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ABSTRACT

One-class classification (OCC) involves predicting whether a new data is normal
or anomalous based solely on the data from a single class during training. Var-
ious attempts have been made to learn suitable representations for OCC within
a self-supervised framework. Notably, discriminative methods that use geomet-
ric visual transformations, such as rotation, to generate pseudo-anomaly samples
have exhibited impressive detection performance. Although rotation is commonly
viewed as a distribution-shifting transformation and is widely used in the litera-
ture, the cause of its effectiveness remains a mystery. In this study, we are the first
to make a surprising observation: there exists a strong linear relationship (Pear-
son’s Correlation, r > 0.9) between the accuracy of rotation prediction and the
performance of OCC. This suggests that a classifier that effectively distinguishes
different rotations is more likely to excel in OCC, and vice versa. The root cause
of this phenomenon can be attributed to the transformation bias in the dataset,
where representations learned from transformations already present in the dataset
tend to be less effective, making it essential to accurately estimate the transforma-
tion distribution before utilizing pretext tasks involving these transformations for
reliable self-supervised representation learning. To the end, we propose a novel
two-stage method to estimate the transformation distribution within the dataset. In
the first stage, we learn general representations through standard contrastive pre-
training. In the second stage, we select potentially semantics-preserving samples
from the entire augmented dataset, which includes all rotations, by employing
density matching with the provided reference distribution. By sorting samples
based on semantics-preserving versus shifting transformations, we achieve im-
proved performance on OCC benchmarks.

1 INTRODUCTION

One-class classification (OCC) involves determining whether a test sample adheres to the same
distribution as the training set, with access only to in-domain data. It represents a classic and funda-
mental challenge essential for ensuring the reliable deployment of machine learning systems across a
broad spectrum of real-world applications, particularly in safety-critical domains like manufacturing
defect detection (Bergmann et al., 2020; 2019) and medical diagnosis (Schlegl et al., 2017).

Generative models (Sabokrou et al., 2018; Zaheer et al., 2020; Perera et al., 2019) strive to model
the training distribution by assigning high probabilities to training data. However, they often assign
unexpectedly high likelihoods to samples that deviate significantly from the training distribution.
In contrast, discriminative models encode normality by defining the boundary between the training
distribution and out-of-distribution (OOD) samples. In cases where real-world outliers are lack-
ing, one typical solution is to generate negative samples by applying geometric transformations,
such as rotation, to the training samples. Contrasting with these transformed samples helps with
distinguishing in-domain data from real-world outliers, with these transformations considered as
distribution-shifting augmentations (Tack et al., 2020; Sohn et al., 2021) to simulate outliers.
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Figure 1: OCC (AUROC) vs. accuracy of rotation prediction on one-class CIFAR-10. Figure (a)
shows intra-class correlation evaluated every 5 epochs until convergence and (b) displays inter-class
correlation for the converged models. Numbers in the bracket denote the Pearson’s Correlation r).
In both intra-class and inter-class experiment, a strong linear correlation (r > 0.9) is evident.

Based on this assumption, a plethora of literature has leveraged simulated outliers, albeit with varia-
tions in how they are utilized in either pretext tasks or contrastive learning. For instance, (Hendrycks
et al., 2019; Golan & El-Yaniv, 2018; Bergman & Hoshen, 2020) train a classifier to identify the spe-
cific transformations applied to the original samples. On the other hand, (Sohn et al., 2021; Tack
et al., 2020) employ instance discrimination, a special case of contrastive learning, between the orig-
inal samples and those with distribution-shifting augmentations. This approach is believed to reduce
the uniformity of learned representations (Sohn et al., 2021) and promote a more compact inlier
distribution (Wang et al., 2023).

For a better understanding of relationship between rotation prediction and OCC, we first set up a toy
experiment by training a classifier to predict the degree of rotation applied to input images (ranging
from 0◦, 90◦, 180◦, to 270◦). Figure 1 visually represents the connection between the accuracy of
rotation prediction and the performance of OCC from both intra-class and inter-class perspectives.
All experiments are conducted on the one-class CIFAR-10 benchmark, where images from one class
were designated as inliers and those from the remaining classes as outliers. Interestingly, in the intra-
class experiment, it is observed that both OCC and rotation prediction accuracies are increasing over
the training process, exhibiting a strong linear relationship for each class. This same trend holds
true in the inter-class experiment. A similar phenomenon is also noted in unsupervised accuracy
estimation (Deng et al., 2021) which utilizes linear regression to estimate classifier performance
from the accuracy of rotation prediction. Compared to the work training semantic classification
and rotation prediction in a multi-task way, the role of rotation prediction is even prominent in
OCC. OCC relies solely on the design of the pretext task to capture normal patterns, with rotation
prediction proving to be the most effective. The significant dependence on rotation prediction in
OCC motivates us to delve into investigating how rotation impacts OCC.

