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Abstract— Recent work in offline reinforcement learn-
ing (RL) has demonstrated the effectiveness of formulating
decision-making as return-conditioned supervised learning. No-
tably, the decision transformer (DT) architecture has shown
promise across various domains. However, despite its initial
success, DTs have underperformed on several challenging
datasets in goal-conditioned RL. This limitation stems from the
inefficiency of return conditioning for guiding policy learning,
particularly in unstructured and suboptimal datasets, resulting
in DTs failing to effectively learn temporal compositionality.
Moreover, this problem might be further exacerbated in long-
horizon sparse-reward tasks. To address this challenge, we pro-
pose the Predictive Coding for Decision Transformer (PCDT)
framework, which leverages generalized future conditioning
to enhance DT methods. PCDT utilizes an architecture that
extends the DT framework, conditioned on predictive codings,
enabling decision-making based on both past and future factors,
thereby improving generalization. Through extensive experi-
ments on eight datasets from the AntMaze and FrankaKitchen
environments, our proposed method achieves performance
on par with or surpassing existing popular value-based and
transformer-based methods in offline goal-conditioned RL.
Furthermore, we also evaluate our method on a goal-reaching
task with a physical robot.

I. INTRODUCTION

Reinforcement learning (RL) systems have demonstrated
remarkable success across a wide array of domains, ranging
from games [42] to autonomous driving [52] and robotics
[25], [35]. Yet, the inherent sample inefficiency of online
RL algorithms presents a formidable challenge, demanding
extensive environmental interactions for agent training. This
necessity for voluminous data imposes substantial require-
ments for human supervision, safety checks, and resets [1],
thereby limiting their practical deployment in real-world
scenarios. Consequently, offline RL has recently garnered
increasing attention as an alternative training paradigm,
wherein policies are exclusively trained from static datasets
of reward-labeled demonstrations. Offline RL algorithms
commonly integrate learning objectives that encourage pes-
simism alongside value-based methods [16], [31], [34] to
achieve commendable performance. Despite their promise,
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these methods encounter challenges during training, often
necessitating meticulous hyperparameter tuning and various
implementation tricks to ensure stability and optimal perfor-
mance across various tasks.

In an effort to streamline offline RL training, recent
research has explored transforming offline RL into a se-
quence modeling problem [8], [22], employing the powerful
Transformer architecture [45] for decision-making. At the
core of these transformer-based approaches lies the con-
cept of conditioning policies on a desired outcome. For
instance, Decision Transformer (DT) [8] learns a model to
predict actions based on historical context, encompassing
states and actions, and conditioned on a target future return.
Through conditioning on future returns, DT effectively con-
ducts credit assignment across time horizons, demonstrating
competitive performance across various offline RL tasks.
Importantly, these approaches eliminate the necessity for
temporal-difference learning methods, such as fitted value or
action-value functions. This results in a simpler algorithmic
framework that relies on supervised learning, facilitating the
advancement of offline RL by leveraging existing progress
in supervised learning.

Despite their potential, relying on reward-labeled datasets
to train return-conditioned policies makes scaling DT chal-
lenging for large-scale training. Indeed, task-specific reward
functions often require careful engineering for design [37],
[39], making them costly to access in practice. Additionally,
in sparse reward environments where rewards are often
constant (i.e., success or failure), DT struggles to learn
tasks, especially in long-horizon tasks [10]. Furthermore,
DT also faces difficulty in unstructured datasets that require
the agent to learn temporal compositionality (i.e., stitching)
by combining sub-trajectories of different demonstrations
[2], [29]. For instance, in the AntMaze maze navigation
environment, where an 8-DoF quadruped robot is required
to reach the target, DT typically performs worse than other
value-based offline RL methods such as IQL [27].

