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ABSTRACT

Diffusion models achieve high-quality image generation but face deployment
challenges due to their high computational requirements. Although 8-bit outlier-
aware Post-Training Quantization (PTQ) matches full-precision performance, ex-
tending PTQ to 4 bits remains challenging. Larger step sizes in 4-bit quanti-
zation amplify rounding errors in dense, low-magnitude activations, leading to
the loss of fine-grained textures. We hypothesize that not only outliers but also
small activations are critical for texture fidelity. To this end, we propose Quan-
tization via Residual Truncation and Zero Suppression (QuaRTZ), a 4-bit PTQ
scheme for diffusion models. QuaRTZ applies 8-bit min–max quantization for
outlier handling and compresses to 4 bits via leading-zero suppression to retain
LSBs, thereby preserving texture details. Our approach reduces rounding errors
and improves quantization efficiency by balancing outlier preservation and LSB
precision. Both theoretical derivations and empirical evaluations demonstrate the
generalizability of QuaRTZ across diverse activation distributions. Notably, 4-bit
QuaRTZ achieves an FID of 6.98 on FLUX.1-schnell, outperforming SVDQuant
that requires auxiliary FP16 branches.

1 INTRODUCTION

Diffusion models have emerged as the state-of-the-art in generative modeling, achieving remarkable
performance in text-to-image synthesis, super-resolution, and inpainting (Ho et al., 2020; Rombach
et al., 2022; Podell et al., 2023; Peebles & Xie, 2023; Black-Forest-Labs, 2024). However, the
iterative refinement process is computationally expensive, which limits its deployment in latency-
and resource-constrained environments such as mobile devices, on-device AI assistants, or large-
scale cloud serving with strict throughput demands.

Low-bit quantization reduces memory footprint, bandwidth demand, and arithmetic cost, while en-
abling efficient execution on modern accelerators (Han et al., 2015). Post-training quantization
(PTQ) is particularly attractive for diffusion models where fine-tuning is costly, as it requires neither
retraining nor access to the original dataset (Nagel et al., 2020; Li et al., 2021). While 8-bit and
even 6-bit PTQ for diffusion models have proven to be effective (Li et al., 2023; Huang et al., 2024;
Ryu et al., 2025), pushing to 4-bit precision (W4A4) remains challenging due to error propagation;
quantization noise accumulates over hundreds of timesteps, degrading image texture quality.

Existing PTQ methods address this issue by focusing on outlier preservation through temporal align-
ment (Huang et al., 2024; He et al., 2023; Chen et al., 2024b) or condition-aware scaling (Ryu et al.,
2025; Li et al., 2023); however, this overlooks the dominant error source at extremely low precision
— the loss of Least Significant Bits (LSBs). Diffusion models refine subtle variations over many it-
erations (Ho et al., 2020; Peebles & Xie, 2023), making them especially sensitive to rounding errors
near zero. With activations densely concentrated around small values, truncating LSBs discards crit-
ical fine-grained information and leads to collapsed generations. Tackling the conflicting challenge
of preserving both outliers and LSBs is essential to making 4-bit quantization practical for diffusion
models.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

To this end, we propose Quantization via Residual Truncation and Zero suppression (QuaRTZ), a
novel two-stage 4-bit quantization scheme for diffusion models. The first stage minimizes rounding
error through 8-bit min-max uniform quantization, resulting in a fine-grained integer representation
of the original value. The second stage compresses integer representations to a targeted 4 bits using
a Leading Zero Suppression (LZS) kernel, which preserves a salient 4-bit representation beginning
from the top-most activated bit. This process allows for high entropy of the compressed represen-
tation, where the magnitude of the outliers is retained and LSBs are preserved without information
loss. Our two-stage design simultaneously protects outliers and LSBs, directly addressing the two
dominant sources of error at low precision.

Our contributions are as follows:

• We propose QuaRTZ, a novel 4-bit quantization scheme that successfully balances outlier
preservation and LSB precision.

