samples25

are generated by different causal structures—we call this structural heterogeneity. We note that there26

are other kinds of heterogeneity, such as that in samples generated by different joint distributions27

over the same causal structure, which are not the scope of this work.28

A specific example of structural heterogeneity can be found in genetics: causal methods are used to29

learn the structure of gene regulatory networks (Emmert-Streib et al., 2012), and gene expression data30

from a single recording or experiment may include thousands of genes, many of which are involved31

in entirely different networks (Liu, 2015); thus, attempting to learn a single causal structure for all of32

the genes will obscure the fact that different sets of them have different structures.33
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The bulk of our work in this paper, and our main contribution, is to introduce the dependence34

contribution kernel, which facilitates a flexible and easily extensible approach to causal clustering:35

first perform clustering to identify structurally homogeneous subsets of samples, and then proceed36

with the actual learning task on each cluster. We prove that our kernel is a statistically consistent37

estimator of the similarity of the causal structures underlying different samples and can thus be used38

to find clusters that minimize structural heterogeneity for causal structure learning tasks. Furthermore,39

the kernel is derived from the distance covariance (Székely et al., 2007), imbuing it with the ability40

to detect nonlinear dependence. It can easily be used in a wide array of clustering algorithms, such41

as k-means, DBSCAN, spectral clustering, or any other method that analogously makes use of a42

similarity (or distance) measure between samples (Filippone et al., 2008).43

The rest of the paper is organized as follows: We finish this section by discussing some of the most44

relevant related work from the causal inference and statistics literature. All of Section 2 is devoted to45

the theory underlying our dependence contribution kernel, including a comparison of the familiar46

product-moment covariance with the distance covariance (Section 2.1), defining an equivalence47

class of causal models with a convenient representation in the kernel space (Section 2.2), and the48

actual definition of our kernel and proofs of its relevant properties (Section 2.3). Next, in Section49

3, we demonstrate causal clustering with the kernel on a heterogeneous gene expression data set,50

finding structurally homogeneous clusters for which we then learn latent causal measurement models,51

allowing us to reason about the different transcription factor networks responsible for regulating the52

measured gene expression levels. Finally, we conclude in Section 4 mentioning possible future work.53

1.1 Related Work54

Causal inference in heterogeneous populations sometimes refers to data-fusion (Bareinboim and55

Pearl, 2016), i.e., combining known homogeneous subpopulations and performing causal inference56

on the resulting heterogeneous population, or similarly, it can refer to meta-learning using known57

subpopulations (Sharma et al., 2019). Other times, it refers to estimating heterogeneous treatment58

effects (Xie et al., 2012; Athey and Imbens, 2015). However, in our case, the subpopulations are not59

known and we rather consider the problem of learning which samples come from which subpopulation,60

and these are differentiated according to structure instead of treatment effect.61

Previous work on causal clustering has focused more on the causal modeling aspect, using stronger62

assumptions about the underlying structures to learn more detailed models. For example, Kummerfeld63

et al. (2014); Kummerfeld and Ramsey (2016) focus on causal clustering in measurement models,64

with the goal of clustering different features together to study their latent causal structure, based on65

tetrad constraints within the linear product-moment covariance matrix. Huang and Zhang (2019)66

define a class of causal models facilitating mechanism-based clustering, learning causal models both67

for clusters of samples as well as a shared one for all samples, assuming the underlying structures68

are linear non-Gaussian. Saeed et al. (2020) characterize distributions arising from mixtures of69

directed acyclic graph (DAG) causal models (i.e., causal models without latent or selection variables),70

trying to learn both the component DAGs and a representation of how they are mixed. All of these71

approaches, like most causal inference methods, make specific (and for some applications, restrictive)72

assumptions about the underlying distributions or causal structures.73

In contrast, our method is not tied to specific distributional assumptions such as linearity or74