In this study, we delve into the offline goal-conditioned RL
setting [12], [19], [14]. This setting allows the agent to solve
multiple tasks by learning from reward-free data. We adopt
the DT as an expressive policy network to facilitate goal-
conditioned RL. However, the aforementioned challenges of
DT in this setting still remain. To tackle these challenges,
we introduce a framework that enables DT to condition on
predictive codings for action predictions instead of returns.
Specifically, we first learn a goal-conditioned representation
that encodes the target goal, past, and future trajectory infor-
mation using a bidirectional transformer. Next, we employ a
causal transformer that takes as input the sequence of state-



action pairs and conditions on the predictive codings from
the previous stage to produce actions. The predictive codings
serve as behavioral guidance toward the desired goal during
policy learning. Our approach bypasses the requirement of
return sequences, allowing the use of easy-to-collect offline
data devoid of rewards for greater efficiency. By conditioning
on these predictive codings, our transformer-based policy
is equipped with the ability to reason about the future,
providing crucial guidance for learning in unstructured and
suboptimal datasets, leading to competitive performance
across goal-conditioning benchmarks, particularly for long-
horizon tasks. To summarize, our main contributions include:

1) Introducing Predictive Coding for Decision Trans-
former (PCDT), a framework enabling transformer-
based agents to learn from a large set of diverse,
unstructured, and suboptimal demonstrations by con-
ditioning on predictive codings, thereby bypassing the
requirement of rewards from the dataset.

2) Proposing an effective method to learn predictive
codings from datasets without requiring rewards and
actions. Our results demonstrate that predictive coding
effectively guides transformer-based agents to solve
goal-conditioned tasks without the need for returns and
enables stitching capability for DT.

3) Evaluating PCDT on eight datasets from two com-
plex long-horizon goal-conditioning environments,
AntMaze and FrankaKitchen, and validating it on the
physical 7-DOF Sawyer robot. The code can be found
at https://github.com/tunglm2203/pcdt.

II. RELATED WORK

Offline reinforcement learning (RL) aims to learn effective
policies from pre-collected datasets. Previous works have
addressed the distribution shift problem [16] of offline RL
through various strategies such as constraining the policy
action space [16], [28], incorporating value pessimism [31],
[34], or leveraging dynamics models [26], [53]. In this
paper, we focus on offline RL methods based on conditional
behavior cloning, avoiding the need for value estimations.
Typically, RvS [14] has investigated different conditional
variables for MLP policy and establishes strong baseline
for conditional behavior cloning. Many prior works are
constructed in different styles of RvS, where the conditional
variables can be the reward/return [30], [43], [8], the target
goal [36], [14], [19], other task information [9], [20], or
trajectory-level aggregates [17], [47].

Recent works [8], [22] have explored another approach to
perform conditional behavior cloning via sequence modeling
by leveraging the Transformer architecture [45], which has
achieved widespread success in various machine learning
fields, including natural language processing (NLP) [41],
[11], speech [44], [32], and computer vision (CV) [13],
[6]. Specifically, Decision Transformer (DT) [8] utilizes a
causal transformer architecture for the policy network to
perform return-conditioned behavioral cloning, where instead
of taking a single state as input, it takes a sequence of states,
actions, and returns. Similarly, a model-based offline RL

method is introduced in [22], namely Trajectory Transformer
(TT), which also leverages the Transformer architecture to
formulate the forward dynamics model and uses beam search
for planning. Trajectory Autoencoding Planner [23] further
enhances TT to achieve greater efficiency and scalability in
high-dimensional action spaces.

Building upon the achievements of DT, numerous studies
have expanded its application to various contexts, such as
online DT for online RL [54], Q-learning DT for offline
RL [50], or Prompt DT for few-shot learning [49]. In the
view of RvS, these works adhere to the reward conditioning
style. However, recent works [2], [4], [10] have explored the
limitations of using reward as a conditional variable. Notably,
DT has been identified as lacking in stitching ability [2],
a crucial property for offline RL algorithms to succeed on
unstructured and suboptimal datasets, which often involve
combining sub-trajectories from different demonstrations.
Waypoint Transformer (WT) [2] addressed this issue by
conditioning the DT on predicted K-step ahead goals instead
of return-to-go, with these intermediate goals serving as
future guidance for policy in goal-conditioned RL. In contrast
to WT, we propose conditioning on predictive coding, which
offers a more generalized and effective encoding of future
information for guiding policy learning.

