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Abstract
We introduce T-CREx, a novel model-agnostic
method for local and global counterfactual expla-
nation (CE), which summarises recourse options
for both individuals and groups in the form of
human-readable rules. It leverages tree-based sur-
rogate models to learn the counterfactual rules,
alongside metarules denoting their regions of op-
timality, providing both a global analysis of model
behaviour and diverse recourse options for users.
Experiments indicate that T-CREx achieves su-
perior aggregate performance over existing rule-
based baselines on a range of CE desiderata, while
being orders of magnitude faster to run.

1. Introduction
Counterfactual explanation (CE), which describes how in-
put features could be changed to alter a model’s output, is a
ubiquitous technique in eXplainable AI (XAI). As AI mod-
els make increasingly many decisions that impact human
users, CEs provide a foundation for recourse, whereby users
act to change an adverse output (e.g. loan rejection) to a
desirable one (e.g. acceptance) (Wachter et al., 2017).

While the most basic objective is to find one CE example per
instance, several works have generalised this to find either
a single group-level CE for a set of instances (Carrizosa
et al., 2024), or a diverse set of CEs for a single instance
(Mothilal et al., 2020), optionally summarising each kind of
set using human-interpretable rules (Kanamori et al., 2022;
Rawal & Lakkaraju, 2020). Both generalisations bring ben-
efits: group-level CEs provide a route to globally analysing
a model’s behaviour and subgroup fairness properties, while
diverse CEs present users with a range of recourse options,
which increases the chance of one being practically action-
able. In addition, summarising diverse CEs in a compact
rule-based form mitigates the information overload that may
result from diversity, and provides robustness to the problem
of recourse noise (Pawelczyk et al., 2022) by specifying an
extended range of values that each feature can take.

1J.P. Morgan AI Research. Correspondence to: Tom Bewley
<tom.bewley@jpmorgan.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

x1 

x2 

3

1

3

A

B

5

Figure 1. Application of T-CREx to a binary classifier, producing
CEs for the red class x. Shown are two rules (dark green/orange)
for which ≥ 90% of contained points have the alternative blue
class x. The rules are paired with metarules denoting regions of the
input space where each rule is an optimal CE (light green/orange),
which can be interpreted as follows. For inputs with x1 ≤ 3 and
x2 ≤ 5, the orange rule is optimal because it requires changing
only one feature (sparsity). Elsewhere, the green rule is preferred
because it contains a greater number of points (feasibility). The
two rules and three metarules can be combined to create a global
textual summary of all recourse options (shown on the right), which
in turn enables the near-instantaneous generation of a CE for any
single instance (e.g. A or B) via a simple lookup.

We present T-CREx, a method combining both forms of
generalisation. It uses tree-based surrogate models to learn
counterfactual rules denoting regions of the input space
where a model changes its output with high probability,
alongside metarules denoting regions for which each rule
is an optimal CE. The optimal rule for each input (and thus
for each metarule) is a joint function of the number of fea-
tures that must change to satisfy the rule (sparsity) and the
rule’s population under a given data distribution (feasibility).
The method is model-agnostic, requiring only black box ac-
cess to the target model, and handles both numerical and
categorical features and both classification and regression
problems. Figure 1 shows the rules and metarules produced
by T-CREx for a simple binary classification example.

We are aware of one prior method that uses rules to pro-
vide diverse CEs for groups of instances comparably to our
rule/metarule formulation (Rawal & Lakkaraju, 2020), and
several others that find rule-based CEs for single instances
(Guidotti et al., 2019; Fernández et al., 2020). Through di-
rect comparison, we show that T-CREx reliably matches or
outperforms these baselines on various CE desiderata, and
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is orders of magnitude faster to run. We also present a selec-
tion of qualitative analyses, aided by our ability to represent
rules and metarules in a human-readable tree structure.

Our contributions can be summarised as follows:

• A general formulation of the rule/metarule approach to
CE, which could in principle be applied to any black
box predictive model, and a concrete instantiation for
real vector input spaces using hyperrectangles.

• The T-CREx algorithm, which uses trees to learn hy-
perrectangular counterfactual rules and metarules for a
specific sparsity- and feasibility-based cost function.

• Experiments demonstrating T-CREx’s strong quanti-
tative performance relative to baseline methods, most
notably in terms of computational efficiency.

• An exploration of the qualitative structure of learnt
counterfactual rules and metarules, demonstrating how
they provide both local and global insights.

2. Counterfactual Rules and Metarules
Let X and Y be input and output spaces and f : X → Y be
a model. Given x0 ∈ X with model output f(x0) and a set
of target outputs Y ∗ ⊆ Y \ {f(x0)}, counterfactual point
explanation (CPE) seeks the lowest-cost transformation of
x0 that yields an output in Y ∗. Formally, the aim is to find

CPE(x0 | Y ∗, PX ) = argmin
xi∈X :f(xi)∈Y ∗

cost(x0, xi | PX ), (1)

where the cost may depend only on the relationship between
x0 and xi (e.g. their separation under some distance metric),
or also on a given distribution PX of realistic inputs (e.g.
assigning low cost to points in high-density regions, which
are seen as feasible recourse targets (Poyiadzi et al., 2020)).

In this work, we seek counterfactuals expressed not as single
points, but as rules covering regions of the input space where
the model f gives an output in Y ∗ with high probability,
thereby summarising a range of possible recourse options.
Formally, we define rules R ⊆ 2X as a class of subsets of X .
To ensure that the resultant explanations are understandable
to humans, we require these rules to satisfy some definition
of interpretability; one such definition is adopted below.
We say that a rule Ri ∈ R is valid for a given realistic
distribution PX and output set Y ∗ if it contains at least a
fraction ρ ∈ (0, 1] of realistic inputs, and f gives an output
in Y ∗ for at least a fraction τ ∈ (0, 1] of those inputs:1

val(Ri) = 1[feasibility(Ri)≥ρ ∧ accuracy(Ri)≥τ ], (2)

where
feasibility(Ri) = Px∼PX {x ∈ Ri}; (3)

accuracy(Ri) = Px∼PX :x∈Ri{f(x) ∈ Y ∗}. (4)

1In practice, these values are estimated over a finite sample.

Let the set of maximal-valid rules be those that are not
proper subsets of any other valid rule:

Rmax
Y ∗ ={Ri∈R | val(Ri)∧ (∄Rj∈R : Ri⊂Rj ∧val(Rj))}.

(5)
In other words, a maximal-valid rule is one that cannot be
made any larger without violating the validity conditions.

Given a set of candidate maximal-valid rules, the aim of
counterfactual rule explanation (CRE) is to find the one that
minimises some cost function,

CRE(x0 | Y ∗, PX ) = argmin
Ri∈Rmax

Y ∗

cost(x0, Ri | PX ). (6)

As shorthand, let R∗ = CRE(x0 | Y ∗, PX ). Depending on
the choice of cost function, there may be many other inputs
in X for which R∗ is the optimal (lowest-cost) counterfac-
tual rule among the maximal-valid set Rmax

Y ∗ . That is, there
exists a group of inputs which receive the same CE as x0.
We propose to describe this group of commonly-explained
inputs using metarules, drawn from the same class of in-
terpretable rules R. Retaining the terminology used above,
we say that a metarule M i ∈ R is valid if it only contains
inputs for which R∗ is the optimal rule given Y ∗ and PX ,

valmeta(M
i) = 1[∀x∈M i,CRE(x | Y ∗, PX )=R∗], (7)

and maximal if it is not a subset of another valid metarule,

Mmax
R∗ = {M i ∈ R | valmeta(M

i) ∧
(∄M j ∈ R : M i ⊂ M j ∧ valmeta(M

j))}. (8)

The addition of metarules enhances the explanatory power
of counterfactual rules in at least two ways. When present-
ing R∗ as the local explanation of x0 to a user, it could be
beneficial to accompany it with a member of Mmax

R∗ contain-
ing x0 itself, as this provides background context on where
else R∗ is the optimal rule, and thus the robustness of the
explanation to input perturbations (Mishra et al., 2021). Fur-
thermore, the full set of counterfactual rules and metarules
for an entire dataset provides a summary of the model’s
global recourse properties, which may assistive for model
development, debugging and auditing (Ley et al., 2023). We
explore this opportunity for global analysis in Section 6.