• Our QuaRTZ scheme demonstrates state-of-the-art performance in various diffusion archi-
tectures, including UNet and DiT backbones. Notably, our W4A4-quantized model outper-
forms SVDQuant counterparts even without an error compensation module, enabling 3.8x
reduction in memory footprint compared to the 16-bit baseline.

• We illustrate the effectiveness of QuaRTZ in theoretical, information, empirical and hard-
ware perspectives in depth, providing core reasoning behind the insight of preserving LSBs.

2 RELATED WORKS

Diffusion models have established state-of-the-art performance in a wide range of image generation
tasks, including unconditional generation (Ho et al., 2020; Rombach et al., 2022) and text-to-image
synthesis (Rombach et al., 2022; Podell et al., 2023; Sauer et al., 2024; Chen et al., 2024a; Black-
Forest-Labs, 2024). Recent extensions integrate transformer backbones, further scaling model ca-
pacity and controllability (Peebles & Xie, 2023; Chen et al., 2024a; Black-Forest-Labs, 2024). De-
spite these advances, the inherently iterative denoising process results in slow inference, posing a
significant barrier to deployment in latency- or resource-constrained environments.

Quantization has emerged as a promising direction to accelerate diffusion models by reducing
memory footprint and enabling efficient low-precision arithmetic. Two main paradigms exist:
Quantization-Aware Training (QAT), which jointly learns task objectives and quantization parame-
ters (Esser et al., 2019), and Post-Training Quantization (PTQ), which applies quantization to pre-
trained models without retraining. While QAT generally achieves higher accuracy at low bit-widths,
it requires complete training data and considerable computational resources. PTQ, in contrast, does
not require complete data or finetuning, making it a practical path for scaling large generative models
where retraining is often infeasible.

Consequently, the main focus of recent PTQ research has been primarily on developing methods
for handling outliers. Approaches such as PTQ4DM (Shang et al., 2023), Q-Diffusion (Li et al.,
2023), and TFQM-DM (Huang et al., 2024) mitigate large-magnitude errors through temporal align-
ment, calibration strategies, or condition-aware scaling (Li et al., 2023; He et al., 2023; Chen et al.,
2024c). Building on these foundations, DGQ (Ryu et al., 2025) achieved W4A6 quantization for
text-to-image models, and SVDQuant (Li et al., 2024b) reached 4-bit precision by introducing 16-
bit LoRA (Hu et al., 2022) branches to absorb quantization error. However, prior work largely fails to
maintain image quality below 6-bit precision. While SVDQuant is successful at maintaining image
quality, it limits the efficiency gains of full low-bit quantization because it relies on auxiliary FP16
branches. These branches introduce additional parameters, modify the original architecture, and re-
quire mixed-precision fusion, which increases implementation complexity and reduces deployment
efficiency.

In this work, we propose a 4-bit post-training quantization method for diffusion models that pre-
serves fine-grained texture quality while improving efficiency without auxiliary, higher-precision
branches. We focus on both outliers and LSBs simultaneously, departing from prior methods that
emphasize only outlier preservation.
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Figure 1: Illustration of the proposed two-stage quantization. (Left) We show 4-bit inference
pipeline using QuaRTZ INT4. Weights are quantized to SINT4 directly. For activation, we first
apply uniform 8-bit integer quantization to capture outliers with a relatively small step size, and
then compress activations to 4 bits via subgroup-based leading-zero suppression. 4-bit representa-
tions are multiplied and accumulated, followed by left-shift operation using FLAG. (Right)
We illustrate examples scenarios of compression using LZS. This process allows to preserve small,
high density activations remain unchanged while outliers maintain their magnitude without signifi-
cant information loss. In our experiments, we use group size 16 to perform sub-group compression.

3 QUANTIZATION VIA RESIDUAL TRUNCATION AND ZERO SUPPRESSION

We hypothesize that both outliers and LSBs are crucial in diffusion models. Outliers drive large
corrections and the generation of salient features, while LSBs capture fine variations that shape
textures and smooth gradients. Our two-stage quantization scheme preserves both outliers and LSBs
with minimal information loss.

