
Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

DIVING INTO SELF-EVOLVING TRAINING FOR
MULTIMODAL REASONING

Wei Liu∗1 Junlong Li∗2 Xiwen Zhang3 Fan Zhou2 Yu Cheng4 Junxian He1
1The Hong Kong University of Science and Technology 2Shanghai Jiao Tong University
3Helixon Research 4The Chinese University of Hong Kong
{wliucn, junxianh}@cse.ust.hk lockonn@sjtu.edu.cn

ABSTRACT

Self-evolving training—where models iteratively learn from their own outputs—has
emerged as a key approach for complex reasoning tasks, addressing the scarcity
of high-quality chain-of-thought data. However, its effectiveness in multimodal
reasoning, a domain more intricate than text-only reasoning, remains underex-
plored, and the understanding of critical factors in this training paradigm remains
limited. Furthermore, a central challenge for this training method is performance
saturation, which impedes further improvements and scalability. Inspired by re-
inforcement learning (RL), in this paper, we reframe self-evolving training for
multimodal reasoning through the lens of RL, identifying three pivotal factors:
Training Method, Reward Model, and Prompt Variation. Through systematic anal-
ysis, we establish relatively optimal design principles that significantly enhance
multimodal reasoning capabilities. Moreover, delving deeper into training dynam-
ics, we uncover the roots of saturation and propose a new automatic balancing
mechanism to mitigate this limitation. Building on these insights, we propose
M-STAR (Multimodal Self-evolving Training for Reasoning), a framework that
achieves consistent performance gains across models of varying sizes and diverse
benchmarks. All resources will be made publicly available.

1 INTRODUCTION

Multimodal reasoning is a fundamental skill in many real-world applications, such as intelligent
agents (Liu et al., 2024c), robotics (Li et al., 2023; Liu et al., 2024b), and autonomous driving (Yang
et al., 2023). It requires Large Multimodal Models (LMMs) to understand various modalities beyond
text. For example, visual mathematical reasoning (Lu et al., 2023) challenges models to analyze
complex figures, diagrams, and charts, leveraging the provided information to perform reasoning
tasks.

Despite the critical role of mutlimodal reasoning, the availability of human-annotated thought
processes in multimodal scenarios remains limited, hindering the learning of multimodal reasoning.
Consequently, self-evolving training, which utilizes model’s own generation ability to iteratively tune
and improve itself without external annotated data, has emerged as an appealing candidate to facilitate
reasoning abilities. While research on self-evolving training has primarily focused on the text-only
settings (Hosseini et al., 2024; Sun et al., 2024; Shao et al., 2024), its application in the multimodal
domain, especially for reasoning tasks, has been limited with only a few sporadic examples (Fang
et al., 2024; Dubey et al., 2024; Deng et al., 2024), and a unified framework has yet to be established.

Inspired by reinforcement learning (RL), in this paper, we reframe self-evolving training through
the lens of RL, identifying three factors that are critical inside self-evolving training: the training
method, the use of reward model, and prompt variation. Through massive controlled studies, we
(1) propose a continuous self-evolving training scheme to reduce the gap towards full online learning
and outperforms other iterative baselines (§3.2); (2) train the first multimodal, process-based reward
model for multimodal reasoning and demonstrate its usefulness in further enhancing performance
(§3.3); and (3) find that adding more unlabeled queries helps only when having perfect reward signals
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Figure 1: Overview of our self-evolving training framework for multimodal reasoning. We investigate
the three essential design components of it, namely Training method (T ), Reward model (R), and
Prompt variation (P). Orthogonal to the static factors, the Dynamics of self-evoloution is also
monitered, and provides control signals to the training process.

(e.g., the oracle groundtruth answers), and it hurts the performance if the reward model does not
generalize well on unseen data (§3.4). Beyond static design principles, we investigate the training
dynamics, revealing how performance saturation stems from diminishing exploration potential during
training. To address this, we introduce a new metric that bridges exploration and exploitation, and
propose an automatic balancing mechanism that dynamically adjusts the sampling temperature to
sustain exploration-exploitation trade-offs.

Combining all the recipes concluded through separate, controlled studies, we propose our self-
evolving training algorithm named as M-STAR (Multimodal Self-evolving Training for Reasoning).
Our experimental results on 5 different multimodal reasoning benchmarks, including MathVista,
M3CoT, MMStar, MMBench and AI2D, show that this strategy, which incorporates both optimized
static design choices and dynamic adjustments, effectively mitigates exploration loss during training
and enhances performance universally for models with varied sizes such as MiniCPM-V-2.5 (8B),
Phi-3.5-Vision (4B) and InternVL2 (2B).

2 OVERVIEW OF SELF-EVOLVING TRAINING FOR MULTIMODAL REASONING

Self-evolving training can be modeled as a general framework of reinforcement learning, where
various algorithms can be formulated as a specific instantiation of RL, such as PPO (Schulman et al.,
2017), STaR (Zelikman et al., 2022), ReST (Gulcehre et al., 2023) and ReSTEM (Singh et al., 2023).
Specifically, given a reward function R, the objective of self-evolving training is to train the policy
model πθ to maximize expectation of reward R:

πθ = argmaxπθ

L∑
i

Ex,o∼D,ŷi∼πθ[·|x,o][R(ŷi)], (1)

where x, o represent the query and image in the given training data D, while ŷi is a response sampled
from the current policy model πθ. This standard RL objective, however, can be unstable to optimize
and difficult to scale up, thus a popular algorithm adopted by recent works is to decouple the response
rollout ŷi ∼ πθ[·|x, o] and policy improvement into separate offline stages (Gulcehre et al., 2023;
Singh et al., 2023): (1) Generate: the current policy model generates new responses ŷi ∼ πθ[·|x, o];
and (2) Improve: using the rewards to selects certain responses from the Generate step, which are
then used to train the policy model with a standard supervised fine-tuning (SFT) loss. This way,
the algorithm resembles Rejection Fine-Tuning (RFT, Yuan et al. (2023)) as it filters out negative
responses in a hard manner. Both steps are performed iteratively to strike a tradeoff between offline
and online training. In many tasks such as mathematical problem-solving, there exists a unique,
ground-truth answer a∗ which is utilized in the reward function, for example, Singh et al. (2023)
directly adopts exact match to compute a binary reward by comparing ŷ and a∗. In such an iterative
training procedure, the objective at iteration t is to obtain an improved policy model πt+1

