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Abstract
Autoregressive large language models (LLMs)001
exhibit impressive performance across various002
tasks but struggle with simple arithmetic, such003
as additions of two or more operands. We004
show that this struggle arises from LLMs’ use005
of a simple one-digit lookahead heuristic,006
which works fairly well (but not perfect) for007
two-operand addition but fails in multi-operand008
cases, where the carry-over logic is more com-009
plex. Our probing experiments and digit-wise010
accuracy evaluation show that LLMs fail pre-011
cisely where a one-digit lookahead is insuffi-012
cient to account for cascading carries. We an-013
alyze the impact of tokenization strategies on014
arithmetic performance and show that all inves-015
tigated models, regardless of tokenization, are016
inherently limited in the addition of multiple017
operands due to their reliance on a one-digit018
lookahead heuristic. Our findings reveal fun-019
damental limitations that prevent LLMs from020
generalizing to more complex numerical rea-021
soning.022

1 Introduction023

Large language models (LLMs) demonstrate re-024

markable performance across a wide range of tasks025

(Bai et al., 2023; Team et al., 2024; Guo et al.,026

2025), yet consistently struggle with simple arith-027

metic tasks, such as the addition of multiple or028

large numbers (McLeish et al., 2024; Shen et al.,029

2023; Zhou et al., 2023, 2024).030

Figure 1 shows an example of an addition with031

2 operands, 147 and 255, each with three digits (0032

to 9). The length of an operand is the number of033

digits it contains. Figure 1 provides an example034

where the LLM fails (even in a two-operand case)035

to provide a correct output due to its insensitivity036

to a carry emerging from later computations.037

The difficulty LLMs face in such tasks stems038

from the mismatch between the left-to-right nature039

of autoregressive language modeling and the right-040

to-left structure of standard arithmetic algorithms.041

Figure 1: An addition of two three-digit operands.
LLMs rely on a one-digit lookahead when performing
addition. If a relevant carry emerges at a later stage in
prediction, they fail to account for it, leading to errors
in earlier generated result digits.

Conventional addition methods process numbers 042

digit by digit from right to left, propagating carries, 043

while LLMs generate numbers sequentially from 044

left to right without explicit intermediate calcula- 045

tions. This raises the question: What strategy do 046

LLMs use to handle this misalignment in addition? 047

In this work, we show that in fact LLMs rely 048

on a simple heuristic that enables high (though 049

not perfect) accuracy in adding two operands (e.g., 050

147 + 291 = 438, henceforth two-operand addi- 051

tion). This heuristic attempts to bridge the gap 052

between the left-to-right generation and the result- 053

ing need to ’look ahead’ to account for propagating 054

carries from less significant digits. Rather than per- 055

forming an exhaustive lookahead to fully anticipate 056

carry propagation, LLMs rely on a simple heuris- 057

tic that involves a lookahead of only a single digit 058

to anticipate the value of carries in addition. We 059

show that while this strategy works fairy well for 060

two-operand addition, due to relevant digit combi- 061

natorics, it deteriorates substantially with multiple 062

operands (e.g., in four-operand addition such as 063

147+245+312+104 = 808, henceforth general- 064

ized as multi-operand addition for any number of 065

operands > 2), where anticipating carries becomes 066

less predictable. The reliance on the heuristic ex- 067

plains the lack of robustness in LLMs’ arithmetic 068

performance. 069

Figure 1 illustrates this shortcoming of the 070
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heuristic: A one-digit lookahead anticipates no071

