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Abstract: We propose an approach for semantic imitation, which uses demon-
strations from a source domain, e.g., human videos, to accelerate reinforcement
learning (RL) in a different target domain, e.g., a robotic manipulator in a simulated
kitchen. Instead of imitating low-level actions like joint velocities, our approach
imitates the sequence of demonstrated semantic skills like “opening the microwave”
or “turning on the stove”. This allows us to transfer demonstrations across en-
vironments (e.g., real-world to simulated kitchen) and agent embodiments (e.g.,
bimanual human demonstration to robotic arm). We evaluate on three challenging
cross-domain learning problems and match the performance of demonstration-
accelerated RL approaches that require in-domain demonstrations. In a simulated
kitchen environment, our approach learns long-horizon robot manipulation tasks,
using less than 3 minutes of human video demonstrations from a real-world kitchen.
This enables scaling robot learning via the reuse of demonstrations, e.g., collected
as human videos, for learning in any number of target domains.
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Figure 1: We address semantic imitation, which
aims to leverage demonstrations from a source do-
main, e.g., human video demonstrations, to accel-
erate the learning of the same tasks in a different
target domain, e.g., controlling a robotic manipula-
tor in a simulated kitchen environment.

Consider a person imitating an expert in two sce-
narios: a beginner learning to play tennis, and
a chef following a recipe for a new dish. In the
former case, when mastering the basic skills of
tennis, humans tend to imitate the precise arm
movements demonstrated by the expert. In con-
trast, when operating in a familiar domain, such
as a chef learning to cook a new dish, imitation
happens on a higher scale. Instead of imitating
individual movements, they follow high-level,
semantically meaningful skills like “stir the mix-
ture” or “turn on the oven”. Such semantic skills
generalize across environment layouts, and al-
low humans to follow demonstrations across
substantially different environments.

Most works that leverage demonstrations in
robotics imitate low-level actions. Demonstra-
tions are typically provided by manually moving
the robot [1] or via teleoperation [2]. A critical
challenge of this approach is scaling: demonstra-
tions need to be collected in every new environ-
ment. On the other hand, imitation of high-level
(semantic) skills has the promise of generaliza-
tion: demonstrations can be collected in one
kitchen and applied to any number of kitchens, eliminating the need to re-demonstrate in every new
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environment. Learning via imitation of high-level skills can lead to scalable and generalizable robot
learning.

In this work, we present Semantic Transfer Accelerated RL (STAR), which accelerates RL using
cross-domain demonstrations by leveraging semantic skills, instead of low-level actions. We consider
a setting with significantly different source and target environments. Figure 1 shows an example: a
robot arm learns to do a kitchen manipulation task by following a visual human demonstration from a
different (real-world) kitchen. An approach that follows the precise arm movements of the human will
fail due to embodiment and environment differences. Yet, by following the demonstrated semantic
skills like “open the microwave" and “turn on the stove", our approach can leverage demonstrations
despite the domain differences. Like the chef in the above example, we use prior experience for
enabling this semantic transfer. We assume access to datasets of prior experience collected across
many tasks, in both the source and target domains. From this data, we learn semantic skills like “open
the microwave” or “turn on the stove”. Next, we collect demonstrations of the task in the source
domain and find “semantically similar” states in the target domain. Using this mapping, we learn a
policy to follow the demonstrated semantic skills in semantically similar states in the target domain.

We present results on two semantic imitation problems in simulation and on real-to-sim transfer
from human videos. In simulation, we test STAR in: (1) a maze navigation task across mazes of
different layouts and (2) a sequence of kitchen tasks between two variations of the FrankaKitchen
environment [3]. In both tasks our approach matches the learning efficiency of methods with in-
domain demonstrations, despite only using cross-domain demonstrations. Additionally, we show that
a human demonstration video recorded within 3 minutes in a real-world kitchen can accelerate the
learning of long-horizon manipulation tasks in the FrankaKitchen by hundreds of thousands of robot
environment interactions.