θ :

πt+1
θ = argmaxπt

θ

L∑
i

Ex,o,a∗∼D,ŷi∼πt
θ[·|x,o][R(a∗, ŷi)], (2)
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where the ground-truth answer a∗ can be empty, for example, when dealing with unlabeled inputs,
the reward model must be able to score ŷi independently.

The Design Spaces Through the lens of Eq. 2, we can identify three dominant factors that influence
the training process, (1) training method: the training algorithms to perform this iterative process vary
as well. For example, while Gulcehre et al. (2023); Xu et al. (2024b) initialize the model from the last
checkpoint at each iteration, Zelikman et al. (2022); Singh et al. (2023) argue that initializing from
the beginning checkpoint reduces overfitting and gives better performance empirically. (2) reward
model: the design of reward function R. (3) prompt variation: whether to incorporate additional
unlabeled inputs without a∗ into training. Next, we investigate these three design spaces, aiming to
summarize the best practices for each factor.

3 DIVING INTO SELF-EVOLVING DESIGN COMPONENTS

In this section, we explore the three key components of self-evolving training, examining various
strategies within each. We begin by outlining the general setup (§3.1), followed by a comprehensive
analysis of each component to identify the best practices for multimodal self-evolution (§3.2-§3.4).

3.1 GENERAL SETUP

Models We base our main exploration on MiniCPM-V-2.5 (8B) (Yao et al., 2024), and we also
validate the final design choice for each component on two extra models with different sizes: Phi-
3.5-Vision (4B) (Abdin et al., 2024) and InternVL-2 (2B) (Chen et al., 2024c). The details of these
models can be found in Appendix A. To make the analysis process easier to understand, we mainly
present the results of MiniCPM-V-2.5 in this section, while we include the results of the other models
in §4.2.

Main Training Settings We utilize MathV360K (Shi et al., 2024) dataset for training and Math-
Vista (Lu et al., 2023) for out-of-domain (OOD) evaluation. Please refer to Appendix B for more
details. Before self-evolving training, a self-warmup stage (Appendix C) is applied to enhance the
CoT generation ability of all models as many LLMs tend to output final answers directly without CoT.
We adopt most of the training settings from Yao et al. (2024) (see Appendix D), using a constant
learning rate of 1e− 6 and training for 10K steps across all experiments. During all rollout phases in
training, we sample 16 responses per query and set the sampling temperature to 1.0. Unless explicitly
stated otherwise, we follow existing practices (Singh et al., 2023; Zelikman et al., 2022) and only use
the labeled training data.

3.2 TRAINING METHODS

As described in §2, there are multiple variants on how we would train to update the policy model.
Previous works mainly vary the model initialization factor, where at the “Improve” step, the model
can be initialized from either the last checkpoint (Xu et al., 2024b; Pang et al., 2024) or the beginning
checkpoint before the first iteration (Zelikman et al., 2022; Singh et al., 2023). Besides model
initialization, in this work, we introduce new variants of iterative self-evolving through delving into
the gap between iterative training and online RL – concretely, when the iteration interval is small,
the checkpoint at each iteration is initialized from one from the last iteration, and the optimizer as
well as the learning rate scheduler is inherited between iterations, then iterative training becomes an
online RL algorithm. Therefore, we propose Continuous Self-Evolving, a new iterative self-evolving
training variant that represents a smoother interpolation between iterative training and online training.
In continuous self-evolving training, we inherit the optimizers as well as the learning rate schedulers
from the last iteration besides inheriting the model checkpoint, so that the optimization is continuous
and closer to purely online learning algorithms. This way, we only have a global optimizer and
learning rate scheduler essentially across the entire iterative training process. We also analyze the
iteration interval effect in continuous self-evolving, which is defined as the training queries passed
for one iteration – we specifically study the effect of having a shorter iteration interval, which stands
in contrast to the common practice that adopts a long iteration interval to process all the data queries
for one iteration.
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Table 1: The results of self-evolving training
with PRM and different strategies to leverage
reward scores. H is the method to further pick
out high-quality responses from the correct roll-
outs: (1) Top-k is to select K correct responses
with highest rewards, and (2) > α is to pick out
the correct responses with rewards larger than α.
Please refer to Table 6 to check the full results
on all sub-tasks of MathVista.

Method H PRM MathV360K MathVista

Cont.
Self-Evolving - × 43.1 57.2

+ Random Random-2 × 41.0 55.5

+PRM-based
Selection

> α

✓

43.8 57.5
Top-1 43.0 59.0
Top-2 45.3 59.2
Top-4 44.0 58.4

Table 2: The results of self-evolving training
with PRM and different strategies to leverage
reward scores. H is the method to further pick
out high-quality responses from the correct roll-
outs: (1) Top-k is to select K correct responses
with highest rewards, and (2) > α is to pick out
the correct responses with rewards larger than α.
Please refer to Table 6 to check the full results
on all sub-tasks of MathVista.