While rotation has been a widely used technique in the literature for OCC (Wang et al., 2023;
Tack et al., 2020; Sohn et al., 2021; Hendrycks et al., 2019; Golan & El-Yaniv, 2018), there has
been limited discussion regarding the circumstances under which rotation benefits OCC due to the
lack of a detailed analysis on the relationship between rotation and input images. Previous toy
experiment (Figure 1) has demonstrated that different classes derive varying benefits from using
rotation prediction as a pretext task for OCC. We posit that rotation may not necessarily induce
the semantic shift in the original training distribution to the extent previously assumed for different
classes. In other words, some transformed samples may still pertain to the same underlying semantic
concept. For instance, certain images may lack a deterministic orientation or may deviate from the
representative orientations found in the dataset, termed rotation-agnostic images (RAI). Oppositely,
images with a deterministic orientation are non-rotation-agnostic images (non-RAI). Based on the
division, rotation generally produces two different results, i.e., rotated RAI are semantics-
preserving images while rotated non-RAIs belong to semantics-shifting.

In the case of RAI, it becomes practically impossible for a classifier to distinguish the original sample
from its rotated versions. When such ambiguous images with incorrect labels are incorporated
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into training, they inevitably misguide the training process. Similar findings have been reported in
prior research (Pal et al., 2020), which introduces the Visual Transformation for Self-Supervision
(VTSS) hypothesis. This hypothesis suggests that if the pretext task involves transformations already
present in the dataset, the learned representations will be of reduced utility. This naturally raises the
question: How can we identify the transformations that are already inherent in the dataset?

Unfortunately, there has been a scarcity of research endeavors aiming at addressing this question.
While previous study (Mohseni et al., 2022) can identify a set of shifting transformations from a
pool of available options at dataset level, advanced methods provide instance-wise predictions by
either leveraging a human-inspected reference subset (Yang et al., 2021) or adopting the early-stop
strategy (Miyai et al., 2023). However, both methods depend on human to carefully tune the hyper-
parameters, limiting their wide applications.

In this work, we present a novel two-stage framework that addresses the problem from the perspec-
tive of distribution matching. In the first stage, we train a model to learn general representations via
contrastive pre-training (Chen et al., 2020) and extract representations from all the training images
as reference. In the second stage, we learn to sample semantics-preserving images from the entire
augmented dataset, which include all transformations, guided by a learnable probability estimator.
The goal is to match the distributions of the sampled set and the reference set. During testing,
the learned probability estimator assigns high confidence logits to semantics-preserving images and
vice versa. This framework allows us to estimate the transformation distribution and effectively
distinguish between semantics-preserving and semantics-shifting images.

Our contributions are summarized as follows:

• We establish a connection between rotation prediction and one-class classification, reveal-
ing a surprisingly strong linear relationship.

• We introduce a novel two-stage unsupervised framework that estimates the transformation
distribution within a dataset and assesses semantic shifting at the instance level.

• By sorting samples based on semantics-preserving versus shifting transformations, we en-
hance performance on visual one-class classification benchmarks.

2 RELATED WORK

One-class classification (OCC) entails training a classifier to differentiate anomalous data, which
is not accessible during training, from the normal data available in the training set. Unlike anomaly
detection (AD), which considers both normal and (optionally) anomalous instances during training,
OCC is restricted to only normal instances in its training phase, making it a special case of AD.
Generative models (Sabokrou et al., 2018; Zaheer et al., 2020; Perera et al., 2019), trained to model
the given distribution, identify test samples located in low-density regions as outliers. However, they
often struggle with the curse of dimensionality (Kirichenko et al., 2020). We recommend readers
refer to a comprehensive survey on OCC for further details (Perera et al., 2021). In the wake of
the success of self-supervised representation learning achieved through methods such as creating
pretext tasks (Noroozi & Favaro, 2016; Doersch et al., 2015; Zhang et al., 2016; Gidaris et al., 2018)
or employing contrastive learning (He et al., 2020; Chen et al., 2020), discriminative models offer
an alternative approach that circumvents the complex process of density estimation and leads to
the improved OCC performance. For instance, (Hendrycks et al., 2019; Golan & El-Yaniv, 2018;
Bergman & Hoshen, 2020) train a classifier to recognize the transformations applied to the original
samples. They rely on this surrogate classifier (e.g., maximum softmax probability as the scoring
function) for OCC, under the assumption that outliers cannot be perfectly predicted on rotation
angles, as they are not encountered during training. (Tack et al., 2020; Sohn et al., 2021; Wang
et al., 2023) have gone further, achieving enhanced results by conducting instance discrimination
with advanced anomaly scoring functions. Despite the favorable performance gained with the help
of self-labeled generated outliers, these methods manually design discriminative training objectives
involving specific transformations.

