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Abstract

Concept vectors aim to enhance model interpretability by linking internal represen-
tations with human-understandable semantics, but their utility is often limited by
noisy and inconsistent activations. In this work, we uncover a clear pattern within
the noise, which we term the SuperActivator Mechanism: while in-concept and
out-of-concept activations overlap considerably, the token activations in the extreme
high tail of the in-concept distribution provide a clear, reliable signal of concept
presence. We demonstrate the generality of this mechanism by showing that Su-
perActivator tokens consistently outperform standard vector-based and prompting
concept detection approaches—achieving up to a 14% higher F1 score—across
diverse image and text modalities, model architectures, model layers, and concept
extraction techniques. Finally, we leverage these SuperActivator tokens to improve
feature attributions for concepts. 1

1 Introduction

Modern transformer-based models, while increasingly powerful and ubiquitous [1], remain opaque
and can behave in ways that are unpredictable or harmful [2, 3]. This opacity hinders our ability
to identify and debug undesirable representations—such as spurious correlations [4], biases [5], or
fragile reasoning [6]—or to intervene when models produce undesirable outputs.

Concept vectors [7, 8], or semantically meaningful directions in a model’s latent space, provide a
lightweight tool for examining and influencing internal representations. They have been used to
uncover hidden model failures [9, 10], and to steer model behavior away from hallucinations [11,
12], unsafe responses [13, 14], and toxic language [15, 16]. Unsupervised concept extraction
is especially powerful, as it can reveal previously unknown knowledge embedded within model
representations [17], while reducing reliance on costly labeled data.

To analyze the presence of concepts within a sample, we typically rely on their activation scores—a
measure of alignment between an input token’s embedding and a concept vector. However, these
scores are often noisy and unreliable, and as a result misrepresent true concept presence. Prior works
have shown that concept vectors frequently activate on unintended semantics [18, 19], generate
overlapping signals for correlated concepts [20, 18], and exhibit unstable activation patterns across
different model layers [21]. Figure 1 illustrates this ambiguity on an image of a dog reflected in a car
mirror: the activation heatmaps for both the Animal and Person concepts appear to highlight the same

1Code released at https://github.com/BrachioLab/SuperActivators
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Figure 1: The SuperActivator Mechanism concentrates the most informative concept signals
into a sparse set of in-concept activations. These signals reliably distinguish true concept occur-
rences even when concept activation heatmaps spuriously highlight absent concepts or fail to fully
capture present ones. This example shows LLaMA-3.2-11B-Vision-Instruct linear separator concept
activations on a COCO image; examples for all image and text datasets are provided in Appendix A.

region, even though only the former is present, and many tokens over the car region do not strongly
activate for the Car concept. Such noisy activation signals makes it difficult to reliably detect or
localize concepts.

To understand these inconsistencies more broadly, we analyze activation distributions for in-concept
and out-of-concept tokens across multiple datasets. While the two distributions overlap considerably,
we observe clear separation in the extreme high tail of the in-concept distribution. Notably, these
high-activation tokens are well-distributed across in-concept samples, enabling them to reliably
distinguish concept presence even when token activation maps are misleading or ambiguous. We
term this behavior the SuperActivator Mechanism and show that it is a general property of how
transformers encode semantics. Our analysis demonstrates that this mechanism more accurately
detects concepts than standard concept-vector and prompting methods across various image and text
modalities, model architectures, model layers, and concept extraction techniques. We also show that
leveraging these localized signals leads to improved feature attributions for concepts.

Our key contributions are summarized as follows:

• SuperActivator Mechanism: By analyzing concept activation distributions across datasets, we
discover that only the most highly activated tokens in the tail of the in-concept distribution are
reliable indicators of concept presence. Using just a small set of these extreme activations, our
method consistently outperforms standard vector- and prompt-based concept detection methods,
improving F1 scores by up to 14% absolute performance.

• Broad Generality: We show the SuperActivator Mechanism is a fundamental property of how
transformers encode semantics, consistent across text and image modalities, model architectures,
model layers, and both supervised and unsupervised concept extraction techniques.

• Improved Concept Attributions: Localizing concept signals with the SuperActivator Mecha-
nism yields attribution maps with stronger alignment to ground-truth annotations and superior
insertion/deletion performance relative to global concept-vector baselines.

2 Concept Vector Preliminaries

This section defines basic notation for representing inputs, concept vectors, and activation scores;
more detailed formal definitions are provided in Appendix D.

Let f be a trained transformer model that processes an input sample x ∈ X (an image or a text
sequence) through its layers. From any given layer of f , we can extract token-level embeddings
(ztok

1 (x), . . . , ztok
n(x)(x)) ∈ (Rd)n(x) and a sample-level embedding zcls(x) ∈ Rd. The number of
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Comment (Labeled Joy):

Someone shared a story about a random act of kindness they experienced during
their daily commute. I love reading positive stories!! Happy for you, OP!

Joy Activations:

Someone shared a story about a random act of kindness they experienced during
their daily commute. I love reading positive stories!! Happy for you, OP!
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Figure 2: Transformers express concept activations inconsistently, making it difficult to distinguish in-
concept tokens from out-of-concept tokens. In this test-set example from the Augmented GoEmotions
dataset, the ground-truth span for Joy is highlighted, with token-level activations for LLaMA-
Vision-Instruct-11B linear separator concepts shown both as a heatmap over the text (left) and as
distributions (right). While a few in-concept tokens exhibit extremely high activations, many remain
indistinguishable from out-of-concept token activations within the sample and across Dout

c .

tokens, n(x), is sample dependent since it is influenced by text lengths and image sizes. For any
semantic concept c, we associate a concept vector vc ∈ Rd, which represents a direction in the
embedding space (see Section 4.1 for concept extraction methods). The concept activation score of
an embedding z with respect to concept c is defined as the dot product of the embedding with the
concept vector, sc(z) = ⟨z, vc⟩, where positive scores indicate alignment with the concept.

We are interested in characterizing, for each concept c, the distribution of activation scores across
many samples. Let Din

c and Dout
c denote the population-level distributions of activation scores for in-

concept and out-of-concept tokens, respectively. Empirically, we estimate them using finite datasets
Din

c and Dout
c constructed from observed activations. Formally, let Z denote the set of all tokens

across samples and Sc = { sc(z) : z ∈ Z } their corresponding activation scores. If Z in
c ⊆ Z are the

tokens labeled concept-positive for concept c and Zout
c are the tokens drawn from samples that do not

contain c (thus excluding out-of-concept tokens from samples containing c to avoid self-attention
leakage), then

Din
c = { sc(z) : z ∈ Z in

c }, Dout
c = { sc(z) : z ∈ Zout

c },
which serve as empirical samples from Din

c and Dout
c .

Concept activation scores are often leveraged for concept detection [22–24], which aims to determine
whether a concept is present anywhere in a sample x ∈ X . Because individual token activations vary
across a sample, standard approaches apply an aggregation operator G : Rn(x)+1 → R to obtain a
per-sample concept activation score:

sagg
c (x) = G

(
sc(z

tok
1 (x)), . . . , sc(z

tok
n(x)(x)), sc(z

cls(x))
)
.

The concept is considered detected if sagg
c (x) exceeds a threshold, typically obtained via calibration.

There is no consensus on the best choice of aggregation operator G. Common strategies include using
the score of the [CLS] token [16, 25], applying mean [26, 27] or max-pooling [28, 22], or using the
score of the last token [29, 28].

Concept activations are also useful for concept localization (or attribution), which seeks to answer
where a concept is located within a sample [30]. When evaluating concept localizations, we desire
attribution maps that align with ground-truth annotations—segmentation masks for images or span-
level labels for text. At the same time, attributions should be faithful [31], meaning that they accurately
reflect the features that the model actually relies on.

3 The SuperActivator Mechanism Yields Clear Concept Signals Amid Noisy
Concept Activations

3.1 Concept Activations are Inconsistent and Poorly Separated

Concept vectors promise interpretability but they often deliver noisy activations that are difficult to
extract meaningful insights from. It is well-documented that concept vectors can encode spurious
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Figure 3: Din
c and Dout

c become more distinct with depth, though the separation is concentrated in
a small subset of tokens in the tail of Din

c . Shown here are activation distributions for three linear
separator concepts from LLaMA-3.2-11B-Vision-Instruct on the OpenSurfaces dataset (left), as well
as the proportion of Din

c activations exceeding q0.98(D
out
c ) across layers (right).

correlations and blur important context-specific distinctions [9, 32]. Other studies highlight issues
of entanglement, where related features co-activate, and polysemanticity, where a single vector
represents multiple unrelated concepts [20, 18, 19].

To study these limitations empirically, we focus our analysis on concept activations and their sep-
arability. In doing so, we identify a key challenge: many tokens labeled as concept-positive have
activation scores that are not meaningfully different from those of concept-negative tokens. Figure 2
illustrates this problem: while a subset of in-concept tokens exhibit strong activations aligned with the
concept Joy, a substantial portion fall well within the range of out-of-concept activations, both within
the given text sample and across the broader distribution Dout

c . Consequently, no single threshold can
partition the labeled Joy tokens from the other tokens.

We analyze activation behavior at the dataset level by characterizing the empirical activation
distributions Din

c and Dout
c . We also construct concepts at various model layers to examine

how separability evolves throughout transformer models. The activations for linear separator
concepts extracted from LLaMA-3.2-11B-Vision-Instruct on the OpenSurfaces dataset are visu-
alized in Figure 3. At each layer, Dout

c appears roughly normal and centered at zero. In
early layers, Din

c overlaps considerably with Dout
c . As depth increases, the proportion of Din

c
exceeding the 98th percentile of Dout

c , q0.98(D
out
c ), grows steadily before plateauing in mid-

dle layers. This trend aligns with prior findings that concept representations become more

0% 25% 50% 75% 100%
% Through Model

0%

25%

50%
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100%

% In-Concept Images w/
 a Token Act > q0.98(Dout

c )

Per-Concept
Average

Figure 4: Most true-concept images in the
OpenSurfaces dataset have at least one ac-
tivation in the high-activation tail of Din

c ,
well separated from q0.98(D

out
c ).

separable at intermediate depths and can collapse again
in the final layers due to task-specific compression [33,
25, 34].