Method H PRM MathV360K MathVista

Cont.
Self-Evolving - × 43.1 57.2

+ Random Random-2 × 41.0 55.5

+PRM-based
Selection

> α

✓

43.8 57.5
Top-1 43.0 59.0
Top-2 45.3 59.2
Top-4 44.0 58.4

Setup We perform controlled experiments to study the effect of different training methods, thus in
this experiment we use the labeled dataset only and simply adopt the binary exact-match reward
between ground-truth answer a∗ and the generated answer. We compare with the most common
iterative self-evolving algorithms ReSTEM (Singh et al., 2023) and iterative RFT, which are specific
instantiations of our training methods design space. To study the effect of iteration interval in the
proposed continuous self-evolving, we experiment with different percentage of all the queries per
iteration, varying from [6.25%, 12.5%, 25%, 50%, 100%].

Results Table 1 presents the experimental results of various training methods. Overall, initializing
training from the last policy model checkpoint πt

θ and maintaining a continuous optimization process
contribute most significantly to the effectiveness of self-evolving training, particularly on MathVista.
Continuous self-evolving achieves the best performance both on the in-domain MathV360K test
set, with 43.1%, and on the OOD test set, MathVista, with 57.2%. We also see the importance of
maintaining a proper interval to traverse the data queries. With a large interval, the training method
becomes closer to an offline one, and the model cannot get timely updates on data matching its
current output distribution. On the other hand, switching over the Improve and Generate steps too
frequently makes the learning process unstable, leading to a lower score, especially on the in-domain
test set. The strategy of continuous self-evolving with proper intervals also works for other smaller
models, as shown in Table 6 compared with representative baselines, indicating its effectiveness and
generalizability across different model sizes.

3.3 REWARD MODELS

In self-evolving training, the most common approach to reward function design uses a binary reward
R(ŷi) = 1(âi = a∗), where âi is the predicted answer inside ŷi and incorrect responses are filtered
out to maximize rewards. While effective, this sparse binary reward has limitations. It overlooks the
quality of the intermediate reasoning steps within a response. Additionally, reward models trained
from equal or higher capacity models than the policy model (Fried et al., 2022; Wang et al., 2024;
Sun et al., 2024) can provide richer signals to improve the policy model’s learning.

In this section, we introduce a Process Reward Model (PRM) (Lightman et al., 2023; Wang et al.,
2024) for multimodal reasoning—the first of its kind, to our knowledge—and explore how integrating
PRM can enhance reward design and whether it can improve policy model learning in self-evolving
training for multimodal reasoning. To incorporate the reward scores into the objective of self-evolving
training, the reward function is reformulated as:

R(ŷi) = H(1(a∗ = âi)×Rp(ŷi)) (3)

Rp(ŷi) = min(f(s0i ), f(s
1
i ), ..., f(s

m
i )) (4)

Here, H is an operation that processes responses based on the final reward scores, where we ensure
all responses are correct by matching the ground truths, and Rp(ŷi) represents the process reward

4



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

score for each sampled response. The function f(ski ) denotes the reward score at each intermediate
step. Following Lightman et al. (2023), we use the min operation to aggregate stepwise rewards.

Setup We conduct controlled experiments to assess the impact of incorporating the Process Reward
Model (PRM) into self-evolving training and explore how best to utilize it. Notably, before applying
PRM, responses are pre-filtered based on their final answers to ensure consistency and quality during
training. To train our PRM, we use Monte Carlo rollouts starting from prefixes with partial reasoning
steps (Wang et al., 2024) to generate the training data. Specifically, we sample 16 responses per
question and complete each step 8 times to obtain step-level annotations and more details can be
found in Appendix E. We evaluate two different H operations: (1) Top-K: Pick the top-K correct
responses according to their reward scores, and (2) Filtering by a Threshold α: Filtering out sampled
responses with lower aggregated rewards than α. The optimal value of α is set 0.2 by grid searching
on the validation set. Additionally, we investigate how varying the value of K in Top-K affects
training, as it represents a trade-off between the quality and diversity of the samples. According
to §3.2, we fix training methods as continuous self-evolving with 45k interval and set continuous
self-evolving, with or without randomly selected correct responses as our baselines.

Results Table 2 presents the results of integrating the PRM into self-evolving training, along with
the impact of different H choices. Continuous Self-Evolving with PRM using Top-2 achieves
the best performance in both the ID and OOD tests, with scores of 45.3% and 59.2%, respectively.
Compared to training without PRM, most instances of self-evolving training with PRM show improved
performance, especially in the OOD test. Interestingly, randomly selecting a subset of correct
responses actually leads to worse performance than continuous self-evolving, suggesting that even
correct answers can be noisy. Random selection may increase the proportion of these noisy samples,
undermining the effectiveness of self-evolving training.

In terms of leveraging PRM, we found that using Top-K to select the a fixed number of best K
responses with high-quality intermediate steps outperforms threshold-based filtering. The results
also highlight the importance of balancing the quality and diversity of sampled responses. Selecting
K = 2 strikes this balance well, ensuring both response diversity and high-quality reasoning steps
for each question. Similar to the results in §3.2, we also see improvement when involving PRM on
smaller models in Table 6, Appendix I.

What makes PRM work for self-evolving training? To pursue deeper insights into the role of PRM
in self-evolving training, we conduct an analysis presented in Figure 2. Based on the results from
§3.3, we explore PRM’s impact from two key perspectives: (1) Can PRM help the model to select
out correct responses among multiple rollouts? (2) How different are the Top 2 and the rest correct
solutions re-ranked by reward scores? We use the first checkpoint after warmup π0

θ as policy model
to sample 16 responses for each question in the validation set with temperature=1.0 and reveal the
behaviors of PRM in these samples.

We evaluate the verification ability of our PRM using two metrics, Best-of-N (BoN) and weighted
voting (Sun et al., 2024), which are commonly employed to assess the performance of reward models.
Surprisingly, as shown in Figure 2a, our PRM underperforms in both metrics. Notably, BoN and
weighted voting yield worse results than vanilla majority voting when N < 16. We speculate that
this is due to the lack of high-quality step-level annotations compared to text-only reasoning tasks.
These findings suggest that our PRM is not an effective verifier.