Masked autoencoding (MAE) has been demonstrated as an
effective approach for acquiring representations in both NLP
[11], [5] and CV [21], [3]. In MAE, the input sequence un-
dergoes random masking before being processed by a trans-
former encoder, resulting in a compressed representation that
is subsequently fed into the transformer decoder to recon-
struct the input. This straightforward yet effective approach
has sparked recent advancements in RL [7], [46], [33]. By
leveraging masked autoencoder trained on randomly masked
sequences to reconstruct the original data, these works have
developed versatile models capable of performing a range of
decision-making tasks, such as forward dynamics, inverse
dynamics, behavior cloning, and state representations, by
simply changing the masking pattern at inference time. In
contrast to these approaches, we leverage the masked au-
toencoder to compress both the state-only trajectory and the
desired goal, using the obtained compressed representation
to guide policy learning. While our pretraining scheme draws
inspiration from MaskDP [33] and MTM [46], our focus is
on addressing the challenges of DT in the goal-conditioned
RL setting, particularly its stitching ability, rather than solely
concentrating on representation learning.

III. PRELIMINARIES
A. Goal-conditioned Reinforcment Learning

A reinforcement learning (RL) environment is typically
modeled by a Markov decision process (MDP), which can
be described as a tuple of M = (S,A, R, P, γ). The tuple
consists of states s ∈ S , actions a ∈ A, a reward function
r = R(s, a), transition dynamics distribution P (s′|s, a), and
a discount factor γ ∈ [0, 1). A trajectory is composed of a
sequence of state-action pairs: τ = {(st, at)}Ht=1, where H is
the horizon, and st, at refer to the state and action at timestep



t, respectively. Additionally, we define τi:j = {(st, at)}jt=i

as a sub-trajectory of τ . An RL agent takes actions based on
a policy π(a|s). The objective is to maximize the expected
return over trajectories Eπ

[∑H
t=1 γ

t−1R(st, at)
]
.

To extend RL to multiple tasks, a goal-conditioned for-
mulation can be used [24], where the original MDP M is
augmented with the goal space G. We assume that the goal
space G is the same as the state space (i.e., G ≡ S). Our
goal is to learn an optimal goal-conditioned policy π(a|s, g)
that maximizes Eg∼p(g),π

[∑H
t=1 γ

t−1R(st, at, g)
]
, where

the goal g is sampled from a goal distribution p(g). In this
setting, a sparse goal-conditioned reward function is often
used, where R(s, a, g) = 1 when s = g, and 0 otherwise.

B. Offline RL via Supervised Sequence Modeling

In offline RL, instead of obtaining data by interacting with
the environment, we only have access to a fixed, limited
dataset collected by unknown policies, such as human experts
or baseline hand-engineered policies. This dataset contains a
set of N trajectories, D = {τ i}Ni=1, associated with rewards.
We follow prior work that leverages sequence modeling
for offline reinforcement learning [8]. Specifically, Decision
Transformer (DT) [8] considers the following trajectory
representation as input:

τ̂ = (R̂1, s1, a1, . . . , R̂H , sH , aH),

where, R̂t =
∑H

t′=t rt′ represents the return-to-go, defined
as the sum of future rewards from timestep t. Modality-
specific encoders are employed to transform data (i.e., state,
action, and return-to-go) from the raw modality space to a
common representation space, to which timestep embeddings
are additionally added. After tokenization, τ̂ is input into a
GPT-based transformer [40], serving as an expressive policy
function approximator πθ to predict the next actions. The
policy is trained to maximize the likelihood of actions within
the dataset:

LDT = Eτ̂∼D

[
−
∑
t

log πθ(at|τ̂t−k+1:t−1, st, R̂t)

]
(1)

At training time, return-to-go sequences are computed from
offline trajectories. During inference, this quantity guides
the policy in generating actions to achieve the desired out-
come. However, using return-to-go as a conditional variable
presents certain disadvantages. First, at test time, the full
trajectory is unknown, and its length may vary, making it dif-
ficult to calculate the sum. Consequently, users must specify
the target return heuristically. Moreover, the performance of
DT is shown to be sensitive to this value [10], [51]. Second,
in sparse-reward tasks where rewards are almost constant
(e.g., rt = 0) until reaching the final target, return-to-go
values remain static. This challenge impedes DT’s ability to
learn tasks effectively, especially in long-horizon tasks [10].
Third, using a single scalar value as input may fail to capture
sufficient future information. These limitations motivate the
design of new, effective transformer-based algorithms.
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Fig. 1: The overview of the PCDT model. PCDT takes as
input a length-k sub-trajectory associated with predictive
latent codings to make decisions. During training, predictive
codings are extracted from states within the same sub-
trajectory. During inference, PCDT generates the next action
in an autoregressive manner, akin to DT [8].