Analysis on visual transformations has primarily focused on the multi-class supervised sce-
nario (Benton et al., 2020; Cubuk et al., 2019; Lim et al., 2019; Mahan et al., 2021; Chatzipantazis
et al., 2021) where class boundaries are explicitly defined by manually annotated labels, with limited
attention in the challenging one-class classification. The Visual Transformation for Self-Supervision
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Figure 2: Overview of our two-stage transformation distribution estimation framework. The first
stage aims at learning general image representations through contrastive pre-training and the sec-
ond stage identifies potentially semantics-preserving images by aligning the reference set and the
sampled set from from a universal set that encompasses all possible transformations. xy-shuffle is
proposed for unbiased sampling by reorganizing candidate pools.

(VTSS) (Pal et al., 2020) is the first to raise concerns about the use of potentially conflicting trans-
formations in pretext tasks. In the self-supervised zone, methods addressing transformation conflict
are relatively scarce. (Tack et al., 2020) select shifting transformations by measuring the out-of-
distribution (OOD) quality, as assessed by area under the receiver operating characteristic curve
(AUROC), between in-distribution data and transformed samples using vanilla SimCLR (Chen et al.,
2020). Meanwhile, (Mohseni et al., 2022) employ Bayesian optimization (Akiba et al., 2019) to
search for effective shifting transformations from a pool of available options through a trial-and-
error process. Each trial entails a time-consuming training-validation process, aiming to minimize
classification loss on the validation set. However, both of two approaches cannot identify trans-
formation conflicts for each instance within the dataset. A subsequent effort (Yang et al., 2021)
introduces instance-wise predictions by utilizing a generative adversarial network (GAN) to auto-
matically discover the transformations present in the input dataset. While this method proves effec-
tive for straightforward datasets like MNIST, it heavily relies on a human-inspected reference subset,
which is assumed to include the most representative and frequently occurring data to guide the learn-
ing of transformation parameter distribution. Consequently, it does not scale well to more complex
scenarios due to the unavailability of such a perfect reference subset. An alternative straightforward
approach, as proposed by (Miyai et al., 2023; Feng et al., 2019), is to train a rotation predictor be-
fore it reaches the point of over-fitting and rely on the classifier to distinguish between RAIs and
non-RAIs. However, this early-stop strategy relies on an additional validation set to approximate the
epoch just before over-fitting. It necessitates splitting the dataset into multiple consecutive folds and
following the standard train/validation split, which can be time-consuming. In contrast, this work
focuses on estimating the transformation distribution in an unsupervised manner and determining
the likelihood of a transformed sample belonging to the original distribution, addressing these chal-
lenges from the perspective of distribution matching.

3 TRANSFORMATION DISTRIBUTION ESTIMATION

Existing OCC methods often rely on manually designed transformations to create pretext tasks
or perform contrastive learning. These methods assume that these transformations, which are not
present in the dataset, suitably shift the original data distribution. Distinguishing between in-domain
samples and transformed ones assigns a model with the ability to detect real outliers. However, our
empirical observations suggest that the choice of effective data transformations depends on the spe-
cific in-domain datasets themselves. Moreover, we find that the learned representations become less
effective if the transformations are already present in the dataset, a phenomenon in line with prior
work (Pal et al., 2020). To address these issues and discover the transformations that are already
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present in the dataset, we propose a staged learning-based framework. This framework enables
us to estimate the distribution of transformations and effectively differentiate between semantics-
preserving and semantics-shifting images. Without loss of generality, we focus on examining the
role of rotation in our main experimental results.

3.1 STAGE I: SELF-SUPERVISED REPRESENTATION LEARNING

In line with the recent successes of self-supervised learning for one-class classification (OCC) Tack
et al. (2020); Sohn et al. (2021); Wang & Isola (2020), we initially train a model denoted as gϕ ◦ fθ,
which consists of a feature extractor fθ and a projection head gϕ, where ϕ and θ denote the corre-
sponding sets of network parameters, using a contrastive pre-training approach (Chen et al., 2020).
During the pre-training, positive pairs are defined as two augmented views of the same original
image, while negative pairs consist of the augmented versions of all other images. The most-
used augmentations to generate positive views for visual representation learning involve random
resized cropping, random horizontal flipping, and color jittering, all of which are assumed to be
semantics-preserving (Chen et al., 2020; He et al., 2020). Once the model converges, we use
the fixed feature extractor fθ to extract features from all training images, creating a reference set
Dref := {fθ(xi)}Ni=1 (N is the dataset size) to supervise the subsequent density matching stage.
Notably, different from the existing methods (Tack et al., 2020; Sohn et al., 2021; Wang et al., 2023)
that consider rotations as the distribution-shifting transformation and push away the original images
from their rotated versions, we exclude rotation from our pre-training process to prevent the rotation
itself from becoming a point of examination as a positive or negative augmentation. This strategy
ensures distinct representations for images and their rotated counterparts.