To understand why our PRM can still significantly contributes to self-evolving training despite its
weaker verification abilities, we analyzed the distribution of other metrics for the top-2 selected
responses compared to other correct responses. We approached this from two perspectives: the
average number of reasoning steps, and how much a response is directly relevant to the question
(see Appendix F), since we do not find incorrect steps but find some irrelevant steps after randomly
checking some examples. We found the responses re-ranked by our PRM generally have fewer
reasoning steps (Figure 6 in Appendix G) and more relevant to the query (Figure 2b). This
highlights the precision of our PRM in recognizing genuinely high-quality responses. Therefore, our
PRM acts as an effective reranker to identify top-quality responses. This is especially critical when
responses are already filtered by ground-truth answers, and the ability to accurately assess the quality
of reasoning steps beyond accuracy becomes vital.

In addition to the aforementioned analysis, we also investigate why leveraging α to filter responses
with lower reward scores performs worse than Top-K. The results indicate that, even with the optimal
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Table 3: Results of involving unlabeled data.
Tmixin denotes when to mixin the unlabeled
data. The use of PRM follows §3.3, except
we first get a pseudo “ground truth” through
weighted voting on unlabeled prompts.

Oracle PRM Tmixin MathV360K MathVista

- × - 43.1 57.2
- ✓ - 45.3 59.2
✓ × 0% 42.5 58.2
✓ ✓ 0% 42.9 59.1

× ✓ 0% 43.3 58.2
× ✓ 25% 42.4 57.6
× ✓ 50% 42.9 58.2
× ✓ 75% 45.0 58.8

threshold value determined from the validation set, it tends to either retain or filter out all responses
for each query, which reduces diversity and makes the learning process more challenging. This
further supports the conclusion that our PRM performs better as a Reranker than as a Verifier.

3.4 PROMPT VARIATION

In this section, we explore how prompt variation affects self-evolving training. There are two primary
types of prompts: labeled prompts and unlabeled prompts. Labeled prompts come with annotated
ground truth answers, which can be used to filter out incorrect responses during training. In contrast,
utilizing unlabeled prompts in self-evolving training is more challenging due to the absence of ground
truth annotations. To maintain the quality of unlabeled prompts in training, surrogates like reward
scores or pseudo labels must be employed. Meanwhile, unlike labeled prompts, unlabeled prompts
are not be trained in SFT period, which increases the difficulty of learning for policy models.

Skylines: Unlabeled Prompts with Oracle Reward Signals The coupling of these additional factors
introduces complexity, making the effective use of unlabeled prompts less predictable. Therefore we
start by establishing a baseline with “skyline” experiments, where both the unlabeled prompts and
their ground truth answers are available but not used during the SFT phase. These unlabeled prompts
with oracle reward signals serve as an intermediate difficulty between fully unlabeled and labeled
prompts, providing insight into the challenges of training with unlabeled data.

Unlabeled Prompts We incorporate unlabeled prompts into self-evolving training. To ensure the
quality of sampled responses for these prompts, we use weighted voting to ensemble the predictions
from different responses, treating the ensembled prediction as a pseudo label ã. This pseudo label is
then used to filter out responses with conflicting predictions, ensuring consistency. Following the
best practices outlined in §3.3, we apply PRM as a reranker to select the top-2 responses with the
predicted answer ã. These unlabeled prompts are then mixed with labeled ones for self-evolving
training. Additionally, since learning from unlabeled prompts is more challenging for policy models,
we investigate the optimal timing to introduce them into training as well. We maintain an interval of
45k prompts and adjust when unlabeled prompts are introduced into the training process. Specifically,
we introduce unlabeled prompts after [0%, 25%, 50%, 75%] of the total training process.

A Glimpse at Unlabeled Prompts: Potential Efforts to Make Them Effective Table 3 presents the
results of incorporating unlabeled prompts with and without oracle reward signals. When training
relies solely on oracle reward signals without the PRM, continuous self-evolving with unlabeled
prompts outperforms standard continuous self-evolving trained only on labeled prompts in the out-
of-domain test but underperforms in the in-domain test. This indicates that additional prompts help
the model generalize better to underrepresented questions but also increase the risk of forgetting
previously learned information. However, after combining with our PRM, all policy models perform
worse than our best model trained exclusively on labeled prompts in both benchmarks, even when
oracle reward signals are provided. Based on the analysis in §3.3, this occurs since our PRM is unable
to verify responses without ground-truth answers, and its generalization remains a concern.
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and Pass@K.

Table 4: Results on MathVista with various train-
ing strategies across multiple model sizes. We
highlight the relative improvement of M-STAR
over the pre-evolved model, i.e., the “+warmup”
row. CPM = MiniCPM-V-2.5, Phi = Phi-3.5-
vision, and Intern = InternVL2-2B.

Variant CPM Phi Intern

Base 52.4 46.5 46.4
+warmup 52.8 49.3 47.6
SFT 54.7 49.5 41.9
Iterative RFT 55.7 50.2 47.5
RestEM 55.1 50.5 47.9
Cont. Self-Evolving 57.2 51.1 48.4
+ PRM Re-Rank 59.2↑ 6.4 53.2↑ 3.9 48.8↑ 1.2

M-STAR (Reward-Pass@2) 59.5↑ 6.7 54.5↑ 5.2 50.3↑ 2.7

When examining the timing for introducing unlabeled prompts, we find that adding them from the
beginning helps mitigate the negative impact on model performance, compared to introducing them
in midway. However, when unlabeled prompts are introduced later in the training process, they
participate less in the overall training, leading to better results simply due to their limited involvement.
This suggests that, without sufficient surrogate supervision (e.g., precise reward signals), introducing
unlabeled prompts into self-evolving training can harm the process, potentially causing a deviation in
the policy model’s distribution.