The growing separation between Din
c and Dout

c through-
out the model does not result from a uniform shift of
all in-concept activations. Instead, while many scores
remain overlapping with the 98th percentile of Dout

c , and
are thus largely indistinguishable from out-of-concept
activations, Din

c develops a heavy tail as a small subset
of extreme activations become increasingly separable
with depth.

Notably, we find that the high-activation tail of Din
c ex-

hibits good coverage: most true-concept samples contain
at least one activation above the 98th percentile of Dout

c .
This effect is shown for LLaMA-3.2-11B-Vision-Instruct
linear separator concepts on the OpenSurfaces dataset in
Figure 4, and we show that it generalized across datasets,
models, and concept vector types in Appendix B.
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3.2 Introducing the SuperActivator Mechanism

A reliable concept signal should be clear, with activations that stand out from noise, and accurate,
with high precision and broad coverage across true-concept samples. We find that such signals arise
sparsely but consistently in the high-activation tail of Din

c : they lie well outside Dout
c (Figure 3) and ap-

pear in most concept-positive samples (Figure 4). These results hold across modalities, architectures,
and concept vector types, suggesting it is a general property of transformer representations.

We term this the SuperActivator Mechanism, where a small subset of extreme token activations
carries the most reliable concept signals.

Formalizing SuperActivators: Let S+
val,c = { sc(z) : z ∈ Z in

c from a validation set } be the empir-
ical activation scores for concept c. For a sparsity level δ ∈ [0, 1], we define the SuperActivator
threshold as

τ super
c,δ = Q1−δ

(
S+

val,c

)
,

where Qq(S) denotes the q-quantile of a set of scores S. Tokens whose activations exceed this
threshold form the set of SuperActivators,

T super
c,δ = { z ∈ Z in

c : sc(z) ≥ τ super
c,δ }.

Intuitively, this means we are isolating the top δ percentage of the in-concept distribution Din
c , i.e.

tokens in its high-activation tail.

Leveraging SuperActivators for Concept Detection: We develop a SuperActivator-based aggre-
gator that predicts the presence of c in a sample x if it contains at least one SuperActivator for
that concept. Concretely, we apply a max-pooling operator Gmax over token activations, predicting
concept presence if Gmax(sc(z

tok
1 (x)), . . . , sc(z

tok
n(x)(x))) ≥ τ super

c,δ .

This approach is closely related to the standard max aggregator [22, 35], but instead of thresholding
on the most activated token per sample, thresholds are derived from the globally most activated
tokens across samples. This design enables direct control over sparsity, letting us study how detection
performance varies with δ (See Appendix H and I). We find that SuperActivator detection is most
effective at very low δ, showing that the most reliable concept information is concentrated in a small
high-activation tail of Din

c .

4 Concept Detection and Localization with SuperActivators

4.1 Experimental Setup

We evaluate our framework across different modalities, models and concept types.

Datasets. Vision datasets include CLEVR [36], COCO [37], and the PASCAL [38] and OPENSUR-
FACES [39] sections of the BRODEN dataset [40]. For text, where token-level labels are scarce, we
construct or augment three datasets: SARCASM, AUGMENTED ISARCASM [41], and AUGMENTED
GOEMOTIONS [42]. Full details are provided in Appendix C.3.

Models. For images, we extract both patch and [CLS] token embeddings from the CLIP ViT-L/14
[43] and LLaMA-3.2-11B-Vision-Instruct [44]. For text, we use LLaMA-3.2-11B-Vision-Instruct,
Gemma-2-9B [45], and Qwen3-Embedding-4B [46]. Since these models lack an explicit [CLS] token
for text inputs, we approximate a [CLS]-style representation by averaging token embeddings, a
strategy found to be effective in prior work [47–49].

Concept Types. We compute concepts at both the input token and [CLS]-level using the methods
detailed in Appendix C.2: (1) mean prototypes [50], (2) labeled linear separators [7], (3) k-means
[51, 34], (4) k-means-based separators, and (5) Sparse Autoencoders [19]. We incorporate the
unsupervised concepts into our evaluation by matching each ground-truth concept with the discovered
concept that is best at detecting it on a validation set. All methods in the following experiments make
use of the same underlying concept vectors; detection strategies differ only in how activations are
aggregated, while localization strategies generate attributions with respect to the same vectors.
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Table 1: Our SuperActivator-based method outperforms standard concept vector and prompt-
ing baselines on concept detection F1 scores. The results shown here are for linear separator
concepts using the LLaMA-3.2-11B-Vision-Instruct model, where we improve performance by up to
14% over the best baseline. This trend generally holds across models and concept types, as detailed
in Appendix E. Bold indicates the best score; underline marks the second best score.

Concept Detection Methods

RandTok LastTok [29] MeanTok [26] CLS [25] Prompt [22] SuperAct (Ours)

CLEVR 0.97 ± 0.09 0.88 ± 0.00 0.92 ± 0.00 0.96 ± 0.02 0.99 ± 0.01 1.00 ± 0.00
COCO 0.61 ± 0.01 0.68 ± 0.01 0.55 ± 0.01 0.57 ± 0.01 0.69 ± 0.05 0.83 ± 0.01
Surfaces 0.44 ± 0.01 0.41 ± 0.01 0.39 ± 0.01 0.46 ± 0.01 0.49 ± 0.06 0.56 ± 0.02
Pascal 0.66 ± 0.01 0.60 ± 0.01 0.59 ± 0.01 0.65 ± 0.01 0.68 ± 0.05 0.82 ± 0.01

Sarcasm 0.66 ± 0.06 0.68 ± 0.05 0.66 ± 0.06 0.74 ± 0.06 0.68 ± 0.07 0.87 ± 0.04
iSarcasm 0.89 ± 0.04 0.72 ± 0.03 0.79 ± 0.03 0.91 ± 0.03 0.79 ± 0.05 0.92 ± 0.03
GoEmot 0.37 ± 0.03 0.31 ± 0.03 0.19 ± 0.03 0.32 ± 0.03 0.25 ± 0.10 0.46 ± 0.03

Figure 5: SuperActivator-based concept detection is most effective when using only a small
fraction of the most highly activated tokens (5–10%). This figure presents the number of LLaMA-
3.2-11B-Vision-Instruct linear separator concept vectors that achieve their strongest F1 scores at each
sparsity level δ. Comprehensive results are provided in Appendix H.

4.2 SuperActivators are Reliable Indicators of Concept Presence

We now demonstrate that SuperActivator tokens serve as more reliable indicators of concept presence
than both concept-vector baselines and prompting methods.

We compare against several baseline aggregation strategies: GCLS, which selects the [CLS] activa-
tion [25]; Gmean, which averages input token activations [26]; Glast, which selects the final input
token activation [29]; and Grand, which selects a random token activation. We also include a prompt-
ing baseline, where LLaMA-3.2-11B-Vision-Instruct is directly queried about the presence of each
concept, bypassing concept vectors altogether [22, 52, 28].

The sparsity δs and model layers used at test time are calibrated on a validation set to maximize each
concept’s detection F1-score, following prior work showing that concept separability varies across
layers [53–55]. Layer selection is performed independently for each detection method. To make this
computationally feasible, calibration is performed over a fixed grid of layers (see Appendix C.1 for
details). All reported detection scores reflect the average F1 per dataset, obtained by averaging over
concepts with weights proportional to their frequency in the test set.

As shown in Table 1, our SuperActivator method consistently outperforms all other detection strate-
gies on LLaMA-3.2-11B-Vision-Instruct model linear separator concepts. Appendix E provides
comprehensive results, demonstrating that this trend generally holds across all concept vector types
and models that we experimented with. Prompting is typically the next strongest method, with
[CLS]-token aggregators also showing competitive performance in certain settings.

Figure 5 summarizes the distribution of optimal sparsity levels δ across all LLaMA-3.2-11B-Vision-
Instruct linear separator concepts. Performance typically peaks when using only a small fraction
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(a) Original image (Person label in
yellow)

(b) Person global concept vector
attribution map

(c) Person local SuperActivators at-
tribution map

Figure 6: SuperActivators yield attribution masks that better align with the ground-truth
concept region. Shown are attribution maps for the concept Person in a COCO image using LLaMA-
based linear separator concepts. Maps are computed with LIME attribution relative to (b) global
concept vectors and (c) local SuperActivators, where red denotes high alignment and blue denotes
low alignment. In (b), many high-attribution tokens lie outside the labeled Person region, while
tokens inside the region often receive weak attribution. In contrast, (c) shows that attributions relative
to the average embedding of local SuperActivators (highlighted by green boxes) correspond far more
closely to the true Person area.

of the most activated tokens—2–10% for COCO, OPENSURFACES, and GOEMOTIONS, whereas
ISARCASM peaks at a moderately higher 40%. These results indicate that only a sparse subset
of tokens carry the strongest and most reliable concept information; including additional, weaker
activations introduces noise from tokens that are less separated from Dout

c , diluting rather than
improving performance. We note one nuance with Sparse Autoencoder concepts, where peak
performance occurs at higher δ percentages, likely because SAEs already enforce sparsity during
training. Detailed SAE-specific results and discussion are provided in Appendix L.1.

We perform several ablations to analyze how SuperActivator-based detection behaves across layers
and sparsity levels. Appendix F shows heatmaps of average detection F1 (weighted across concepts)
for each model and dataset as a function of model depth, providing a global view of where concept
signals are strongest. Appendix G summarizes the distribution of best-performing layers across
concepts, revealing how different concepts peak at varying depths. To study sparsity, Appendix H
reports histograms of optimal sparsity levels δ across model layers, while Appendix I plots F1 as a
function of δ at each concept’s best-performing layer, showing how average SuperActivator detection
performance varies with sparsity. Moreover, Appendix J provides qualitative examples of concept
activations and SuperActivators (similar to Figure 1) across layers and datasets, illustrating how the
SuperActivator mechanism manifests and evolves throughout transformer models.

Across image and text datasets, model architectures, and concept vector types, the same pattern
emerges: the most reliable concept signals reside in the sparse, high-activation tail of Din

c . The
SuperActivator Mechanism thereby reflects a core principle of how transformers represent semantics.