3.2 STAGE II: TRANSFORMATION DISTRIBUTION ESTIMATION

The second stage comprises three steps: data preparation, sampling, and density matching.

Data preparation. The core idea behind estimating the transformation distribution lies in matching
density between the original training set and the set of transformed images encompassing all rotation
angles. Following the common practice of rotation prediction (Hendrycks et al., 2019; Tack et al.,
2020), we consider a four-way classification of rotations, namely {0◦, 90◦, 180◦, 270◦}, and it is
easily extended to more classes or a regression task. Formally, given a batch of M images C :=
{xi}Mi=1, for each xi, we rotate it by four angles to create a set of rotated images that covers all
rotations, denoted as D := {Rr(x)|x ∈ C ∧ r ∈ {0◦, 90◦, 180◦, 270◦}}, where Rr represents a
rotation transformation with angle r.

Sampling. The next question is how to accurately identify images within D that preserve semantics.
On top of the feature extractor fθ, we introduce a learnable linear layer hγ to estimate the confidence
score s = hγ ◦ fθ(x), s(x) for short, guiding the sampling process. A higher confidence score
indicates a higher likelihood of a sample belonging to the input distribution. We first partition D
into a set of P := {pi}Mi=1, where each pi := {R0◦(xi), R90◦(xi), R180◦(xi), R270◦(xi)} acts as a
candidate pool and contains four rotated images with different rotation angles. We use a “competing-
to-win” strategy to select potentially semantics-preserving images from each pi. Specifically, we
employ a differentiable sampler that selects images based on their confidence scores s, using a
reparameterization technique known as Gumbel softmax (Jang et al., 2016). Note that we choose
only one sample from each pi, resulting in a total of M samples constituting the sampled test set
Dsp that will be matched with the reference set Dref . Since both stages use the same set of training
images, there is a risk that the original sample, i.e., xi rotated by 0◦, always receives the highest
confidence score. To avoid this trivial solution, we introduce the xy-shuffle strategy to ensure that
each pool pi contains different images with varying rotation angles and that the sampling is position-
irrelevant (Figure 2). Specifically, based on Dsp, we first shuffle the images within the same rotation
angles and then shuffle the images across different angles. Standard augmentations are also applied
to generate diverse positive views, similar to those used in the first stage.

Density matching. Density matching is performed in the representation space extracted by the
pre-trained model fθ in the first stage. For training hγ , we utilize an unbiased approximation to
the maximum mean discrepancy (MMD) (Gretton et al., 2012) with multiple Gaussian kernels to
measure the distribution discrepancy between the sampled set Dsp and the reference set Dref in the
ℓ2-normalized representation space. The MMD loss is formally defined as Equation (1).
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(1)

where k(x, y) = ⟨ϕ(x), ϕ(y)⟩ is a kernel function and ϕ(·) denotes the explicit mapping function.
Through the matching of the two distributions, the linear layer hγ tends to assign large logits to
semantics-preserving samples.

At inference, by normalizing the confidence scores s(Rr(x)) among four rotations of sample x, one
can easily infer the probability p(Rr(x)) of Rr(x) belonging to the input distribution. We use the
ensemble strategy with the same augmentations as in training for stable predictions.

p(Rr(x)) =
es(Rr(x))∑

r∈{0◦,90◦,180◦,270◦} e
s(Rr(x))

. (2)

Relation to Positive-unlabeled learning (PU-learning). PU-learning (Mordelet & Vert, 2014;
Bekker & Davis, 2020) is a binary classification paradigm where the training data comprises posi-
tive examples and unlabeled examples. Our task of identifying transformations present in the dataset
can indeed be seen as a specialized instance of PU-learning. In our context, the original set can be
considered as positive class, while the transformed images belong to unlabeled set. However, we di-
verge from conventional PU-learning approaches, such as estimating class priors (Garg et al., 2021)
or employing a two-step bootstrap method (Mordelet & Vert, 2014). Instead, we adopt a two-stage
pipeline to identify semantics-preserving images from the perspective of distribution matching.