In summary, our contributions are twofold: (1) we introduce STAR, an approach for cross-domain
transfer via learned semantic skills, (2) we show that STAR can leverage demonstrations across
substantially differing domains to accelerate the learning of long-horizon tasks.

2 Related Work

Learning from demonstrations. Learning from Demonstrations (LfD, Argall et al. [4]) is a popular
method for learning robot behaviors using demonstrations of the target task, often collected by human
operators. Common approaches include behavioral cloning (BC, Pomerleau [5]) and adversarial
imitation approaches [6]. A number of works have proposed approaches for combining these
imitation objectives with reinforcement learning [7, 8, 9, 10]. However, all of these approaches
require demonstrations in the target domain, limiting their applicability to new domains. In contrast,
our approach imitates the demonstrations’ semantic skills and thus enables transfer across domains.

Skill-based Imitation. Using temporal abstraction via skills has a long tradition in hierarchical
RL [11, 12, 13]. Skills have also been used for the imitation of long-horizon tasks. Pertsch et al.
[14], Hakhamaneshi et al. [15] learn skills from task-agnostic offline experience [16, 17] and imitate
demonstrated skills instead of primitive actions. But, since the learned skills do not capture semantic
information, they require demonstrations in the target domain. Xu et al. [18], Huang et al. [19] divide
long-horizon tasks into subroutines, but struggle if the two domains requires a different sequence of
subroutines, e.g., if skill pre-conditions are not met in the target environment. Our approach is robust
to such mismatches without requiring demonstrations in the target domain.

Cross-Domain Imitation. Peng et al. [20] assume a pre-specified mapping between source and
target domain. [21, 22] leverage offline experience to learn mappings while [23, 24, 25] rely on paired
demonstrations. A popular goal is to leverage human videos for robot learning since they are easy
to collect at scale. [26, 27] learn reward functions from human demonstrations and Schmeckpeper
et al. [28] add human experience to an RL agent’s replay buffer, but they only consider short-horizon
tasks and rely on environments being similar. Yu et al. [29] meta-learn cross-domain subroutines, but
cannot handle different subroutines between source and target. Our approach imitates long-horizon
tasks across domains, without a pre-defined mapping and is robust to different semantic subroutines.
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Figure 2: Model overview for pre-training (left) and target task learning (right). We pre-train a
semantic skill policy πl (grey) and use it to decode actions from the learned high-level policies πsem

and πlat (blue and yellow) during target task learning. See training details in the main text.

3 Problem Formulation

We define a source environment S and a target environment T . In the source environment, we
have N demonstrations τS1:N with τSi = {sS0 , aS0 , sS1 , aS1 , . . . } sequences of states sS and actions aS .
Our goal is to leverage these demonstrations to accelerate training of a policy π(sT ) in the target
environment, acting on target states sT and predicting actions aT . π(sT ) maximizes the discounted
target task reward JT = Eπ

[∑L−1
l=0 γlR(sTl , a

T
l )
]

for an episode of length L. We account for
different state-action spaces (sS , aS) vs. (sT , aT ) between source and target, but drop the superscript
in the following sections, assuming that the context makes it clear whether we are addressing source
or target states. In Section 4.3 we describe how we bridge this environment gap. Without loss of
generality we assume that the source and target environments are substantially different; sequences
of low-level actions that solve a task in the source environment do not lead to high reward in the
target environment. In the following we will also use the term domain to refer to two environments
with this property. Yet, we assume that the demonstrations show a set of semantic skills, which when
followed in the target environment can lead to task success. Here the term semantic skill refers to a
high-level notion of skill, like “open the microwave” or “turn on the oven”, which is independent of
the environment-specific low-level actions required to perform it. We further assume that both source
and target environment allow for the execution of the same set of semantic skills.