4 DYNAMICS OF SELF-EVOLUTION & FINAL RECIPE

So far, we have explored the impact of three pivotal factors within our design space, leading to
established best practices for learning multimodal reasoning – we adopt continuous self-evolving
training coupled with a reward model to help data selection as described in §3.3, and we perform the
training process on SFT datasets with final answer annotations. In this section, we delve even deeper
into the current self-evolution strategy to better understand the bottlenecks. Instead of analyzing from
a design space perspective as previously, we now fix the design parameters and focus exclusively on
the training dynamics during the model’s self-evolution. This shift in focus allows us to examine the
process from an orthogonal angle, providing further insights into the underlying mechanisms that
drive or impede progress in multimodal reasoning capabilities.

4.1 MONITORING THE TRAINING DYNAMICS

Intuitively, two critical conditions must be met for the success of self-evolving training: (1) the
presence of high-quality candidate responses generated by the model, otherwise self-evolving will
not work no matter how strong the reward is; and (2) the reward function’s ability to effectively
distinguish and prioritize these high-quality responses. These conditions align with the traditional
reinforcement learning concepts of exploration and exploitation. Apparently, both exploration and
exploitation capabilities are dynamic targets in self-evolving training, as the policy model evolves and
the distribution of rollout responses changes with each iteration. To better understand these training
dynamics, we propose tracking and visualizing three metrics, where we introduce a novel metric,
Reward-Pass@2, to monitor the exploration-expolitation trade-offs:

• Greedy Accuracy: the model’s accuracy with greedy decoding. We track this metric for reference
to compare with other metrics.

• Pass@K Accuracy: the percentage of samples for which the model produces at least one correct
response when sampling K candidates. This metric measures the model’s exploration ability.

• Reward-Pass@2: the ratio (%) of samples for which there exist correct responses among the top 2
responses ranked by the reward model. This metric directly reflects the exploitation efficacy of
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the reward model for the current policy. We choose Pass@2 since our training strategy involves
selecting the top 2 responses using the reward model (§3.3).

Specifically, after each training iteration of our current optimal strategy, we sample 16 re-
sponses from the model checkpoint on the validation set, with the temperature range set to
t = [0.5, 0.7, 1.0, 1.2, 1.5, 1.7, 2.0]. We analyze with varying temperatures as temperature is a
key hyperparameter for the generation diversity and model’s exploration.

Results Figure 3 shows a clear trend where, as training progresses, the Pass@K metric continuously
declines while greedy accuracy improves. This pattern indicates the loss of exploration ability, which
hampers the model’s potential for continuous improvement and may lead to performance saturation.
These observations are consistent with findings in text-only settings as reported by Wu et al. (2024).
In Figure 4a we analyze Pass@K accuracy at various temperatures and observe a significant trend:
despite a general decay in exploration ability, larger temperatures tend to resist this decline more
effectively, allowing the model to maintain a stronger ability to explore in the mid to late stages
of training. This observation suggests that the optimal temperature for training may need to be
dynamically adjusted throughout the self-evolving process, rather than being fixed at the outset as is
currently common practice.
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Figure 4: (a): Pass@K decreases for all different temperatures; (b):
The Reward-Pass@2 saturates quickly. All metrics are calculated
on validation set.

In Figure 4b, we observe that
the Reward-Pass@2 metric ini-
tially increases but quickly
reaches a plateau, indicating
that the reward model’s capacity
to exploit further diminishes as
training progresses. This limi-
tation could be due to both the
reduced exploration ability and
the inherent constraints of the
reward model. Next, we fix the
reward model as a control vari-
able and ask, how can we en-
hance exploration to allow the
reward model to exploit more
effectively?.1

4.2 M-STAR– FINAL RECIPE WITH OPTIMAL DESIGN CHOICES & ADAPTIVE EXPLORATIONS

Reward-Pass@2 closely relates to the effectiveness of our self-evolving training strategy since our
method selects top responses ranked by the reward model, and Reward-Pass@K directly reflects
the quality of these 2 responses.2 While Reward-Pass@2 naturally measures exploitation when
the policy is fixed, the absolute value of this metric actually encapsulates both exploration and
exploitation – its value would be low if the model fails to explore high-quality candidates. Therefore,
we hypothesize that enhancing the Reward-Pass@K scores for the current iteration through varied
configurations could potentially improve the efficacy of self-evolving training. We fix reward model
as a control variable and focus on modifying the model’s exploration capabilities to achieve this
objective. Analysis in §4.1 suggests that the temperature, which is crucial for exploration, may require
dynamic adjustment. Thus we propose to adjust the temperature automatically at each iteration based
on the validation Reward-Pass@2 scores. This aims to optimize exploration so that the selected
responses are of higher quality, potentially enhancing overall training effectiveness.

Specifically, we adjust the temperature per two iterations, and pick the temperature from 0.3 to 1.6
with interal 0.1 automatically with maximum validation Reward-Pass@2 scores. The optimal design
choices outlined in §3, combined with our adaptive exploration strategy, form our final recipe for

1While improvements to the reward model could also enhance Reward-Pass@2, we reserve it for future work.
2We note that there is a slight mismatch between Reward-Pass@2 and our training strategy, as we pre-filter

responses using the ground-truth answer before the reward model reranks them. Ideally, a more aligned metric
would measure the CoT reasoning quality of the top 2 responses, both containing correct answers. Given that
there is no reliable method to score the quality of the thought processes, we consider Reward-Pass@2 as a
reasonable approximation which turns out to be effective empirically.
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Table 5: Performance of M-STAR compared with baselines. We highlight the relative improvement
of M-STAR over the pre-evolved model, i.e., the “+warmup” row. For benchmark with suffix “-R”,
we follow Xu et al. (2024a) to remove some perception sub-tasks in them, to get the subsets that
focus more on reasoning.