The rule/metarule formulation is extremely general and
could be applied to any kind of input space, including im-
ages and text. Henceforth, however, we assume real vector
input spaces X = RD, spanned by features corresponding
to intrinsically interpretable quantities, and consider rules
and metarules with axis-aligned hyperrectangular geometry.
That is, each Ri ∈ R is defined by (potentially infinite)
lower and upper bounds lid, u

i
d ∈ R ∪ {−∞,∞}, ui

d ≥ lid,
along each feature d ∈ {1, . . . , D}. Rules of this form can
be seen as preserving feature-level interpretability as they
can be expressed as a conjunction of single-feature terms,
e.g. “age > 25 and $30k < income ≤ $50k”. We note that
one-hot encoded categorical features can be handled with a
few additional constraints, discussed in Appendix A.1.
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Figure 2. The seven steps of the T-CREx algorithm.

The cost function in Equation 6 can also be defined in many
reasonable ways depending on context. Here, we consider

cost(x0, Ri | PX ) = changes(x0, Ri)− feasibility(Ri),
(9)where

changes(x0, Ri) =
∑D

d=1 1[(x
0
d ≤ lid)∨(ui

d < x0
d)]. (10)

This cost function prefers sparse rules that require a small
number of feature changes, thereby making them simpler
to describe and use for recourse. Sparsity objectives have
significant precedence in the CE literature (Guidotti, 2022).
It also prefers rules with higher feasibility under PX , which
also follows prior work in hypothesising that counterfac-
tuals in highly-populated regions can be more realistically
used for recourse (Poyiadzi et al., 2020). Importantly, since
changes(·, ·) is an integer and feasibility(·) ≤ 1, the first
term always takes priority in cost calculations.

Returning to the example in Figure 1, the green and orange
rules are maximal-valid for Y ∗ = {x} and any τ ≤ 0.9 and
ρ ≤ 0.2 (i.e. 10/50 points). The inputs for which the orange
rule is an optimal CE under Equation 9 are contained in a
single maximal-valid metarule (x1 ≤ 3 and x2 ≤ 5) while
the green rule has two such metarules (x1 ≤ 3 and x2 > 5,
or x1 > 3). An important property of textual representations
of counterfactual rules (shown on the right) is that they
differentiate between features that need to change (“change
to...”) and those that need to remain within a specified range
(“while keeping...”), both of which are required for the CE
to inform reliable recourse for an end user. Notice how this
leads the same rule to be expressed differently in different
cases: satisfying the green rule requires changing feature 1
in its first metarule, and feature 2 in its second metarule.

3. T-CREx ( Trees for Counterfactual Rule Explanation )

We now describe T-CREx, an efficient, model-agnostic
algorithm for generating valid (and approximately maximal)
hyperrectangular rules and metarules for the cost function in
Equation 9. It consists of seven steps, which are visualised
for a toy example in Figure 2. For simplicity, we assume
here that all features are numerical, and present refinements
for handling one-hot encoded categoricals in Appendix A.2.

a Given a dataset of realistically-distributed inputs and
associated model outputs, D = {(x ∼ PX , y = f(x))}Nn=1,
we first grow a tree-based surrogate model, which can be

either a random forest or a single decision tree.2 Each of the
L leaves and L− 1 internal nodes of each tree equates to a
hyperrectangle in X = RD, whose bounds are determined
by splits made at that node’s ancestors. The tree growth algo-
rithm optimises for a measure of purity in the model outputs
of data at every node, which closely aligns with our aim of
finding accurate rules. We also use a stopping criterion to
ensure that each leaf contains a minimum fraction ρ ∈ (0, 1]
of the data in D, thereby enforcing the feasibility constraint
in Equation 2. We then take all hyperrectangles correspond-
ing to the nodes of the surrogate tree(s) as a candidate rule
set Rsurr, from which counterfactuals will be constructed.
In Figure 2, the surrogate is single tree which (for ρ = 0.02)
has L = 37 leaves, yielding |Rsurr| = 2L− 1 = 73 rules.

b From this step onwards, we assume that a set of target
outputs Y ∗ ⊂ Y and an accuracy threshold τ ∈ (0, 1] have
been specified. We use these parameters (together with
the guarantee that all rules in Rsurr satisfy the feasibility
constraint) to identify the maximal-valid rules,3

Rmax
Y ∗ = {Ri ∈ Rsurr | accuracy(Ri) ≥ τ ∧
(∄Rj ∈ Rsurr : Ri ⊂ Rj ∧ accuracy(Rj) ≥ τ)}, (11)

where the subset relation for hyperrectangles is defined as

Ri ⊂ Rj ≡
∏D

d=1 1[(l
j
d≤lid)∧(ui

d≤uj
d)] ∧Ri ̸= Rj (12)

and accuracy(·) is computed via Equation 4, using D as a
finite-sample approximation of PX . In the Figure 2 example,
we obtain Rmax

Y ∗ = {R1, R2, R3, R4} for Y ∗={x}, τ=0.9.

c Next, we use all bounds occurring in the maximal-valid
rules to partition the input space into a grid of hyperrectan-
gular cells. That is, we find the set of unique bounds along
each feature d ∈ {1, . . . , D} (always including ±∞),

bounds(Rmax
Y ∗ , d) =

⋃
Ri∈Rmax

Y ∗
{lid, ui

d} ∪ {−∞,∞}, (13)

then construct cells using all possible combinations of con-
secutive pairs of bounds along all features. The worst-case
size of the resultant grid is (2|Rmax

Y ∗ |+ 1)D cells, which in
the Figure 2 example is 27, but the actual number is only 15
here due to bound values being duplicated across rules.

2We use a classification forest/tree if f is a classifier, and a
regression forest/tree if f is a regressor.

3For some (ρ, τ) pairs, it is possible that Rmax
Y ∗ = ∅. In such

cases, the algorithm should be run with different hyperparameters.
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To understand why this grid partition is meaningful, consider
the following reasoning:

• For any two points in the same grid cell C, the set of
features that must change to move from those points
to each Ri ∈ Rmax

Y ∗ must be the same, by virtue of the
cell’s construction from consecutive bounds in Rmax

Y ∗ .
• This means that the cost of each Ri ∈ Rmax

Y ∗ under
Equation 9 must be constant throughout C.