We target outliers and LSBs in two stages: 8-bit quantization and 4-bit quantization as illustrated
in Figure 1. In the first stage, we apply 8-bit integer quantization, that captures the sparse outlier
distribution while keeping rounding error small due to the fine step size. The 8-bit representation
spans the full dynamic range, leaving relatively few outliers and concentrating most information in
the LSBs.

Let x and x̂ denote the original and quantized activations, respectively. The quantization process is
defined as:

x̂ = clamp
(⌊

x
s

⌉
+ z, ;−127, ; 127

)
, s = xmax−xmin

255 , z =
⌊
−xmin

s

⌉
, (1)

where s and z denote the scaling factor and zero point, and xmin, xmax are the minimum and maxi-
mum activation values.

In the second stage, we exploit the redundancy of 8-bit codes using Leading Zero Suppression (LZS)
to compress them into 4 bits. The key idea is to discard unused high-order zeros while preserving
both the magnitude of outliers and the precision of LSBs. Each 8-bit signed integer is reformatted
into a 1-bit sign sgn and a 7-bit magnitude mag, and values are grouped into K blocks of size
Gs (e.g., 16 or 32 elements). Within each block, we compute a shared flag that indicates the most
significant active bit. Specifically, the flag is derived from the number of leading zeros, computed
via the CUDA intrinsic clz function on the bitwise OR of all magnitudes in the subgroup (NVIDIA
Corporation, 2025) as:

FLAG = max (29− clz(m), 0) , FLAG ∈ {0, 1, 2, 3, 4} (2)

where m denotes the aggregated magnitude. The counting leading zero (clz) function counts con-
secutive high-order zero bits in a 32-bit integer, which returns a value from 0 to 32. Thus, we subtract
3 from 32 to preserve the bottom 3 bits when mag is smaller than 8.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

A right-shift operation of FLAG bits is then applied to all values in the block, yielding a
compact signed 4-bit representation. This process retains salient bits and suppresses redundant
high-order zeros, achieving compression with minimal information loss. During inference, since
each group has been shifted equally, the output of Matrix Multiply-Accumulate (MMA) can be
adjusted by the FLAG bit left-shift operation.

4 ANALYSIS OF QUARTZ

We analyze QuaRTZ from multiple perspectives, including theoretical distortion bounds, bit-wise
entropy, empirical evaluations, and latency.

4.1 DISTORTION ANALYSIS

We show that our two-stage quantization scheme provides a lower upper bound on quantization
error compared to direct 4-bit min-max uniform quantization. Detailed derivation of our inequality
is described in Appendix A.
Theorem 1 (Error Bound for QuaRTZ). Let X ∈ R with density p(x). Denote the quantization
error of direct 4-bit uniform quantization as E4

q , and the error of 8-bit quantization followed by LZS
compression as Etotal. If less than half of the probability mass lies in high-index bins (|j| ≥ 8), then

Etotal < E4
q . (3)

Sketch of Proof. For uniform n-bit quantization, the error is bounded by En
q ≤ sn/2. With s4 =

16s8, the sufficient condition becomes ELZS < 7.5 s8.

The expected LZS error is

E[ELZS] = s8

7∑
k=4

Pk(2
k−3 − 1), (4)

where Pk = P(H = k) denotes the density of k-th bit in X . In the worst case, where every value
with 4 truncated bits, ELZS ≤ 15s8 · P(|J | ≥ 8). If P(|J | ≥ 8) < 0.5, then the condition is
satisfied.

4.2 BIT-WISE ENTROPY ANALYSIS

Figure 2: Entropy analysis demonstrates that our method exhibits higher entropy at every layer
compared to naı̈ve INT4.

We present the entropy of INT4 and QuaRTZ representations at each layer in Figure 2. For every
layer, our method has higher entropy compared to the INT4 min-max uniform quantization method.
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Higher entropy indicates that all four bits are activated with nearly equal frequency. The results show
that QuaRTZ constructs compact and informative 4-bit representations by removing the redundancy
of 8-bit codes. Although increasing representation entropy was not an explicit design goal, this
improvement is a direct result of our primary motivation of exploiting the redundancies of 8-bit
values.