carry (because for the sum of the second, i.e. mid-072

dle, digits in the operands 4+5 = 9), leading to the073

inaccurate prediction of the first result digit as 3,074

unable to accurately anticipate the cascading carry075

originating from the unit position.076

To gather evidence that the heuristic accurately077

describes the strategy used by LLMs to solve ad-078

dition from left to right, we present results from079

three state-of-the-art LLMs with different tokeniza-080

tion strategies (single digit and multiple digit) for081

numerical outputs. By evaluating prediction accu-082

racy on carefully curated datasets and employing083

probing techniques, we provide multiple lines of084

evidence that LLMs struggle specifically with ad-085

dition tasks where a one-digit lookahead is insuffi-086

cient to account for cascading carries. For instance,087

in two-operand addition, we show that this issue088

occurs when the sum of the digits at the lookahead089

position is 9, leading to failure in correctly predict-090

ing the numerical value at the current position. For091

example, in 147 + 255 =, no carry is predicted for092

the middle digits, even though a cascading carry093

from the 100 position affects the sum of the 101094

digits, and thus the 102 position.095

Our findings show that all investigated LLMs are096

inherently limited in their performance on multi-097

operand addition tasks due to this heuristic, regard-098

less of their tokenization strategy.099

Our contributions are as follows:100

• Evaluation of Addition Capabilities: We101

show that LLMs fail on multi-operand addi-102

tion (Section 2) and then systematically evalu-103

ate the capabilities of LLMs on two-operand104

addition tasks via probing (Section 3).105

• Heuristic Discovery: Inspired by results of106

the evaluation, we formalize left-to-right addi-107

tion in LLMs for multi-operand addition with108

a simple heuristic that uses a shallow looka-109

head of one to attempt left-to-right addition110

(H1, Section 4).111

• Empirical Validation: We demonstrate that112

H1 is fragile in multi-operand addition and113

explain the performance decline as a function114

of the increasing number of operands in large115

comprehensive addition experiments. We find116

that model performance aligns precisely with117

the predicted limitations of H1 (Sections 5118

and 6). We find that H1 holds independently119

of tokenization strategies (Section 7).120

2 LLMs Struggle with Multi-Operand 121

Addition 122

In this section, we define the data and models used 123

in this work and demonstrate that LLMs fail on 124

multi-operand additions by looking at prediction 125

accuracy. 126

2.1 Models and Data 127

Models. We compare Mistral-7B (Jiang et al., 128

2023), Gemma-7B (Team et al., 2024) and Meta- 129

Llama-3-8B (Grattafiori et al., 2024; AI@Meta, 130

2024) as they employ different tokenization strate- 131

gies for numerical outputs: While Mistral and 132

Gemma exclusively employ a single-digit tokeniza- 133

tion strategy for their numeric input and generated 134

output (e.g., input = [’1’, ’4’, ’7’, ’+’, ’2’, ’5’, ’5’, 135

’=’], output = [’4’, ’0’, ’2’]), Llama-3 employs a 136

multi-digit numeric tokenization strategy (e.g., in- 137

put = [’ 147’, ’ +’, ’ 255’, ’ =’], output = [’ 402’]), 138

typically favoring numeric tokens of length 3. 139

Data. For all experiments in this paper, we com- 140

pile a range of datasets containing simple arith- 141

metic task prompts of the form 147 + 255 = . 142

We create a dataset for each addition task rang- 143

ing from 2-operand to 11-operand addition, where 144

each operand is a triple-digit number between 100 145

and 899. Each of the 10 datasets contains 5,000 146

unique arithmetic problems, both in a zero-shot and 147

one-shot setting. In the zero-shot setting, an exam- 148

ple for a 2-operand addition prompt is “147 + 255 149

= ”. An example for a 4-operand addition prompt is 150

“251 + 613 + 392 + 137 = ”. Our one-shot prompt 151

template follows the scheme q1 r1; q2 , e.g. “359 152

+ 276 = 635; 147 + 255 = ”, where q1 is a sample 153

query from the same dataset and r1 is the correct 154

result of the addition task in q1. q2 is the query 155

containing the addition task to be solved. 156

In the remainder of the paper, we use sn (with 157

n ≥ 0) to denote the result digit generated at digit 158

position 10n. For example, in “147 + 255 =”, with 159

expected output 402, s2 = 4, s1 = 0, and s0 = 2. 160

2.2 LLM Accuracy on Addition Tasks 161

Figure 2 illustrates the significant decline in perfor- 162

mance of Mistral-7B (Jiang et al., 2023), Gemma- 163

7B (Team et al., 2024) and Meta-Llama-3-8B 164

(AI@Meta, 2024) in multi-operand addition as the 165

number of operands increases. This drastic de- 166

crease highlights the inability of these models to 167

generalize effectively to addition tasks involving 168
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Figure 2: Accuracy of Mistral, Gemma and Llama-3
on multi-operand addition of triple-digit numbers, in a
zero- and one-shot setting.

a higher number of operands, despite their strong169

overall capabilities.170

3 Probing LLMs on Digits in171

Two-Operand Addition Tasks172

Solving arithmetic tasks presents a fundamental173

challenge for LLMs, as they generate text from174

left to right, while addition requires a right-to-left175

process due to carry propagation from the least sig-176

nificant to the most significant digit. For instance,177

predicting the first result digit s2 = 4 in “147 +178

255 = ” requires the model to anticipate that a carry179

originating from s0 cascades through s1 to s2. Ro-180

bust left-to-right addition thus requires a lookahead181

spanning all result digits, raising the question: Do182

LLMs internally represent future result digits when183

predicting s2 - and if so, how far can they “look184

into the future”?185

To answer this question, we probe whether mod-186

els accurately encode future result digits s1 or s0187

while generating s2. Building on Levy and Geva188

(2024), who show that, irrespective of a model’s nu-189

meric tokenization strategy, LLMs internally repre-190

sent numbers digit-by-digit in base 10, we analyze191

digit-wise probing accuracy on the two-operand192

addition dataset described in Section 2.1.193

3.1 Methodology and Experiments194

Data. We split the two-operand addition dataset195

(see Section 2.1) into train (n=4500) and test196

(n=500) for the probing experiments. The two-197

operand addition dataset is designed such that cor-198

rect results for the addition tasks are triple-digit199

numbers between 200 and 999. We use the zero-200

shot prompt setting for the probing experiment.201

Probing Setup. Our goal is to determine which202

result digits are available at the prediction step of203

Figure 3: Probing accuracy of individual result digits as
predicted by the hidden states of Mistral, Gemma and
Llama-3. For two-operand, zero-shot addition prompts.