(non)Gaussianity—we assume there are enough samples for statistical inference, as well as the75

usual causal Markov and faithfulness assumptions. For the first step, we cluster samples together if76

they (implicitly, in the kernel space) have similar nonlinear independence structures. For the second77

step, causal structure learning, any existing method (along with its corresponding assumptions) can in78

principle be used. In our gene expression data application (Section 3), the measurement dependence79

inducing latent (MeDIL) causal model framework (Markham and Grosse-Wentrup, 2020), which80

assumes the data consists of measurement variables that are causally connected only through latent81

variables, seems appropriate, however other applications can easily use other methods. For example,82

component and mixture DAGs (Saeed et al., 2020) can be better learned when one first knows which83

samples come from which component—clustering with our kernel ensures samples in different84
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clusters come from different DAGs, and so using their method instead of the MeDIL framework85

would be a natural choice for applications in which a DAG (without any latents) is more appropriate.86

2 Theory87

2.1 Product-moment Covariance, Distance Covariance, and Dependence Contribution88

Though there is more to causal relationships than probabilistic dependence, causal inference methods89

based on graphical models ultimately rely on at least implicitly learning conditional independence90

(CI) relations. CI relations can be estimated in many ways, with different dependence measures91

and tests each having their own theoretical guarantees and being better suited for distributions of92

various different kinds of data (e.g., categorical, discrete, or continuous) and with various kinds93

of relationships (e.g., linear, monotonic nonlinear, arbitrary nonlinear) and with different testing94

assumptions (see Tjøstheim et al., 2018, for a comprehensive overview).95

A widely used measure of dependence is the product-moment covariance, often just called covariance,96

which is defined for two zero-mean random variables X1 and X2 as the scalar value cov(X1, X2) =97

E[X1X2]. This can be extended from a pair of random variables to every pair of variables in a98

random vector, thus returning a matrix instead of a scalar. The covariance matrix for a vector of99

zero-mean random variables X = (X1, . . . , Xm) can be estimated from a set S ∈ Rn,m of n samples100

as Σ̂X = 1
nS
>S, and the j, j′-th value of Σ̂X is thus the estimate ˆcov(Xj , X

′
j).101

Two random variables being probabilistically independent (denoted ⊥⊥) implies that their product-102

moment covariance is zero, i.e., Xj ⊥⊥ Xj′ =⇒ cov(Xj , Xj′) = 0 (importantly, the inverse of this103

does not hold). Thus, the estimated product-moment covariance can be used in statistical hypothesis104

testing for probabilistic independence (Wasserman, 2013, Ch. 10): Xj and Xj′ are assumed to105

be independent if and only if ˆcov(Xj , Xj′) is sufficiently close to 0. However, this method has106

an important problem: the product-moment covariance is only a valid test statistic against linear107

dependence.108

Székely et al. (2007) introduce the distance covariance to remedy this problem: random variables are109

probabilistically independent if and only if their distance covariance is zero, i.e., Xj ⊥⊥ Xj′ ⇐⇒110

dCov(Xj , Xj′) = 0, resulting in the estimated distance covariance being a valid test statistic against111

all types of dependence. The distance covariance is related to the product-moment covariance by112

dCov2(Xj , Xj′) = cov(|Xj −X ′j |, |Xj′ −X ′j′ |)− 2cov(|Xj −X ′j |, |Xj′ −X ′′j′ |), where (X ′j , X
′
j′)113

and (X ′′j , X
′′
j′) are independent and identically distributed (iid) copies of (Xj , Xj′) (Székely and114

Rizzo, 2014). The key intuition here is that the distances (e.g., |Xj −X ′j |) constitute a nonlinear115

projection, so that using the linear product-moment covariance in this projected space allows for the116

detection of nonlinear dependence in the original space.117

Note that dCov is typically defined to be a scalar value when taken between two arbitrary-dimensional118

random vectors, but our restricted presentation of it above in terms of random variables is to make119

it more obviously analogous to the product-moment covariance between random variables. Thus,120

corresponding to Σ̂X for random vectors, we define the following:121

Definition 1 Let S ∈ Rn,m be a set of n samples from the vector of random variables X =122

(X1, . . . , Xm). For each j ∈ {1, . . . ,m} and i, i′ ∈ {1, . . . , n}, define the pairwise distance matrix123