4.3 EMPIRICAL ANALYSIS

Figure 3: Compared to naı̈ve INT4 quantization, QuaRTZ avoids severe rounding errors in dense
low-magnitude regions. The histogram is partitioned into FLAG regions (F0–F4): F0 denotes the
preserved fine-grained region around zero, while F1–F4 correspond to progressively larger mag-
nitude ranges captured via FLAG-based shifts. Despite compression, the magnitude of outliers is
retained similarly to INT4 quantization.

Effectiveness of QuaRTZ is further supported by empirical analysis on random values, as shown in
Figure 4. The results demonstrate that our method preserves LSBs effectively compared to direct
4-bit integer quantization, which suffers from severe rounding errors. Additionally, the magnitude
of outliers is well retained in both cases, supporting our claim that LSBs also play a critical role in
generating high-quality images.

4.4 LATENCY ANALYSIS

We show that our method is computationally efficient and hardware-friendly with a comprehensive
analysis of the 4-bit QuaRTZ kernel on various layer size in Table 1. On a RTX 4090 GPU with
native s4 Tensor Core MMA, GEMM executes as s4×s4→s32, and the per-group power-of-two
scale is applied as an integer left shift on the s32 accumulators inside the K-loop, adding only
∼ 1/Gs extra integer ops per slice with no additional global memory traffic—typically negligible
relative to MMA throughput. Meanwhile, activation (A-side) traffic is nearly halved versus int8:
activations are stored as packed s4, and the only overhead is a single flag byte per subgroup (i.e.,
1/Gs bytes per element), which stays cache-resident. We also report the latency of various attention
settings, power, and area of the proposed kernel in Appendix D.

Table 1: Compression and decompression overhead using LZS kernel (G = 16) on RTX 4090 GPU.
We show that extra overhead due to shifting is minimal and can be efficiently implemented.

M K Compression (ms) Decompression (ms) Overhead (ms)
512 3072 0.0111 0.0042 0.0153
512 12288 0.0408 0.0272 0.0680
4096 3072 0.0782 0.0544 0.1326
4096 12288 0.3035 0.2150 0.5185
4608 3072 0.0782 0.0538 0.1320
4608 12288 0.4250 0.2650 0.6900
4608 15360 0.3400 0.2227 0.5627
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Figure 4: Compared model size, inference memory, and single step latency with different quantiza-
tion settings on RTX 4090 GPU. We show that our method shows best inference memory efficiency
and our quantization kernel is highly competitive compared to SVDQuant.

5 EXPERIMENTS AND ANALYSIS

5.1 SETUP

Model and Dataset We evaluate our proposed scheme using UNet-based architectures, including
LDM (Rombach et al., 2022), Stable Diffusion (SD) v1.4 (Rombach et al., 2022), SDXL-Turbo
(Sauer et al., 2024), and DiT-based architectures, such as PixArt-Σ (Chen et al., 2024a) and FLUX.1-
schnell (Black-Forest-Labs, 2024). Experiments are conducted on widely used LSUN-Bedrooms,
LSUN-Churches (Yu et al., 2015), CelebA-HQ (Karras et al., 2018), FFHQ (Karras et al., 2019),
MS-COCO (Lin et al., 2014), MJHQ-30K (Li et al., 2024a), and summarized Densely CAptioned
Images (sDCI) dataset (Urbanek et al., 2024).

Quantization Setup We follow prior works (Li et al., 2023; Huang et al., 2024; Li et al., 2024b)
for calibration and quantization settings for comparison. For unconditional image generation, we
sample 256 samples per timestep while 128 prompts are sampled from COCO Captions 2017 (Lin
et al., 2014) for text-to-image generation. Generalization performance is evaluated using 5K ran-
domly sampled prompts from the MJHQ-30K and sDCI dataset. Additional details are included in
C.