4.3 SuperActivators Improve Attributions for Concepts

Standard concept attribution methods typically evaluate relevance with respect to a single global
concept vector aggregated over many samples. While this captures broad concept information, it often
blurs local context and introduces spurious correlations. In contrast, SuperActivators provide more
consistent concept signals for detection (see Section 4.2), are tied to the specific local context of each
sample, and avoid averaging across disparate occurrences. We hypothesize that using SuperActivators
as the attribution objective improves attribution across three metrics: accuracy measuring average F1

against ground truth, and insertion and deletion score based on the faithfulness metric.

To test this, we compare two attribution objectives: (1) the standard global concept vector and (2) our
proposed method, which averages the embeddings of local SuperActivators within each instance.

We generate attribution maps following the standard procedures described in Appendix K.1, where
attribution scores estimate each token’s effect on changes in a given objective. Conventional concept
attribution methods use the alignment between token embeddings and the global concept vector
as this objective. We introduce one key modification: attribution is computed relative to the mean
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Table 2: SuperActivators yield more accurate and faithful attributions than global concept
vectors. Accuracy is measured by attribution F1 (alignment with ground-truth masks), while
faithfulness is measured by insertion scores (↑ is better) and deletion scores (↓ is better). This table
shows results for CLIP-ViT-L/14 linear separators on COCO and Gemma-2-9B linear separators on
iSarcasm. Appendix K.2 demonstrates that these same trends hold across all other datasets, models,
and concept vector types.
Attribution Method Dataset Attribution F1 (↑ is better) Insertion Score (↑ is better) Deletion Score (↓ is better)

Concept Super
Activators Concept Super

Activators Concept Super
Activators

LIME [56] COCO 0.29±0.02 0.40±0.03 0.333±0.009 0.367±0.008 0.010±0.001 0.007±0.001
iSarcasm 0.76±0.02 0.89±0.01 0.383±0.008 0.412±0.009 0.009±0.000 0.005±0.004

SHAP [57] COCO 0.35±0.01 0.37±0.02 0.334±0.004 0.365±0.004 0.010±0.001 0.008±0.002
iSarcasm 0.77±0.03 0.90±0.02 0.384±0.008 0.410±0.003 0.009±0.001 0.006±0.001

RISE [58] COCO 0.35±0.02 0.38±0.03 0.328±0.004 0.354±0.007 0.012±0.002 0.009±0.000
iSarcasm 0.81±0.01 0.94±0.03 0.382±0.005 0.409±0.009 0.008±0.001 0.005±0.002

SHAP IQ [59] COCO 0.34±0.01 0.37±0.01 0.330±0.005 0.358±0.008 0.011±0.002 0.009±0.001
iSarcasm 0.79±0.02 0.92±0.01 0.379±0.004 0.407±0.004 0.009±0.001 0.006±0.001

IntGrad [60] COCO 0.28±0.00 0.35±0.04 0.326±0.003 0.359±0.005 0.013±0.003 0.010±0.003
iSarcasm 0.72±0.02 0.84±0.01 0.375±0.004 0.405±0.009 0.011±0.001 0.008±0.003

GradCAM [61] COCO 0.37±0.01 0.38±0.02 0.329±0.005 0.352±0.004 0.012±0.003 0.010±0.001
iSarcasm 0.74±0.02 0.87±0.03 0.377±0.004 0.403±0.008 0.010±0.001 0.007±0.001

FullGrad [62] COCO 0.43±0.01 0.43±0.00 0.331±0.006 0.357±0.010 0.011±0.001 0.009±0.002
iSarcasm 0.73±0.03 0.85±0.01 0.376±0.005 0.402±0.010 0.010±0.001 0.007±0.001

CALM [63] COCO 0.42±0.01 0.42±0.01 0.332±0.010 0.360±0.004 0.011±0.002 0.008±0.000
iSarcasm 0.78±0.01 0.91±0.02 0.380±0.007 0.408±0.004 0.009±0.001 0.006±0.001

MFABA [62] COCO 0.33±0.01 0.39±0.03 0.339±0.005 0.374±0.006 0.006±0.001 0.004±0.001
iSarcasm 0.77±0.02 0.90±0.03 0.391±0.002 0.420±0.009 0.006±0.001 0.003±0.001

embedding of local SuperActivators. Each SuperActivators is defined using the sparsity level δ that
achieves the highest detection F1 score on the validation set. For each concept c, attribution scores
are then binarized into c-positive or c-negative using the threshold that maximizes validation F1. If a
sample contains no SuperActivators associated with concept c, all tokens are assigned as c-negative.

Our SuperActivator-based approach produces attribution maps that align more closely with ground-
truth segmentation masks than those derived from global concept vectors. Across attribution methods,
local SuperActivators consistently yield higher F1 scores, outperforming the global baseline on both
COCO and ISARCASM (Table 2), with similar improvements observed across additional image
and text datasets, models, and concept vector types (Tables 3–9). Moreover, SuperActivators-based
attributions achieve higher insertion and lower deletion scores, indicating greater faithfulness to model
behavior (Table 2). Compared to global concept vectors, SuperActivators lead to faster convergence
toward human-annotated cues, and removing such tokens results in a sharper drop in alignment,
further highlighting their explanatory relevance.

Figures 6 and 35 illustrate that SuperActivators produce attribution maps that more accurately
localize ground-truth concept regions. Tokens identified as important by SuperActivators align more
closely with human annotations, whereas global concept vector attributions often highlight diffuse or
semantically irrelevant areas.

5 Related Work

Concept-Based Interpretability: Concept-based interpretability techniques seek to link model
internals with human-understandable features. Common approaches include defining concept vectors
as linear separators (e.g., TCAV; [7]), or as centroid embeddings from labeled examples [50].
Unsupervised discovery methods include ACE [51], hierarchical clustering [34], matrix factorization
approaches [64, 65], and sparse autoencoders [66, 67]. Across these works, concepts are assumed to
be recoverable as structured vectors, clusters, or basis elements within representation space.
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Challenges in Concept Representations: Many open questions remain concerning the structure
of concept representations. The linearity hypothesis posits that concepts correspond to directions in
activation space, linearly separable and recoverable with simple probes [68, 69]. Empirically, however,
activations are often entangled, firing on tokens or samples where the concept is absent or bleeding
into related but unintended semantics [20, 18], polysemantic, where a single neuron or direction
encodes multiple features [19, 70], and unstable, with concept signals shifting across layers, spatial
locations, exemplar sets, and random seeds [22, 71, 21, 72]. These properties can amplify failure
modes such as spurious correlations [4] and concept leakage [73], undermining both detection and
attribution. In response, some approaches try to modify model training to enforce more interpretable
or disentangled concept structures [74, 75] or enforce structure (such as compositionality) in concepts
extracted from pretrained models [76]. Our work takes a different perspective: rather than redesigning
representations, we identify a sparse and reliable signal that already exists within otherwise noisy
activation distributions.

Concept Detection: Concept detection is a central task in concept-based interpretability [22], with
practical importance wherever one wants to determine whether a given concept is present in a
sample—for example, detecting clinical or radiological concepts in medical images and reports
[23, 24] or identifying undesirable online behavior [13, 16]. Most approaches instantiate a concept as
a vector (e.g., a prototype or separator) and then score a sample by its alignment to that vector. This can
be done using a global representation—such as the [CLS] token or pooled embeddings—which can be
effective but often dilute sparse, fine-grained signals [47, 48]. When token or patch embeddings are
available, methods instead compute token-level activations and aggregate them into a single alignment
score; common choices include [CLS]-based scoring [16, 25, 77], mean pooling [26, 27, 12], max
pooling [28, 22, 78, 35], or last-token scoring [29, 28, 48]. Beyond vector scoring, concept bottleneck
models implicitly encode detection within a supervised concept layer designed for downstream tasks
[79]. More recently, high-performing vision–language models have enabled zero-shot prompting that
bypasses explicit concept vectors altogether, with strong results from CLIP and newer multimodal
LMs (e.g., GPT-4o-mini) [22, 52, 28].

Feature Attributions for Concepts: Feature attributions for a given concept tells us where a concept
is located within a sample [30]. Traditional attribution methods such as Integrated Gradients [60] and
Grad-CAM [61], along with concept-based adaptations [7, 30, 25, 65], have been used to connect
predictions to attribute concept alignment to input tokens. Beyond these, various works generate
localization maps via direct alignment with raw activation scores [27, 78, 80, 78] and attention
values [81].

6 Discussion and Future Work

In this work, we introduced and characterized the SuperActivator Mechanism, demonstrating that
transformers concentrate reliable concept evidence into a sparse set of highly activated tokens.
Leveraging this property enabled us to cut through the noise of globally aggregated concept vector
activations and uncover more reliable signals of concept presence, which in turn serve as a stronger
basis for concept localization. In the future, investigating how SuperActivators arise during training
may provide deeper insight into how this mechanism emerges. Moreover, applying these principles
in real-world settings for improved concept detection and localization offers the potential to make
model interpretability more actionable in practice.
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A SuperActivator Visual Examples

This section presents visual examples of SuperActivators in test samples across multiple image
and text datasets. The heatmaps illustrate the activation score between the token embeddings and
the labeled concept vectors, where red indicates high alignment, blue indicates low alignment, and
a green rectangle indicates SuperActivators. The concepts used in these visualizations are linear
separators trained on LLaMA-3.2-11B-Vision-Instruct embeddings at the model depth that achieved
the highest validation performance, with SuperActivators defined at the sparsity level δ that yielded
the best validation F1 for each concept.

Original Blue Green Red

Cube Cylinder Sphere

Activation Score 

 SuperActivators

Figure 7: CLEVR – Visualization of Concept Activations and SuperActivators

Original Animal Car Bench

Person Motorcycle Chair

Activation Score 

 SuperActivators

Figure 8: COCO – Visualization of Concept Activations and SuperActivators
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Metal Granite Mirror
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Figure 9: OpenSurfaces – Visualization of Concept Activations and SuperActivators
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Dog Beak Sky
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 SuperActivators

Figure 10: Pascal – Visualization of Concept Activations and SuperActivators
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Original Text (No Labeled Concept):

Regrettably, my morning coffee spilled all over my fresh white shirt. I was running late for work and in my rush, I
knocked my coffee mug right off the counter. Thankfully, I had a spare shirt in my car.

Sarcasm Activations:
Regrettably, my morning coffee spilled all over my fresh white shirt. I was running late for work and in my rush, I
knocked my coffee mug right off the counter. Thankfully, I had a spare shirt in my car.