Semantic imitation requires an agent to understand the semantic skills performed in the demon-
strations. We use task-agnostic datasets DS and DT in the source and target domains to extract
such semantic skills. Each Di consists of state-action trajectories collected across a diverse range
of prior tasks, e.g., from previously trained policies or teleoperation, as is commonly assumed in
prior work [16, 17, 14, 15]. We also assume discrete semantic skill annotations kt ∈ K, denoting the
skill being executed at time step t. These can be collected manually, but we demonstrate how to use
pre-trained action recognition models as a more scalable alternative (Sec. 5.2).

4 Approach Algorithm 1 STAR (Semantic Transfer Accelerated RL)

Pre-Train low-level policy πl(a|s, k, z) . cf. Sec. 4.1
Match source demos to target states . cf. Sec. 4.3
Pre-train pdemo(k|s), pTA(k|s), pTA(z|s, k), D(s) . cf. Tab. 1
for each target train iteration do

Collect online experience (s, k, z, R, s′)
Update high-level policies with eq. 3 . cf. Alg. 2

return trained high-level policies πsem(k|s), πlat(z|s, k)

Our approach STAR imitates demon-
strations’ semantic skills, instead of
low-level actions, to enable cross-
domain, semantic imitation. We use
a two-layer hierarchical policy with
a high-level that outputs the semantic
skill and a low-level that executes the skill. We first describe our semantic skill representation,
followed by the low-level and high-level policy learning. Algorithm 1 summarizes our approach.

4.1 Semantic Skill Representation

A skill is characterized by both its semantics, i.e., whether to open the microwave or turn on the stove,
as well as the details of its low-level execution, e.g., at what angle to approach the microwave or
where to grasp its door handle. Thus, we represent skills via a low-level policy πl(a|s, k, z) which is
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conditioned on the current environment state s, the semantic skill ID k and a latent variable z which
captures the execution details. For example, when “turning on the stove", a are the joint velocities, s
is the robot and environment state, k is the semantic skill ID of this skill, and z captures the robot
hand orientation as it interacts with the stove. A single tuple (k, z) represents a sequence of H steps,
since such temporal abstraction facilitates long-horizon imitation [14]. We train our model as a
conditional variational autoencoder (VAE) [30] over a sequence of actions given a state and semantic
skill ID. Thus, the latent variable z represents all information required to reconstruct a0:H−1 that is
not contained in the skill ID, i.e., information about how to execute the semantic skill.

Figure 2, left depicts the training setup for πl. We randomly sample an H-step state-action sub-
sequence (s0:H , a0:H−1) from DT . An inference network q(z|s, a, k) encodes the sequence into a
latent representation z conditioned on the semantic skill ID k at the first time step. k and z are passed
to πl, which reconstructs the sampled actions. Our training objective is a standard conditional VAE
objective that combines a reconstruction and a prior regularization term:

Lπl
= Eq

[H−1∏
t=0

log πl(at|st, k, z)
]

︸ ︷︷ ︸
reconstruction

−βDKL
(
q(z|s0:H , a0:H−1, k), p(z)

)︸ ︷︷ ︸
prior regularization

. (1)

Here DKL denotes the Kullback-Leibler divergence. We use a simple uniform Gaussian prior p(z)
and a weighting factor β for the regularization objective [31]. The semantic skill ID k is pre-defined,
discrete and labelled, while the latent z is learned and continuous. In this way, our formulation
captures discrete aspects of manipulation skills (open a microwave vs. turn on a stove) while being
able to continuously modulate each semantic skill (e.g., different ways of approaching the microwave).