• As a result, there exists an R∗C ∈ Rmax
Y ∗ that has the

lowest cost throughout C.
• Therefore, every grid cell is a valid metarule.

d With the above in mind, the next step is to find the
optimal rule for each grid cell C. An efficient way to do
this is to pick an arbitrary point xC ∈ C, which we call
a prototype, and use Equation 6 (with Equation 9 as the
cost function) to find R∗C = CRE(xC | Y ∗, PX ),4 where
D again serves as a finite-sample approximation of PX . By
definition, R∗C will also be optimal throughout the rest of
the cell. In Figure 2, we show a prototype for each of the 15
cells and use colours to denote their optimal rules.

e At this point, we have identified the maximal-valid rules
Rmax

Y ∗ ⊆ Rsurr and valid metarules (i.e. grid cells) denoting
their regions of optimality. However, the cells are unlikely to
be maximal; Figure 2 includes several instances of adjacent
cells that could be merged to give a larger metarule with the
same optimal rule. While one could develop a bottom-up
algorithm for iteratively merging cells into larger metarules
as the previous sentence implies, we instead pursue an ef-
ficient top-down approach. That is, we consider the set of
cell prototypes, together with their optimal rule assignments,
as a kind of labelled dataset, and grow another tree model
(specifically a CART classifier (Breiman, 2017)) to classify
prototypes based on their labels. Crucially, we constrain
this tree’s growth algorithm to only consider split thresholds
in bounds(Rmax

Y ∗ , d) for each d ∈ {1, . . . , D}, and grow the
tree to purity. The result is that every leaf of the tree is a
union of cells sharing a common optimal rule, and hence is
an (approximately maximal) valid metarule. In the Figure 2
example, the 15 cells are aggregated into 7 metarules: three
for R1, two for R4, and one each for R2 and R3.

f Together, the rules and metarules globally characterise
the counterfactual structure of f for the given (ρ, Y ∗, τ).
The visual representation shown in Figure 2 is only possible
when D = 2, but the textual form exemplified in Figure 1
is more scalable. As we show in Section 6, the model
is also amenable to the kind of regional and feature-level
interpretability analysis that is normally possible with trees.

g In turn, the global rule/metarule structure trivially en-
ables the explanation of a single instance x0 : f(x0) ̸∈ Y ∗

4We break ties in the cost of two or more rules by taking the
first in a fixed (but otherwise arbitrary) ordering of R.

by identifying its containing metarule (in Figure 2, this leads
to R1 being returned as the CE). Since metarules are ar-
ranged in a conventional classification tree structure, highly
optimised implementations can be leveraged to rapidly gen-
erate CEs for many instances in parallel.

Steps b – e can be repeated for any new (Y ∗, τ) com-
bination as required, to extract paired sets of rules and
metarules from the same underlying surrogate. Once this
has been done once, the rule structures can be reused in-
definitely for local explanation. This front-loading of com-
putation makes T-CREx highly scalable to large datasets.
In Appendix B, we provide a complexity analysis of each
stage of the algorithm. The step that is most computation-
ally expensive in practice, d , has complexity O(DTD+1

ρD+1 ),
which increases polynomially with higher numbers of trees
in the surrogate model (denoted by T ) and lower values
of the hyperparameter ρ, and increases exponentially with
the input space dimensionality D. Despite this exponential
scaling, we find in Section 5.2 that T-CREx runtimes are
orders-of-magnitude faster than baseline methods.

The lack of restriction on Y ∗ (it can be any subset of Y)
makes T-CREx very flexible. If f is a K-class classifier
(i.e. |Y| = K), we can handle both targeted CE, in which
Y ∗ = {y} for some y ∈ Y , and untargeted CE, in which
Y ∗ = Y \ {y}. For regression models, the CE problem can
be formalised in an even greater diversity of ways (Spooner
et al., 2021). We consider a simple treatment in Section 5.4.

4. Related Work
As noted in the introduction, our work connects two strands
of prior research. The first is concerned with finding group-
level CE representations for sets of inputs, which may con-
sist of single counterfactual points, (Warren et al., 2023; Car-
rizosa et al., 2024), single vectors by which all inputs should
be translated (Kanamori et al., 2022), or single translation
directions while allowing magnitudes to vary (Ley et al.,
2023). Such aggregation provides a basis for high-level
auditing of a model’s counterfactual fairness properties and
may enhance the trust and understanding of non-expert users
(Warren et al., 2023). The second strand aims to find diverse
sets of CEs for single inputs, typically via gradient-based
methods (Mothilal et al., 2020; Rodrı́guez et al., 2021) or
genetic algorithms (Dandl et al., 2020). By providing fuller
insight into a model’s counterfactual options, it has been ar-
gued that diverse CEs improve actionability in the recourse
setting (Wachter et al., 2017), although user studies suggest
that presenting too many options can create “increased cog-
nitive load that [hinders] understanding” (Tompkins et al.,
2022). This drawback motivates providing compressed sum-
maries of diverse CEs in the form of human-readable rules.

Outside of the counterfactual context, rules have been used
as factual explanations, denoting the sufficient conditions
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Figure 3. Performance of T-CREx as a function of the number of trees and τ (arrows indicate ‘better’ direction for each desideratum).

for a model to produce a given output (Ribeiro et al., 2018;
I. Amoukou & Brunel, 2022). To our knowledge, LORE
(Guidotti et al., 2019) is the first method to combine such
factual rules with counterfactual ones, describing ranges of
feature value changes that (starting from a given reference
input) would change the model output with high probability.
Fernández et al. (2020) propose RF-OCSE, which finds
similar counterfactual rules for the specific class of random
forest classifiers, and demonstrate greatly improved com-
putational speed over LORE (although the resultant rules
have much lower feasibility). Most related to our proposal
is AReS (Rawal & Lakkaraju, 2020), which learns coun-
terfactual rules for sets of inputs described by “subgroup
descriptors” and “inner rules” (collectively analogous to
our metarules). Rules and subgroups are jointly optimised
to yield CEs that are accurate, incur low feature-changing
costs, and cover as many instances as possible. One draw-
back of AReS, alongside its extremely long runtimes (Ley
et al., 2023), is its use of arbitrary binning for numerical
features. By extracting split thresholds from a tree-based
surrogate model, our T-CREx method learns more adap-
tive rules while avoiding the need for binning. In addition,
AReS, LORE and RF-OCSE alike are only designed to
work with binary classification models. T-CREx natively
handles both multi-class classifiers and regressors.

Several works cited above leverage tree models, including
Kanamori et al. (2022) and both LORE and RF-OCSE.
Our use is rather different, and in particular, the growth of a
secondary tree for metarule aggregation is entirely novel.

5. Quantitive Experiments
To evaluate T-CREx, we use it to generate counterfactual
rules for unseen test data Dtest={(x ∼ PX , y=f(x))}Mm=1

and score the results according to six desiderata. The first
of these are feasibility and accuracy (Equations 3 and 4),
both approximated by using Dtest itself. In rare cases that
feasibility is 0, we fall back to a default accuracy based
on the marginal probability of Y ∗ across Dtest. We also
report the sparsity of each rule (Equation 10), as well as its
complexity, which we define as the number of finite terms

in its hyperrectangle bounds. We propose this desideratum
because it equates to the number of expressions needed to
describe a rule in text (fewer is better). Our fifth desideratum
is consistency, which is the number of unique rules returned
across all inputs in Dtest (divided by |Dtest|). We suggest that
having few unique rules is preferable because this implies
robustness of the explanations to input perturbations. It also
enables a compact representation of all counterfactuals for
Dtest, which is a key motivation for group-level CE methods.
Finally, we report the runtime (on an r6i.large AWS
instance) of all algorithmic variants and baselines. This is
a crucial consideration for the deployment of explanation
methods in practice. Throughout this section, f is an XG-
Boost model (Chen & Guestrin, 2016), trained on D with
n estimators=50 and max leaves=8. However, T-
CREx is model-agnostic, and we report similar results for a
neural network model in Appendix F.