s2. We thus train probes to predict the result digits 204

s2, s1, and s0 from hidden states of the model 205

during the prediction step of s2. 206

Specifically, we train one-layer linear probes to 207

predict individual digit values of the results from 208

the hidden state of the last token at each model 209

layer. Probes are trained on the train split of the 210

two-operand addition dataset and evaluated on the 211

test split. We train separate probes to predict indi- 212

vidual result digits s2, s1, and s0, for all models at 213

all layers.1 214

3.2 Results 215

The probing accuracy of individual result digits is 216

shown in Figure 3. Gemma and Mistral with their 217

digit-wise tokenization internally represent only 218

s2 with high accuracy. In contrast, there is a high 219

probing accuracy across all result digits in Llama- 220

3. This is due to the fact that Llama-3 tokenizes 221

numbers into 3-digit numeric tokens: It is forced 222

by its tokenization to generate all result digits (s2, 223

s1, and s0) in one step as a single token. 224

The single-digit tokenization models Mistral 225

and Gemma exhibit a low probing accuracy on s0 226

(< 0.24) in all layers. Recall that s0 is probed from 227

the models’ hidden states while they autoregres- 228

sively generate s2. We interpret the lack of internal 229

representation of s0 as evidence that these models 230

disregard the potential influence of s0 (including 231

any cascading carry) when generating s2. 232

In line with this, Gemma and Mistral show no- 233

tably higher probing accuracy on s1 compared to 234

s0, when probing from the models’ hidden states 235

1We choose a low temperature of 0.1 during model infer-
ence to ensure deterministic and consistent outputs, reducing
randomness in token generation and improving the reliability
of numerical calculations.
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as they generate s2. We thus conjecture that the236

single-digit-token models seem to recognize the237

potential influence of the carry resulting from the238

sum of the 101 operand digits. Simply put, gener-239

ating the digit at 102 might employ a lookahead of240

one digit to the 101 intermediate result. Based on241

this observation, we formulate a hypothesis for a242

heuristic used by LLMs:243

H1: LLMs employ a look ahead of one digit to244

generate the current digit of an addition task.245

H1 would explain why LLMs cannot effectively246

represent each necessary digit of the result dur-247

ing generation, making it difficult to anticipate248

later carry values correctly. We first formalize H1,249

which explains the patterns observed in Figure 3,250

in the next Section, and then verify the fit of H1251

with empirical addition outcomes generated by the252

models in Sections 5, 6, and 7.253

4 The Carry Heuristic of LLMs254

Since LLMs generate numbers from left to right,255

they must anticipate whether a carry from later256

digits (with lower bases further on in the result)257

will impact the current digit they are generating. In258

this section, we evaluate the maximum accuracy259

LLMs can achieve in addition tasks, assuming they260

rely on H1, given the limited lookahead of one261

digit.262

4.1 Formalization of Left-to-Right Addition in263

Base 10264

We first formalize a recursive algorithm for solving265

addition of k operands-where each operand is a266

base 10 integer- in a left-to-right manner.267

We define:268

• k: Number of operands.269

• n1, n2, . . . , nk: Operands, each represented270

as digit sequences in base 10, with 0 ≤271

i < d, where d is the number of digits in the272

operands: nj = [nj,d−1, . . . , nj,0], nj,i ∈273

{0, . . . , 9}274

• S: The result of the addition. S =275

[sd, sd−1, . . . s0], where sd = cd, i.e., the final276

carry.277

We recursively define the calculation of individual278

result digits:279

• Total Sum at Digit Position i:280

ti =
k∑

j=1

nj,i281

282
Ti = ti + ci 283

where ti is the digit sum at the current position, 284

ci the carry from the previous digit position, 285

and k the number of operands. Base case: 286

c0 = 0, no carry at the least significant digit. 287

• Result Digit at Position i: 288

si = Ti mod 10 289

• Carry to the Next Digit Position: 290

ci+1 =

⌊
Ti

10

⌋
291

A worked example is provided in Appendix A. 292

4.2 A Naive Heuristic for Solving Addition 293

Left-to-Right 294

Due to the recursive nature of left-to-right addition, 295

a lookahead of i− 1 digits is needed to determine 296

any result digit si. There is however a simple, non- 297

recursive heuristic for the estimation of si with only 298

a one-digit lookahead, to the digit sum of the next 299

position, i.e. only considering ti−1. 300

We define cmin and cmax to be the minimal and 301

maximal possible value for a carry, where trivially 302

for all cases, cmin = 0, and 303

cmax(k) =

⌊∑k
j=1 9

10

⌋
304

in base 10 and for k operands. We then define the 305

carry heuristic chi as follows: 306

chi ∈ {
⌊
ti−1 + cmin

10

⌋
,

⌊
ti−1 + cmax

10

⌋
} 307

Where chi is chosen uniformly at random. We then 308

accordingly define the predicted total sum at digit 309

position i 310

T h
i = ti + chi 311

and the predicted result digit 312

shi = T h
i mod 10 313

Examples. We show two examples of two- 314

operand addition, one in which H1 is successful, 315

and one in which it fails. For k = 2, i.e., in two- 316

operand addition: 317

cmax(2) =

⌊∑2
j=1 9

10

⌋
= 1 318

4



Figure 4: Two-operand addition in which H1 is success-
ful.