4.2 Semantic Transfer Accelerated RL

After pre-training the low-level policy πl(a|s, k, z), we learn the high-level policy using the source
domain demonstrations. Concretely, we train a policy πh(k, z|s) that predicts tuples (k, z) which get
executed via πl. Note that unlike prior work [14], our high-level policy outputs both, the semantic
skill k and the low-level execution latent z. It is thus able to choose which semantic skill to execute
and tailor its execution to the target domain. Cross-domain demonstrations solely guide the semantic
skill choice, since the low-level execution might vary between source and target domains. Thus, we
factorize πh into a semantic sub-policy πsem(k|s) and a latent, non-semantic sub-policy πlat(z|s, k):

π(a|s) = πl(a|s, k, z)︸ ︷︷ ︸
skill policy

·πlat(z|s, k) πsem(k|s)︸ ︷︷ ︸
high-level policy πh(k, z|s)

. (2)

Intuitively, this can be thought of as first deciding what skill to execute (e.g., open the microwave),
followed by how to execute it. We pre-train multiple models via supervised learning for training πh:
(1) two semantic skill priors pdemo(k|s) and pTA(k|s), trained to infer the semantic skill annotations
from demonstrations and task-agnostic dataset DT respectively, (2) a task-agnostic prior pTA(z|s, k)
over the latent skill variable z, trained to match the output of the inference network on DT and (3) a
discriminator D(s), trained to classify whether a state is part of the demonstration trajectories. We
summarize all pre-trained components and their supervised training objectives in Appendix, Table 1.

We provide an overview of our semantic imitation architecture and the used regularization terms in
Figure 2, right. We build on the idea of weighted policy regularization with a learned demonstration
support estimator from Pertsch et al. [14] (for a brief summary, see appendix B). We regularize
the high-level semantic policy πsem (blue) towards the demonstration skill distribution pdemo(k|s)
when D(s) classifies the current state as part of the demonstrations (green). For states which D(s)
classifies as outside the demonstration support, we regularize πsem towards the task-agnostic prior
pTA(k|s) (red). We always regularize the non-semantic sub-policy πlat(z|s, k) (yellow) towards the
task-agnostic prior pTA(z|s, k), since execution-specific information cannot be transferred across
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domains. The overall optimization objective for πh is:

Eπh

[
r̃(s, a)−αqDKL

(
πsem(k|s), pdemo(k|s)

)
·D(s)︸ ︷︷ ︸

demonstration regularization

−αpDKL
(
πsem(k|s), pTA(k|s)

)
· (1−D(s))︸ ︷︷ ︸

task-agnostic semantic prior regularization

,

−αlDKL
(
πlat(z|s, k), pTA(z|s, k)

)︸ ︷︷ ︸
task-agnostic execution prior regularization

]
. (3)

αq, αp and αl are either fixed or automatically tuned via dual gradient descent. We augment the
target task reward using the discriminator D(s) to encourage the policy to reach states within the
demonstration support: r̃(s, a) = (1− κ) ·R(s, a)+ κ ·

[
logD(s)− log

(
1−D(s)

)]
. In the setting

with no target environment rewards (pure imitation learning), we rely solely on this discriminator
reward for policy training (Section D). For a summary of the full procedure, see Algorithm 2.

The final challenge is that the discriminator D(s) and the prior pdemo(k|s) are trained on states from
the source domain, but need to be applied to the target domain. Since the domains differ substantially,
we cannot expect the pre-trained networks to generalize. Instead, we need to explicitly bridge the
state domain gap, as described next.

4.3 Cross-Domain State Matching

Source Domain State Target Domain States

Open 
Microwave

Turn On 
Stove

Open 
Cabinet

Figure 3: State matching between source and tar-
get domain. For every source domain state from
the demonstrations, we compute the task-agnostic
semantic skill distribution pTA(k|s) and find the
target domain state with the most similar seman-
tic skill distribution from the task-agnostic dataset
DT . We then relabel the demonstrations with these
matched states from the target domain.

Our goal is to find semantically similar states
between the source and the target environment.
These are states with similar distributions over
likely semantic skills. E.g. if the agent’s hand is
reaching for the handle of a closed microwave,
the probability for the skill “open microwave” is
high, while the probability for other skills, e.g.
“turn on stove” is low. Crucially, this is true
independent of the domain and independent of
whether e.g. a human or robot is executing the
action. Thus, we can use the skill prior distribu-
tions to find semantically similar states.