Metrics We assess model performance using Fréchet Inception Distance (FID) (Heusel et al.,
2017), CLIP Score (Hessel et al., 2021), and ImageReward (IR) (Xu et al., 2023). LDM models
are evaluated with FID, while FID, CLIP Score, and IR are used for other models. We also use
LPIPS (Zhang et al., 2018) and Peak Signal Noise Ratio (PSNR) to measure perceptual similarity
and numerical similarity of DiT-based models. Results from prior literature are either taken directly
from original papers or reproduced under comparable conditions. We generate 30K samples for
evaluating LDM models, while 5K samples are used for the rest. All experiments are conducted on
a single A100 GPU using PyTorch.

Baselines We compare our work with prior state-of-the-art quantization techniques with TFMQ-
DM (Huang et al., 2024), DGQ (Ryu et al., 2025), and SVDQuant (Li et al., 2024b).

The notation WxAy indicates that x bits and y bits are used for weight and activation quantization,
respectively. Additional experimental details are provided in Appendix F.

5.2 MAIN RESULTS

Unconditional Image Generation We first evaluate our method on unconditional image genera-
tion using LDM and report the results in Table 2. With the W4A4G16 setting, our method achieves
substantial quality improvements over the baseline, narrowing the gap with the W4A8 settings by
small margins. We can observe that the direct quantization from 32-bit precision to 4-bit using
TFMQ-DM leads to a significant degradation in generation quality across all cases.
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Table 2: FID scores of unconditional image generation using LDM-4 on LSUN-Bedrooms 256 ×
256, FFHQ 256 × 256, and CelebA-HQ 256 × 256, and LDM-8 on LSUN-Churches 256 × 256. †

indicates scores from running open-source codes.

Methods Bits (WxAy) LSUN-Beds LSUN-Churches CelebA-HQ FFHQ
Full Prec. W32A32 3.47 4.34 20.54 9.67

TFMQ-DM† W4A8 6.2 13.94 21.39 10.34

W4A4 327.01 327.40 224.41 275.63

QuaRTZ (Ours) W4A4 7.11 14.81 23.53 14.71

Table 3: Quantization results for UNet backbone diffusion model on text-to-image generation task
with 4-bit quantization.

Model Methods Bits (WxAy) MS-COCO
FID ↓ CLIP ↑ IR ↑

SDv1.4

Full Prec. W32A32 25.03 0.265 0.189

TFMQ-DM W4A6 230 0.127 -
DGQ W4A6 43.66 0.263 -

QuaRTZ (Ours) W4A4 37.64 0.264 0.065

SDXL-Turbo

Full Prec. W32A32 30.74 0.265 0.850

TFMQ-DM W4A6 270.00 0.022 -
DGQ W4A6 45.00 0.245 -

SVDQuant W4A4 24.60 - 0.816
QuaRTZ (Ours) W4A4 30.86 0.265 0.833

Table 4: Quantization results for DiT backbone diffusion model on text-to-image generation task
with 4-bit quantization.

Model Methods Bits (WxAy) MJHQ sDCI
FID↓ IR ↑ LPIPS ↓ PSNR ↑ FID↓ IR ↑ LPIPS ↓ PSNR ↑

PixArt-Σ

Full Prec. W16A16 16.61 0.953 - - 24.88 0.963 - -

Naı̈ve INT4† W4A4 206.33 -1.24 0.762 9.08 229.00 -1.28 0.761 8.71
Naı̈ve MX4† W4A4 194.30 -1.44 0.746 12.71 221.58 -1.65 0.776 11.85
Naı̈ve NVFP4† W4A4 33.89 0.666 0.517 14.84 33.18 0.666 0.556 13.85
SVDQuant† W4A4 16.1 0.875 0.321 17.61 16.74 0.91 0.354 16.37
QuaRTZ (Ours) W4A4 27.89 0.841 0.460 15.08 27.51 0.873 0.492 14.02