(a) Non-Sarcastic Version

Original Text (Sarcasm highlighted):

It's such a treat when my morning coffee decides to spill all over my fresh white shirt. I was running late for work
and in my rush, I knocked my coffee mug right off the counter. Thankfully, I had a spare shirt in my car.

Sarcasm Activations:
It's such a treat when my morning coffee decides to spill all over my fresh white shirt. I was running late for work
and in my rush, I knocked my coffee mug right off the counter. Thankfully, I had a spare shirt in my car.

(b) Sarcastic Version

Figure 11: Sarcasm – Visualization of Concept Activations and SuperActivators (sarcastic and
non-sarcastic version of same sentiment)

Original Text (No Labeled Concept):

the worst way to wake up is when the alarm is too loud. it makes me feel really startled first thing in the morning.
#NeedCoffee

Sarcastic Activations:
the worst way to wake up is when the alarm is too loud. it makes me feel really startled first thing in the morning.
#NeedCoffee

(a) Non-Sarcastic Sample

Original Text (Sarcastic highlighted):

there's no better way to wake up than having one dog jump directly on your stomach and knock the wind out of
you while the other drop a dead rodent on the end of the bed. i really need to start closing the bedroom door at
night. #morningchaos

Sarcastic Activations:
there's no better way to wake up than having one dog jump directly on your stomach and knock the wind out of
you while the other drop a dead rodent on the end of the bed.  i really need to start closing the bedroom door at
night. #morningchaos

(b) Sarcastic Sample

Figure 12: Sarcasm – Visualization of Concept Activations and SuperActivators (non-sarcastic and
sarcastic text samples)

19



Original Text (Anger highlighted):

WHAT THE HELL! I opened up the new software update, and it seems like they've moved all the settings around again.

Anger Activations:
WHAT THE HELL! I opened up the new software update, and it seems like they've moved all the settings around again.

Love Activations:
WHAT THE HELL! I opened up the new software update, and it seems like they've moved all the settings around again.

Gratitude Activations:
WHAT THE HELL! I opened up the new software update, and it seems like they've moved all the settings around again.

Figure 13: Augmented GoEmotions SuperActivator Example

B Motivation for Focusing on SuperActivators

In this section, we motivate our focus on the highly-aligned activations in the tail of the in-concept
activation distribution, Din

c . For this initial inquiry, we consider a token separable from the empirical
out-of-concept activation distribution Dout

c if its concept activation is greater than 99% of the out-
of-concept token activations, q0.99(Dout

c ). Then, for each dataset, on the left we plot the percent
of in-concept token activations that are separable from out-of-concept activations (averaged across
concepts) as a function of model depth. On the right, we plot the percentage of in-concept samples
(images, comments, tweets, etc) that contain at least one token that is separable from the out-of-
concept distribution as a function of model depth (again, averaged across concepts). In Figure 14, we
report results across various datasets and models, as well as both average and linear separator concept
vectors.

Generally, as shown in the leftmost plots, the percentage of well-separated in-concept token activations
gradually increases throughout the model. However, the majority of the in-concept token activations
typically do not exceed q0.99(D

out
c ) even at the most distinguishing layers, indicating a fundamental

problem with separability. This problem is particularly severe for the text datasets. For the image
concepts, most of the true-concept images have at least one well-separated token activation, and this
separation generally also increases with model depth. In the text setting, while not all in-concept
samples contain an activated patch, a substantial proportion do—indicating that some concept signal
is present, albeit more diffuse. This likely reflects the specific text datasets used here, where concepts
such as sarcasm and emotion are more subjective and nuanced than the object and texture annotations
in image data. The main takeaway from these results is that across all image and text datasets, models,
and concept types, there appears to be activations in the tail of Din

c that are well-separated from Din
c

and carry signals of concept presence.

20



0% 25% 50% 75% 100%
Percent Through Model

0%

25%

50%

75%

100%

% True-Concept Token Distr
> 99% Non-Concept Token Distr

0% 25% 50% 75% 100%
Percent Through Model

0%

25%

50%

75%

100%

% True-Concept Images w/ a Token
> 99% Non-Concept Token Distr

CLIP - Avg
CLIP - LinSep

Llama - Avg
Llama - LinSep

(a) CLEVR

0% 25% 50% 75% 100%
Percent Through Model

0%

25%

50%

75%

100%

% True-Concept Token Distr
> 99% Non-Concept Token Distr

0% 25% 50% 75% 100%
Percent Through Model

0%

25%

50%

75%

100%

% True-Concept Images w/ a Token
> 99% Non-Concept Token Distr

CLIP - Avg
CLIP - LinSep

Llama - Avg
Llama - LinSep

(b) COCO

0% 25% 50% 75% 100%
Percent Through Model

0%

25%

50%

75%

100%

% True-Concept Token Distr
> 99% Non-Concept Token Distr

0% 25% 50% 75% 100%
Percent Through Model

0%

25%

50%

75%

100%

% True-Concept Images w/ a Token
> 99% Non-Concept Token Distr

CLIP - Avg
CLIP - LinSep

Llama - Avg
Llama - LinSep

(c) OpenSurfaces

0% 25% 50% 75% 100%
Percent Through Model

0%

25%

50%

75%

100%

% True-Concept Token Distr
> 99% Non-Concept Token Distr

0% 25% 50% 75% 100%
Percent Through Model

0%

25%

50%

75%

100%

% True-Concept Images w/ a Token
> 99% Non-Concept Token Distr

CLIP - Avg
CLIP - LinSep

Llama - Avg
Llama - LinSep

(d) Pascal

0% 25% 50% 75% 100%
Percent Through Model

0%

25%

50%

75%

100%

% True-Concept Token Distr
> 99% Non-Concept Token Distr

0% 25% 50% 75% 100%
Percent Through Model

0%

25%

50%

75%

100%

% True-Concept Images w/ a Token
> 99% Non-Concept Token Distr

Gemma - Avg
Gemma - LinSep

Llama - Avg
Llama - LinSep

Qwen - Avg
Qwen - LinSep

(e) Sarcasm

0% 25% 50% 75% 100%
Percent Through Model

0%

25%

50%

75%

100%

% True-Concept Token Distr
> 99% Non-Concept Token Distr

0% 25% 50% 75% 100%
Percent Through Model

0%

25%

50%

75%

100%

% True-Concept Images w/ a Token
> 99% Non-Concept Token Distr

Gemma - Avg
Gemma - LinSep

Llama - Avg
Llama - LinSep

Qwen - Avg
Qwen - LinSep

(f) iSarcasm

0% 25% 50% 75% 100%
Percent Through Model

0%

25%

50%

75%

100%

% True-Concept Token Distr
> 99% Non-Concept Token Distr

0% 25% 50% 75% 100%
Percent Through Model

0%

25%

50%

75%

100%

% True-Concept Images w/ a Token
> 99% Non-Concept Token Distr

Gemma - Avg
Gemma - LinSep

Llama - Avg
Llama - LinSep

Qwen - Avg
Qwen - LinSep

(g) GoEmotions

Figure 14: Across all image and text datasets, models, and concept types, there appears to be high
magnitude in-concept activations that are well-separated from Din

c and carry signals of concept
presence.
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C Experimental Configurations

C.1 Embedding Models

For images, we extract both input token and [CLS] token embeddings from the CLIP ViT-L/14 [43]
and LLaMA-3.2-11B-Vision-Instruct (Meta, 2024) models. For text, we use LLaMA-3.2-11B-Vision-
Instruct, Gemma-2-9B [45], and Qwen3-Embedding-4B [46]. Since these text models lack an explicit
[CLS] token, we approximate a [CLS]-style representation by averaging token embeddings [47–
49, 82]. For each model, we obtain embeddings across multiple layers. To ensure comparability, we
normalize and mean-center each layer’s embeddings using statistics computed from the training set.

To make the computation feasible, we evaluate models at a fixed set of percentage depths through
the network, rather than at every layer. The chosen checkpoint percentages are CLIP: [4, 25, 46, 67,
88, 100], LLaMA-Vision: [2, 15, 28, 40, 52, 65, 78, 90, 100], LLaMA-Text: [3, 19, 34, 50, 66, 81, 97,
100], Gemma: [4, 21, 39, 57, 75, 93, 100], Qwen: [3, 19, 34, 50, 66, 81, 97, 100].

C.2 Concept Extraction Methods

Throughout, let x denote a sample (image or text), and z(x) ∈ Rd its embedding obtained from the
underlying model. For a ground-truth concept c, let X+

c denote the set of samples labeled positive for
c. We use vc ∈ Rd to denote the concept vector associated with c, and vj to denote candidate concept
vectors discovered by an unsupervised method. All concepts are constructed only using embeddings
from the training set.

We extract concepts using supervised methods, unsupervised methods, and a prompting baseline.
Concept representations are computed at both the token level, using embeddings from input tokens,
and the [CLS] level, using embeddings from the [CLS] tokens, which lie in a distinct representational
space optimized for sequence-level summarization.

Supervised Methods:

1. Mean Prototypes [50]: Each concept vector is defined as the average embedding of all
positive examples,

vc =
1

|X+
c |

∑
x∈X+

c

z(x).

2. Linear Separators (LinSep) [7]: For each concept c, we train a linear model (without
bias) to distinguish positives from negatives. For training, we balance positive and negative
samples and use BCEWithLogitsLoss with the Adam optimizer (learning rate 0.01). We
train for up to 100 epochs with a batch size of 32, apply weight decay of 1e−4, and decay
the learning rate by a factor of 0.5 every 10 epochs. Early stopping is used with a patience of
15 epochs and a tolerance of 3, which sets the minimum improvement required to continue
training. The resulting normal vector of the separating hyperplane is used as the concept
vector:

vc = wc.

Unsupervised Methods:

1. K-Means Prototypes [51, 34]: We cluster embeddings using FAISS GPU [83] with Eu-
clidean distance, a maximum of 300 iterations, and k=1000 for token-level embeddings
and k=50 for [CLS] embeddings. The choice of k was determined experimentally using an
elbow curve. Token-level embeddings are finer-grained and therefore benefit from a larger
number of clusters. Each cluster centroid is used as a concept vector:

vj = µj =
1

|Cj |
∑
x∈Cj

z(x).