Following this intuition, we find correspond-
ing states based on the similarity between the
task-agnostic semantic skill prior distributions
pTA(k|s). We illustrate an example in Figure 3:
for a given source demonstration state sS with
high likelihood of opening the microwave, we
find a target domain state sT that has high likeli-
hood of opening the microwave, by minimizing
the symmetric KL divergence between the task-agnostic skill distributions (we omit (·)TA for brevity):

min
sT∈DT

DKL
(
pT (k|sT ), pS(k|sS)

)
+DKL

(
pS(k|sS), pT (k|sT )

)
(4)

In practice, states can be matched incorrectly when the task agnostic dataset chooses one skill with
much higher probability than others. In such states, the divergence in equation 4 is dominated by one
skill, and others are ignored, causing matching errors. Using a state’s temporal context can result in
more robust correspondences by reducing the influence of high likelihood skills in any single state.
We compute an aggregated skill distribution φ(k|s) using a temporal window around the current state:

φ(k|st) =
1

Z(s)

( T∑
i=t

γi+p(k|si) +
t−1∑
j=1

γt−j− p(k|st−j)
)

(5)

Here, γ+, γ− ∈ [0, 1] determine the forward and backward horizon of the aggregate skill distribution.
Z(s) ensures that the aggregate probability distribution sums to one. Instead of pTA in equation 4, we
use φ(k|s). By matching all source-domain demonstrations states to states in the target domain via
φ(k|s), we create a proxy dataset of target state demonstrations, which we use to pre-train the models
pdemo(k|s) and D(s). Once trained, we use them for training the high-level policy via equation 3.

5



SkiLD (Oracle) SPiRLSTAR (Ours) SkillSeq BC+RL

Figure 5: Left: Performance on the simulated semantic imitation tasks. STAR, matches the perfor-
mance of the oracle, SkiLD, which has access to target domain demonstrations and outperforms both
SPiRL, which does not use demonstrations, and SkillSeq, which follows the demonstrated semantic
skills sequentially. Right: Ablations in the kitchen environment, see main text for details.
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Figure 4: We evaluate on three pairs of source (top) and
target (bottom) environments. Left: maze navigation. The
agent needs to follow a sequence of colored rooms (red
path) but the maze layout changes substantially between
source and target domains. Middle: kitchen manipulation.
A robotic arm executes a sequence of skills, but the layout of
the kitchens differs. Right: Same as before, but with human
demonstrations from a real-world kitchen.

Our experiments are designed to an-
swer the following questions: (1) Can
we leverage demonstrations across do-
mains to accelerate learning via se-
mantic imitation? (2) Can we use se-
mantic imitation to teach a robot a
new task from real-world videos of
humans performing the task? (3) Is
our approach robust to missing skills
in the demonstrations? We test se-
mantic imitation across two simulated
maze and kitchen environments, as
well as from real-world videos of hu-
mans to a simulated robot. Our results
show that our approach can accelerate
learning from cross-domain demon-
strations, even with real-to-sim gap.

5.1 Cross-Domain
Imitation in Simulation

We first test our approach STAR in two simulated settings: a maze navigation and a robot kitchen
manipulation task (see Figure 4, left & middle). In the maze navigation task, both domains have
corresponding rooms, indicated by their color in Figure 4. The agent needs to follow a sequence of
semantic skills like “go to red room”, “go to green room” etc. In the kitchen manipulation task, a
Franka arm tackles long-horizon manipulation tasks in a simulated kitchen [3]. We define 7 semantic
skills, like “open the microwave” or “turn on the stove” in the source and target environments. In
both environments we collect demonstrations in the source domain, and task-agnostic datasets in
both the source and target domains using motion planners and human teleoperation respectively. For
further details on action and observation spaces, rewards and data collection, see Sec C.4.