MathVista M3CoT MMStar-R MMBench-R AI2D Average

MiniCPM-V-2.5 52.4 41.2 44.6 72.6 64.4 55.0
+ warmup 52.6 47.8 45.1 76.9 65.9 57.7

M-STAR 59.5↑ 6.9 48.7↑ 0.9 50.7↑ 5.6 79.9↑ 3 69.1↑ 3.2 61.6↑ 3.9

Phi-3.5-vision 46.5 39.4 42.5 56.8 47.5 46.5
+ warmup 49.3 46.5 44.2 70.9 65.5 55.3

M-STAR 54.5↑ 5.2 51.3↑ 4.8 48.8↑ 4.6 73.6↑ 2.7 67.9↑ 2.4 59.2↑ 3.9

InternVL2-2B 46.4 16.7 20.0 14.2 33.5 26.2
+ warmup 47.6 45.6 41.8 68.8 60.0 52.8

M-STAR 50.3↑ 2.7 47.1↑ 1.5 42.0↑ 0.2 67.3↓ 1.5 59.7↓ 0.3 53.3↑ 0.5

multimodal self-evolving training for reasoning, M-STAR. For experiments on Phi-3.5-vision and
InternVL2, considering the limited capacity of these models and the computational cost, we utilized
both the warmup data and multimodal PRM based on MiniCPM-V-2.5.

Full Results Table 4 presents the results of our final approach as well as the comparison with
representative baselines. We also demonstrate the scores on all sub-tasks of MathVista in Table 6,
Appendix I. We see that by incorporating the dynamics of Reward-Pass@2, which balances both
exploration and exploitation, our final recipe achieves the highest results for all three backbone
LMMs. In addition to overall trend, we observe that self-evolving training based on larger models
yields more comprehensive improvements. We assume that the smaller model like InternVL2-2B
may struggle to generalize its learned abilities across different domains as effectively as the larger
models, such as MiniCPMV-2.5 and Phi-3.5-vision.

We also plot how the Pass@K and Reward-Pass@2 change for M-STAR when trained on MiniCPM-
V-2.5. To align with training, we show the metrics corresponding to the selected temperature in
each iteration (see Appendix H for others). Figure 5 shows that compared with choosing a fixed
temperature over the whole process statically, tuning it automatically mitigate the regression of
Pass@K to avoid the exploration loss. Besides, the Reward-Pass@2 is also generally higher than
before. These further highlight the necessity to monitor the dynamics and adjust accordingly.
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Figure 5: Comparing the smoothed Pass@K and
Reward-Pass@2 curves with the optimal static
training progress, which fixs temperature T = 1.0.

M-STAR on More Diverse Benchmarks To
further investigate how well M-STAR general-
izes to multiple benchmarks, we select four ex-
tra multi-modal ones focus on reasoning as well:
M3CoT (Chen et al., 2024b), MMStar (Chen
et al., 2024a), MMBench (Dev set, v1.1) (Liu
et al., 2025), AI2D (Kembhavi et al., 2016). For
MMStar and MMBench, we remove the percep-
tion sub-tasks to construct subsets focus more
on reasoning. As shown in Table 5, models
self-evolved with M-STAR consistently outper-
form both the base models and those trained
with warmup across nearly all benchmarks. The
only exception is InternVL2-2B, which under-
performs on two benchmarks, aligning with the
speculations discussed above. Smaller models
face challenges in generalizing beyond their training data, particularly on perception-intensive
benchmarks like MMBench-R and AI2D. In contrast, larger models such as Phi-3.5-vision and
MiniCPM-V-2.5 show significantly improved generalization, despite being trained with the same
query set.
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5 CONCLUSION

We dive into the self-evolving training for multimodal reasoning. Three static components are
identified at first, namely the training method, reward model and the prompt variation. Through
controlled experiments, we conclude a set of optimal design choices. On the other direction, we also
go deeper into the dynamics of self-evolving training to analyze the trade-off between exploitation
and exploration. By balancing the training dynamics, we are able to further improve its performance.
We hope our work can provide insights and guidance for future research on self-evolving training for
multimodal reasoning.
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A DETAILS OF SELECTED LMMS

MiniCPM-V-2.5 (Yao et al., 2024) is a powerful, openly released LMM. MiniCPM-V-2.5 leverages
LLaMA-3-8B (Meta, 2024) for its language model and SigLIP (Zhai et al., 2023) as its vision
encoder, resulting in strong multimodal capabilities. Its performance on a wide range of multimodal
benchmarks significantly surpasses previous openly released LMMs such as LLaVA (Liu et al., 2023;
2024a) and Qwen-VL (Bai et al., 2023).

Phi-3.5-Vision (Abdin et al., 2024) is a multimodal model combining a CLIP ViT-L/14 (Radford
et al., 2021) image encoder and a Phi-3.5-mini transformer decoder. It processes interleaved image-
text inputs using dynamic cropping for images and is pre-trained on 0.5T tokens from diverse datasets.
Post-training via supervised fine-tuning (SFT) and direct preference optimization (DPO) enhances its
multimodal reasoning and language understanding capabilities.

InternVL-2 (Chen et al., 2024c) InternVL 2.0 is a multimodal large language model series ranging
from 1B to 108B parameters. The specific 2B version we use combines InternViT (300M) (Chen
et al., 2024c), an MLP projector, and InternLM-2-Chat (1.8B) (Cai et al., 2024), showcasing strong
vision-language capabilities. Built with progressive alignment training, it efficiently aligns vision
and language models while supporting diverse inputs (text, images, video, medical data) and outputs
(images, bounding boxes, masks), performing competitively across various vision-language tasks.