FLUX.1-schnell

Full Prec. W16A16 19.2 0.966 - - 20.88 0.974 - -

Naı̈ve INT4† W4A4 9.13 0.963 0.345 16.31 8.51 0.988 0.353 15.27
Naı̈ve MX4† W4A4 9.40 0.962 0.341 16.28 8.58 0.995 0.352 15.17
Naı̈ve NVFP4† W4A4 7.23 0.955 0.280 17.52 6.90 0.994 0.284 16.39
SVDQuant† W4A4 7.07 0.958 0.257 18.25 6.67 0.976 0.26 17.19
QuaRTZ (Ours) W4A4 6.98 0.962 0.254 18.27 6.56 0.987 0.258 17.16
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(a) Generated images from different quantization methods on FLUX.1-schnell model on MJHQ dataset.

(b) Generated images from different quantization methods on PixArt-Σ model on MJHQ dataset.

Figure 5: Qualitative comparison on DiT based architectures using different quantization setting.

Text-to-Image Generation We report quantitative results for 4-bit quantization across several dif-
fusion architectures—SDv1.4, SDXL-Turbo, PixArt-Σ, and FLUX.1-schnell—in Table 2 and Ta-
ble 4. The number of inference steps is set to 50, 4, 25, and 4, respectively. For UNet-based archi-
tectures, our method consistently surpasses W4A6 baselines across all metrics, despite operating at
lower precision. Notably, it slightly outperforms SVDQuant on FLUX.1-schnell without requiring
auxiliary high-precision branches. Compared to naı̈ve INT4 quantization, the proposed two-stage
scheme that preserves LSBs yields a substantial accuracy improvement.

On SDXL-Turbo and PixArt-Σ, however, our method shows notable degradation. We attribute this to
the error-compensation module in SVDQuant, which explicitly addresses outlier precision, whereas
our design prioritizes maintaining LSB fidelity alongside coarse outlier magnitude. This suggests
that combining our approach with targeted outlier compensation, such as QwT (Fu et al., 2025) or
SVDQuant, may further improve robustness in a low-bit quantization scheme.

5.3 ABLATION STUDY

Group size controls the granularity of the LZS operation, creating a trade-off between representa-
tion precision and inference latency. We evaluate this effect under the W4A4 setting on the LDM-4
model with the LSUN-Bedrooms dataset. As shown in Figure 6(a), FID score increases approxi-
mately linearly as group size increases. This behavior is expected since larger groups increase the
likelihood of outliers, which in turn forces truncation in the LSB region. Nevertheless, the visual
quality remains stable, suggesting that group size can be tuned according to deployment require-
ments without significant perceptual degradation. Following the result of Table 8, we recommend
using group size of 16 or 32 where latency and image quality are well balanced.

5.4 POTENTIAL APPLICATIONS TO LLMS

We further explore the applicability of QuaRTZ to Large Language Models (LLMs). Here, FP16
activations are dynamically quantized and compressed to 4-bit with a group size of Gs = 8 us-
ing LZS, following the same precedure as Diffusion Models. Weights are quantized directly to

8
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(a)
(b)

Figure 6: (a) (up) Qualitative comparison with baseline models with LDM-4 on the LSUN-
Bedrooms dataset. (down) Generated results using different group sizes using QuaRTZ W4A4 with
LDM-4 on the LSUN-Bedrooms dataset. (b) FID scores with different group size using LDM-4
model quantized using QuaRTZ.

Table 5: Perplexity comparison between FP16 and QuaRTZ-quantized models. Lower is better.

Model #Params FP16 ↓ QuaRTZ 4-bit ↓ ∆ Relative ∆

Qwen2 0.5B 12.35 13.67 +1.32 +10.7%
Qwen2 1.5B 8.87 9.37 +0.50 +5.6%
Qwen2 7B 6.67 6.98 +0.30 +4.5%
LLaMA2 7B 5.12 5.35 +0.23 +4.5%
LLaMA3 8B 5.75 6.30 +0.55 +9.5%

SINT4 using GPTQ with group size 128. We use sequence length of 2048. As shown in Table 5,
QuaRTZ-quantized models closely follow their FP16 baselines across scales. The increase in per-
plexity remains modest, with relative error between +4.5% and +10.7%. These preliminary results
suggest that LSB preservation is also beneficial for autoregressive transformers, and demonstrate the
potential of QuaRTZ as a general low-bit quantization scheme beyond diffusion models.