We compare our approach to multile prior skill-based RL approaches with and without demonstration
guidance: SPiRL [16] learns skills fromDT and then trains a high-level policy over skills; BC+RL [7,
8] pre-trains with behavioral cloning and finetunes with SAC [32]; SkillSeq, similar to Xu et al. [18],
sequentially executes the ground truth sequence of semantic skills as demonstrated; SkiLD [14]
is an oracle with access to demonstrations in the target domain and follows them using learned
skills. For more details on the implementation of our approach and all comparisons, see appendix,
Sections C.1 - C.3.

Figure 5, left, compares the performance of all approaches in both tasks. BC+RL is unable to leverage
the cross-domain demonstrations and makes no progress on the task. SPiRL is able to learn the kitchen
manipulation task, but requires many more environment interactions to reach the same performance
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Source Environment

Target Environment

Figure 6: Semantic imitation from human demonstrations. Left: Qualitative state matching results.
The top row displays frames subsampled from a task demonstration in the human kitchen source
domain. The bottom row visualizes the states matched to the source frames via the procedure
described in Section 4.3. The matched states represent corresponding semantic scenes in which the
agent e.g., opens the microwave, turns on the stove or opens the cabinet. Right: Quantitative results
on the kitchen manipulation task from human video demonstrations.

as our approach. SkillSeq succeeds in approximately 20% of the maze episodes and solves on average
3 out of 4 subtasks in the kitchen manipulation environment after fine-tuning. The mixed success is
due to inaccuracies in execution of the skill policies since SkillSeq follows the ground truth sequence
of high-level skills. Our approach, STAR, can use cross-domain demonstrations to match the learning
efficiency of SkiLD (oracle) that has access to target domain demonstrations. This shows that our
approach is effective at extracting useful information from cross-domain demonstrations. During
downstream task training of the high-level semantic and execution policies our approach can fix
both, errors in the high-level skill plan and the low-level skill execution. The ability to jointly adapt
high-level and low-level policies and e.g. react to failures in the low-level policy rather than following
a fixed high-level plan is crucial for good performance on long-horizon tasks. We find that this trend
holds even in the “pure” imitation learning (IL) setting without environment rewards, where we solely
rely on the learned discriminator reward to guide learning (see appendix, Section D for detailed
results). Thus, STAR can be used both, as a demonstration-guided RL algorithm and for cross-domain
imitation learning. Qualitative results can be viewed at https://tinyurl.com/star-rl and in
Figure 8.

To study the different components of our approach, we run ablations in the FrankaKitchen environment
(Fig. 5, right). Removing the discriminator-based weighting for the demonstration regularization
(-D-weight) (Eq. 4) or removing the demonstration regularization altogether (-DemoReg), leads
to poor performance. In contrast, removing the discriminator-based dense reward (-D-reward)
or temporal aggregation during matching (-TempAgg) affects learning speed but has the same
asymptotic performance. Finally, a model without the latent variable z (-z) cannot model the diversity
of skill executions in the data; the resulting skills are too imprecise to learn long-horizon tasks. We
show qualitative examples of the effect of varying matching window sizes [γ−, γ+] on the project
website: https://tinyurl.com/star-rl.

5.2 Imitation from Human Demonstrations

In this section we ask: can our approach be used to leverage human video demonstrations for teaching
new tasks to robots? Imitating human demonstrations presents a larger challenge since it requires
bridging domain differences that span observation spaces (from images in the real-world to low-
dimensional states in simulation), agent morphologies (from a bimanual human to a 7DOF robot
arm), and environments (from the real-world to a simulated robotic environment). To investigate this
question, we collect 20 human video demonstrations in a real-world kitchen, which demonstrate a
task the robotic agent needs to learn in the target simulated domain. Instead of collecting a large,
task-agnostic dataset in the human source domain and manually annotating semantic skill labels, we
demonstrate a more scalable alternative: we use an action recognition model, pre-trained on the EPIC
Kitchens dataset [33], zero-shot to predict semantic skill distributions on the human demonstration
videos. We define a mapping from the 97 verb and 300 noun classes in EPIC Kitchens to the skills
present in the target domain and then use our approach as described in Section 4.2, using the EPIC
skill distributions as the task-agnostic skill prior pTA(k|s). For data collection details, see Section C.4.