147 + 293. See Figure 4. We need T h
2 and thus319

ch2 to generate the first result digit sh2 .320

ch2 ∈ {
⌊
4 + 9 + cmin

10

⌋
,

⌊
4 + 9 + cmax

10

⌋
}321

322

= {
⌊
13

10

⌋
,

⌊
14

10

⌋
} = {1, 1}323

therefore ch2 = 1, T h
2 = 4, and sh2 = 4. H1 suc-324

ceeds in predicting the first digit s2 for 147 + 293.325

147 + 255. See Figure 5.326

327

ch2 ∈ {
⌊
4 + 5 + cmin

10

⌋
,

⌊
4 + 5 + cmax

10

⌋
}328

329

= {
⌊
9

10

⌋
,

⌊
10

10

⌋
} = {0, 1}330

therefore ch2 is chosen uniformly at random be-331

tween 0 and 1. The heuristic fails in predicting332

the first digit s2 for 147 + 255 with a 50% chance.333

5 H1 Predicts Difficulties of LLMs in334

Two-Operand Addition335

In this section we show that single-digit token336

LLMs struggle exactly in those cases in which the337

heuristic H1 is insufficient.338

5.1 Predicted Accuracy339

For two-operand addition, there are 19 possible340

values for each ti (ranging from 0 to 18, because341

this is the range of sums between two digits). In 18342

out of these 19 cases, H1 reliably determines the343

correct carry value. Only if ti = 9, H1 must ran-344

domly choose between two possible carry values,345

Figure 5: Two-operand addition in which H1 fails.

thus failing with a 50% chance. This results in an 346

overall predicted accuracy of 347

18× 1.0 + 1× 0.5

19
= 0.974 348

for the first result digit s2 in two-operand addition: 349

H1 achieves 97.4% accuracy in correctly predict- 350

ing the first result digit s2. This corresponds almost 351

exactly to Gemma’s and Mistral’s accuracies for 352

generating s2 during zero-shot and one-shot infer- 353

ence (Gemma: 0-shot: 97.12%, 1-shot: 98.04%; 354

Mistral: 0-shot: 94.60%, 1-shot: 97.46%). Table 3 355

in Appendix F provides all generation accuracies 356

for the data described in Section 2.1. 357

5.2 Finegrained Analysis 358

We further investigate whether it is true that espe- 359

cially cases with ti = 9 are challenging for LLMs. 360

Data. To this end, we evaluate prediction accu- 361

racy across five distinct newly introduced datasets, 362

each containing 100 queries with distinct carry sce- 363

narios. The datasets follow the zero-shot template 364

described in Section 2.1 and are designed to ex- 365

haustively capture all cases of carries affecting s2 366

in two-operand addition of triple-digit numbers. 367

• Dataset 1 (DS1): No carry. The addition 368

does not produce any carry (e.g., 231+124 = 369

355).2. 370

• Dataset 2 (DS2): Carry in position 100, no 371

cascading. A carry is generated in the 100 372

(s0) digit but does not cascade to the 102 (s2) 373

digit (e.g., 236 + 125 = 361). 374

• Dataset 3 (DS3): Cascading carry from 100 375

to 102. A carry originates in the 100 (s0) digit 376

2We employ the additional constraint that the sum of the
101 operand digits ̸= 9, i.e., (s1 ̸= 9)
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Figure 6: Per-digit generation accuracy of Mistral and
Gemma on datasets DS1-DS5. Each dataset represents
a different carry scenario.