5.1. Hyperparameter Study

We begin by characterising the performance of T-CREx as a
function of key hyperparameters, specifically the number of
trees in the surrogate model (∈ {1, 2, 3, 5, 10, 20}) and the
accuracy threshold τ (∈ {0.8, 0.9, 0.95, 0.98, 0.99}) while
holding the feasibility threshold constant at ρ = 0.02. We
run this experiment on nine binary classification datasets
(details in Appendix C), using 10-fold cross-validation (CV)
to split the datasets into train and test components (D,Dtest),
and aggregate results across all folds. We focus on the three
largest datasets in Figure 3, and report results for all nine
datasets (and alternative ρ values) in Appendix D.

The first high-level trend to note is a clear and intuitive
trade-off between the accuracy of returned rules on the one
hand, and their feasibility, sparsity and complexity on the
other. This trade-off is mediated by the accuracy threshold
τ . When higher thresholds are specified, this necessitates
more specific rules with narrower bounds, which in turn
sacrifices performance on the other three desiderata.

The trends with tree count align less with our a priori ex-
pectations. One might assume that most desiderata would
robustly improve as more trees are used, as this creates a
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Figure 4. Comparative evaluation of T-CREx0.9, T-CREx0.99, AReS, LORE and RF-OCSE on nine binary classification datasets.

larger pool of candidate rules to optimise over. For feasibil-
ity, sparsity and complexity, this usually appears to be true
for 2-20 trees,5 but in many cases (most visibly for Credit)
using a single tree markedly outperforms using two. We be-
lieve the outsized performance of single trees is due to their
use of the entire dataset D for growth rather than bootstrap
samples, as in typical random forest implementations.

There is no consistent trend towards more accurate rules as
tree count increases, and consistency reliably worsens, as
having more valid rules to select from leads to more frag-
mented results. The runtime required to learn all rules and
metarules also increases superlinearly. Together with the
ambiguous and inconsistent trends in the other desiderata,
this provides a strong practical reason for initially running
the T-CREx algorithm with a single surrogate tree, and only
deviating from this if unsatisfactory results are obtained.
For this reason, we use a single tree in all remaining experi-
ments. Specifically, we consider two variants with τ = 0.9
(T-CREx0.9) and τ = 0.99 (T-CREx0.99).

5.2. Baseline Comparison

We now present our main results, which compare T-CREx0.9
and T-CREx0.99 to the three relevant baselines from prior
work: AReS, LORE and RF-OCSE (see Appendix E for
baseline details). We use the same nine datasets and CV
setup as above, and evaluate the rules returned by each
method using our six key desiderata. Figure 4 shows the dis-
tribution of results for each desideratum, dataset and method.
Thick vertical lines denote mean values, and subplot back-
ground colours indicate the best-performing method.

5Some results for higher tree counts are absent here due to a
manually-imposed cell limit being reached; see Appendix D.

Moving left-to-right through the columns, we immediately
encounter a positive result. T-CREx0.99 (the variant with the
more stringent accuracy threshold τ ) returns the most accu-
rate rules on eight out of nine datasets, only being narrowly
beaten by AReS on Pima. As expected, T-CREx0.9 returns
somewhat less accurate rules, but this is counterbalanced
by their superior feasibility: this variant of our method re-
turns the most feasible rules on every dataset. T-CREx0.99
still performs well on feasibility, ranking second on seven
datasets, often with a sizeable gap to the third-ranked base-
line. This indicates that our method achieves strong com-
promises on the accuracy-feasibility trade-off. RF-OCSE’s
poor feasibility results are notable; it frequently returns rules
so specific that they contain zero instances from the test set.

The methods perform more similarly in terms of sparsity.
In most cases, they return rules requiring just one or two
features to be changed. Overall, we feel comfortable in
declaring T-CREx0.9 a narrow winner on this desideratum,
as it ranks highest on five of nine datasets. This is true to a
greater extent for complexity, where T-CREx0.9 ranks best
on seven datasets, and never outside the top two. The only
consistently strong baseline on both sparsity and complexity
is AReS. T-CREx0.99 is fairly competitive, outperforming
at least two baselines in most cases, but is always beaten
by T-CREx0.9. This reinforces our earlier observation that
more accurate rules come at the cost of other desiderata.

On consistency, which measures the fraction of unique rules
as an indicator of robustness and explanatory simplicity,
T-CREx outperforms all baselines for eight of nine datasets.
Consistencies of 10−1 to 10−3 indicate the same rule is
returned for tens or hundreds of test instances. Once again,
AReS is the only close competitor, which is intuitive as it
also learns aggregated group-level explanations. LORE and
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RF-OCSE perform no such aggregation, so any repetition
of rules (consistency < 100 = 1) is coincidental.

The disparity of runtimes is the most stark, varying by 3-4
orders of magnitude between both T-CREx variants (which
are always fastest) and the slowest baseline. To illustrate the
strength of this result: the total runtime for all test inputs in
all CV folds of all datasets is 4.16s and 4.52s for T-CREx0.9
and T-CREx0.99 respectively, which is 13× less than the
mean runtime per input of AReS on HELOC. T-CREx is at
least an order of magnitude faster than RF-OCSE on every
dataset, which is notable because this baseline’s speed is
hailed as a key advantage by its authors.

5.3. Counterfactual Distance Evaluation

An apparent drawback of T-CREx is that it does not op-
timise for rules that require small magnitudes of feature
changes to the original input, as measured by metrics such
as the Manhattan or Euclidean distance to the closest point
satisfying the rule. This desideratum, which is distinct from
sparsity, is very common in the literature (Karimi et al.,
2022), and is included to some extent in all three base-
lines. We can justify our omission: since most distance
metrics vary continuously, their inclusion would prevent us
from finding non-infinitesimal hyperrectangular metarules
for which a single counterfactual rule is guaranteed to be
optimal. However, given its ubiquity, it is important to know
how our method compares to baselines on this desideratum.

The results, shown in Figure 5, are encouraging. For all nine
datasets, we report the distribution of distances between
each test input and the closest point in the rule returned
by each method, where distance is measured as the total
percentile shift (Pawelczyk et al., 2020). Despite T-CREx
making no explicit attempt to minimise counterfactual dis-
tances, it performs comparably to the baselines, with both T-
CREx0.9 and T-CREx0.99 outperforming AReS and LORE
on seven of the nine datasets. In most cases, RF-OCSE is
strongest on this metric, but T-CREx0.9 actually does best on
three datasets. The fact that T-CREx0.9 always yields lower
distances than T-CREx0.99 suggests a reason for these posi-
tive results: by optimising for feasibility (which T-CREx0.9
does to a greater extent than T-CREx0.99), we indirectly
incentivise rules that occupy as much volume in the input
space as possible, which in turn reduces the expected dis-
tance to any other point in the space.

Abalone Adult Banknote

COMPAS Credit HELOC

Mamm. Mass Occupancy Pima

Figure 5. Distribution of counterfactual distances for all methods.