Dj , with values given by Dj
i,i′ := |Si,j − Si′,j |. Now define the corresponding doubly-centered124

matrices Cji,i′ := Dj
i,i′ − D̄j

i,· − D̄j ·,i′ + D̄j ·,·, where putting a bar over the matrix and replacing125

an index i or i′ with · denotes taking the mean over that index. Define the matrix L ∈ Rn2,m so126

that each column is a flattened doubly-centered distance matrix, L := (vec(C1), . . . , vec(Cm)),127

where vec(Cj) denotes “flattening” matrix Cj into a column vector. Finally, the estimated distance128

covariance matrix over sample S is defined as ∆̂X := 1
n2L

>L.129

Analogous to Σ̂X, the j, j′-th entry of ∆̂X corresponds to ˆdCov
2
(Xj , Xj′)—indeed it is mathemati-130

cally equivalent to computing each pairwise distance covariance value and then manually filling in131
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the matrix. The novelty of our Definition 1 is in finding a matrix of pairwise values instead of a single132

value for the distance covariance between random vectors, which helps provide an intuition for our133

next definition:134

Definition 2 Let S ∈ Rn,m be a set of n samples from the vector of random variables X =
(X1, . . . , Xm); note that we consistently use indices i, i′ ∈ {1, . . . , n} and j, j′ ∈ {1, . . . ,m}.
Let D ∈ Rn,n,m denote the 3-dimensional array of stacked pairwise distance matrices defined by
Di,i′,j := |Si,j − Si′,j |, and use C ∈ Rn,n,m to denote these same distance matrices after being
doubly-centered, i.e., Ci,i′,j := Di,i′,j−D̄i,·,j−D̄·,i′,j+D̄·,·,j , where replacing an index i or i′ with
· denotes the entire (lower-dimensional) subarray over that index, and writing a bar, D̄, denotes taking
the mean over that subarray. Then standardize the doubly-centered distances to get Zi,i′,j :=

Ci,i′,j
D̄·,·,j

.
Finally, the dependence contribution map, ϕ : Rm → Rm,m, is defined as

ϕ(Si,·) := Z>i,·,·Zi,·,· − T (α),

where T (α) ∈ Rm,m is a matrix of scaled critical values corresponding to a given significance level135

α with zeros along the diagonal, i.e., T (α)j,j′ =

{
0, if j = j′

1
nχ

2
1−α(1), otherwise

, with χ2
1−α(1) being the136

1− α quantile of the chi-square distribution with 1 degree of freedom.137

Notice the similarity between Definitions 2 and 1: if we set T (α) to be a matrix of 0s and forgo138

standardization (i.e., use C instead of Z), then 1
n2

∑n
i=1 ϕ(Si,·) = ∆̂X. Now, the differences: ∆̂X is139

a single matrix computed over an entire set of samples, whereas ϕ is a map that projects each given140

sample to a new feature space; each entry of ∆̂X is simply a distance covariance value, whereas each141

entry of the sum of ϕ(Si,·) over i, by using standardization (using Z instead of C) and subtracting a142

critical value, corresponds to the result of using a distance covariance value in a statistical hypothesis143

test for independence—indeed:144

Lemma 3 Let S ∈ Rn,m be a set of n iid samples from random variables X1, . . . , Xm with finite
first moments. For a given significance level α, under the null hypothesis of Xj ⊥⊥ Xj′ , the test

reject h∅ if
( n∑
i=1

ϕ(Si,·)
)
j,j′

> 0

is statistically consistent against all types of dependence.145

Proof. This follows from (Székely and Rizzo, 2009, Theorem 5 and Corollary 2) and how ϕ is146

defined to correspond to the difference between distance covariance and critical values. �147

These differences between ∆̂X and ϕ serve two important purposes: first, they ensure ϕ maps to a148

Hilbert space so that our Definition 9 is a corresponding kernel function (Schölkopf et al., 2001); and149

second, as the name “dependence contribution map” suggests, they ensure ϕ(Si,·) is informative not150

just about distance covariance but about nonlinear dependence and about how the inclusion of sample151