4 EXPERIMENTS

4.1 EXPERIMENTAL DETAILS

We employ ResNet-18 (He et al., 2016) as the feature extractor fθ for both stages, and we operate
on the representations right after the global averaging layer. We follow the same augmentation
configurations as (Tack et al., 2020) to generate positive views. We train the learnable linear layer
hγ for 50 epochs and use stochastic gradient descent (SGD) with momentum as the optimizer and
set the learning rate to 0.1. To mitigate biases in the selection of samples, we exclude images from
the sampled set when creating the reference subset at each iteration. Our batch size is set to 256,
and the temperature τ in the Gumbel softmax is fixed at 1.0.

4.2 VISUALIZATION

We count the number of argmaxr∈{0◦,90◦,180◦,270◦} p(Rr(x)) for each class and present them as
stacked histograms in Figure 3. It is evident that 0◦ rotation has the highest frequency for all classes
in CIFAR-10, indicating a predominant right-side-up orientation among most images. This supports
the effectiveness of rotation as a distribution-shifting transformation to generate virtual outliers for
OCC (Tack et al., 2020; Sohn et al., 2021; Wang et al., 2023). However, there are exceptions where
rotation does not alter the semantics, leading to the uncertain predictions for different rotations,
as these images lack a deterministic orientation. With more RAI images involved in training, we
observe a linear decrease in OCC performance in Figure 3c. Figure 4 visually demonstrates that
our method accurately identifies RAIs and non-RAIs across different classes in both the training
and testing sets. It illustrates our method’s ability to avoid over-fitting on the training set (Miyai
et al., 2023) and to generalize well with unseen test samples. Notably, non-RAIs generally feature
centered objects and a zoomed-in appearance, while RAIs capture objects from a distance or in
peculiar postures. For instance, RAIs in the plane and bird are primarily captured in low-angle shots
with the sky as the background, and rotating these images does not alter their semantics. Conversely,
non-RAIs, originally oriented right-side-up on the ground, exhibit unusual postures when rotated,
with the ground appearing upside down in the sky.
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(a) Rot. Distribution in training set. (b) Rot. Distribution in testing set. (c) RAI ratios vs. the OCC results.

Figure 3: Stacked histograms for rotation distribution in the training set (a) and testing set (b). The
relationship between RAI ratios in the testing set and OCC performance is shown in (c).
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Figure 4: Examples of RAI and non-RAI predicted by our method. Images on the left and right part
are from the training and testing sets from CIFAR-10, respectively.

Furthermore, we are interested in how a rotation classifier performs on RAIs/non-RAIs. Intuitively,
a well-trained classifier can distinguish between different rotations of non-RAIs but struggles with
those of RAIs. For evaluation, we first train a 4-way rotation classifier until convergence and report
its accuracy on the testing set in CIFAR-10. Figure 5 displays the rotation accuracies and OCC per-
formance on RAIs and non-RAIs across various classes. This figure highlights two key observations:
1) the classifier achieves significantly lower accuracy on RAIs compared to non-RAIs in nearly all
CIFAR-10 classes, indicating accurate classification of RAIs and non-RAIs by our framework; 2)
the performance bottleneck in OCC lies in the incorrect rotation prediction for RAIs. Therefore, re-
lying solely on the classification accuracy of the classifier (Hendrycks et al., 2019) for OCC cannot
reliably distinguish RAIs from outliers, as both are incorrectly predicted. In such cases, using these
images with the misleading labels of rotation angles will misguide the training process.

4.3 OTHER TRANSFORMATIONS AND PRE-TRAINING METHODS

While our previous analysis primarily focuses on examining the rotation transformation, it is worth
noting that our method is not restricted to rotation alone; it can be applied to various other types of
transformations such as vertical/horizontal flip, translation, and composited transformations. Fur-
thermore, our method allows for the utilization of supervised feature extractors, not limited to self-
supervised ones. In this section, we evaluate these transformations on the Street View House Num-
bers (SVHN) dataset (Netzer et al., 2011), where the central digit (0 through 9) in each image is
the label. This evaluation provides a better understanding of how transformations shift or preserve
semantics, given the clear definition of numbers. We first train the ResNet-18 from scratch in a su-
pervised way on the training set in SVHN, excluding horizontal flip as it is examined in the following
stage of distribution estimation. Figure 6 visualizes the estimated distribution of the test set for four
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Figure 5: We individually calculate the accuracy of rotation prediction and the OCC performance
for RAIs and non-RAIs. Both show a strong link between rotation prediction and OCC.