5.4. Regression Example

All three baselines are designed exclusively for binary clas-
sification, but T-CREx can operate in a much wider range
of contexts, including regression. To demonstrate this, we
evaluate the method on an XGBoost regression model for
the Wine Quality dataset (Cortez et al., 2009). As discussed
above, the CE problem for regression has many valid formu-
lations, but we use a simple approach that partitions the out-
put space into ‘low’ and ‘high’ halves using the mean model
output µ across Dtest. Concretely, we set Y ∗ = (µ,∞) if
f(x0) ≤ µ and Y ∗ = (−∞, µ] otherwise. As in binary
classification, this requires steps b – e of the T-CREx
algorithm to be completed twice: once for low-to-high coun-
terfactuals, and once for high-to-low.
The performance of T-CREx0.9 and T-CREx0.99 on our six
key desiderata are shown in Figure 6. The high-level out-
comes are consistent with the binary classification setting,
insofar as T-CREx0.99 reliably returns more accurate rules,
at the expense of somewhat worse feasibility, sparsity and
complexity. Both variants produce CEs in ≈ 0.1ms per
instance, similar to comparably-sized datasets in Figure 4
(COMPAS, HELOC). This experiment thus provides good
evidence that T-CREx generalises well to regression.

Accuracy Feasibility Sparsity

Complexity Consistency Runtime per CE (s)

Figure 6. Evaluating T-CREx0.9 and T-CREx0.99 for regression.

6. Qualitative Analysis
Having provided evidence of the promising quantitative per-
formance of T-CREx, we now briefly explore the qualitative
structure of the rule-based counterfactuals it provides.

6.1. Global CE Summary

We begin by examining the rules and metarules learnt by
T-CREx0.9 for Y ∗ = {high income} on the Adult dataset
(CV fold 7). Figure 7 depicts this information as a tree
diagram, as an alternative to the purely textual form exem-
plified in Figure 1. In this case, our method learns a total
of five metarules (leaves of this tree) for two distinct coun-
terfactual rules (green/orange colouring), whose accuracy,
feasibility and complexity are shown in italics. We also
show the sparsity, which can differ between metarules for
the same rule.6 This diagram provides a complete global
summary of the counterfactual rules learnt for this dataset,

6Strictly speaking, this is the worst-case sparsity for each (rule,
metarule) pair. It is possible to satisfy a metarule and need to
change fewer than the stated number of features (for example, if a
person is already married).
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which describe options for changing the model output from
low income to high income in terms of a range of alterna-
tive values for an individual’s age, education level, marital
status and working hours per week. We can also see that
the rule returned for any given individual depends on their
current age and working hours.

HoursPerWeek ≤ 40.5

change to age > 31.5, EducationLevel > 4.5,
MaritalStatus = Married-civ-spouse

keep HoursPerWeek > 40.5
(acc=0.969, fea=0.075, spa=3, com=4)

age ≤ 31.5

change to 39.5 < age ≤ 51.5, EducationLevel > 4.5,
MaritalStatus = Married-civ-spouse

keep HoursPerWeek ≤ 40.5
(acc=0.921, fea=0.034, spa=3, com=5) age ≤ 39.5

change to EducationLevel > 4.5, HoursPerWeek > 40.5,
MaritalStatus = Married-civ-spouse

keep age > 31.5
(acc=0.969, fea=0.075, spa=3, com=4)

age ≤ 51.5

change to EducationLevel > 4.5,
MaritalStatus = Married-civ-spouse

keep 39.5 < age ≤ 51.5, HoursPerWeek ≤ 40.5
(acc=0.921, fea=0.034, spa=2, com=5)

change to EducationLevel > 4.5, HoursPerWeek > 40.5,
MaritalStatus = Married-civ-spouse

keep age > 31.5
(acc=0.969, fea=0.075, spa=3, com=4)

True

T

T

T

False

F

F

F

Figure 7. Rules and metarules for the Adult dataset.

6.2. Local CE Example and Metacounterfactual

Remaining with the above example, consider an unmarried
individual aged 45, who has no degree and works 35 hours
per week, and for whom the model output is low income.
They may wish to know why the output is not high income
instead. Running their features through the metarule tree
leads to the bottom-left of Figure 7, and hence to the yel-
low counterfactual rule. That is, the model would output
high income with high probability if this individual were
married and had an education level of 5 (Bachelor’s degree)
or higher, provided their age remained in the 40-51 range
and their working hours remained at 40 or fewer.

Now consider what would happen if this individual were 55
years old instead of 45. They would be led to the bottom-
right of Figure 7, and hence to the green metarule. Now, in
order to be predicted as high income with high probability,
they would need to make the same feature changes as before
(married, education level of 5 or higher) and work 41 hours
per week or more. The reason for this change, which likely
results from trends in the training data reflected in the model,
can be pinpointed to their age now being 52 or higher. Such

metacounterfactual reasoning (i.e. concerning the input
changes required to yield an alternative CE) offers an in-
teresting perspective on the issue of explanation robustness
(Mishra et al., 2021), and provides a basis for understanding
changes in recourse recommended for individuals as a result
of natural changes in features such as their age. We believe
this basic idea warrants deeper investigation in future.

6.3. Dataset-level Analysis

Figure 8 a shows another set of rules and metarules learnt
by T-CREx0.9, in this case for Y ∗ = {no diabetes} on
the Pima diabetes dataset (CV fold 8). Here, we indicate
where 23 unseen test inputs (for which the model output is
has diabetes) fall in the metarule tree. We take the oppor-
tunity to collapse any parts of the tree where no data reside,
which allows us to focus on the information that is relevant
to this particular dataset. The test inputs are distributed be-
tween seven metarules for three distinct counterfactual rules.
The most common metarule denotes individuals aged 31 or
older, with a diabetes pedigree function of 0.636 or below
and a plasma glucose concentration exceeding 154.5. For
these individuals, it is predicted that the model would output
no diabetes with high probability if their glucose levels
were reduced to 108.5 or below (and their age and diabetes
pedigree function value remained in the same range).

High-level counterfactual summary statistics can be derived
for this test set, such as Figure 8 b , which shows the
number of inputs for which each feature is included in the
returned rule (“change” and “keep” conditions are plotted
separately). This highlights the importance of glucose con-
centration for the diabetes diagnosis problem: the glucose
feature must either be changed or kept within a specified
range for all 23 test inputs (change: 16, keep: 7).
12 of the test inputs fall in metarules for which the green
counterfactual rule (glucose ≤ 139.5 and age ≤ 30.5) is
optimal. This rule only includes two features, so we can
represent it via a 2D plot similar to those in Figures 1 and 2.
This is shown in Figure 8 c , which also includes the values
of these features for the training data D (small points) and
the 12 test inputs themselves (large points). The five individ-

age ≤ 30.5

glucose ≤ 139.5 diabetesPedigreeFunction ≤ 0.636

∅ bmi ≤ 29.95

glucose ≤ 154.5

5 test inputs
change to glucose ≤ 139.5

keep age ≤ 30.5
(acc=0.958, fea=0.451, spa=1, com=2)

∅ ∅

glucose ≤ 139.5 glucose ≤ 139.5

glucose ≤ 108.5 glucose ≤ 154.5

∅ diabetesPedigreeFunction ≤ 0.546

bmi ≤ 29.95 ∅

∅

2 test inputs
change to age ≤ 30.5
keep glucose ≤ 139.5

(acc=0.958, fea=0.451, spa=1, com=2)

8 test inputs
change to glucose ≤ 108.5

keep diabetesPedigreeFunction ≤ 0.636, age > 30.5
(acc=0.986, fea=0.103, spa=1, com=3)