We visualize qualitative matching results between the domains in Figure 6, left. We successfully
match frames to the corresponding semantic states in the target domain. In Figure 6, right, we
show that this leads to successful semantic imitation of the human demonstrations. Our approach
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STAR with EPIC Kitchens auto-generated skill distributions is able to reach the same asymptotic
performance as the oracle approach that has access to target domain demonstrations, with only slightly
reduced learning speed. It also outperforms the SkillSeq and SPiRL baselines (for qualitative results
see https://tinyurl.com/star-rl).

To recap: for this experiment we did not collect a large, task-agnostic human dataset and we did not
manually annotate any human videos. Collecting a few human demonstrations in an unseen kitchen
was sufficient to substantially accelerate learning of the target task on the robot in simulation. This
demonstrates one avenue for scaling robot learning by (1) learning from easy-to-collect human video
demonstrations and (2) using pre-trained skill prediction models to bridge the domain gap.

5.3 Robustness to Noisy Demonstrations and Labels

STAR (all Tasks)
SPiRL

STAR (w/o Task 1)
STAR (w/o Task 2)
STAR (w/o Task 3)

SkillSeq (w/o Task 1)
SkillSeq (w/o Task 2)
SkillSeq (w/o Task 3)

Figure 7: Semantic imitation with missing skills in the
demonstrations. Our approach STAR still learns the full
task faster than learning without demonstrations (SPiRL),
while SkillSeq get stuck at the missing skill.

In realistic scenarios agents often need
to cope with noisy demonstration data,
e.g., with partial demonstrations or
faulty labels. Thus, we test STAR’s
ability to handle such noise. First, we
test imitation from partial demonstra-
tions with missing subskills. These
commonly occur when there are large
differences between source and tar-
get domain, e.g., the demonstration
domain might already have a pot on
the stove, and starts with “turn on the
stove”, but in the target domain we
need to first place the pot on the stove.
We test this in the simulated kitchen
tasks by dropping individual subskills
from the demonstrations (“w/o Task i’ in Figure 7). Figure 7 shows that the SkillSeq approach strug-
gles with such noise: it gets stuck whenever the corresponding skill is missing in the demonstration.
In contrast, STAR can leverage demonstrations that are lacking complete subskills and still learn
faster than the no-demonstration baseline SPiRL. When a skill is missing, the STAR agent finds
itself off the demonstration support. Then the objective in equation 3 regularizes the policy towards
the task-agnostic skill prior, encouraging the agent to explore until it finds its way (back) to the
demonstration support. This allows our method to bridge “holes” in the demonstrations. We also
test STAR’s robustness to noisy semantic skill labels, in Section E. We find that STAR is robust to
errors in the annotated skill lengths and to uncertain skill detections. Only frequent, high-confidence
mis-detections of skills can lead to erroneous matches and decreased performance. Both experiments
show that STAR’s guidance with semantic demonstrations is robust to noise in the training and
demonstration data.

6 Conclusion and Limitations

In this work, we presented STAR, an approach for imitation based on semantic skills that can use
cross-domain demonstrations for accelerating RL. STAR is effective on multiple semantic imitation
problems, including using real-world human demonstration videos for learning a robotic kitchen
manipulation task. Our results present a promising way to use large-scale human video datasets like
EPIC Kitchens [33] for behavior learning in robotics. However, our approach assumes a pre-defined
set of semantic skills and semantic skill labels on the training data. We demonstrated how such
assumptions can be reduced via the use of pre-trained skill prediction models. Yet, obtaining such
semantic information from cheaper-to-collect natural language descriptions of the training trajectories
without a pre-defined skill set is an exciting direction for future work. Additionally, strengthening
the robustness to skill mis-labelings, e.g., via a more robust state matching mechanism, can further
improve performance on noisy, real-world datasets.
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