IV. PROPOSED APPROACH

To eliminate the reliance on reward information, inspired
by future-conditioned RL [17], [14], we introduce Predictive
Coding for Decision Transformer (PCDT), a framework that
enables policy learning guided by future information.

A. Policy Learning based on Predictive Coding

The overview of PCDT is presented in Fig. 1. Let fE
ϕ (·)

be a trajectory encoder, and πθ(·) be a policy network. In
this framework, our objective is to condition the policy on
predictive coding z instead of the return, resulting in an
alternative representation of the trajectory input:

τ̄ = (z1, s1, a1, . . . , zH , sH , aH),

where, the latent variables are obtained by zt−k+1:t =
fE
ϕ (st−k+1:t, g), as depicted in Fig. 2. These latent variables
zi are expected to capture not only the historical context
and task information (i.e., the desired goal) but also to be
predictive, enabling reasoning over future states toward the
desired goal. During inference, given past states and actions,
PCDT utilizes the learned policy πθ along with the learned
trajectory encoder fE

ϕ to autoregressively produce the action:

at ← πθ(·|τ̄t−k+1:t−1, st, zt).

Note that, both the policy and trajectory encoder take the
same view of the k-length input sequence, i.e., from timestep
t− k + 1 to t.

Similar to DT, we leverage the GPT-based Transformer
[40] to parameterize the policy network πθ. However, we opt
for sinusoidal positional encoding over timestep encoding to
mitigate overfitting [7]. Given sub-trajectories sampled from
the dataset D, we first compute the corresponding latent
variables zi, then the policy network is trained by minimizing
the behavioral cloning objective as follows:

L(θ) = Eτ̄∼D

[
−
∑
t

log πθ(at|τ̄t−k+1:t−1, st, ⌊zt⌋)

]
(2)

where, ⌊·⌋ denotes the stop-gradient operator. Note that dur-
ing policy training, the gradient only backpropagates through
the policy network. The trajectory encoder is learned by a
separate learning objective, which we describe in the next
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Fig. 2: We input the sequence of state-dummy token pairs
concatenated with the target goal into the trajectory encoder.
Within this sequence, states are randomly masked. The
trajectory decoder receives stacked inputs of latent codes and
masked tokens to reconstruct the input states. Additionally, in
addition to reconstruction, we leverage the same latent codes
for predicting future states, aiming to enhance predictiveness.

section. Utilizing predictive codings as conditioning offers
several advantages. Firstly, it avoids the need for reward
signals during learning, thereby enabling expansive, large-
scale training opportunities. Secondly, it mitigates the issue
of inconsistent behaviors stemming from return-conditioned
behavioral cloning during testing, where behaviors often
deviate significantly from the desired target [10], [51].

B. Predictive Coding Learning

In order to condense the trajectory into a compact latent
space, we utilize masked autoencoding with both the en-
coder and decoder parameterized by a series of bidirectional
transformers and trained via masked prediction, similar to
previous works [7], [33], [46]. An overview of the trajectory
autoencoder is shown in Fig. 2. We use fE

ϕ and fD
ϕ to

represent the trajectory encoder and decoder, respectively.
Specifically, the trajectory encoder takes as input the

concatenation of the target goal g, the dummy tokens E1:k,
and the length-k sequence of states st−k+1:t. The dummy
tokens are shared across input sequences. During training, the
states are randomly masked to improve generalization, while
the goal and dummy tokens remain unmasked, as illustrated
in Fig. 2. The goal g is uniformly sampled from reachable
states st:H within the same trajectory. These input tokens are
then encoded by modality-specific encoders, parameterized
by a linear layer, with sinusoidal positional embeddings
added. Subsequently, the embeddings are processed by the
bidirectional transformer to yield latent codes z. It’s worth
noting that only unmasked tokens are provided to the trans-
former, mirroring the approach of MAE-based methods [21],
[7], [33], [46]. To reconstruct the input states, the trajectory
decoder takes as input the latent code tokens corresponding
to the position of dummy tokens, the remaining tokens
are substituted by masked tokens. To encourage predictive
coding, in addition to reconstructing input states, future state
prediction is concurrently performed from the latent codes.