∅

2 test inputs
change to glucose ≤ 108.5

keep diabetesPedigreeFunction ≤ 0.636, age > 30.5
(acc=0.986, fea=0.103, spa=1, com=3)

4 test inputs
change to age ≤ 30.5
keep glucose ≤ 139.5

(acc=0.958, fea=0.451, spa=1, com=2)

bmi ≤ 29.95

∅ glucose ≤ 154.5

1 test input
change to bmi ≤ 29.95

keep 139.5 < glucose ≤ 154.5
(acc=1.0, fea=0.02, spa=1, com=3)

1 test input
change to glucose ≤ 139.5, age ≤ 30.5

(acc=0.958, fea=0.451, spa=2, com=2)

True False

F

F

bmi ≤ 29.95

T F

FT

F

F T

F
T

F

F
T

F

F

T

a

b

c

age

Number of test inputs
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0 5 10 15 20

Change

C

Change

Keep
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Figure 8. Rules and metarules for the Pima diabetes dataset, with analysis for a particular sample of 23 test inputs.
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uals aged 30 or below require different minimum glucose
reductions to satisfy the rule, ranging from 7.5 in the lowest
case to 41.5 in the highest. Excluding one outlier, those
older than 30 already have glucose levels below the required
threshold, and thus would be likely to receive a no diabetes
prediction if only they were a few years younger. A plot of
this type may help to illustrate the differing implications of
counterfactual rules for different individuals.

7. Conclusion
We have introduced a fast, model-agnostic method for learn-
ing accurate and feasible counterfactual rules, alongside
metarules for choosing between them, thereby enabling
both local (individual) and global (group-level) CE. We have
demonstrated the method’s efficacy on benchmark classifi-
cation and regression datasets with a mix of numerical and
categorical features, and shown strong performance relative
to baselines on a range of CE desiderata.
A limitation of our current implementation is that is tied to
a particular cost function and lacks the facility for domain-
specific actionability constraints. This can lead it to return
non-actionable counterfactuals (e.g. requiring an individual
to lower their age). Although such constraints may not be
relevant for understanding a model’s bias and fairness, they
are crucial for recourse (Karimi et al., 2022). We believe
that the method could be generalised to handle actionability
and alternative costs without major changes. Also important
is the question of tree count and other hyperparameters for
surrogate tree growth. While we found single-tree surro-
gates to be notably effective in our experiments, this issue
warrants deeper theoretical and empirical investigation.

Impact Statement
This paper presents a method for explaining the outputs of black
box AI models and summarising recourse options for both individ-
uals and groups using human-interpretable rules. As with many
proposals made within the wider XAI field, the responsible de-
ployment of more mature versions of such a technology could
have a positive societal impact, enabling more understandable,
trustworthy and user-friendly AI systems in deployment.

Disclaimer
This paper was prepared for informational purposes by the Arti-
ficial Intelligence Research group of JPMorgan Chase & Co and
its affiliates (“J.P. Morgan”) and is not a product of the Research
Department of J.P. Morgan. J.P. Morgan makes no representa-
tion and warranty whatsoever and disclaims all liability, for the
completeness, accuracy or reliability of the information contained
herein. This document is not intended as investment research or
investment advice, or a recommendation, offer or solicitation for
the purchase or sale of any security, financial instrument, financial
product or service, or to be used in any way for evaluating the
merits of participating in any transaction, and shall not consti-
tute a solicitation under any jurisdiction or to any person, if such
solicitation under such jurisdiction or to such person would be
unlawful.
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A. Handling of One-hot Encoded Categorical Features
A.1. Well-formedness Constraints on Rules

In one-hot encoding, a categorical feature c taking Dc possible values is mapped to a length-Dc vector in which one ‘hot’
element is equal to 1 and the remaining ‘cold’ elements are equal to 0. We can therefore represent an arbitrary mix of
numerical and categorical features as a single real vector space RD, of which a subspace Sc ⊆ {1, . . . , D} : |Sc| = Dc

represents each categorical c and thus only contains 0 and 1 values.

As discussed in the main paper, a hyperrectangular rule Ri is defined by lower and upper bounds lid, u
i
d ∈ R ∪ {−∞,∞}

along each feature d ∈ {1, . . . , D}. For numerical features, these bounds are unconstrained (except that ui
d ≥ lid), but for

each categorical feature c, the following conditions must hold for the rule to be well-formed:

• Ri must either specify a single hot category hotic ∈ Sc or up to Dc − 1 cold categories coldi
c ⊂ Sc,7 but never

multiple hot categories (which would be impossible to satisfy) and never a mixture of hot and cold (which would be
over-specified; a single hot category fully determines the feature’s value).

• In the one-hot case, lihotic
must be set to a value in [0, 1). In practice, we use 0.5.

• In the multi-cold case, for each d ∈ coldic, ui
d must be set to a value in [0, 1). As above, we use 0.5.

• All other lower and upper bounds for each d ∈ Sc must be set to −∞ and ∞ respectively.

As a result, for any given point x0 ∈ RD, each categorical feature c can contribute a value of either 0 or 1 to the
changes(x0, Ri) calculation in Equation 10:

• In the one-hot case where x0
hotic

= 1, the contribution is 0 because 1[(1 ≤ 0.5) ∨ (∞ < 1)] = 0.

• In the one-hot case where x0
hotic

= 0, the contribution is 1 because 1[(0 ≤ 0.5) ∨ (∞ < 0)] = 1.

• In the multi-cold case where ∄d ∈ coldi
c : x

0
d = 1, the contribution is 0 because 1[(0 ≤ −∞) ∨ (0.5 < 0)] = 0.

• In the multi-cold case where ∃d ∈ coldi
c : x

0
d = 1, the contribution is 1 because 1[(1 ≤ −∞) ∨ (0.5 < 1)] = 1.

A.2. Algorithmic Refinements

The T-CREx algorithm includes several minor adjustments for the correct handling of categorical features.

A.2.1. RULE SIMPLIFICATION ON EXTRACTION FROM THE SURROGATE

During the greedy growth process of a standard classification or regression tree, it is possible to create branches with cold
split outcomes for one or more categories of a categorical feature, followed by (lower down in the branch) a hot split
outcome for another category. As discussed above, the presence of a hot category makes the specification of cold categories
redundant, so when extracting rules from the surrogate in step a , we apply a post hoc correction to all extracted rules to
set the corresponding bounds to ∞. Secondly, while a rule specifying Dc − 1 cold categories for a categorical feature c
is technically well-formed, it is equivalent to the simpler and more direct specification of the remaining hot category. We
replace any such ‘all-but-one-cold’ rules with their equivalent one-hot representations.

A.2.2. MODIFIED SUBSET RELATION

A more subtle correction is needed for the hyperrectangle subset relation in Equation 12, which is used to identify maximal-
valid rules in step b . From a semantic perspective, a rule Rj that is multi-cold for some categorical c is less specific than
another rule Ri that is one-hot with hotic ̸∈ coldj

c (assuming equal bounds on all other features), since the latter is a special
case of the former. Ri should therefore be considered a subset of Rj , but the way the bounds of one-hot rules are specified
above (i.e. ±∞ for all d ∈ Sc \ {hotic}) leads this not to be the case. To fix this, we temporarily modify all one-hot rules to
have explicit upper bounds of 0.5 for all cold categories, which equates to applying the following function:

ûi
d =

{
0.5 if ∃ c : (d ∈ Sc) ∧ (∃ d′ ∈ Sc \ {d} : lid′ = 0.5),
ui
d otherwise. (14)

The strict subset relation Ri ⊂ Rj is then defined exactly as in Equation 12, except using ûi
d and ûj

d instead of ui
d and uj

d.