6 CONCLUSION

This paper introduces QuaRTZ, a novel two-stage PTQ framework that achieves successful 4-bit
quantization of diffusion models. We argue that preserving LSBs is as important as capturing out-
liers. Our method addresses both challenges by applying a two-stage quantization-then-suppression
approach, minimizing rounding errors for LSBs while retaining outlier magnitudes. Our theoretical
analysis indicates that our method outperforms conventional 4-bit quantization, particularly under
distributions with high LSB density such as Gaussian and Laplacian. This theoretical advantage is
corroborated by extensive empirical evaluations, which demonstrate superior performance across a
variety of diffusion models and tasks. Notably, our method achieves an FID of 6.98 in a W4A4
setting for the FLUX.1-schnell model, surpassing the state-of-the-art W4A4 model.
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A QUANTIZATION ERROR UPPER BOUND DERIVATION

Setup. Let X ∈ R with PDF p(x). Consider symmetric uniform (midtread) n-bit quantizers with
step sn and reconstruction levels {qk} that cover the same dynamic range for n = 4, 8. Then

En
q =

∑
k

∫
Bk

p(x) |x− qk| dx ≤ sn
2
, E4

q ≤ s4
2
, E8

q ≤ s8
2
.

Since the ranges match, s4 = 16 s8 (7 magnitude bits at 8-bit vs. 3 at 4-bit).

Signed 8-bit reformat and LZS. Quantize X to signed int8:

xq = sgn(x) ·ms8, m ∈ {0, 1, . . . , 127}.

We represent each code as [sign] [7-bit magnitude]. LZS keeps the sign bit and only the top 3 mag-
nitude bits. Define the magnitude bit-length

H(m) =

{
0, m = 0,

⌊log2 m⌋+ 1, m ≥ 1,
H(m) ∈ {0, 1, . . . , 7}.
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If H(m) ≤ 3, all magnitude bits are retained and no truncation occurs. If H(m) ≥ 4, the lower
H(m)−3 magnitude bits are discarded. With truncation toward zero, the additional magnitude error
(in LSB units of the 8-bit grid) is bounded by

ELZS(m) =

{
0, H(m) ≤ 3,(
2H(m)−3 − 1

)
s8, H(m) ≥ 4,

and the sign is preserved, so there is no sign error.

Total error bound and dominance condition. Let Etotal be the total error of the signed-LZS path
(int8 quantization plus LZS truncation). By triangle inequality,

Etotal ≤ E8
q + E[ELZS] .

A sufficient condition for the signed-LZS path to beat naı̈ve signed 4-bit is

Etotal < E4
q ⇐ E[ELZS] < E4

q − E8
q ≤ s4 − s8

2
=

16s8 − s8
2

= 7.5 s8.

Expected LZS error under the signed magnitude distribution. Let M ∈ {0, . . . , 127} be the
magnitude index from signed 8-bit quantization, and H = H(M). Define Pk = P(H = k) for
k ∈ {0, . . . , 7}. Then

E[ELZS] = s8

7∑
k=4

Pk

(
2 k−3 − 1

)
.

Therefore a sufficient condition is
7∑

k=4

Pk

(
2 k−3 − 1

)
< 7.5.

Equivalently, in terms of bins of the 8-bit magnitude quantizer, note that H(m) ≥ 4 iff m ≥ 8.
Writing

Pk =
∑

m:H(m)=k

∫
x∈bin(m)

(
p(x) + p(−x)

)
dx,

we get the explicit bound

127∑
m=8

(
2H(m)−3 − 1

)∫
x∈bin(m)

(
p(x) + p(−x)

)
dx < 7.5.