Vertical flip Horizontal flip Translation Rotation + vertical flip

Figure 6: Our method is also applicable to other transformations. Below each sub-figure, the orig-
inal images in the test set are displayed, with x-axis tick values corresponding to the ground truth
specified by the original dataset.

transformations, with stacked histograms below displaying images on which the model makes in-
correct predictions. It is evident that different classes exhibit distinct transformation distributions.
For flip transformation, nearly half of the images are predicted as vertically flipped for number 0,
indicating the involvement of vertical flip, which aligns with common sense. Similarly, numbers 1,
3, and 8 involve vertical flip to some extent, while number 3 lacks invariance to horizontal flip. For
translation, we consider five directions (original, up, down, left, right) with an 8-pixel shift, demon-
strating the model’s ability to correctly identify off-centered digits. Our method is also applicable to
composited transformations, where images are rotated followed by a vertical flip. Intriguingly, our
method can even spot semantic-shifting images induced by incorrect labeling!

4.4 ONE-CLASS CLASSIFICATION

Following (Golan & El-Yaniv, 2018; Sohn et al., 2021), we conduct evaluations on popu-
lar OCC benchmarks, including CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100 (20 super-
classes) (Krizhevsky et al., 2009), and Cat-vs-Dog (Elson et al., 2007). In these benchmarks, images
from one class are treated as inliers, while those from the remaining classes are considered outliers.
We utilize AUROC as a threshold-free metric for OCC evaluation.

The preceding analysis highlights that relying solely on a classifier for rotation prediction (Gidaris
et al., 2018) is sub-optimal for OCC due to the presence of noisy labels. One straightforward ap-
proach is to discard these noisy samples; however, this strategy fails to take full advantage of all
the training data and does not capture the comprehensive training distribution. We suggest incor-
porating additional pretext tasks for representation learning in a multi-task manner beyond rotation
prediction. For instance, combining contrastive learning with rotation significantly enhances OCC
performance (Tack et al., 2020; Wang et al., 2023). Here, we employ the two one-class classifiers.
Before introducing proper modifications, we establish a simple criterion for determining whether
a transformed sample is semantically shifted or not, based on the predicted score p(Rr(x)). Since
the original sample, i.e., xi without any rotations, serves as trustworthy in-domain data, we take all
transformed samples satisfying p(Rr(xi)) ≥ p(xi) as in-domain (semantics-preserving) data.
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(a) One-class CIFAR-10.
Method Plane Car Bird Cat Deer Dog Frog Horse Ship Truck Mean

Geom (Golan & El-Yaniv, 2018) 74.7 95.7 78.1 72.4 87.8 87.8 83.4 95.5 93.3 91.3 86.0
Rot‡ (Hendrycks et al., 2019) 78.3±0.2 94.3±0.3 86.2±0.4 80.8±0.6 89.4±0.5 89.0±0.4 88.9±0.4 95.1±0.2 92.3±0.3 89.7±0.3 88.4
Rot+Trans‡ (Hendrycks et al., 2019) 80.4±0.3 96.4±0.2 85.9±0.3 81.1±0.5 91.3±0.3 89.6±0.3 89.9±0.3 95.9±0.1 95.0±0.1 92.6±0.2 89.8
GOAD‡ (Bergman & Hoshen, 2020) 75.5±0.3 94.1±0.3 81.8±0.5 72.0±0.3 83.7±0.9 84.4±0.3 82.9±0.8 93.9±0.3 92.9±0.3 89.5±0.2 85.1
iDECODe (Kaur et al., 2022) 86.5±0.0 98.1±0.0 86.0±0.5 82.6±0.1 90.9±0.1 89.2±0.1 88.2±0.4 97.8±0.1 97.2±0.0 95.5±0.1 91.2

CSI (Tack et al., 2020) 89.9±0.1 99.1±0.0 93.1±0.2 86.4±0.2 93.9±0.1 93.2±0.2 95.1±0.1 98.7±0.0 97.9±0.0 95.5±0.1 94.3
CSI + ours 90.6±0.1 99.1±0.0 94.4±0.2 87.4±0.1 94.5±0.1 93.5±0.2 95.6±0.0 98.9±0.0 98.1±0.1 96.1±0.2 94.8
UniCon∗ (Wang et al., 2023) 89.4±0.2 99.2±0.1 93.3±0.1 89.2±0.0 94.1±0.2 94.2±0.3 96.4±0.0 98.6±0.0 97.7±0.1 96.3±0.2 94.8
UniCon + ours 90.0±0.3 99.1±0.0 93.9±0.1 90.4±0.2 95.1±0.0 95.8±0.1 96.8±0.1 98.7±0.0 97.6±0.1 96.8±0.0 95.4

(b) CIFAR-100 (20 super-classes).