2. Cluster-Based Separators (K-LinSep): We first assign soft labels to embeddings based
on their K-means cluster membership, then train linear separators with the same procedure
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described above to predict whether an embedding belongs to a given cluster. The normal
vectors of these separators are treated as concept directions:

vij = wij .

3. Sparse Autoencoders (SAEs) [19]: SAEs learn a sparse reconstruction

z(x) ≈ Wh(x), h(x) ∈ Rm sparse, vj = wj ,

where each column wj of W corresponds to a candidate concept. Because SAE training is
computationally expensive, we use pretrained SAEs; see Appendix L for architectural and
implementation details.

To ensure we can evaluate against unsupervised methods, each ground-truth concept c is matched to
the unsupervised unit vj that achieves the highest validation F1 score for detecting c:

vc = argmax
vj

Fval
1 (c, vj).

Prompt Baseline: As a non-concept vector baseline, we query LLaMA-3.2-11B-Vision-Instruct
directly. For each sample x and concept c, we prompt:

“Is the concept of c present in the following? x”.

Prior works have employed similar zero-shot prompting baselines successfully [22, 52, 28].

C.3 Dataset Overview

CLEVR (Single-Object) [36]: A synthetic dataset of 1,000 images, each containing a red, green,
or blue object with shape sphere, cylinder, or cube. Images and segmentation masks are generated
programmatically, allowing fine-grained control over object properties and patch-level annotations.

COCO [37]: We use the 2017 validation set of MS-Coco, containing 5,500 images with everyday
scenes involving people, objects, and natural contexts. Each image comes with human-annotated
segmentations, providing dense labels for both object categories and broader supercategories.

Broden–Pascal [38] and Broden–OpenSurfaces [39]: We use 4,503 samples from Pascal and 3,578
samples from OpenSurfaces. These are subsets of the Broden dataset [40], which unifies multiple
segmentation datasets into a single benchmark for concept-based interpretability research. Pascal
primarily contains natural images with segmented objects from diverse categories such as animals,
vehicles, and household items, while OpenSurfaces emphasizes fine-grained material and surface
property annotations (e.g., wood, fabric, metal). We chose these two subsets because they focus on
patch-level segmentation where concepts do not necessarily span the entire image.

Sarcasm (Fully Synthetic): We generate a dataset of 1,446 paragraphs, where roughly half contain
exactly one sarcastic sentence surrounded by neutral sentences.

iSarcasm (Augmented): We adapt 1,734 samples from the original iSarcasm dataset [41], which
provides sarcastic tweets alongside non-sarcastic rewrites conveying the same meaning (both provided
by the original authors). We augment these by embedding sarcastic and non-sarcastic sentences into
short paragraphs of neutral context, with sarcastic spans explicitly marked.

GoEmotions (Augmented): We use 5,427 samples from the GoEmotions dataset [42], a human-
annotated collection of Reddit comments labeled with 27 emotion categories. We augment selected
samples by embedding emotional sentences within surrounding neutral context, tagging the emotional
span while preserving natural paragraph flow.

C.4 Text Augmentation Pipelines and Prompts

This section describes the augmentation pipelines used for generating and adapting text datasets,
along with the exact prompts. Our goal was to create datasets with localized token-level concept spans,
since most publicly available text datasets only provide sample-level (sentence, tweet, comment, etc)
labels. Generation and augmentation are performed via controlled prompting of GPT-4o [84].
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C.4.1 Sarcasm (Fully Synthetic)

Pipeline: We generate entirely new paragraphs containing exactly one sarcastic sentence. The
sarcastic sentence is wrapped in <SARCASM> tags, while all other sentences are neutral. This ensures
that each paragraph contains exactly one labeled sarcastic span, with natural context surrounding it.
By constraining sarcastic content to a single line, we obtain a controlled setup where token-level
supervision is precise and unambiguous.

Prompt:

Write 10 short paragraphs (4–8 sentences each). Each paragraph must include
**exactly one sarcastic sentence**, wrapped in <SARCASM> ... </SARCASM> tags.

Guidelines:
- The sarcastic sentence should be subtle, deadpan, or context-dependent.
- All other sentences must be sincere and literal.
- Vary topic, tone, and structure across paragraphs.

Only the sarcastic line may be wrapped in tags.

Return only the 10 numbered paragraphs.

Example: Jane always prided herself on her cooking abilities. <SARCASM>Indeed, the local fire
department must have also appreciated her culinary exploits, given the number of times they’ve had to
rush to her house.</SARCASM> Still, she was not deterred and continued to experiment in the kitchen,
determined to perfect her skills. She understood that learning anything new involved a process of
trial and error.

C.4.2 iSarcasm Augmentation

Dataset Overview: The original iSarcasm dataset contains sarcastic tweets paired with author-
provided sincere rewrites conveying the same meaning. We extend this dataset synthetically by
surrounding the sarcastic tweets with literal, neutral context, ensuring precise span-level supervision.
Only sarcastic samples are selected for augmentation, and for each sarcastic input we generate both a
sarcastic augmented post and a non-sarcastic rewrite.

Augmentation Pipeline: Each sarcastic input is expanded into casual, paragraph-like text using
controlled prompting of GPT-4.0. To introduce variation, random structural features are applied:

• 20% chance of forcing a [Sarcasm][Trigger] structure.

• 15% chance of adding emojis or hashtags.

• Otherwise, a random choice among [Sarcasm][Trigger], [Trigger][Sarcasm], or
[Trigger][Sarcasm][Trigger].

Sarcastic Augmentation Prompt:

You are a data annotation machine. Your only goal is to produce perfectly literal
text that follows the rules. You must not be creative or clever. You must not
generate any figurative language outside of the provided tags.

Your Task:
You will be given a sarcastic tweet and its true meaning. Rewrite the tweet by
embedding it within a strictly literal train of thought that matches the original’s
casual tone.

Structure: [Randomly choose or force specific structure]
[Optional emoji/hashtag instruction if selected]

Constraints Checklist:
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- The tone is casual and informal.
- The added text is not redundant.
- Outside <SARCASM> tags is strictly literal and descriptive.
- The original sarcastic tweet is fully preserved within <SARCASM> tags.
- Output contains ONLY the final post.

Input Sarcastic Tweet: "{sarcastic_tweet}"
Sincere Meaning (for your context): "{rephrased_text}"

Your Output:

Non-Sarcastic Augmentation Prompt.

You are a data annotation machine. Your only goal is to produce perfectly literal
text that follows the rules. You must not be creative or clever. You must not
invent new details.

Your Task:
Take a sincere idea and expand it slightly into a personal, casual post,
remaining 100% faithful to the original meaning.

[Optional emoji/hashtag instruction if selected]

Constraints Checklist:
- The tone is casual and informal.
- The entire post is strictly literal and descriptive.
- No sarcasm, irony, overstatement, or rhetorical questions.
- The post must be 100% faithful to the meaning of the original idea.
- Output contains ONLY the final post.

Input Sincere Idea: "{rephrased_text}"

Your Output:

Verification Process: Outputs are verified via flexible matching with progressively lenient checks:
exact matching (case-insensitive), whitespace normalization, URL/punctuation removal, and word-
overlap thresholds. If all attempts fail, the original tweet is wrapped in <SARCASM> tags as a fallback.

Example:

Input sarcastic tweet: “The only thing I got from college is a caffeine addiction.”
Input sincere rephrase: “College is really difficult, expensive, tiring, and I often
question if a degree is worth the stress.”

Sarcastic augmentation: “I just checked my calendar and saw how many
assignments are due this week. <SARCASM>the only thing i got from college is a
caffeine addiction</SARCASM>”
Non-sarcastic rewrite: “college is really difficult. it’s also expensive and tiring.
sometimes i find myself questioning if getting a degree is worth all the stress.”

C.4.3 GoEmotions Augmentation

Dataset Overview: GoEmotions is a large-scale dataset of Reddit comments labeled with up to 27
fine-grained emotions. We extend it synthetically by surrounding the original emotional comment
with strictly neutral filler context, ensuring the emotional span remains localized and clearly marked
with <EMOTION> tags.

Augmentation Pipeline: Every comment in GoEmotions is augmented without filtering, following
a two-step process:
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1. Step 1: Generation. A “Neutral Filler Machine” prompt is used to generate five diverse
neutral-context options embedding the original emotional comment.

2. Step 2: Selection. A “Grader” prompt evaluates the five drafts and selects the best single
option according to neutrality and naturalness.

To increase variation, a random structure is sampled per comment:

• 50% chance: [Emotion][Context]

• 25% chance: [Context][Emotion]

• 25% chance: [Context][Emotion][Context]

Step 1 — Neutral Filler Prompt:

You are a Neutral Filler Machine. Your task is to generate neutral,
non-emotional text to surround a given Reddit comment.

Task:
- Preserve the original emotional comment exactly inside <EMOTION> tags.
- Generate five unique and diverse neutral contexts that flow naturally.
- All options must follow the required structure.

Constraints:
- Text outside <EMOTION> must be strictly neutral (no emotion leakage).
- Sound natural and casual like a Reddit post.
- No redundancy with the emotional comment.

Input Emotional Comment: "{emotional_comment}"
Primary Emotion(s): "{emotion_labels_str}"
Required Structure: "{structure_choice}"

Your Output: Five options, each in the correct structure.

Step 2 — Selection Prompt.

You are a data annotation quality assurance specialist.
Your task is to select the best draft among five options.

Checklist:
- Context must be strictly neutral (no emotions).
- Flow naturally as a Reddit comment.
- No contradiction or redundancy.
- Only output the single best final option.

Draft Options:
{draft_options}

Your Final, Best Output:

Verification Process: The augmented comments are verified using flexible string matching to
ensure that the original text is preserved inside <EMOTION> tags. We allow up to five retry attempts
with progressively lenient checks. If all attempts fail, the fallback is to wrap the original comment
directly in <EMOTION> tags.