7coldi
c can be the empty set, in which case the rule effectively ignores feature c.
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A.2.3. SKIPPING OF IMPOSSIBLE GRID CELLS

In step c , the bounds of the maximal-valid rules are used to partition the input space into a grid of hyperrectangular cells.
In the presence of categoricals, a large proportion of these cells can never be occupied by any real input point, because they
specify multiple (or zero) hot categories for the same feature. Consider the following minimal example of an input space
consisting of a single binary feature, which is partitioned into a 2× 2 grid:

Impossible

Category 1

C
a
te

g
o
ry

 2

0.5

Impossible

0.5

The two cells on the off-diagonal can be occupied by real data as they specify one of the two categories being hot, but
the other two cells are impossible as they specify either both or neither. Since we are only interested in finding CEs for
inputs that are possible in practice, we skip all such impossible cells when generating prototypes. This delivers a significant
efficiency saving: the maximum factor by which a categorical feature c can increase the size of the grid is reduced from 2Dc

(= 4 in the above example) to Dc (= 2).

B. Computational Complexity Analysis
Let D be the dimensionality of the input space, N be the size of the dataset used to grow the surrogate model and T be the
number of trees in the surrogate model. The following is a computational complexity analysis of each step of the T-CREx
algorithm (excluding step f , which describes no specific computation):

a This step consists of growing standard classification or regression trees with an early-stopping criterion enforcing that
each leaf has a minimum fraction ρ ∈ (0, 1] of the data. This creates a maximum of Lmax = ceil(1/ρ) leaves per tree
via Lmax − 1 splitting operations. Since each such operation involves searching over O(DN) possible splits of the data,
the complexity of tree growth is O(DN(Lmax − 1)) = O(DN

ρ ). This implies a complexity of O(TDN
ρ ) when growing T

independent trees to form a random forest, which will be somewhat reduced in typical implementations where each tree only
uses a subset of features.

b The greatest number of valid rules extracted from a single tree, denoted by V , will tend to increase as the hyperparameter
τ ∈ (0, 1] is decreased, but is upper-bounded by the maximum total number of rules: V ≤ 2Lmax − 1 = 2ceil(1/ρ)− 1.
Evaluating the pairwise subset relation to find the maximal-valid rules involves comparing each pair of rules on each feature,
so for T trees is O(D(V T )2) = O(D((2ceil(1/ρ)− 1)T )2) = O(DT 2

ρ2 ).

c Let M ≤ V be the greatest number of maximal-value rules extracted from a single tree. Because these rules have been
filtered by the subset relation, M is upper-bounded by the maximum number of leaves: M ≤ Lmax = ceil(1/ρ). In the
worst-case grid size scenario described in the paragraph for this step in Section 3, we must create O((MT )D) = O(T

D

ρD )

grid cell prototypes, which involves computing O(DTD

ρD ) individual feature values.

d Using Equations 6 and 9 to identify the optimal rule is O(DMT ) = O(DT
ρ ) for each prototype, and hence is

O(T
D

ρD × DT
ρ ) = O(DTD+1

ρD+1 ) for all prototypes.

e This step involves growing another standard classification tree, but this time without an early-stopping criterion and with

the O(T
D

ρD ) prototypes as the points to be classified rather than the original dataset. The complexity of this process depends
on how balanced the classification problem is, but has been generically estimated as O(D[num points] log[num points]) per
tree (Sani et al., 2018). This evaluates to O(D TD

ρD log(T
D

ρD )) = O(D2 TD

ρD (log T − log ρ)).
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g Finding the local explanation for a single instance involves propagating that instance through the metarule tree
structure. In the worst case, this involves a number of feature comparisons equal to the depth of this tree, which is
O(log([num points])) = O(log(T

D

ρD )) = O(D(log T − log ρ)) if the prototype classification problem in step e is
relatively balanced.

In practice, we find that d is most computationally expensive step of the algorithm in all experimental settings studied in
this paper. It is O(DTD+1

ρD+1 ), which increases polynomially with higher tree counts T and lower values of the hyperparameter
ρ, and increases exponentially with the input dimensionality D.

Steps a , e and g can all leverage highly-optimised decision tree implementations so have a small impact on the total
runtime. Although we made an effort to implement the other steps efficiently using parallelised array operations, it is likely
that further optimisation is possible.

C. Dataset Details
Our experimental setup is somewhat inspired by that used in the RF-OCSE paper (Fernández et al., 2020), and we retain
eight out of the 10 public-access datasets studied there. We remove Post-Operative Patient and Seismic Bumps due to their
small size (86 instances) and extreme class imbalance (0.07) respectively. In their place, we add Home Equity Line of
Credit (HELOC) and Wine Quality, the latter of which is a regression dataset to serve as a demonstration of our method’s
suitability for that context (see Section 5.4). Otherwise, our data preprocessing pipeline is very similar to that of Fernández
et al. (2020). Details of the 10 datasets used in our experiments are as follows (# Inst. = number of instances, # Feat. =
number of features, # Cat. = number of categorical features, Class Balance = proportion of instances with the positive class):

Short Name Full Name Citation # Inst. # Feat. # Cat. Class Balance
Abalone Abalone (Nash et al., 1995) 4177 8 1 0.50∗

Adult Adult / Census Income (Becker & Kohavi, 1996) 30,718 11 5 0.25
Banknote Banknote Authentication (Lohweg, 2013) 1372 4 0 0.44
COMPAS COMPAS Recidivism Racial Bias (ProPublica, 2016) 5278 5 3 0.53
Credit Default of Credit Card Clients (Yeh, 2016) 29,623 14 3 0.78
HELOC Home Equity Line of Credit (FICO, 2018) 9871 23 0∗∗ 0.52
Mamm. Mass Mammographic Mass (Elter, 2007) 830 5 2 0.51
Occupancy Occupancy Detection (Candanedo, 2016) 2665∗∗∗ 5 0 0.64
Pima Pima Indians Diabetes (Smith et al., 1988) 768 8 0 0.65
Wine Quality Wine Quality (Cortez et al., 2009) 6497∗∗∗∗ 12∗∗∗∗ 1∗∗∗∗ N/A

∗ Abalone is natively a regression dataset, but Fernández et al. (2020) transform it into a classification one by splitting the
target variable at the median (hence the equal class balance).
∗∗ Strictly speaking, the MaxDelq2PublicRecLast12M and MaxDelqEver features are categoricals, mapping
onto strings such as “120+ Days Delinquent” and “Never Delinquent” (see https://docs.interpretable.ai/
stable/examples/fico/). However, the 0-9 numerical encoding used in the dataset file imposes a semantically
meaningful ordering on the categories, allowing these features to be treated as numerical in practice.
∗∗∗ This actually appears to be only the test split of the original dataset, but is the one used in Fernández et al. (2020)’s
GitHub repository at https://github.com/rrunix/libfastcrf, so we retain it here.
∗∗∗∗ We concatenate the red and white wine subsets of the original dataset and add a binary categorical feature to indicate
the colour of each instance. The 11 original features are all numerical.
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D. Extended Hyperparameter Study
Figure 8 (overleaf) shows full results for the surrogate tree count and accuracy threshold (τ ) hyperparameter study across all
nine binary classification datasets.