Method AUROC

GEOM (Golan & El-Yaniv, 2018) 78.7
Rot (Hendrycks et al., 2019) 79.7
Rot+Trans (Hendrycks et al., 2019) 79.8
GOAD (Bergman & Hoshen, 2020) 74.5

CSI (Tack et al., 2020) 89.6
CSI + ours 90.5
UniCon∗ (Wang et al., 2023) 92.0
UniCon + ours 92.6

(c) Cat-vs-Dog.

Method Cat Dog Mean

RotNet (Golan & El-Yaniv, 2018) 86.1 86.6 86.4
Denoising† Sohn et al. (2021) 41.3 60.6 51.0
Contrastive† Sohn et al. (2021) 89.7 85.7 87.7
DROC† (Sohn et al., 2021) 91.7 87.5 89.6

CSI∗ (Tack et al., 2020) 88.9 88.6 88.8
CSI + ours 89.5 89.3 89.4
UniCon∗ (Wang et al., 2023) 92.1 89.2 90.7
UniCon + ours 92.5 90.0 91.3

Table 1: AUROC scores on one-class (a) CIFAR-10, (b) CIFAR-100 (20 super-classes) and (c) Cat-
vs-Dog. For CIFAR-10, we report the means and standard deviations of AUROC averaged over
three trials. † and ‡ denote the values from DROC (Sohn et al., 2021) and CSI (Tack et al., 2020),
respectively. * denotes the reproduced results by ours.

Powerful anomaly detectors like CSI (Tack et al., 2020) and UniCon (Wang et al., 2023) uti-
lize rotation transformations to generate pseudo outliers and learn representations in a contrastive
learning framework. However, our analysis demonstrates that rotation does not necessarily alter
semantics. Incorporating these noisy images (semantics-preserving but considered outliers) into
training disrupts model training, leading to sub-optimal OCC results. By identifying semantic-
preserving/shifting images, we modify the training objectives of CSI (Tack et al., 2020) and Uni-
Con (Wang et al., 2023) to handle the two types of images separately. For CSI, instead of predict-
ing the label out of four rotation angles for each image, we abstain from making predictions for
semantic-preserving images after rotation and only pull close their distances at feature level. For
semantic-shifting images, we still predict their rotation labels and promote their separation from
other instances, as done in CSI (Tack et al., 2020). For UniCon, we utilize the basic version (Wang
et al., 2023) without soft aggregation and hierarchical augmentation tricks for a fair comparison.
Rather than promoting the concentration of all original images and dispersion of their rotated ver-
sions, we aggregate all semantic-preserving images and push away semantic-shifting ones. We
apply the same criterion as (Tack et al., 2020) and (Wang et al., 2023) to compute anomaly scores.
Table 1 presents the results on three benchmarks. Building on powerful one-class classifiers, our
approach consistently enhances performance across nearly all classes. Notably, the improvement is
particularly significant when a class contains more semantic-preserving images w.r.t rotation.

5 CONCLUSION

In this study, we initially establish a connection between the widely used rotation prediction task
and one-class classification, exhibiting a strong linear relationship. We emphasize the significance
of identifying the transformations present in the original dataset before incorporating them into the
pretext task for learning. Subsequently, we introduce a novel two-stage framework designed to
automatically estimate the distribution of transformations in an unsupervised manner. Leveraging
the estimated distribution, we segregate the training data into two distinct sets: one comprising
samples without semantics shifting and the other with such shifting. We then address these sets
separately for visual representation learning. We believe that our work sheds light on the critical
role of understanding the transformations present in the dataset for improving OCC.
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Supplementary Material

Here, we additionally provide:

• Class-wise performance of RAI and non-RAI binary classification and one-class classifica-
tion, given manually annotated labels.

• Ablation studies on pre-training dataset, pre-training paradigm and network architecture.

• Evaluation on the multi-class Tiny-ImageNet Le & Yang (2015).

• Evaluation on the real industrial MvTec-AD dataset (Bergmann et al., 2019).

A CLASS-WISE PERFORMANCE

A.1 ACCURACY OF RAI IDENTIFICATION

For quantitative evaluation, binary labels of RAI and non-RAI for the CIFAR-10 training set are
manually annotated. The class-wise prediction recall and precision of RAI are reported in the Ta-
ble A, showing that our method accurately identifies RAIs.

Table A: Class-wise recall and precision on the RAI identification.

Class Plane Car Bird Cat Deer Dog Frog Horse Ship Truck Mean
RAI ratios (%) 15.3 0.9 17.0 18.5 7.8 8.5 14.9 2.5 2.5 2.9 9.1

Recall 91.1 97.7 92.6 89.2 81.3 88.3 77.8 93.6 89.6 87.8 84.7
Precision 88.3 89.6 89.8 84.3 84.8 71.4 88.6 80.7 88.2 81.1 88.9

A.2 ACCURACY OF OCC ON RAI/NON-RAI

Based on CSI Tack et al. (2020), we present separate results for RAI and non-RAI on one-class
CIFAR-10. Table B displays the results for the classes which include a relatively high proportion of
RAI samples. Our method significantly enhances OCC performance on RAI, especially for classes
with a larger proportion of RAI samples, such as Plane and Cat class.