and cascades to the 102 (s2) digit (e.g., 246 +377

155 = 401).378

• Dataset 4 (DS4): Direct carry in position379

101. A carry is generated in the 101 (s1) digit380

and directly affects the 102 (s2) digit (e.g.,381

252 + 163 = 415).382

• Dataset 5 (DS5): No carry, but position 101383

digits sum to 9. There is no carry in any digit,384

but the sum of the 101 operand digits is 9, i.e.,385

(s1 = 9) (e.g., 256 + 142 = 398).386

DS1 to DS5 can be neatly categorized according to387

whether the heuristic can accurately predict s2:388

• DS1 and 2: t1 =
∑2

j=1 nj,1 < 9 → ch2 = 0389

• DS4: t1 =
∑2

j=1 nj,i > 9 → ch2 = 1390

• DS3 and 5: t1 =
∑2

j=1 nj,1 = 9 → ch2 =?391

Results. Figure 6 shows that LLMs struggle with392

DS3 and DS5, which are precisely the cases where393

H1 predicts issues. As H1 suggests, predicting394

the first result digit s2 at position 102 is particu-395

larly error-prone in these scenarios. The difficult396

datasets are the ones where a lookahead of one digit397

position does not suffice to determine the value of398

the carry needed to generate s2. Simply put: Over-399

all, addition results tend do be predicted correctly400

by LLMs, if and only if a lookahead of one digit401

is sufficient to determine the value of the carry bit402

affecting s2. Prediction is often incorrect if a looka-403

head of two or more digits is needed to determine404

the value of the carry bit affecting s2.405

In cases where a lookahead of one digit is406

enough to accurately determine the value of s2407

(DS1, DS2, DS4), the models succeed. However,408

when a lookahead of one digit is insufficient to de-409

termine the value of s2 (DS3 and DS5), the model410

struggles with predicting s2 correctly. Table 1 in 411

Appendix B) provides the generation accuracy of 412

s2 for Gemma and Mistral, in addition to the plot. 413

Additionally, Appendix G presents probing experi- 414

ments that yield the same results. 415

6 H1 Predicts the Deterioration of 416

Accuracy in Multi-Operand Addition 417

As shown in the last section, H1 is a good approxi- 418

mator for LLM behaviour on two-operand addition: 419

In the majority of cases, a lookahead of one digit 420

is sufficient to accurately determine the value of 421

the carry bit affecting s2. With a look-ahead of one 422

digit, H1 predicts a failure of the generation of s2, 423

if and only if the value of s1 does not suffice to de- 424

termine the value of the carry bit. In two-operand 425

addition in base 10, this is the case if and only if 426

t1 = 9. We now show that H1 can also account for 427

model performance on multi-operand addition. 428

6.1 Multi-Operand Performance Predicted by 429

H1 430

The possible value of a carry increases with increas- 431

ing numbers of operands. For instance in 4-operand 432

addition (k = 4) the maximal value of a carry is 3: 433

cmax(4) =

⌊∑4
j=1 9

10

⌋
= 3 434

Therefore the carry heuristic chi is unreliable in 4- 435

operand addition whenever ti−1 =
∑k

j=1 nj,i−1 ∈ 436

{7, 8, 9, 17, 18, 19, 27, 28, 29}. 437

Put simply, because the value of the carry can 438

be larger for more operands, the proportion of 439

values of s1 for which the heuristic is insufficient 440

(with its lookahead of one) increases with an 441

increasing number of operands. 442

Consider an example in which the heuristic fails 443

in 4-operand addition for clarification (see Figure 444

9 in Appendix C): 445

186 + 261 + 198 + 256. 446

t1 = 8 + 6 + 9 + 5 = 28

ch2 ∈ {
⌊
cmin + 28

10

⌋
,⌊

cmax + 28

10

⌋
}

447

with cmax = 3 448

ch2 ∈ {
⌊
28

10

⌋
,

⌊
31

10

⌋
} = {2, 3} 449
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Figure 7: Accuracy of first generated result digit sd in
one-shot multi-operand addition for Mistral and Gemma,
compared to the expected accuracy based on H1.

therefore ch2 is chosen uniformly at random be-450

tween 2 and 3. The heuristic thus fails in solving451

186 + 261 + 198 + 256 with a chance of 50%.452

For 4-operand addition, there are 37 possible453

sums for the second digits (ranging from 0 to 36).454

In 28 out of these 37 cases, the heuristic reliably455

determines the correct carry bit. However, when456

t1 ∈ {7, 8, 9, 17, 18, 19, 27, 28, 29}, the heuristic457

must randomly choose between two possible carry458

values, leading to a 50% chance of selecting the459

correct one. This results in an overall accuracy of:460

28× 1.0 + 9× 0.5

37
= 0.878461

Thus, the heuristic only achieves 88% accuracy462

in correctly predicting the first result digit s2 in 4-463

operand addition, compared to the 97% accuracy in464

two-operand addition. In Appendix E, we provide465

exact values for s2 accuracy as predicted by H1,466

for addition tasks between 2 and 11 operands.467

6.2 Empricial Evidence on Multi-Operand468

Addition469

Intuitively, according to H1, Mistral and Gemma470

with their one-digit tokenization should fail at471

multi-operand addition at a certain rate: The472

amount of instances in which a lookahead of one473

digit is sufficient to accurately predict si gets474

smaller and smaller because the carry bit value can475

get larger and larger for multiple operands. We test476

if H1 holds in predicting the first generated digit sd477

in Mistral and Gemma for multiple operands. We478

evaluate prediction accuracy on the multi-operand479

datasets described in Section 2.1. H1 should pro-480

vide an upper bound for the performance of LLMs3481

for predicting the first result digit sd. Figure 7482

shows that H1 is a good predictor for the accuracy483

3Autoregressive LLMs with single-digit tokenization of
numbers.