Example:

Original emotional comment (gratitude): “I didn’t know that, thank you for
teaching me something today!”
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Augmented output: “A comment explained the process behind recycling plastics
and how it affects the environment. <EMOTION>I didn’t know that, thank you for
teaching me something today!</EMOTION>”

C.5 Concepts Used in Experiments

For the MS-COCO, GoEmotions, and Broden datasets, we filter concepts using minimum sample
thresholds (100–300 samples, depending on the dataset) to ensure sufficient data for reliable concept
construction, though future work could examine SuperActivators in underfit settings. The semantic
concepts used in our experiments are listed here:

• CLEVR: blue, green, red, cube, cylinder, sphere
• COCO: accessory, animal, appliance, bench, book, bottle, bowl, bus, car, chair, couch, cup,

dining table, electronic, food, furniture, indoor, kitchen, motorcycle, outdoor, person, pizza,
potted plant, sports, train, truck, tv, umbrella, vehicle

• Broden–OpenSurfaces: brick, cardboard, carpet, ceramic, concrete, fabric, food, fur, glass,
granite, hair, laminate, leather, metal, mirror, painted, paper, plastic-clear, plastic-opaque,
rock, rubber, skin, tile, wallpaper, wicker, wood

• Broden–Pascal: airplane, bicycle, bird, boat, body, book, building, bus, cap, car, cat, cup,
dog, door, ear, engine, grass, hair, horse, leg, mirror, motorbike, mountain, painting, person,
pottedplant, saddle, screen, sky, sofa, table, track, train, tvmonitor, wheel, wood, arm, bag,
beak, bottle, box, cabinet, ceiling, chain wheel, chair, coach, curtain, eye, eyebrow, fabric,
fence, floor, foot, ground, hand, handle bar, head, headlight, light, mouth, muzzle, neck,
nose, paw, plant, plate, plaything, pole, pot, road, rock, rope, shelves, sidewalk, signboard,
stern, tail, torso, tree, wall, water, windowpane, wing

• Sarcasm: sarcasm.
• iSarcasm: sarcastic.
• GoEmotions: confusion, joy, sadness, anger, love, caring, optimism, amusement, curiosity,

disapproval, approval, annoyance, gratitude, admiration

D Concept Formalisms in More Detail

We provide a detailed formalization of concept detection and activation aggregation strategies,
focusing on transformer architectures given their demonstrated effectiveness across modalities.

Model Representations. Let f be a trained transformer model that processes an input x ∈ X
(an image or a text sequence) into a set of hidden representations. At a given layer ℓ, we extract
token-level embeddings

fℓ(x) = { ztok
1 (x), . . . , ztok

n(x)(x), z
cls(x) }, ztok

i (x), zcls(x) ∈ Rd.

Here ztok
i (x) denotes the representation of the i-th token (or image patch), and zcls(x) denotes the

[CLS]-style representation summarizing the full input.

Concept Vectors and Activation Scores. For any semantic concept c, we define a concept vector
vc ∈ Rd, extracted via one of the techniques in Appendix C.2. Intuitively, vc represents a direction in
embedding space along which the concept c is encoded. The activation score of an embedding z
with respect to concept c is defined as

sc(z) = ⟨z, vc⟩.
If vc is derived as a cluster centroid, this corresponds to cosine similarity (for normalized embeddings).
If vc is derived from a linear separator, it corresponds to the signed distance from the separating
hyperplane. Intuitively, sc(z) measures the alignment of z with concept c: large positive values
indicate that z strongly encodes features associated with c, while negative values suggest opposition
or absence.

We aim to characterize, for each concept c, the distribution of activation scores across many samples.
Let Din

c and Dout
c denote the population-level distributions of activation scores for in-concept and
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out-of-concept tokens, respectively. Empirically, we approximate these distributions using finite
datasets Din

c and Dout
c constructed from observed activations. Let Z denote the set of all tokens across

samples, and let Sc = { sc(z) : z ∈ Z } be their corresponding activation scores. If Z in
c ⊆ Z are the

tokens labeled concept-positive for concept c and Zout
c are the tokens drawn from samples that do not

contain c (thus excluding out-of-concept tokens from samples containing c to avoid self-attention
leakage), then

Din
c = { sc(z) : z ∈ Z in

c }, Dout
c = { sc(z) : z ∈ Zout

c },
which serve as empirical samples from Din

c and Dout
c . We use Qq(D) to denote the population

q-quantile of a distribution D, and qq(D) to denote its empirical estimate computed from a finite
sample D.

Concept Detection. The goal of concept detection is to determine whether a sample x contains a
concept c [22]. Transformer models produce a collection of activation scores at the token level, but
for detection we require a single score per sample. This necessitates an aggregation operator that
interprets the set of token-level activations as a sample-level score.

Let Sc(x) = {sc,1(x), . . . , sc,n(x)(x), sc,cls(x)} denote the set of activation scores for concept c on
input x, where sc,i(x) is the score for the i-th token and sc,cls(x) is the score for the [CLS] token. An
aggregation operator is any function

G : Rn(x)+1 → R, sagg
c (x) = G(Sc(x)).

Given a calibrated threshold τc, detection is performed by

ŷc(x) = 1[ sagg
c (x) ≥ τc ] .

Because prior work has shown that different concepts may emerge at different layers of a trans-
former [33, 25, 34], we calibrate the layer separately for each concept to avoid enforcing a strict shared
choice. This calibration is also performed independently for each aggregation strategy, ensuring that
no operator is unfairly advantaged or disadvantaged due to layer-specific biases.

Standard Aggregation Strategies. Prior work has considered several choices of G, each operating
on the same token-level activations (with the exception of [CLS], which uses separately trained
concept vectors since sample-level and input token-level representations occupy different spaces):

• [CLS]-only (Gcls):
Gcls(Sc(x)) = sc,cls(x).

Uses only the [CLS] token score. Since CLS tokens are trained to attend to all inputs, they
are natural candidates for summarizing sample-level concepts, and this strategy has been
widely adopted [16, 25, 77].

• Mean pooling (Gmean):

Gmean(Sc(x)) =
1

n(x)

n(x)∑
i=1

sc,i(x).

Averages over all tokens. This ensures that no part of the input is ignored and can capture
distributed concept signals, a technique used in multiple studies [27, 12, 85].

• Max pooling (Gmax):

Gmax(Sc(x)) = max{sc,1(x), . . . , sc,n(x)(x), sc,cls(x)}.

Takes the strongest activation across input tokens. This is effective for isolating the most
distinct concept signals [28, 22, 78, 35].

• Last token (Glast):
Glast(Sc(x)) = sc,n(x)(x).

Uses the last input token activation. For autoregressive models, the final token often encodes
sequence-level information, making it a plausible summary for concept detection [29, 28,
48].
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• Random token (Grand):

Grand(Sc(x)) = sc,j(x), j ∼ Unif{1, . . . , n(x)}.

Selects an input token activation uniformly at random. While a weak baseline, self-attention
mechanisms distribute information broadly, so even a randomly chosen token may retain
meaningful concept cues.

These operators differ only in how they interpret activations; they do not alter how concept vectors are
trained. Thresholds τc are determined using a validation set (e.g., from a fixed grid of percentiles), and
detection at test time is performed by applying the same G to the sample activations and comparing
against τc.

SuperActivator Aggregation. We develop an aggregation strategy that takes advantage of the
SuperActivators mechanism we identified, using the highest-activation tokens in the global true-
concept distribution as the basis for concept detection.

Formally, let
S+

val,c =
{
sc,i(x)

∣∣ x ∈ X+
val,c, i ∈ {1, . . . , n(x)}

}
be the set of all token-level activations for c from validation samples where c is present. For a chosen
percentage δ (selected from a fixed grid), we define the SuperActivator threshold as

τ super
c = Q1−δ

(
S+

val,c

)
,

so that only the top δ percent of in-concept activations exceed τ super
c . Unlike traditional max pooling

approaches, which calibrate thresholds based on the single maximum activation per sample, our
approach looks at the highest activations generally in the in-concept distribution, allowing us to
consider multiple high-fidelity token activations per sample where calibrating.

At test time, we aggregate using a max operator,

Gsuper(Sc(x)) = maxSc(x),

and predict presence if this maximum exceeds the calibrated SuperActivator threshold:

ŷsuper
c (x) = 1[Gsuper(Sc(x)) ≥ τ super

c ] .

δ is calibrated per concept on the validation set to maximize detection F1. Beyond providing
thresholds for reporting overall detection scores, this calibration also allows us to analyze how
varying the sparsity level of the SuperActivator mechanism impacts performance.

E Comprehensive Concept Detection Results

The following tables compare our SuperActivator-based detection method with baseline approaches
across all datasets, models, and concept types. Each table reports the average F1 detection scores,
computed as the mean across concepts weighted by their frequency in the test set. In each table, the
top-performing concept detection method for each model/concept type combination is in bold and
the second best-performing is underlined.

On the image datasets (i.e., CLEVR, MS-Coco, OpenSurfaces, and Pascal), our SuperActivator
method consistently outperforms all other concept detection methods, except for a couple instances in
the very simple CLEVR dataset, where prompting achieves the highest performance by a small margin.
Though sometimes the CLS-based achieves near-equivalent performance, zero-shot prompting is
most consistently the next best detection method. For the text datasets, (i.e., Sarcasm, Augmented
iSarcasm, and Augmented GoEmotions), our SuperActivator also achieves consistently high detection
performance across configurations. However, particularly for the Augmented iSarcasm dataset, CLS-
based methods are able to outperform our SuperActivator, though usually by a very small amount
that falls within the margin of error.

Overall, these results confirm that across image and text modalities, model families, and concept
types, SuperActivator tokens provide a highly reliable signal of concept presence.
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Concept detection F1 for the CLEVR dataset.

Model Concept
Type

Concept Detection Methods

RandTok LastTok MeanTok CLS Prompt SuperAct (Ours)

CLIP

Avg 0.526 ± 0.028 0.542 ± 0.027 0.684 ± 0.020 0.957 ± 0.017 0.987 ± 0.009 0.986 ± 0.009
Linsep 0.745 ± 0.009 0.706 ± 0.008 0.840 ± 0.009 0.963 ± 0.015 0.987 ± 0.009 0.991 ± 0.007
K-Means 0.727 ± 0.013 0.878 ± 0.016 0.976 ± 0.013 0.959 ± 0.016 0.987 ± 0.009 0.991 ± 0.007
K-Linsep 0.737 ± 0.017 0.848 ± 0.017 0.907 ± 0.019 0.965 ± 0.015 0.987 ± 0.009 0.950 ± 0.015

Llama

Avg 0.645 ± 0.018 0.591 ± 0.019 0.660 ± 0.018 0.955 ± 0.017 0.987 ± 0.009 0.998 ± 0.003
Linsep 0.967 ± 0.090 0.879 ± 0.004 0.920 ± 0.004 0.961 ± 0.015 0.987 ± 0.009 0.997 ± 0.004
K-Means 0.775 ± 0.089 0.946 ± 0.090 0.955 ± 0.013 0.928 ± 0.021 0.987 ± 0.009 0.959 ± 0.013
K-Linsep 0.717 ± 0.024 0.910 ± 0.016 0.910 ± 0.015 0.962 ± 0.015 0.987 ± 0.009 0.989 ± 0.008

Concept detection F1 for the COCO dataset.