B DATASETS DETAILS

We utilize MathV360K (Shi et al., 2024), a high-quality and diverse multimodal reasoning dataset
as our seed training dataset. Specifically, we downsample half of the examples (180K) from it
to serve as our labeled training set, while setting aside the remaining half as a unlabeled training
set by not using the answers in it. For evaluation, we split 750 samples from the unlabeled part
of MathV360K as the in-domain (ID) testset. For our out-of-domain (OOD) testset we use the
testmini split of MathVista (Lu et al., 2023), a comprehensive benchmark encompassing a wide
range of multimodal reasoning tasks, including visual question answering, figure-based question
answering, science question answering, and more. We also keep an non-overlapping 250 samples
from MathV360K as the global validation set in training.

C WARM-UP PHASE TO UNLOCK THE CHAIN-OF-THOUGHT (COT)
CAPABILITY OF LMMS

In our preliminary experiments, we found that open-source LMMs would directly output the answer
given the query, while struggling to produce detailed chain-of-thought (CoT) reasoning processes.
This may originate from the the scarcity of high quality rationales in most existing multimodal SFT
training datasets (Masry et al., 2022; Shi et al., 2024), which limits the ability of open-source LMMs
to generate detailed, step-by-step reasoning. Self-evolving training, however, requires responses with
varying intermediate steps to allow models to learn effectively from on-policy data. To address this
issue, we initiate a warm-up phase to collect some CoT data from the model itself as the first step
before self-evolving training. Instead of prompting the model to answer questions directly, we prompt
it to generate intermediate reasoning steps for a given triplet (question, image, and answer) using the
following instruction:

Extra instruction to guide CoT

Offer a comprehensive breakdown of your analytical process, detailing each step, the reasoning behind
your decisions, and how you integrated various pieces of information, and put your answer at the end.

For each triplet, we ask models to rollout 16 samples with temperature = 1.0. We then filter out
results where the final answers do not match the ground truth and sample 100K from the generated
dataset to create a warm-up CoT dataset Dw with correct answers. Finally, we fine-tune our models
on this dataset, treating it as a standard RFT process. Our iterative self-evolving training process will
then start from this model checkpoint after the warm-up training.
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D HYPER PARAMETERS

We follow the training setup from Yao et al. (2024), using a learning rate of 1e-6 and a batch size
of 128. A constant learning rate scheduler with a warmup ratio of 0.1 is applied. Input images are
encoded using SigLIP SoViT-400m/14 (Zhai et al., 2023), and the visual tokens are compressed
through a perceiver resampler structure with a single cross-attention layer. Additionally, each input
image is sliced into a maximum of 9 segments, with each segment compressed into 96 queries.

E TRAINING PROCESS REWARD MODEL (PRM)

To train our PRM, we first train another checkpoint (denoted as π̂0
θ ) on our CoT-augmented training

data for a much longer period to make sure it fully converges.

Based on this model, we leverage Monte Carlo Rollut method (Wang et al., 2024) to collect the
training data for PRM. Specially, we randomly pick 50K questions from the full training set, and
sample 16 responses for each of them with π̂0

θ . We de-duplicate these responses, and only keep at
most 4 responses for each question. After that we randomly sample 50K question-response pairs
from all the pairs, where we control the ratio of correct and wrong responses as 1:1, and the ratio of
multi-choice and free-form question as 1:1 as well, to keep a balanced distribution.

To construct the labels of each step, we use π̂0
θ as the completer to complete the solution

from the end of each step in one response. For the kth step, the step label is annotated as
1
N

∑N
j=1 1(Cj(s

≤k) = a∗), where N(= 16) is the number of completion, Cj is the j-th completion.

Based on the stepwise annotations, we train our PRM from π̂0
θ . We initialize the linear reward model

head as the average of the embeddings, and train with MSE loss on all tokens, where the label of
each token is identical to the step end token. In experiments we freeze the visual encoder as we find
it brings a slight improvement.

F MEASURING RESPONSE RELATIVITY

To get a comprehensive understanding of how our PRM works as a re-ranker, we conduct a quantitative
analysis using GPT4-o (gpt-4o-2024-08-06) to see how much a correct response is directly
related to the query, e.g., does not contain irrelvant steps. The prompt we use is as follows:

Prompt for GPT4-o to annotate the relativity score

Given the image and a related question, you need to judge how a candidate solution is directly related to
the question. You need to consider all its steps, and return a final value bewteen 1-10 as a overall score.
Conclude your judgement at the end as ”So the relativity score is X” where X is the score you give.

G EXTRA COMPARISON BETWEEN RM-SELECTED SOLUTIONS AND OTHERS
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Figure 6: Number of reason-
ing steps for top-2 solutions
and the rest solutions.

As a complement to our analysis in §3.3, we additionally plot the num-
ber of reasoning steps (split by \n\n) for the top-2 solutions re-ranked
by our process reward model, as well as for the other solutions. We
observe that the top-2 solutions typically have fewer reasoning steps,
indicating that the reward model can effectively identify solutions
with fewer irrelevant steps and prioritize more straightforward ones.

H MORE RESULTS FOR M-STAR

We plot the extra analysis results for M-STAR here. In Figure 7, we
plot the changes of Pass@K and Reward-Pass@2 across different
temperatures for M-STAR(Reward-Pass@2) as a compliment to the
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adapative adjustion mentioned in §4.2. We can see that acroos all selected temperatures, the explo-
ration ability reflected by Pass@K does not regress continuously, and the Reward-Pass@2 reaches its
peak more quickly, compared with training without the monitor of dynamics.
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Figure 7: (a):Pass@K changes during the training of M-STAR (Reward-Pass@2); (b): :Reward-
Pass@2 changes during the training of M-STAR (Reward-Pass@2). We pick 7 different temperatures.

I FULL RESULTS OF MATHVISTA

We present the complete evaluation results on MathVista for all three of our selected models. The
scores for each subtask in MathVista are reported in Table 6. As shown, M-STAR achieves improve-
ments across all subtasks compared to the pre-evolved models, particularly on geometric problems
and math word problems. This demonstrates its enhanced comprehensive multimodal reasoning
ability across multiple aspects.