of the one-shot4 generation of the first result digit 484

sd by Mistral and Gemma. We take this as further 485

evidence that these LLMs make use of H1. 486

7 Multi-Digit Tokenization Models 487

Employ the Same Heuristic 488

While Levy and Geva (2024) demonstrate that all 489

LLMs, regardless of the tokenization strategy, in- 490

ternally represent numbers as individual digits, it 491

remained unclear whether models with multi-digit 492

tokenization also rely on a one-digit lookahead 493

when generating addition results. In this section, 494

we show that perhaps surprisingly multi-digit tok- 495

enization models, such as Llama-3, also employ a 496

lookahead of one digit when predicting carry bits. 497

To show this, we design 3 controlled datasets that 498

force the multi-digit tokenization model Llama-3 499

to generate results across multiple tokens. 500

Experimental Setup. To examine whether 501

Llama-3 employs a one-digit lookahead, we use 502

six-digit numbers in two-operand addition (e.g., 503

“231234 + 124514 = ”), where each operand is tok- 504

enized into two three-digit tokens by the model’s 505

tokenizer, such as: [“ 231”,“ 234”, “ +”, “ 124”, 506

“ 514”, “ =”] and the result is generated as two 507

triple-digit tokens as well, in this example [“ 355”, “ 508

748”]. The first generated triple-digit token s5s4s3 509

corresponds to digit base positions 105, 104, and 510

103. If Llama-3 did employ H1 it would look ahead 511

to digit position 102, but ignore digit positions 101 512

and 100, as they fall outside the lookahead window. 513

Carry Scenarios. We evaluate model behavior in 514

three datasets with six-digit operands (ranging from 515

100,000 to 899,999) and results between 200,000 516

and 999,999. We use a zero-shot prompt template. 517

Each dataset consist of 100 samples: 518

• DS6: No carry. The addition does not pro- 519

duce any carry and no digits sum to 9. (e.g., 520

111, 234 + 111, 514 = 222, 748). 521

• DS7: Direct carry in position 102. A carry is 522

generated at 102 and directly affects 103 (e.g., 523

111, 721 + 111, 435 = 223, 156). 524

• DS8: Cascading carry from 101 to 103. A 525

carry originates at 101, cascades to 102 and 526

then affects 103 (e.g., 111, 382 + 111, 634 = 527

223, 016). 528

Expected Outcomes. If Llama-3 employs H1, 529

we expect that DS6 should be easy, as no carry 530

4Results for the zero-shot setting are in Appendix D.
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Figure 8: Per-digit generation accuracy of Llama on
datasets DS6-DS8. Each dataset represents a different
carry scenario.