Algorithm 1 PCDT training algorithm.

1: Input: Demonstration D = {τi}Ni=1, length of historical
states k, length of future states L, and learning rate α.

2: Initialize: trajectory autoencoder fϕ and policy πθ.
3: // Training the trajectory autoencoder
4: while not converged do
5: Randomly sample trajectories, τ ∼ D
6: Sample timestep for each trajectory, t ∼ [1, H], obtain

st−k+1:t+L, and sample goal, g ∼ st:H
7: Calculate objective function L(ϕ) as in Eq. (3)
8: Update autoencoder parameters: ϕ← ϕ+ α∇ϕL(ϕ)
9: end while

10: // Training the policy
11: while not converged do
12: Randomly sample trajectories, τ ∼ D
13: Sample timestep for each trajectory, t ∼ [1, H], obtain

st−k+1:t and at−k+1:t, and sample goal, g ∼ st:H
14: Compute predictive codings:

zt−k+1:t = fE
ϕ (st−k+1:t, g)

15: Calculate objective function L(θ) as in Eq. (2)
16: Update policy parameters: θ ← θ + α∇θL(θ)
17: end while

The encoder and decoder are jointly trained by minimizing
the following learning objective:

L(ϕ) = Es,g∼D

[∑
t

(fϕ(st−k+1:t, g)− st−k+1:t+L)
2

]
(3)

where, fϕ represents both the encoder and decoder. Also,
we consider dummy tokens E1:k as part of the encoder,
thus omitting them from the input of fϕ. The ground truth
states include k historical states and L future states, i.e.,
from timestep t − k + 1 to t + L. During policy learning
and inference, only the trajectory encoder is used, applied
to the unmasked observed states and the target goal to
acquire predictive codings. With this design, we can learn the
predictive codes to perform goal-conditioned future predic-
tion. Consequently, these predictive codes serve as guidance
toward the desired goal while being aware of future behaviors
during policy learning. Besides, we only leverage states
from the dataset for training the predictive coding, enabling
us to utilize a potentially large amount of action-free data
[48], [18]. We leave this for future work. The procedure for
training trajectory autoencoder and policy is summarized in
Algorithm 1.

V. EXPERIMENTS

A. Experimental Setup

In this section, we evaluate PCDT on goal-conditioning
benchmarks, specifically AntMaze, FrankaKitchen from
D4RL [15] and a Rethinking Sawyer robot performing a
goal-reaching task, as illustrated in Fig. 3. These envi-
ronments pose a challenge for offline RL methods due
to the scarcity of optimal trajectories and serve as rigor-
ous benchmarks for evaluating a model’s stitching ability



TABLE I: Average normalized scores of PCDT against other baselines on AntMaze and FrankaKitchen from D4RL
benchmark [15]. Following [27], we bold all scores within 5 percent of the maximum per dataset (≥ 0.95 · max).

Dataset CQL IQL GC-IQL BC GCBC DTR DTG WT PCDT (Ours)
antmaze-umaze 74.0 87.5± 2.6 - 54.6 65.6± 9.9 53.6± 7.3 61.2± 5.8 64.9± 6.1 70.8± 3.9

antmaze-umaze-diverse 84.0 62.2± 13.8 - 45.6 60.9± 11.2 42.2± 5.4 66.0± 5.3 71.5± 7.6 71.5± 3.0

antmaze-medium-play 61.2 71.2± 7.3 70.9± 11.2 0.0 71.9± 16.2 0.0± 0.0 56.0± 9.4 62.8± 5.8 75.2± 5.7

antmaze-medium-diverse 53.7 70.0± 10.9 63.5± 14.6 0.0 67.3± 10.1 0.0± 0.0 59.5± 7.6 66.7± 3.9 83.2± 4.8

antmaze-large-play 15.8 39.6± 5.8 56.5± 14.4 0.0 23.1± 15.6 0.0± 0.0 22.0± 7.5 72.5± 2.8 74.8± 6.2

antmaze-large-diverse 14.9 47.5± 9.5 50.7± 18.8 0.0 20.2± 9.1 0.0± 0.0 21.0± 6.6 72.0± 3.4 73.6± 5.7