Table B: Class-wise AUROC scores (%) on OCC performance.

Class Plane Bird Cat Deer Dog Frog Mean
RAI ratios (%) 20.2 18.6 24.4 8.1 9.7 12.9 14.74

CSI RAI 73.1 90.2 79.4 92.0 91.4 92.4 86.4
CSI + Ours RAI 84.2(+11.1) 93.1(+2.9) 85.3(+5.9) 92.8(+0.8) 92.5(+1.1) 92.8(+0.4) 90.1(+3.7)
CSI non-RAI 93.2 96.5 90.8 95.2 94.9 97.4 94.7
CSI + Ours non-RAI 93.4(+0.2) 96.5(+0.0) 91.9(+1.1) 95.6(+0.4) 95.2(+0.3) 97.7(+0.3) 95.1(+0.4)

B ABLATION STUDY

Our ablation study considers variations in pre-training datasets (CIFAR-10 vs. ImageNet-1K), pre-
training paradigms (self-supervised vs. supervised) and architecture types (ViT-B/16 (Dosovitskiy
et al., 2021) vs. ResNet-18) in the first stage. Table C demonstrates the architecture-agnostic nature
of our method, with ResNet-18 leading to a larger improvement than ViT-B/16. This is attributed to
the lack of inductive bias in ViT, which struggles to learn local relations well with a small amount
of data, such as CIFAR-10. The results also highlight our method’s preference for the supervised
training strategy, emphasizing the significance of well-clustered image representations in contrast to
uniform distribution (Wang & Isola, 2020) induced by self-supervised training. When pre-training
the model on the large-scale dataset, an improved performance is further observed.
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Table C: Ablation study on pre-training dataset/paradigm and architecture in the first stage.

Method Pre-training dataset Pre-training paradigm Architecture Recall Precision
PNDA CIFAR-10 Supervised ResNet-18 77.1 62.0

Ours

One-class CIFAR-10 Self-supervised ViT-B/16 82.6 83.6
CIFAR-10 Supervised ViT-B/16 90.2 85.4

One-class CIFAR-10 Self-supervised ResNet-18 84.7 88.9
CIFAR-10 Supervised ResNet-18 93.6 90.3

ImageNet-1K Supervised ResNet-18 95.5 93.5

C MULTI-CLASS CLASSIFICATION

We additionally conduct experiments on the Tiny-ImageNet Le & Yang (2015) which has 100,000
images of 200 classes. As the two-stage pipeline, the first stage pre-trains the encoder by using
SimCLR and the second stage learns rotation distribution. Likewise, we use the prediction (Equa-
tion (2)) to identify RAI and non-RAI. Given the partition of RAI and non-RAI, we again pre-train
the model by using SimCLR, following the practice (Miyai et al., 2023) to deal with RAIs and non-
RAIs, i.e., RAIs and their rotations are positive while non-RAIs and their rotations are negative. For
fair comparison, we keep the same hyper-parameters in the pre-training. We adopt linear probing
and report the top-1 classification accuracy in Table D. We improve the baseline by +2.59%, which
is attributed to the enhanced distinction between RAI and non-RAI.

Table D: Linear evaluation on Tiny-ImageNet.

RAI ratio (%) Top-1 accuracy (%)
PNDA (Miyai et al., 2023) 31.3 37.17

Ours 28.9 39.76

D REAL INDUSTRIAL DATASET

Our experimental evaluation on the MvTec-AD dataset (Bergmann et al., 2019), adopting patch
representations of 32x32 built upon UniCon-HA (Wang et al., 2023), demonstrates our method’s
superiority in Table E compared to counterparts that incorporate the same rotation augmentation.
Though our method lags behind the state-of-the-art anomaly detector, we underline the need for
tailored pretext tasks (Li et al., 2021) or leveraging pre-trained models (Bergmann et al., 2020) in
the context of industrial anomaly detection.

Table E: Results on the MvTec-AD dataset (Bergmann et al., 2019).

Method Image Pixel
RotNet (Hendrycks et al., 2019) 71.0 92.6

DROC (Sohn et al., 2021) 86.5 90.2
UniCon-HA (Wang et al., 2023) 89.8 94.3

Cut-Paste (Li et al., 2021) 95.2 96.0
Ours 90.6 95.2
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