propagation is required. DS7 should also be easy,531

since the carry affecting 103 is within the one-digit532

lookahead window. DS8 in contrast should be chal-533

lenging, as the carry originates from 101, from534

beyond the model’s lookahead range. We expect a535

lower accuracy in generating 103, the result digit536

that is affected by the potentially inaccurate carry.537

Results. Figure 8 shows that Llama-3 exhibits the538

expected pattern predicted by H1. The sharp drop539

in accuracy in dataset DS8 on digit 103 provides540

evidence that Llama-3, regardless of its multi-digit541

tokenization strategy, relies on the same one-digit542

lookahead for solving addition left to right.543

8 Related Work544

Recent work has benchmarked the arithmetic capa-545

bilities of LLMs using text-based evaluations and546

handcrafted tests (Yuan et al., 2023; Lightman et al.,547

2023; Frieder et al., 2023; Zhuang et al., 2023). Nu-548

merous studies consistently show that LLMs strug-549

gle with arithmetic tasks (Nogueira et al., 2021;550

Qian et al., 2022; Dziri et al., 2023; Yu et al., 2024).551

Zhou et al. (2023) and Zhou et al. (2024) ex-552

amine transformers’ ability to learn algorithmic553

procedures and find challenges in length general-554

ization (Anil et al., 2022). Similarly, Xiao and Liu555

(2024) propose a theoretical explanation for LLMs’556

difficulties with length generalization in arithmetic.557

Gambardella et al. (2024) find that LLMs can re-558

liably predict the first digit in multiplication but559

struggle with subsequent digits.560

The focus of research has recently shifted from561

mere benchmarking of LLMs to trying to under-562

stand why LLMs struggle with arithmetic reason-563

ing. Using circuit analysis, Stolfo et al. (2023) and564

Hanna et al. (2023) explore internal processing in565

arithmetic tasks, while Nikankin et al. (2024) re-566

veal that LLMs use a variety of heuristics managed567

by identifiable circuits and neurons. In contrast, 568

Deng et al. (2024) argue that LLMs rely on sym- 569

bolic pattern recognition rather than true numerical 570

computation. Recently, Kantamneni and Tegmark 571

(2025) showed that LLMs represent numbers as 572

generalized helixes and perform addition using a 573

“Clock” algorithm (Nanda et al., 2023). 574

Related work has also examined how LLMs en- 575

code numbers. Levy and Geva (2024) demonstrate 576

that numbers are represented digit-by-digit, extend- 577

ing Gould et al. (2023), who find that LLMs en- 578

code numeric values modulo 10. Zhu et al. (2025) 579

suggest that numbers are encoded linearly, while 580

Marjieh et al. (2025) indicate that number represen- 581

tations can blend string-like and numerical forms. 582

Another line of research explores how tokeniza- 583

tion influences arithmetic capabilities. Garreth Lee 584

and Wolf (2024) show that single-digit tokeniza- 585

tion outperforms other methods in simple arith- 586

metic tasks. Singh and Strouse (2024) highlight 587

that right-to-left (R2L) tokenization—where to- 588

kens are right-aligned—improves arithmetic perfor- 589

mance. Additionally, the role of embeddings and 590

positional encodings is emphasized by McLeish 591

et al. (2024), who demonstrate that suitable em- 592

beddings enable transformers to learn arithmetic, 593

and by Shen et al. (2023), who show that positional 594

encoding improves arithmetic performance. 595

9 Conclusion 596

Our study shows that LLMs, regardless of their 597

numeric tokenization strategy, rely on a simple 598

one-digit lookahead heuristic for anticipating car- 599

ries when performing addition tasks. While this 600

strategy is fairly effective for two-operand addi- 601

tions, it fails in the multi-operand additions due 602

to the increasingly unpredictable value of cascad- 603

ing carry bits. Through probing experiments and 604

targeted evaluations of digit-wise result accuracy, 605

we demonstrate that model accuracy deteriorates 606

precisely at the rate the heuristic predicts. 607

These findings highlight an inherent weakness 608

in current LLMs that prevents them from robustly 609

generalizing to more complex arithmetic tasks. 610

Our work contributes to a broader understand- 611

ing of LLM limitations in arithmetic reasoning 612

and highlights increasing LLMs’ lookahead as a 613

promising approach to enhancing their ability to 614

handle complex numerical tasks. 615
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Limitations616

Our work highlights limited lookahead as a key617

challenge for LLMs when adding multiple num-618

bers. However, it remains unclear whether this lim-619

itation extends to other arithmetic operations, such620

as subtraction. Additionally, we cannot determine621

whether the limited lookahead is a heuristic explic-622

itly learned for arithmetic tasks, or if it could also623

affect general language generation tasks as thus624

hinder performance of other tasks that require long-625

range dependencies. Future work should explore626

the depth of lookahead in tasks beyond arithmetic.627

While the lookahead heuristic offers a straight-628

forward explanation for the upper performance629

limit of LLMs on addition, it does not fully ac-630

count for why LLMs still somewhat underperform631

relative to the heuristic in addition tasks with many632

operands (e.g., adding 8–11 numbers). We suspect633

this discrepancy may be related to limited training634

exposure to these many-operand addition tasks, but635

further investigation is needed to confirm this.636

Our work also does not address whether larger637

models within the same family (e.g., 70B parameter638

models) exhibit a deeper lookahead. Future studies639

should examine whether scaling model size leads to640

improved performance by enabling a deeper looka-641

head.642

Finally, we do not tackle methods to overcome643

the shallow lookahead. Future work should inves-644

tigate whether targeted training on tasks requiring645

deeper lookahead can encourage models to deepen646

their lookahead.647
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A Example Addition According to997

Formalization998

We show a concrete example for two-operand ad-999

dition according to the formalization defined in1000

Section 4. For 147 + 255, we have:1001

k = 2, d = 3, n1 = [1, 4, 7], n2 = [2, 5, 5].1002

We then compute:1003

T2 = c2 + 1 + 21004
1005

T1 = c1 + 4 + 51006
1007

T0 = c0 + 7 + 5 = 0 + 7 + 5 = 121008
1009

s0 = 12 mod 10 = 2, c1 =

⌊
12

10

⌋
= 11010

1011
T1 = 1 + 4 + 5 = 101012

1013

s1 = 10 mod 10 = 0, c2 =

⌊
10

10

⌋
= 11014

1015
T2 = 1 + 1 + 2 = 41016

1017

s2 = 4 mod 10 = 4, c3 =

⌊
4

10

⌋
= 01018

1019
S = [0, 4, 0, 2]1020

The result of the addition is 402.1021

B Generation Accuracies for 2-Operand, 1022

3-Digit Addition 1023

We show the generation accuracy of the full re- 1024

sult S and the digit-wise accuracy of s2, compared 1025

across the different carry bit datasets, as referenced 1026

in Section 4. Table 1 shows that Gemma and Mis- 1027

tral struggle with the generation of the correct result 1028

digit s2, exactly in the datasets that H1 predicts to 1029

be difficult. DS3 and DS5 contain addition tasks 1030

in which a lookahead of one digit is insufficient ot 1031

determine the value of s2. 1032

DS1 DS2 DS3 DS4 DS5

ch2 = ... 0 0 ? 1 ?

S
Mistral 0.99 1.00 0.77 1.00 0.71
Gemma 1.00 0.99 0.80 0.98 0.86
Llama-3 0.99 1.00 1.00 1.00 1.00

s2
Mistral 1.00 1.00 0.77 1.00 0.71
Gemma 1.00 0.99 0.81 0.99 0.86
Llama-3 0.99 1.00 1.00 1.00 1.00

Table 1: Generation accuracy of the full result S and the
digit-wise accuracy of s2, compared across the different
carry bit datasets.