Worst case reduction. In the worst case all mass with m ≥ 8 sits at H(m) = 7 (4 truncated bits),
so 2H−3 − 1 = 15 and

15

127∑
m=8

∫
x∈bin(m)

(
p(x) + p(−x)

)
dx ≤ 7.5 ⇒

∫
{|xq|≥8 s8}

p(x) dx < 1
2 .

That is, if less than half of the probability mass is quantized into magnitude indices m ≥ 8 (i.e.,
values whose 7-bit magnitudes require ≥ 3 bits), then signed-LZS satisfies E[ELZS] < 7.5 s8 and
the total error is guaranteed below naı̈ve signed 4-bit’s upper bound.

B ENTROPY OF 4-BIT REPRESENTATION

We compared the entropy of 4-bit representations of activations at each layer in Figure 8 and Figure
7. For every layer, our QuaRTZ has higher entropy compared to INT4 min-max uniform quantization
method. Higher entropy indicates that all four bits are activated with near-equal frequency, thus
better utilizing 4 bits to store information.
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(a) Entropy analysis at timestep 996.

(b) Entropy analysis at timestep 496.

(c) Entropy analysis at timestep 1.

Figure 7: Visualization of 4-bit entropy of quantized values using naı̈ve INT4 min-max uniform
quantization and our QuaRTZ method on LDM4 trained on LSUN-Bedrooms averaged at given
timestep.
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Figure 8: Visualization of 4-bit entropy of quantized values using naı̈ve INT4 min-max uniform
quantization and our QuaRTZ method on LDM4 trained on LSUN-Bedrooms averaged over all
layers.

C EXPERIMENTAL DETAILS

For LDMs, we use per-channel weight quantization and static per-tensor activation quantization. To
create 8-bit representation, we kept consistent to TFMQ-DM (Huang et al., 2024) for fair comparison
regarding layer selection. Once we acquire the 8-bit representation, 4-bit compression is applied
on-the-fly. For SDv1.4, SDXL-Turbo, PixArt-Σ, and FLUX.1-schnell, we follow the setting with
SVDQuant(Li et al., 2024b). Weights and activations are quantized groupwise with a size of 64
with 16-bit scales, then GPTQ is applied to the weights. We note that we do not use smoothing or
auxiliary error compensation module.

D HARDWARE EFFICIENCY OF QUARTZ KERNEL

Table 6: Comparison of power and area for MAC units.

FP 16× 16 INT 16× 8 INT 8× 8 INT 4× 4

MAC MAC MAC Proposed

Area (µm2)

Multiplier 3042.2 1052.2 559.4 112
Shifter 0 0 0 156.5
Reg. + Accm. 1127.1 631 431 385.3

Total 4169.3 1683.2 990.4 653.8

Power (mW )

Multiplier 0.3378 0.0506 0.023 0.0028
Shifter 0 0 0 0.0067
Reg. + Accm. 0.1242 0.0733 0.0581 0.0451

Total 0.4620 0.1239 0.0811 0.0546

LLM USAGE

We used an AI-based assistant (ChatGPT) solely for minor language editing and polishing. All
research ideas, experimental design, and analyses were conducted by the authors.
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Table 7: Latency comparison of 4-bit QuaRTZ CUDA kernel and Python implementation across
various attention settings. We use A6000 GPU and PyTorch library for Python implementation.

heads×dim Group Python (ms) QuaRTZ (ms)

32×128
g8 0.653 0.105

g16 0.531 0.102
g32 0.525 0.092

40×128
g8 0.805 0.103

g16 0.555 0.104
g32 0.502 0.096

64×128
g8 0.749 0.107

g16 0.515 0.102
g32 0.519 0.097

Table 8: Latency comparison of 4-bit QuaRTZ CUDA kernel and Python implementation across
linear layers. We use A6000 GPU and PyTorch library for Python implementation.

Layer size Group Python (ms) QuaRTZ (ms)

4096×4096
g8 5.410 0.189

g16 5.057 0.184
g32 5.017 0.176

5120×5120
g8 7.678 0.383

g16 6.965 0.268
g32 6.389 0.239

8192×8192
g8 18.74 0.468

g16 16.50 0.327
g32 15.01 0.313
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