Si,· in a set of samples S contributes to the dependence patterns estimated from S— this is the key152

intuition behind how our kernel function is used to learn structurally homogeneous sample subsets,153

as explicated in the following sections.154

2.2 Causal Graphs in Kernel Space155

In general, a full causal structure can only be learned with sufficient data about the effects of156

interventions, and thus causal structure learning from purely observational data is usually possible157

only up to an equivalence class of causal graphs (Spirtes et al., 2000; Pearl, 2009). For example, the158

classic PC and IC algorithms, under the assumptions of no selection bias and no confounding by159

latent variables, do not necessarily return a fully-specified DAG but instead return a mixed graph,160

containing possibly directed and undirected edges, representing the Markov equivalence class (Spirtes161

and Glymour, 1991; Pearl and Verma, 1995).162

We now define a set of equivalence classes for ancestral graphs (AGs), which—unlike causal DAGs—163

do not assume the absence of selection bias and latent confounders (Richardson et al., 2002):164
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Definition 4 Consider an arbitrary ancestral graph A with the set of vertices V A and edge function
EA, and denote the set of unconditional m-connection statements entailed by their corresponding
unique maximal ancestral graph as MA = {(j, j′) : j /⊥m j′ | ∅} ⊆ V A × V A. For any ancestral
graph A′ such that V A

′
= V A, define the unconditional equivalence relation denoted by ‘∼U’ as

A ∼U A′ if and only if MA = MA
′
.

Lemma 5 This lemma has two parts: (i) the relation ∼U is an equivalence relation over the set of165

ancestral graphs A; (ii) for an arbitrary ancestral graphA ∈ A, the bidirected graph UA = (V A, EU ),166

where EU maps all pairs (j, j′) ∈MA to the bidirected edge symbol ‘↔’, is a unique representative167

of the equivalence class [A].168

Proof. For (i), recall that an equivalence relation is any relation satisfying reflexivity, symmetry,169

and transitivity (Devlin, 2003), all of which are satisfied by ∼U because of its correspondence to170

the relation ‘=’ between sets. Thus, to prove (ii), it suffices to show that the map s : A/∼U →171

A, [A] 7→ UA is injective (i.e, that it is a section) and that [s([A])] = [A] (Mac Lane, 2013). The172

key to the proof is the observation that UA, because it contains only bidirected edges, is maximal173

and therefore entails exactly the unconditional m-separation statements MA, thus by (i) we have174

UA ∼U A or equivalently UA ∈ [A] or equivalently [UA] = [A]. Let A,A′ be arbitrary AGs, and175

assume s([A]) = s([A′]). Then by definition of s we have UA = UA′ , and by the observation above,176

UA ∈ [A′] and thus [A] = [A′], making s injective. And finally, by the definition of s and also by177

the observation above, [s([A])] = [UA] = [A], completing the proof. �178

This equivalence relation and its representatives has some important but perhaps subtle properties.179

First, it is different from Markov equivalence over AGs (which is characterized by partial ancestral180

graphs, PAGs) (Zhang, 2007)—it uses only unconditional m-separation while PAGs are learned from181

conditional m-separation statements. Second, because all DAGs are AGs, ∼U is also an equivalence182

relation over DAGs. Third, being a representative means that every equivalence class includes exactly183

one fully bidirected graph (along with other equivalent AGs). Fourth, because each representative is184

formed by considering m-connected paths, UA is not equivalent to what would be generated by some185

“edge-wise” procedure, such as simply replacing every edge in a PAG/AG/DAG/Markov random186

field/moralized DAG with bidirected edges.Finally, its most important property is that it facilitates187

Theorem 8, for which we first need a few more definitions.188

Definition 6 Given arbitrary ancestral graphs A,A′ ∈ A over the same set of vertices, define the
Hamming similarity product, denoted ‘•’ as

• : A× A→ A and A • A′ 7→ H,

whereH = (V A, EH) and the function EH(j, j′) = ‘↔’ if and only if EA(j, j′) = EA
′
(j, j′).189

In words, the Hamming similarity product between two ancestral graphs returns a fully bidirected190

graph, with edges only where the two graphs have the same edge type. Now, shifting from ancestral191

graphs to real-valued square matrices:192

Definition 7 Let ‘∼O’ denote the orthant equivalence relation (‘orthant’ is the generalization of
‘quadrant’ from R2 to arbitrarily higher dimensions) in square real matrices, i.e., for matrices

Y, Y ′ ∈ Rm,m and with the element-wise function sign(Y )j,j′ =

{
1, if Yj,j′ > 0 or j = j′

−1, otherwise
,

Y ∼O Y
′ if and only if sign(Y )j,j′ = sign(Y ′)j,j′ for all j, j′.