antmaze average 50.6 63.0 60.4 16.7 51.5 16.0 47.6 68.4 74.9

kitchen-partial 49.8 46.3 39.2± 13.5 38.0 38.5± 11.8 31.4± 19.5 65.2± 1.9 63.8± 3.5 74.5± 5.0

kitchen-mixed 51.0 51.0 51.3± 12.8 51.5 46.7± 20.1 25.8± 5.0 55.4± 3.8 70.9± 2.1 75.6± 4.7

kitchen average 50.4 48.7 45.3 44.8 42.6 28.6 60.3 67.4 75.1

average 50.6 59.4 54.6 23.7 49.3 19.1 50.8 68.1 74.9

[15]. AntMaze comprises long-horizon navigation tasks with
sparse rewards, involving the control of an 8-DoF Ant robot
to navigate from its initial position to a specified goal
location. Meanwhile, FrankaKitchen presents long-horizon
manipulation tasks, where the objective is to complete four
subtasks (e.g., closing the microwave or sliding open the
cabinet) using a 9-DoF Franka robot. We train our algorithms
on diverse datasets provided by these environments. Each
dataset comprises suboptimal and undirected data, where the
desired targets in demonstrations are unrelated to the evalu-
ation tasks. Additionally, we also validate the effectiveness
of our method on the real-world environment by conducting
goal-reaching tasks with a 7-DOF Sawyer robot arm. By this,
we provide concrete evidence of its viability and robustness
in navigating real environments.

For the trajectory autoencoder, we employ a two-layer
bidirectional transformer for the encoder and a one-layer
bidirectional transformer for the decoder, each with four self-
attention heads. The length of future states (L) in training the
trajectory autoencoder is set to 100 for AntMaze and 40 for
FrankaKitchen. For PCDT, we utilize a causal transformer
with the number of layers searched within {3, 4, 5}, each
with one self-attention head. All transformer use hidden size
of 256. Both training phases use the Adam optimizer with a
learning rate of 1e− 4, a batch size of 1024, and 80 epochs.
The input sequence length is set to 10 for AntMaze and
5 for FrankaKitchen. Following [27], we average over 100
episodes for AntMaze and 50 episodes for FrankaKitchen for
each evaluation run. Reported scores include the mean and
standard deviation over five seeds for each experiment.

B. Comparison with Previous Approaches

We compare the performance of PCDT with both value-
based offline RL and behavior cloning methods. Among
the value-based techniques, we include CQL [31], IQL
[27], and its goal-conditioned variant, GC-IQL [38]. For the
MLP-based behavior cloning approach, we evaluate BC and
its goal-conditioned counterpart, GCBC [12], [14], both of
which utilize MLPs to parameterize the policy network. For
transformer-based policies, we consider DTR [8], which con-
ditions on return-to-go, DTG, which conditions on the target
goal, and WT [2], similar to our approach but conditioned

Fig. 3: We evaluate the performance of PCDT on three
sparse-reward goal-conditioned tasks. From left to right:
AntMaze and FrankaKitchen, taken from the D4RL bench-
mark [15], and a physical Rethink Sawyer robot performing
goal-reaching task.

Fig. 4: A plot illustrating the average performance of each
algorithm listed in Table I. The bars are color-coded based
on a simplified algorithm categorization.

on predicted K-step ahead goals. For all methods except
DTG, we use reported results from [2] and [38]. For DTG,
we modify DT by replacing return-to-go with the target goal
using the official implementation provided by [8].

Table I and Fig. 4 present the results across eight offline
datasets. When compared to value-based methods, PCDT
outperforms six out of eight datasets. Across all datasets,
PCDT achieves a score of 74.9, representing a substantial
improvement over the top-performing value-based method,
IQL (59.4), with a relative percentage increase of 26.1%. No-
tably, in the most challenging datasets requiring stitching like
AntMaze Large, our method exhibits remarkable enhance-
ments, with relative improvements of 88.9% (“play”) and



Fig. 5: The effect of different lengths of future states (L) dur-
ing the learning of predictive coding on agent performance.

54.9% (“diverse”) over IQL. Similarly, in the FrankaKitchen
Mixed and Partial, we observe substantial enhancements of
60.9% and 48.2%, respectively. These results demonstrate the
efficacy of our predictive codings in generalizing behaviors
from suboptimal trajectories and effectively addressing the
stitching problem encountered by DT.