Model Concept
Type

Concept Detection Methods

RandTok LastTok MeanTok CLS Prompt SuperAct (Ours)

CLIP

Avg 0.575 ± 0.012 0.503 ± 0.012 0.494 ± 0.013 0.685 ± 0.012 0.686 ± 0.050 0.721 ± 0.012
Linsep 0.606 ± 0.011 0.687 ± 0.011 0.592 ± 0.011 0.702 ± 0.011 0.686 ± 0.050 0.787 ± 0.011
K-Means 0.525 ± 0.013 0.517 ± 0.013 0.337 ± 0.012 0.583 ± 0.012 0.686 ± 0.050 0.694 ± 0.012
K-Linsep 0.486 ± 0.012 0.523 ± 0.012 0.333 ± 0.011 0.571 ± 0.013 0.686 ± 0.050 0.696 ± 0.012

Llama

Avg 0.485 ± 0.011 0.457 ± 0.012 0.378 ± 0.012 0.534 ± 0.013 0.686 ± 0.050 0.746 ± 0.012
Linsep 0.606 ± 0.011 0.680 ± 0.011 0.551 ± 0.011 0.566 ± 0.013 0.686 ± 0.050 0.829 ± 0.010
K-Means 0.510 ± 0.012 0.491 ± 0.012 0.373 ± 0.011 0.447 ± 0.013 0.686 ± 0.050 0.747 ± 0.011
K-Linsep 0.493 ± 0.011 0.477 ± 0.012 0.363 ± 0.011 0.430 ± 0.013 0.686 ± 0.050 0.716 ± 0.011

Concept detection F1 for the OpenSurfaces dataset.

Model Concept
Type

Concept Detection Methods

RandTok LastTok MeanTok CLS Prompt SuperAct (Ours)

CLIP

Avg 0.438 ± 0.014 0.419 ± 0.013 0.403 ± 0.014 0.484 ± 0.014 0.491 ± 0.063 0.538 ± 0.014
Linsep 0.470 ± 0.014 0.470 ± 0.014 0.427 ± 0.014 0.492 ± 0.014 0.491 ± 0.063 0.551 ± 0.014
K-Means 0.443 ± 0.015 0.441 ± 0.015 0.373 ± 0.013 0.444 ± 0.010 0.491 ± 0.063 0.544 ± 0.014
K-Linsep 0.432 ± 0.013 0.454 ± 0.012 0.365 ± 0.011 0.443 ± 0.009 0.491 ± 0.063 0.543 ± 0.012

Llama

Avg 0.404 ± 0.012 0.375 ± 0.012 0.361 ± 0.012 0.446 ± 0.014 0.491 ± 0.063 0.534 ± 0.014
Linsep 0.438 ± 0.014 0.410 ± 0.014 0.390 ± 0.014 0.456 ± 0.013 0.491 ± 0.063 0.558 ± 0.015
K-Means 0.443 ± 0.010 0.431 ± 0.011 0.360 ± 0.010 0.423 ± 0.005 0.491 ± 0.063 0.545 ± 0.009
K-Linsep 0.439 ± 0.010 0.416 ± 0.011 0.360 ± 0.010 0.409 ± 0.011 0.491 ± 0.063 0.545 ± 0.008

Concept detection F1 for the Pascal dataset.

Model Concept
Type

Concept Detection Methods

RandTok LastTok MeanTok CLS Prompt SuperAct (Ours)

CLIP

Avg 0.612 ± 0.006 0.546 ± 0.006 0.594 ± 0.006 0.721 ± 0.006 0.680 ± 0.048 0.788 ± 0.006
Linsep 0.723 ± 0.005 0.674 ± 0.005 0.678 ± 0.005 0.740 ± 0.006 0.680 ± 0.048 0.826 ± 0.005
K-Means 0.533 ± 0.005 0.623 ± 0.002 0.490 ± 0.005 0.652 ± 0.003 0.680 ± 0.048 0.770 ± 0.001
K-Linsep 0.574 ± 0.005 0.577 ± 0.004 0.466 ± 0.005 0.633 ± 0.004 0.680 ± 0.048 0.756 ± 0.002

Llama

Avg 0.536 ± 0.006 0.510 ± 0.006 0.502 ± 0.006 0.619 ± 0.007 0.680 ± 0.048 0.786 ± 0.006
Linsep 0.659 ± 0.006 0.602 ± 0.006 0.590 ± 0.006 0.645 ± 0.006 0.680 ± 0.048 0.822 ± 0.005
K-Means 0.507 ± 0.006 0.601 ± 0.006 0.481 ± 0.006 0.568 ± 0.007 0.680 ± 0.048 0.792 ± 0.005
K-Linsep 0.499 ± 0.006 0.550 ± 0.006 0.443 ± 0.006 0.558 ± 0.007 0.680 ± 0.048 0.784 ± 0.006
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Concept detection F1 for the Sarcasm dataset.

Model Concept
Type

Concept Detection Methods

RandTok LastTok MeanTok CLS Prompt SuperAct (Ours)

Llama

Avg 0.659 ± 0.052 0.706 ± 0.051 0.659 ± 0.052 0.694 ± 0.060 0.679 ± 0.074 0.818 ± 0.051
Linsep 0.659 ± 0.060 0.683 ± 0.048 0.659 ± 0.060 0.737 ± 0.055 0.679 ± 0.074 0.870 ± 0.039
K-Means 0.659 ± 0.061 0.659 ± 0.061 0.659 ± 0.061 0.665 ± 0.053 0.679 ± 0.074 0.818 ± 0.049
K-Linsep 0.659 ± 0.054 0.670 ± 0.050 0.659 ± 0.052 0.658 ± 0.053 0.679 ± 0.074 0.826 ± 0.048

Qwen

Avg 0.662 ± 0.055 0.659 ± 0.066 0.659 ± 0.066 0.687 ± 0.055 0.679 ± 0.074 0.679 ± 0.060
Linsep 0.659 ± 0.055 0.662 ± 0.051 0.659 ± 0.055 0.750 ± 0.054 0.679 ± 0.074 0.857 ± 0.046
K-Means 0.659 ± 0.054 0.659 ± 0.054 0.659 ± 0.054 0.640 ± 0.059 0.679 ± 0.074 0.717 ± 0.062
K-Linsep 0.659 ± 0.054 0.716 ± 0.057 0.659 ± 0.054 0.675 ± 0.053 0.679 ± 0.074 0.769 ± 0.057

Gemma

Avg 0.659 ± 0.058 0.659 ± 0.058 0.659 ± 0.058 0.665 ± 0.059 0.679 ± 0.074 0.727 ± 0.056
Linsep 0.659 ± 0.059 0.668 ± 0.051 0.670 ± 0.051 0.686 ± 0.057 0.679 ± 0.074 0.810 ± 0.051
K-Means 0.659 ± 0.053 0.659 ± 0.053 0.659 ± 0.053 0.658 ± 0.053 0.679 ± 0.074 0.659 ± 0.052
K-Linsep 0.659 ± 0.054 0.682 ± 0.054 0.659 ± 0.054 0.670 ± 0.053 0.679 ± 0.074 0.659 ± 0.052

Concept detection F1 for the Augmented iSarcasm dataset.

Model Concept
Type

Concept Detection Methods

RandTok LastTok MeanTok CLS Prompt SuperAct (Ours)

Llama

Avg 0.677 ± 0.043 0.676 ± 0.043 0.676 ± 0.043 0.867 ± 0.038 0.789 ± 0.047 0.818 ± 0.043
Linsep 0.885 ± 0.035 0.717 ± 0.029 0.791 ± 0.029 0.912 ± 0.031 0.789 ± 0.047 0.924 ± 0.029
K-Means 0.737 ± 0.048 0.677 ± 0.055 0.677 ± 0.055 0.809 ± 0.041 0.789 ± 0.047 0.787 ± 0.044
K-Linsep 0.811 ± 0.038 0.828 ± 0.040 0.708 ± 0.045 0.802 ± 0.041 0.789 ± 0.047 0.866 ± 0.038

Qwen

Avg 0.676 ± 0.041 0.679 ± 0.041 0.678 ± 0.041 0.890 ± 0.034 0.789 ± 0.047 0.757 ± 0.041
Linsep 0.814 ± 0.041 0.711 ± 0.038 0.739 ± 0.041 0.917 ± 0.030 0.789 ± 0.047 0.895 ± 0.034
K-Means 0.676 ± 0.076 0.676 ± 0.076 0.676 ± 0.076 0.856 ± 0.038 0.789 ± 0.047 0.788 ± 0.046
K-Linsep 0.749 ± 0.044 0.676 ± 0.043 0.676 ± 0.043 0.878 ± 0.036 0.789 ± 0.047 0.832 ± 0.042

Gemma

Avg 0.735 ± 0.045 0.686 ± 0.039 0.702 ± 0.045 0.899 ± 0.032 0.789 ± 0.047 0.839 ± 0.038
Linsep 0.853 ± 0.031 0.789 ± 0.035 0.789 ± 0.035 0.904 ± 0.033 0.789 ± 0.047 0.892 ± 0.034
K-Means 0.676 ± 0.073 0.676 ± 0.073 0.676 ± 0.044 0.827 ± 0.040 0.789 ± 0.047 0.810 ± 0.045
K-Linsep 0.676 ± 0.043 0.679 ± 0.046 0.754 ± 0.043 0.864 ± 0.038 0.789 ± 0.047 0.825 ± 0.044

Concept detection F1 for the Augmented GoEmotions dataset.