Theorem 8 Let a be the map from the set of unconditional equivalence classes over ancestral graphs193

with m vertices, Am/∼U = Um, to the set of orthant equivalence classes over the image of ϕ,194

i.e., m×m symmetric real matrices with positive diagonal entries, ϕ(Rm)/∼O = Om, defined by195

a : U 7→ O, where Oj,j′ =

{
1, if EU (j, j′) = ‘↔’ or j = j′

−1, otherwise
. Then a is a group isomorphism196

between (Um, •) and (Om,�), where ‘�’ denotes the element-wise product.197
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Proof. First, note that (Um, •) is indeed a group, satisfying the three group axioms (Artin, 2011):198

the representative of its identity element is the fully connected bidirected graph over m vertices, U1;199

each element is its own inverse; and • is associative. Likewise, (Om,�) is a group with identity200

element [1m,m], each element its own inverse, and the associative element-wise product operator.201

Now, to show the two groups are isomorphic, it suffices to show (i) that a is bijective and (ii) that202

for arbitrary U ,U ′ ∈ Um, a(U)� a(U ′) = a(U • U ′). For (i) notice that if U 6= U ′, then there must203

be at least one pair of vertices j, j′ such that EU (j, j′) 6= EU
′
(j, j′) and thus clearly Oj,j′ 6= O′j,j′ ,204

so a in injective. Furthermore, notice that every distinct O ∈ Om is the image of some graph U ,205

so a is also surjective. For (ii), for every j, j′ ∈ {1, . . . ,m}, the definitions of a, �, and • ensure206

a(U)j,j′ � a(U ′)j,j′ = 1 ⇐⇒ EU (j, j′) = EU
′
(j, j′) ⇐⇒ 1 = a(U • U ′), completing the207

proof. �208

For causal inference, which (often, but not necessarily) amounts to taking several samples in real209

space and inferring a single corresponding member in the space of ancestral graphs (or, more often,210

its quotient set by some equivalence relation), Theorem 8 means we can compare the different graphs211

of different sample sets without having to first move to the ancestral graph space.212

Finally, notice the space of real square matrices is not a typical sample space but rather precisely (a213

superspace of) the space that our dependence contribution map ϕ (Definition 2) maps samples to—this214

means that mapping samples with ϕ allows us to make use of the group isomorphism. Though this215

already provides an intuition for why using ϕ would help with causal clustering, explicitly mapping216

each sample with it would be unnecessarily computationally expensive, and we are ultimately217

interested in morphisms between metric spaces (not just groups) of samples and graphs. To address218

this, we thus now move on to defining a kernel for ϕ.219

2.3 The Dependence Contribution Kernel220

Definition 9 Let S,Z, T , and ϕ be as in Definition 2. We define the dependence contribution kernel
using the Frobenius (denoted by the subscript F) inner product and norm:

κ(Si,·, Si′,·) =
〈ϕ(Si,·), ϕ(Si′,·)〉F
‖ϕ(Si,·)‖F ‖ϕ(Si′,·)‖F

A more convenient expression for applying the kernel to a data set is obtained by first defining a221

helper kernel, γ along with vec from Definition 1:222

γ(Si,·, Si′,·) = 〈ϕ(Si,·), ϕ(Si′,·)〉F
=
(
(vec(Zi,·)

>vec(Zi′,·)
)2 − Zi,·T Z>i,· − Zi′,·T Z>i′,· + ‖T ‖22

This allows us to write

κ(s, s′) =
γ(Si,·, Si′,·)

γ(Si,·, Si,·)
1
2 γ(Si′,·, Si′,·)

1
2

Finally, note that κ can be readily implemented on an entire set of samples, returning an entire223