For the behavior cloning baselines, we find that our
method performs on par with or better than all the previous
methods. In particular, PCDT exhibits significant improve-
ments over DTR by a factor of 3.x in average performance.
This notable improvement underscores the efficacy of lever-
aging predictive codings, which offer a stronger signal for
policy learning compared to the return sequence. More-
over, by naively conditioning on target goals, DTG demon-
strates some learning capability across AntMaze datasets,
which again emphasizes the limitations of using rewards
as conditional variables in sparse-reward goal-conditioned
RL. Despite its efforts, the performance of DTG remains
considerably distant from PCDT, with ours showcasing a
substantial 47.4% improvement in average performance over
DTG. In comparison with the prior state-of-the-art, our
method improves over WT by 9.5% and 11.4% on AntMaze
and FrankaKitchen, respectively. These results underscore
the ability of predictive codings to encode more compre-
hensive future information compared to intermediate future
goals, thereby more effectively guiding the policy toward the
desired target.

C. Ablation Studies

Effectiveness of Future State Prediction. We first inves-
tigate how future prediction impacts the quality of learned
predictive coding. For this analysis, we consider antmaze-
large-play-v2 and kitchen-mixed-v0, two tasks crucial for
assessing the stitching ability of offline RL algorithms. To
elucidate the influence of predictiveness on policy learning,
we vary the L-length future states when training trajectory
encoders (see Section IV-B) and evaluate the agent’s per-
formance based on the learned predictive codings. Here,
L = 0 indicates that the trajectory autoencoder solely
reconstructs the input sequence without considering future
prediction. The agent’s normalized score is plotted against
L in Fig. 5. In AntMaze Large, an optimal L is around 100,
while in FrankaKitchen, L ≥ 30 yields good performance.
Importantly, when L is too small, e.g., ≤ 10 in both cases, the
agent’s performance drastically drops compared to other L
values; the score decreases by a factor of 2.1× and 16.3× in

TABLE II: We ablate transformer configurations during
policy learning, including dropout probability (pdrop) and
number of transformer layers (N ). The highest score is
highlighted in bold and used in the main results.

pdrop antmaze-medium-diverse antmaze-large-play kitchen-mixed

0.00 74.0± 8.8 68.0± 10 72.0± 2.3
0.05 73.2± 5.2 70.7± 6.4 75.6± 4.7
0.10 83.2± 4.8 74.8± 6.2 70.0± 5.2
0.15 80.4± 7.1 62.5± 3.4 71.0± 2.9
0.20 76.0± 5.2 59.8± 4.9 69.8± 2.2
0.25 70.0± 5.2 48.9± 8.4 66.0± 7.1

N antmaze-medium-diverse antmaze-large-play kitchen-mixed

1 70.8± 3.9 24.0± 1.8 52.8± 7.9
2 74.0± 5.8 49.5± 5.7 62.3± 3.9
3 83.2± 4.8 61.5± 6.3 52.3± 6.0
4 72.4± 6.5 74.8± 6.2 70.1± 5.1
5 72.0± 3.1 63.3± 8.1 75.6± 4.7
6 75.2± 4.3 58.5± 8.4 70.3± 4.9
7 64.0± 5.8 58.0± 3.9 73.8± 1.4

FrankaKitchen and AntMaze Large, respectively, compared
to the optimal L. This analysis reveals that incorporating
future information through predictive coding can markedly
enhance task-solving capabilities, empowering the agent to
anticipate future behaviors.

Capacity and Regularization. Following the work in
[14], we balance between capacity and regularization to
maximize policy performance. We explore transformer
configurations during policy learning, specifically, abla-
tion of the dropout probability pdrop and the number of
transformer layers N . For this investigation, we consider
the antmaze-medium-diverse-v2, antmaze-large-play-v2, and
kitchen-mixed-v0 datasets. Based on the results in Table
II, we observe that sensitivity to the various ablated hy-
perparameters is relatively low in terms of performance
on antmaze-medium-diverse-v2 and kitchen-mixed-v0, with a
decrease by a factor of 1.1-1.4 compared to the best hyperpa-
rameter. However, in antmaze-large-play-v2, we observe that
choosing the appropriate number of layers matters for the
agent’s performance, where N = 1 decreases performance
by a factor of 3.x compared to N = 4.