Before turning to the desiderata, the leftmost columns consider two reasons why our T-CREx implementation may fail to
return rules. Firstly, no valid rules may be found. In general, this becomes more likely for higher values of τ , as it becomes
harder to find rules that satisfy both the feasibility and accuracy criteria. Its likelihood decreases as more surrogate trees are
used (more trees means more chances of finding a valid rule), with the notable exception of a single tree. As discussed in
the main paper, we believe the strong performance of the single-tree case is due to its use of the entire dataset rather than
bootstrap samples as in a random forest. We note that this failure mode never occurs for six out of nine datasets, indicating
that it is not always an issue, even for very high τ values.

Alternatively, the algorithm might violate a self-imposed limit on the number of grid cells (we use 1e5), which we include to
pre-empt and prevent long runtimes. Again, this failure mode does not occur for all datasets, but when it does, it becomes
markedly more likely as the number of surrogate trees increases. This is because more trees tend to yield more maximal-valid
rules, and thus more unique boundaries from which to construct the cell grid. It also tends to increase with τ , as higher
values of this accuracy threshold yield a larger number of more specific maximal-valid rules.

The remaining columns focus on cases for which the algorithm does not fail by either of the two modes described above.
The key observations made in Section 5.1 continue to apply across this larger suite of datasets, including:

• The τ -mediated trade-off between accuracy on the one hand, and feasibility, sparsity, complexity and (to a lesser extent)
consistency is clear in the vast majority of cases.

• The trends with tree count are less straightforward. Feasibility, sparsity and complexity usually improve as the number
of trees is increased from 2-20, although in many cases using a single tree markedly outperforms using two. Consistency,
on the other hand, worsens with tree count, as more unique maximal-valid rules exist.

• The trend of accuracy with tree count is either flat or, in some cases, actually decreasing. We believe that this is due to
our use of accuracy as a minimum threshold for validity, rather than an objective to be optimised. Having more rules
to choose from increases the optimisation space for the other desiderata of feasibility and sparsity, which (due to the
aforementioned trade-off) indirectly leads to somewhat less accurate rules being returned.

• The runtime required to learn all rules and metarules increases superlinearly with tree count, which provides a strong
motivation for keeping the number low.
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Figure 8. Hyperparameter study for all nine binary classification datasets.

15



Counterfactual Metarules for Local and Global Recourse

For the Adult dataset, we expand the hyperparameter study to consider variations in the feasibility threshold ρ
(∈ {0.01, 0.02, 0.03, 0.04, 0.05}), and plot the results as a grid of heatmaps in Figure 9. The probability of the two
failure modes (no valid rules and cell limit reached) increase and decrease with ρ respectively, both of which make sense
because higher ρ values yield fewer, larger rules. Overall, the fewest failures occur with ρ = 0.02. Together with our
informal finding that this value yields good results in practice, this explains our decision to use ρ = 0.02 in all other
experiments.

The consistency metric, as well as the algorithm’s runtime, tend to decrease (i.e. improve) as ρ is increased. The variations
in other metrics exhibit less significant trends.

Accuracy Feasibility Sparsity Complexity Consistency Runtime (s)P(no valid rules) P(cell limit reached)
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Figure 9. Extended hyperparameter study for the Adult data, also considering variable ρ.
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E. Baseline Details
For all three baselines, we use existing public Python implementations and retain default hyperparameter values (or values
used in provided exemplar scripts or notebooks).

E.1. AReS

We use a third-party implementation by Kanamori et al. (2022) at https://github.com/kelicht/cet. We retain
most of the default hyperparameter values (max rule=8, max rule length=8, discretization bins=10,
max candidates=50), but change minimum support from 0.6 to 0.05, following Kanamori et al.
(2022) themselves (see userstudy.py on the GitHub repository). The implementation includes a tuning
method to automatically set the objective weighting hyperparameters λ. We use all default hyperparame-
ter values for this method (max change num=4, cost type=TLPS, gamma=1.0, lambda acc=[1.0],
lambda cov=[1.0], lambda cst=[1.0], objective=origin).

A slight complication is that the implementation can only natively produce counterfactuals for cases where f(x0) = 1. To
produce counterfactuals for f(x0) = 0, we artificially invert the model outputs and run the algorithm a second time.

E.2. LORE

We use the original authors’ implementation at https://github.com/kdd-lab/XAI-Lib, which they
recommend over an older version at https://github.com/riccotti/LORE. We use the same hyper-
parameter values for both the fit method (neigh type=rndgen, size=1000, ocr=0.1, ngen=10)
and the explain method (samples=1000, use weights=True, metric=neuclidean) as in
tabular explanations example.ipynb on the XAI-Lib GitHub repository.

In general, LORE returns a list of counterfactual rules. To enable direct comparison with the other methods, we retain only
the single rule with the fewest finite boundaries (lowest complexity) with ties broken by taking the earliest in the returned
list. In rare cases, LORE can also fail to return any rules. We exclude such cases from our evaluation.

The implementation handles categorical features using one-hot encoding but proceeds to treat each category feature as if it
were numerical, allowing arbitrary rule boundaries that may fall outside the meaningful [0, 1) range. It is unclear whether
the authors intended this, but it is visible in tabular explanations example.ipynb on the XAI-Lib repository.
We apply a post hoc correction to category feature boundaries, snapping those inside the [0, 1) range to 0.5, and ignoring
those outside the range. The authors’ naı̈ve treatment of categoricals can also yield impossible ‘multi-hot’ rules where more
than one category feature is positive. In such cases, we apply another correction to choose one of these categories at random.

E.3. RF-OCSE

We use the original author’s implementation at https://github.com/rrunix/libfastcrf, using default
hyperparameter values for the batch extraction function (max distance=-1, search closest=True,
max iterations=-1, epsilon=0.0005).

The authors present RF-OCSE as a method for generating counterfactual rules for random forests given direct access to
their internal rule structure, but in this work, we are interested in explaining arbitrary black box models. To adapt RF-OCSE
for this context, we first fit a random forest surrogate to a training set labelled with model outputs, then apply the algorithm
to the surrogate (i.e. mirroring our own approach). We use a scikit-learn RandomForestClassifier with
n estimators=10 and otherwise default hyperparameters, which matches the models studied in the RF-OCSE paper
(Fernández et al., 2020).

In that paper, it is stated that “categorical and binary variables are represented using numerical encoding”,
and rules are constructed as if those features were numerical. Reviewing the GitHub repository (specifically
research paper/dataset reader.py), it appears that the numerical encoding is based on an alphabetical or-
dering of category names, and the rule examples given in Table 6 of (Fernández et al., 2020) are consistent with this. This is
clearly an arbitrary and restricting choice, but we retain it to remain faithful to the original implementation.
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F. Experiment with Neural Network Model
For the Adult dataset, we repeat the comparative evaluation in Figure 4 for a neural network target model (specifically an
sklearn.neural network.MLPClassifier with two hidden layers of 100 units each and ReLU activations). The
results are shown in Figure 10, with the equivalent XGBoost results (from the main paper) copied below for reference.
Although there are some changes in the rankings of methods on some of the desiderata, overall magnitudes are broadly
similar in all cases. This indicates that neither our method, nor any of the baselines, exhibits any special sensitivity to the
class of the target model.

Neural
Network

Accuracy Feasibility Sparsity Complexity Consistency Runtime per CE (s)

XGBoost
(copied from
main paper)

Figure 10. Performance of T-CREx0.9, T-CREx0.99, AReS, LORE and RF-OCSE for neural network and XGBoost models (Adult).
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