Gram (kernel) matrix instead of a scalar value, by replacing the matrix operations above with tensor224

operations and specifying the correct axes along which summation occurs—an implementation can225

be found in our open source Python package at https://non-anonymous-link.after-review.226

A proper distance metric can also be obtained from this kernel through function composition:227

arccos ◦κ. The key idea behind the kernel is that it is the cosine similarity in the space that ϕ maps228

to, meaning for arbitrary sample points x, x′ it evaluates to cos(θ), where θ is the angle between229

ϕ(x) and ϕ(x′). In this space, θ represents the dissimilarity of the dependence patterns underlying230

x and x′, without being biased by the possibly different magnitudes of ϕ(x) and ϕ(x′) due to231

differing variances. Indeed, it can be used as a statistical test of whether samples come from different232

dependence structures and therefore causal models:233
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Theorem 10 Let S ∈ Rn,m, S′ ∈ Rn′,m be sets of n, n′ iid samples drawn respectively from the
random variables X = (X1, . . . , Xm) and X ′ = (X ′1, . . . , X

′
m) with finite first moments. Then,

n∑
i=1

n′∑
i′=1

κ(Si,·, S
′
i′,·) < 0 =⇒ ∃j, j′ ∈ {1, . . . ,m} such that I(Xj , Xj′ , ∅) 6= I(X ′j , X

′
j′ , ∅).

Proof. Through Slutsky’s Theorem (see Takeshi, 1985, Theorem 3.2.7) and the continuous mapping
theorem (see Van der Vaart, 2000, Theorem 2.3), the consistency of ϕ (Lemma 3) guarantees the
consistency of κ. Because the numerator of κ is a Frobenius inner product of ϕ,

n∑
i=1

n′∑
i′=1

κ(Si,·, S
′
i′,·) ∝

n∑
i=1

n′∑
i′=1

m∑
j=1

m∑
j′=1

ϕ(Si,·)j,j′ϕ(S′i′,·)j,j′ .

Thus, in order for
∑
i,i′ κ(Si,·, S

′
i′,·) < 0, there must be a j and j′ for which ϕ(Si,·)j,j′ > 0 but234

ϕ(S′i′,·)j,j′ < 0 (or vice versa), and thus the hypothesis test in Lemma 3 would reject the null235

hypothesis that Xj ⊥⊥ Xj′ but fail to reject that X ′j ⊥⊥ X ′j′ . �236

Corollary 11 Due to the relationship between independence structure and causal structure, an237

immediate of result of Theorem 10 is that
∑
i,i κ(Si,·, S

′
i′,·) < 0 implies X and X ′ have different238

causal structures.239

Theorem 12 Let d be the distance measure between unconditional equivalence classes of ancestral240

graphs overm vertices, d(U ,U ′) = m2−|{(j, j′) : EU •U
′
(j, j′) = ‘↔’}|−m. For given sample sets241

S, S′ (i.e., real n×mmatrices), use ϕ̄(S) to denote the mean of the sample in kernel space,
∑
i ϕ(Si,.),242

and say S ∼K S′ if and only if ϕ̄(S) ∼O ϕ̄(S′); denote the corresponding quotient set by this243

equivalence class as Rn,m/ ∼K= Kn,m and a representative from each equivalence class as Q ∈ [S].244

Let δ be the distance between sets of samples in K defined as δ(Q,Q′) = m2− 1
2n2

∑
i,i′ γ(Qi,·, Q

′
i,·).245

Let b : Um → Kn,m, b : U 7→ Ω, where Ω is the unique element in K such that sign(ϕ̄(Ω)) = a(U).246

Then b is a distance-preserving map (i.e., an isometry) from the metric space (Um, d) to (Kn,m, δ).247

Proof. Notice that (Um, d) is indeed a metric space (Choudhary, 1993, Ch. 2): d(U ,U ′) = 0 iff248

U−1 •U ′ is the empty graph, which happens iff U = U ′; the symmetry of d follows from the symmetry249