J MORE RELATED WORKS

In this section we will briefly introduce other works that are related to our study that cannot be
elaborated in the main context due to page limit.

Self-Evolving Methods The most straightforward and widely-used approach to enhance a model’s
reasoning ability is through supervised fine-tuning (SFT), where models mimic the outputs of highly
capable models (Yu et al., 2023; Yue et al., 2023). However, as the gap between open-source models
and proprietary ones narrows, the performance improvements from SFT tend to plateau. This has
led to increased attention on self-evolving methods, where models refine and improve themselves
without external supervision, as a means to further boost their reasoning abilities.

Some early self-evolving approaches primarily focus on single-round improvements. For instance,
LMSI (Huang et al., 2022) leverages CoT prompting combined with self-consistency to generate
high-confidence solutions from unlabeled data, which are then used to augment the training process.
Similarly, RFT (Yuan et al., 2023) enriches the training data by filtering solutions using existing
labels. Both methods apply this augmentation process in just one iteration.

On the other hand, several works have explored iterative approaches for self-improvement. Notably,
STaR (Zelikman et al., 2022), ReSTEM (Singh et al., 2023), and V-STaR (Hosseini et al., 2024) retrain
their models from the original checkpoint after each iteration, while ReST (Gulcehre et al., 2023)
continuously fine-tunes the model starting from the previous iteration’s checkpoint. Reinforcement
Learning (RL) techniques also fit into this iterative category, offering an online mechanism that tightly
couples exploration and exploitation. RL methods, such as PPO (Schulman et al., 2017) and GRPO
(Shao et al., 2024), are frequently applied to unlabeled data, using an additional reward model to
evaluate the quality of generated responses. GRPO, in particular, streamlines the process by removing
the value model from PPO and instead leverages in-batch comparison to estimate advantages across
different rollouts, providing a more stable alternative.
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Table 6: Full analysis of MathVista. Task types: FQA: figure question answering, GPS: geometry
problem solving, MWP: math word problem, TQA: textbook question answering, VQA: visual
question answering. We highlight the relative improvement of M-STAR over the pre-evolved model,
i.e., the “+warmup” row.

Model ALL FQA GPS MWP TQA VQA

MiniCPMV-2.5

MiniCPMV-2.5 52.4 59.2 44.7 50.5 53.8 48.0
+warmup 52.8 58.4 47.1 57.0 53.8 45.8

SFT 54.7 58.7 50.5 56.5 55.7 50.8
Iterative RFT 55.7 59.1 49.5 65.6 55.1 48.0
RestEM 55.1 58.0 49.5 64.5 55.1 47.5
Cont. Self-Evolving 57.2 57.6 56.3 65.1 57.0 49.7

+PRM Re-Rank 59.2↑ 6.4 59.1↑ 0.7 61.1↑ 14 68.3↑ 11.3 55.1↑ 1.3 51.4↑ 5.6

M-STAR (Reward-Pass@2) 59.5↑ 6.7 59.5↑ 1.1 59.1↑ 12 65.6↑ 8.6 58.9↑ 5.1 54.2↑ 8.4

Phi-3.5-vision

Phi-3.5-vision 46.5 58.7 36.5 36.0 56.3 41.9
+warmup 49.3 55.8 42.8 53.2 55.1 38.0

SFT 49.5 53.9 52.9 52.7 49.4 35.8
Iterative RFT 50.2 58.4 41.4 50.0 55.7 43.0
RestEM 50.5 56.8 46.6 49.5 58.9 39.7
Cont. Self-Evolving 51.1 56.1 48.6 55.9 52.5 40.2

+PRM Re-Rank 53.2↑ 3.9 56.9↑ 1.1 51.9↑ 9.1 60.8↑ 7.6 55.10 39.7↑ 1.7

M-STAR (Reward-Pass@2) 54.5↑ 5.2 56.9↑ 1.1 56.7↑ 13.9 57.5↑ 4.3 55.10 44.7↑ 6.7

InternVL2-2B

InternVL2-2B 46.4 53.2 45.2 33.3 50.0 48.0
+warmup 47.6 52.4 54.8 46.2 43.7 36.9

SFT 41.9 37.5 40.4 49.5 32.3 50.8
Iterative RFT 47.5 49.8 57.7 52.1 41.8 32.4
RestEM 47.9 49.4 54.8 51.1 51.3 31.3
Cont. Self-Evolving 48.4 53.2 50.5 56.5 40.5 37.4

+PRM Re-Rank 48.8↑ 1.2 52.0↓ 0.4 55.8↑ 1 52.1↑ 5.9 45.6↑ 1.9 35.2↓ 1.7

M-STAR (Reward-Pass@2) 50.3↑ 2.7 49.4↓ 3 57.2↑ 2.4 65.0↑ 18.8 42.4↓ 1.3 35.2↓ 1.7

Multimodal Reasoning Currently, the most common approach to improve multimodal reasoning
capabilities continues to be supervised fine-tuning (SFT). For example, G-LLaVA (Gao et al., 2023)
augments existing geometry question-answering datasets to fine-tune the LLaVA-1.5 model (Liu
et al., 2024a). Math-LLaVA (Shi et al., 2024) selects and augments data from larger multimodal
question-answer datasets, carefully balancing the difficulty of samples. Similarly, MAVIS (Zhang
et al., 2024) focuses on the geometry and function domains and generates instruction-based tuning
data through synthetic data engines.

However, recent works have begun incorporating self-evolving mechanisms into multimodal reason-
ing. For instance, VILA2 (Fang et al., 2024) iteratively improves its image captioning performance
by generating increasingly detailed captions, which are subsequently used to retrain the model.
LLaMA3-V (Dubey et al., 2024) employs a reject-sampling strategy to generate missing explanations
for question-answer pairs that lack intermediate reasoning steps in existing multimodal datasets,
thereby enhancing the model’s reasoning capabilities.
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