C Example: H1 Failure on 4-Operand 1033

Addition 1034

Below is an example in which the heuristic H1 fails 1035

in 4-operand addition, visualized in Figure 9: 1036

186 + 261 + 198 + 256. 1037

t1 = 8 + 6 + 9 + 5 = 28

ch2 ∈ {
⌊
cmin + 28

10

⌋
,⌊

cmax + 28

10

⌋
}

1038

with cmax = 3 1039

ch2 ∈ {
⌊
28

10

⌋
,

⌊
31

10

⌋
} = {2, 3} 1040

therefore ch2 is chosen uniformly at random be- 1041

tween 2 and 3. The heuristic thus fails in solving 1042

186 + 261 + 198 + 256 with a chance of 50%. 1043

D Zero-shot Generation Accuracy of sd 1044

We test if H1 holds up in predicting the generation 1045

accuracy on sd of Mistral and Gemma for multiple 1046

operands. Figure 10 shows that H1 provides an 1047

upper bound for the generation accuracy of sd in a 1048

zero-shot setting for Mistral and Gemma on sd. 1049

12

https://arxiv.org/abs/2309.12284
https://arxiv.org/abs/2309.12284
https://arxiv.org/abs/2309.12284
https://arxiv.org/abs/2310.16028
https://arxiv.org/abs/2310.16028
https://arxiv.org/abs/2310.16028
https://arxiv.org/abs/2402.09371
https://arxiv.org/abs/2402.09371
https://arxiv.org/abs/2402.09371
https://arxiv.org/abs/2402.09371
https://arxiv.org/abs/2402.09371
https://aclanthology.org/2025.coling-main.47/
https://aclanthology.org/2025.coling-main.47/
https://aclanthology.org/2025.coling-main.47/


Figure 9: 4-operand addition in which H1 fails.

Figure 10: Accuracy of first generated result digit sd
in zero-shot multi-operand addition tasks for Mistral
and Gemma, compared to the expected accuracy on sd
based on H1.

E Accuracy Prediction of Heuristic1050

Table 2 contains, for addition tasks with different1051

numbers of operands k, the maximum value of1052

the carry cmax(k). Based on cmax it list those1053

values of ti in which H1 is insufficient to accurately1054

predict s2. Based on the proportion of values of ti1055

for which H1 is sufficient to the total number of1056

possible values, it lists the predicted accuracy for1057

s2.1058

F Generation Accuracy on All Datasets 1059

See Table 3. 1060

G Probing Accuracy on Carry Scenarios 1061

We evaluate probing accuracy of the probes trained 1062

in Section 3 across the five distinct carry scenarios, 1063

introduced in Section 5. 1064

Results. Figure 11 shows that LLMs struggle 1065

with DS3 and DS5, which are exactly the cases 1066

where H1 would predict problems. The difficult 1067

datasets are the ones where a lookahead of one digit 1068

position does not suffice to determine the value of 1069

the carry needed to generate s2. Simply put: In 1070

cases where a lookahead of one digit is enough to 1071

accurately determine the value of s2 (DS1, DS2, 1072

DS4), the models have a relatively good internal 1073

representation of the value of the second result 1074

digit s1. This results in high performance on the 1075

currently generated digit s2. However, when a 1076

lookahead of one digit is insufficient to determine 1077

the value of s2 (DS3 and DS5), the model struggles 1078

with representing digits s1 and s2 correctly. 1079

13



Nr. Operands k cmax(k) Values of ti in which H1 fails Expected acc. on sd

2 1 1 fail:= 9 18×1.0+1×0.5
19 = 0.974

3 2 4 fails:= 8, 9, 18, 19 24×1.0+4×0.5
28 = 0.928

4 3 9 fails:= 7, 8, 9, 17, 18, 19, 27, 28, 29 28×1.0+9×0.5
37 = 0.878

5 4 16 fails:= 6, 7, 8, 9, 16, ..., 39 30×1.0+16×0.5
46 = 0.826

6 5 25 fails:= 5, 6, 7, 8, 9, 15, ..., 49 30×1.0+25×0.5
55 = 0.773

7 6 36 fails:= 4, 5, 6, ..., 59 28×1.0+36×0.5
64 = 0.719

8 7 49 fails:= 3, 4, 5, ..., 69 24×1.0+49×0.5
73 = 0.664

9 8 64 fails:= 2, 3, 4, ..., 79 18×1.0+64×0.5
82 = 0.610

10 9 81 fails:= 1, 2, 3, ..., 89 10×1.0+81×0.5
91 = 0.555

11 9 89 fails:= 1, 2, 3, ..., 99 10×1.0+90×0.5
100 = 0.540

Table 2: Predicted accuracy on the first result digit sd in the addition of multiple numbers according to H1.

(a) Mistral (b) Gemma (c) Llama-3

Figure 11: Digit-wise probing accuracy of result digits of 2-operand addition tasks. Each subplot shows the probing
accuracies of one model on Datasets DS1-DS5.
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