•; and for subadditivity of d, observe that for vertices j, j′ in arbitrary 2-vertex graphs U ,U ′,U” we250

have either d(U ,U”) = 2, in which case d(U ,U ′) + d(U ′,U”) = 4, or we have d(U ,U”) = 0, in251

which case d(U ,U ′) + d(U ′,U”) is either 0 or 4—in both cases d(U ,U”) ≤ d(U ,U ′) + d(U ′,U”);252

this easily extends to graphs of arbitrary numbers of vertices. Likewise, (Kn,m, δ) is a metric space:253

δ(Q,Q′) = 0 ⇐⇒ 1
2n2

∑
i,i′ γ(Qi,·, Q

′
i,·) = m2 ⇐⇒ ϕ̄(Q)j,j′ = ϕ̄(Q)j,j′ , for all j, j′, so iff254

Q = Q′; symmetry and subadditivity of δ follow from the symmetry and subadditivity of γ.255

Finally, to show b is an isometry, we must show (i) that it is bijective and (ii) that for all U ,U ′ ∈ Um,256

d(U ,U ′) = δ(b(U), b(U ′)). For (i), observe that by the group isomorphism a and definition of b, we257

have U 6= U ′ =⇒ a(U) 6= a(U ′) =⇒ Q 6= Q′ =⇒ b(U) 6= b(U ′) and so b is injective. Also258

observe that because K is exactly the set of representatives of orthant equivalence classes of sample259

sets in kernel space, then for every Q ∈ K, there exists a U such that b(U) = Q, and so b is surjective.260

For (ii), isomorphism a and the relation between element-wise product and Frobenius inner product261

allow us to write d(U ,U ′) = m2 −
∑
j,j′(O�O′)j,j′ = m2 − 〈O, O′〉F. Substituting O,O′ with262

their corresponding Ω,Ω′, and because the Frobenius inner product is a sesquilinear form, we can263

write d(U ,U ′) = m2 − 1
n2

∑
i,i′〈ϕ(Ωi,·), ϕ(Ω′i,·)〉F, which by Definition 10 finally gives us that264

d(U ,U ′) = δ(Ω,Ω′), completing the proof. �265

In less formal terms, Theorem 12 shows how the space of unconditional equivalence classes of266

ancestral graph corresponds to the space of real matrices, which is a common space for samples to lie267

in. More specifically, it shows how the structure defined by distances between graphs is the same as268

the structure defined by distances between sets of samples and how this sample distance is related to269

our kernel κ. Note that this is much stronger than Theorem 10: not only can κ tell us that two sets of270

samples come from different causal models, it gives a measure of just how different the causal models271

are, in terms of their differing unconditional nonlinear independencies/m-separation statements.272
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To summarize, we began by defining ϕ (Definition 2), which maps a given data set into a new273

higher-dimensional feature space. This feature space corresponds to a space of causal graphical274

models, such that samples which are similar in the new feature space must come from similar causal275

models (Theorem 8). Our main contribution then is to propose the dependence contribution kernel276

κ (Definition 9).This kernel κ is guaranteed not only to tell us that two sets of samples come from277

different causal models (Theorem 10 and Corollary 11) but furthermore exactly how different the278

causal models are (Theorem 12), all without the computational expense of explicitly projecting279

samples or learning causal models. Thus, κ is well-suited for addressing the causal clustering280

problem and ensures that resulting clusters will be structurally homogeneous so that subsequent281

causal structure learning will be more informative.282

3 Application283

We use kernel k-means with our dependence contribution kernel to cluster a gene expression data284

set and then use the measurement dependence inducing latent (MeDIL) causal model framework285

for structure learning within each cluster (Markham and Grosse-Wentrup, 2020). The goal of286

causal clustering here is to reason about the different latent transcription factor (TF) networks287

governing gene expression (see Verny et al., 2017; Hackett et al., 2020, for other latent causal model288

approaches to learning TF networks). The original data set comes from Iyer (1999) and can be found289

at genome-www.stanford.edu/serum/data/fig2clusterdata.txt, with subsequent analysis290

by Dhillon et al. (2003, 2004). All of the code for our analysis is open source and available at291

https://non-anonymous-link.after-review.292

The data consists of the measured gene expression levels of 517 different genes from human fibroblast293

cells in response to serum exposure, measured at 11 different time points, i.e., there are 517 samples294