Qualitative Result. To gain insights into the agent’s
behavior under the guidance of predictive codings, we qual-
itatively evaluate the performance across rollouts of trained
policies in the antmaze-large-play-v2 dataset. Specifically,
we examined the performance of three transformer-based
agents: DTR, DTG, and PCDT. The visualization of the ant’s
location across 100 trajectories for each agent is presented
in Fig. 6. Our observations indicate that DTR (Fig. 6a),
guided solely by return-to-go, struggles to consistently reach
the desired target. While DTG (Fig. 6b), guided by target
goals, occasionally reaches the target, the ant’s behaviors
exhibit inconsistencies, often veering off course in the middle
of the map. In contrast, PCDT (Fig. 6c) demonstrates a
higher level of ability and consistency in reaching the goal
location. Additionally, it sometimes reaches the target via
alternative routes (e.g., bottom left of Fig. 6c), indicating
that our method does not solely overfit to the dataset but
also has the capability of generalization. As a result, PCDT



(a) (b)

(c) (d)

Fig. 6: Visualization of 100 trajectories from the policies
trained on antmaze-large-play-v2: (a) DTR policy, (b) DTG

policy, and (c) PCDT policy; (d) the distance from the ant’s
location to the target goal position at each timestep.

Fig. 7: The visualization of the Sawyer Reaching dataset
shows blue dots for start positions and red dots for end
positions of trajectories. Orange lines indicate “completed”
trajectories, while green lines represent “play” trajectories.
A blue square marks the initial position, and a black star
marks the target region during evaluation.

achieves a significantly higher score than DTG by about 3
times and takes fewer steps to complete the task (Fig. 6d).

D. Sawyer Reaching Task

We evaluate the stitching ability of PCDT on a 7-DoF
Sawyer arm (Fig. 3) for a goal-reaching task, where the
objective is to reach an arbitrary goal. The state space is
represented by a 6-D vector, with the first 3 dimensions
representing the x, y, z position of the end effector (EE), and
the last 3 dimensions representing the x, y, z velocity of the
EE. The agent controls the arm by commanding positional
translations (∆x,∆y,∆z) of the EE. In each episode, the
desired goal is randomly sampled from a specific region,
similar to AntMaze. We use a sparse reward function, where
R = 1 when the distance between the current EE’s position
and the goal is less than 5cm, and R = 0 otherwise. The
episode’s length is set to 20. For the offline dataset, we follow
a similar data collection method used in AntMaze Large.

Fig. 8: Compasison between DTR, DTG, and PCDT in terms
of the success rate and the distance to the target goal.

Specifically, we collect 110 “play” trajectories starting from
hand-picked initial positions and reaching specific hand-
picked goals, along with 10 “completed” trajectories starting
from the robot’s initial position and ending at the task’s
goal position, resulting in a total of 120 trajectories. During
data collection, a scripted policy is used to generate actions,
with random noise added to the initial position, specified
goals, and generated actions to encourage diversity. It’s worth
noting that the goals during collection may differ from those
during evaluation. A visualization of a portion of the col-
lected dataset is shown in Fig. 7. For this experiment, we use
the same hyperparameters as in FrankaKitchen, except we set
k = 3 and L = 8. We compare the performance of DTR,
DTG, and PCDT agents. The results are presented in Fig. 8.
Despite being a simple task, DTR fails to complete the task
when guided by return. In comparison, our method achieves
a higher success rate and a smaller final distance to the
goal than DTG. This indicates that PCDT has the potential
to enhance performance in tasks involving physical robots
compared to DTs, particularly in dealing with unstructured
and suboptimal datasets commonly encountered in real-world
scenarios.

VI. CONCLUSIONS

In this work, we introduce Predictive Coding for Decision
Transformer (PCDT), a method for offline goal-conditioned
RL through supervised sequence modeling. By encoding
future states into predictive codings, our transformer-based
policy can reason future behaviors to reach desired targets.
Furthermore, our framework removes the need for rewards
from the dataset, enabling training on potentially large un-
labeled datasets. Empirical results demonstrate the effective-
ness of PCDT compared to various competitive baselines.
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