and 11 different features. In genetics applications, it is not unusual to consider genes to be samples295

and expression (over time) to be features—indeed the three previous analyses of this data all have296

this approach—and the intuition is simply that we wish to cluster genes based on patterns in their297

expression levels over time, in order to identify subsets of genes that are controlled by the same gene298

regulatory network. Also notice that such data exemplifies the structurally heterogeneous populations299

discussed in Section 1: different genes can of course be regulated by different TFs, and so we can300

better represent the data by first clustering it into subpopulations that are more homogeneous and301

then performing causal structure learning on each subpopulation.302

For clustering, we used k = 6, which we found by looking at both the Variance Ratio Criterion303

(Caliński and Harabasz, 1974) and the Silhouette Coefficients (Rousseeuw, 1987), computed with the304

scikit-learn machine learning toolbox (Pedregosa et al., 2011). We implemented (unweighted) kernel305

k-means ourselves, using the pseudocode given by Dhillon et al. (2004), with initial mean points306

drawn uniformly at random from the sample set, and with significance level α = 0.1 for the kernel307

parameter T (α). We then used the MeDIL (Markham et al., 2020) package to learn the dependence308

structure and latent causal models for each cluster.309

Figure 1 shows an example of our results for three of the six gene clusters: Figure 1a shows their310

distance covariance heatmaps and estimated nonlinear dependence structure with significance level311

α = 0.1 (so the axes are the 11 different features, i.e. the time, in hours, at which gene expression312

level was measured), while Figure 1b shows their corresponding causal structures, with measurement313

variables M0–M10 for each of the features and learned latent variables L for different posited TFs.314

The results show a clear difference in causal structure for the different clusters and allow us to reason315

about the latent TFs regulating genes in different clusters: notice that the latents in cluster K1 each316

cause only two or three measurement variables that tend to be close together—e.g., L1 causes M1317

and M2, indicating the TF corresponding to L1 is “short-acting”, only affecting gene expression318

from 30 minutes (M1) to 1 hour (M2) after serum exposure; in contrast, the latents in cluster K3319

each cause between two and seven measurement variables that tend to be more spread out—e.g.,320

L1 causes M1 and M7, indicating the corresponding TF is more complicated, “long-acting” but not321
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(a) Dependence structures.

(b) Latent causal models.

Figure 1: Results of dependence contribution kernel clustering with significance level α = 0.1.

continuously so, affecting gene expression 30 minutes (M1) and 12 hours (M7) after serum exposure,322

but independently of gene expression in the time between.323

Our results are especially noteworthy compared what happens if one ignores the heterogeneity of the324

data and learns a causal structure for the entire data set without first clustering with our kernel: in325

that case, all of the measurement variables are dependent, with a single latent causing all of them,326

and no meaningful conclusions can be drawn about how unmeasured transcription factors regulate327

measured gene expression, i.e., the heterogeneity obscures the underlying causal structures.328

4 Discussion329

We address the problem of causal clustering—that is, finding the different causal structures underlying330

a structurally heterogeneous data set. Our main contribution is to develop the dependence contribution331

kernel and prove its suitability for the causal clustering task. This allows us to first use the kernel332

with existing clustering methods, such as kernel k-means or DBSCAN, to identify homogeneous333

subpopulations. Then we use existing causal structure learning methods on each subpopulation.334

The kernel guarantees that each subpopulation is more structurally homogeneous and therefore the335

resulting causal structures better capture the causal structures within the data than if a single model336

were learned for the entire heterogeneous population.337

Furthermore, we prove several interesting theoretical properties of our kernel, including (i) that338

it can be used as a statistical test for the hypothesis that two sets of samples come from different339

causal structures, as well as (ii) how it induces a metric space that is isometric to the one defined340

by Hamming distance between ancestral graphs, i.e., comparing sets of samples with our kernel is341

equivalent to first estimating the causal graphs of the different sets and then comparing those graphs.342

Beyond the practical applications of our kernel, as shown by our application in reasoning about latent343

transcription factor networks that regulate gene expression, this work also draws from and suggests344

further fruitful connections between a variety of fields, including causal inference, kernel methods,345

and algebraic statistics.346
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