Model Concept
Type

Concept Detection Methods

RandTok LastTok MeanTok CLS Prompt SuperAct (Ours)

Llama

Avg 0.293 ± 0.027 0.216 ± 0.027 0.216 ± 0.026 0.277 ± 0.028 0.252 ± 0.100 0.383 ± 0.028
Linsep 0.372 ± 0.028 0.307 ± 0.027 0.193 ± 0.029 0.320 ± 0.029 0.252 ± 0.100 0.459 ± 0.029
K-Means 0.305 ± 0.028 0.281 ± 0.029 0.117 ± 0.028 0.192 ± 0.022 0.252 ± 0.100 0.417 ± 0.028
K-Linsep 0.426 ± 0.027 0.365 ± 0.027 0.327 ± 0.028 0.213 ± 0.022 0.252 ± 0.100 0.448 ± 0.028

Qwen

Avg 0.277 ± 0.026 0.214 ± 0.026 0.151 ± 0.026 0.347 ± 0.028 0.252 ± 0.100 0.431 ± 0.027
Linsep 0.305 ± 0.028 0.248 ± 0.025 0.199 ± 0.026 0.357 ± 0.028 0.252 ± 0.100 0.458 ± 0.027
K-Means 0.341 ± 0.028 0.284 ± 0.027 0.111 ± 0.026 0.192 ± 0.021 0.252 ± 0.100 0.451 ± 0.027
K-Linsep 0.390 ± 0.026 0.373 ± 0.027 0.365 ± 0.026 0.191 ± 0.022 0.252 ± 0.100 0.453 ± 0.028

Gemma

Avg 0.336 ± 0.024 0.313 ± 0.023 0.151 ± 0.022 0.366 ± 0.029 0.252 ± 0.100 0.394 ± 0.026
Linsep 0.352 ± 0.026 0.301 ± 0.026 0.190 ± 0.027 0.361 ± 0.029 0.252 ± 0.100 0.420 ± 0.028
K-Means 0.294 ± 0.028 0.213 ± 0.025 0.132 ± 0.025 0.218 ± 0.020 0.252 ± 0.100 0.422 ± 0.026
K-Linsep 0.339 ± 0.028 0.315 ± 0.024 0.360 ± 0.025 0.205 ± 0.019 0.252 ± 0.100 0.414 ± 0.028
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F Ablation: How does concept detection performance vary with depth?

In this section, we investigate how average concept detection performance evolves throughout model
depth. Figures 15 and 16 visualize heatmaps of the average detection F1 scores as a function of
transformer layer depth for image and text datasets, respectively. Each heatmap reports the mean F1

score across all datasets for each model, concept type, and detection scheme, computed over a grid of
model depths. These heatmaps help illustrate how concept signals emerge and strengthen at different
stages within the network.

In the vision domain, detection performance generally increases with depth, plateauing around the
middle layers and declining slightly at the final layer. This behavior aligns with findings from prior
work [33, 25, 34], which report that mid-level and late-level layers often capture the richest and most
separable semantic information. A similar trend can be observed in text-based models, though with
greater variability across datasets and concept types. These results highlight that the most reliable
concept signals tend to emerge most clearly past intermediate layers, and that SuperActivator-based
detection consistently distinguishes concept presence better than baselines.
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Figure 15: SuperActivator detection across image datasets.
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Figure 16: SuperActivator detection across text datasets.
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G Ablation: Which Model Layers Yield the Most Separable Concepts?

In this section, we seek to identify where in the model concepts are most separable, that is, at
which layers concept vectors achieve their highest detection performance. For each dataset, we plot
the frequency of concept vectors that achieve their best F1 detection scores at each model layer.
These trends are shown for the SuperActivator detection scheme as well as for [CLS]-, mean-, and
last-token–based detection methods. All results in this analysis use linear separator concept vectors
derived from the LLaMA-3.2-11B-Vision-Instruct model.

For image datasets with primarily high-level object concepts, such as COCO and Pascal, the best-
performing concept vectors tend to appear in later layers. A similar but less pronounced pattern is
observed in OpenSurfaces, which contains both high-level objects and lower-level texture concepts. In
contrast, CLEVR—whose concepts include lower-level properties like color and slightly higher-level
ones like shape—shows strong detection performance from both early and late layers, suggesting that
different types of concepts emerge at different depths. For the text datasets Sarcasm, iSarcasm, and
GoEmotions, a comparable pattern arises: the best-detecting concept vectors most often originate
from later layers, though earlier layers also capture meaningful signals for certain concepts.
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Figure 17: CLEVR
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Figure 18: Coco
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Figure 19: OpenSurfaces
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Figure 20: Pascal
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Figure 21: Sarcasm
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Figure 22: iSarcasm
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Figure 23: GoEmotions
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H Ablation: How Does Optimal Sparsity for SuperActivator Detection Vary
Across Model Layers?

Next, we analyze how the optimal sparsity levels, δs, for SuperActivator-based concept detection
varies across layers in the model. Figures 24 and 25 visualize these results across layers for each
model: at every layer, we report the frequency of concepts whose optimal detection occurs at each
sparsity level δ, with different colors demarcating the datasets the concepts came from.

Early in the model, the best concept detection via SuperActivators occurs at extremely high sparsity
levels (δ ≈ 0.02–0.05) for most concepts. However, as shown in Appendix F, these early-layer
activations are not yet reliable indicators of concept presence. As we move deeper through the
transformer, the best-performing SuperActivators tend to occur at higher δs, meaning that more
tokens contribute to concept detection. Even so, the activations remain far from dense, typically
involving fewer than half of the true in-concept tokens. Our main takeaway is that the concept signals
are expressed most reliably by a small set of activations, no matter the depth that the concepts were
extracted from.

Figure 24: Image Domain – Optimal Sparsity over Layers
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Figure 25: Text Domain – Optimal Sparsity over Layers
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I Ablation: How Does Sparsity Affect Average SuperActivator Detection
Performance?

In this section, we evaluate SuperActivator-based concept detection performance across varying
sparsity levels. The sparsity level δ corresponds to the δ in the SuperActivator definition—thresholds
are calibrated using the top δ percent of in-concept token activations. Reported F1 values represent
the average of the per-concept detection F1, each computed using the corresponding δ, weighted by
concept frequency and evaluated at each concept’s best-performing layer on the validation set.

Across all model–dataset combinations, we observe that concepts generally achieve their strongest
detection performance at low sparsity levels. This supports our broader finding that concept signals
are highly concentrated: incorporating additional tokens beyond this sparse subset tends to degrade
detection performance.
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Figure 26: Image Domain – Detection F1 over Sparsity Level δ
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Figure 27: Text Domain – Detection F1 over Sparsity Level δ
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J Qualitative Visualizations of SuperActivators Over Model Layers

Next, we present qualitative examples from each dataset illustrating how the SuperActivator mecha-
nism manifests across layers of the LLaMA-3.1-11B-Vision-Instruct model. Each example visualizes
linear separator activations for several concepts within a single test sample, along with the corre-
sponding SuperActivators identified using layer-specific, concept-calibrated thresholds.
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Figure 28: CLEVR – SuperActivators Across LLaMA-3.2-11B-Vision-Instruct Layers
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Figure 29: COCO – SuperActivators Across LLaMA-3.2-11B-Vision-Instruct Layers
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Figure 30: Broden-OpenSurfaces – SuperActivators Across LLaMA-3.2-11B-Vision-Instruct Layers

43



Horse

Original 2% 28% 52% 78% 100%

Muzzle

Wood

Dog

Beak

Sky

0 1 2 3
Concept Activation Score

% Through Model

 SuperActivators

Figure 31: Broden-Pascal – SuperActivators Across LLaMA-3.2-11B-Vision-Instruct Layers

44



Concept: Sarcasm
Original
Text:

It's such a treat when my morning coffee decides to spill all over my fresh white shirt. I was running late for work
 and in my rush, I knocked my coffee mug right off the counter. Thankfully, I had a spare shirt in my car.
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 and in my rush, I knocked my coffee mug right off the counter. Thankfully, I had a spare shirt in my car.

19%: It's such a treat when my morning coffee decides to spill all over my fresh white shirt. I was running late for work
 and in my rush, I knocked my coffee mug right off the counter. Thankfully, I had a spare shirt in my car.

50%: It's such a treat when my morning coffee decides to spill all over my fresh white shirt. I was running late for work
 and in my rush, I knocked my coffee mug right off the counter. Thankfully, I had a spare shirt in my car.

81%: It's such a treat when my morning coffee decides to spill all over my fresh white shirt. I was running late for work
 and in my rush, I knocked my coffee mug right off the counter. Thankfully, I had a spare shirt in my car.

100%: It's such a treat when my morning coffee decides to spill all over my fresh white shirt. I was running late for work
 and in my rush, I knocked my coffee mug right off the counter. Thankfully, I had a spare shirt in my car.
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Figure 32: Sarcasm – SuperActivators Across LLaMA-3.2-11B-Vision-Instruct Layers

Concept: Sarcastic
Original
Text:

there's no better way to wake up than having one dog jump directly on your stomach and knock the wind out of
 you while the other drop a dead rodent on the end of the bed.  i really need to start closing the bedroom door at
 night. #morningchaos
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Figure 33: iSarcasm – SuperActivators Across LLaMA-3.2-11B-Vision-Instruct Layers
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Concept: Anger
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Text:

WHAT THE HELL! I opened up the
 new software update, and it seems
 like they've moved all the settings
 around again.
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Figure 34: GoEmotions – SuperActivators Across LLaMA-3.2-11B-Vision-Instruct Layers
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K Concept Attribution

K.1 Attribution Methods

This section provides a brief overview of several attribution methods in which the objective is defined
either by a global concept vector vc or by the average embedding of local SuperActivators.

• LIME (Local Interpretable Model-agnostic Explanations) [56] explains an individual
prediction by approximating the complex model with a simpler, interpretable model (e.g.,
a linear model) in the local vicinity of the prediction. It achieves this by generating a new
dataset of perturbed samples around the instance being explained and learning the simpler
model on this new dataset, weighted by proximity to the original instance.

• SHAP (SHapley Additive exPlanations) [57] assigns an importance value to each feature
for a particular prediction. Based on cooperative game theory, this value represents the
feature’s marginal contribution to the model’s output, ensuring the sum of all values explains
the difference between the model’s prediction and a baseline.

• RISE (Randomized Input Sampling for Explanation) [58] generates a visual explanation
by probing the model with numerous randomly masked versions of an input image. The
final importance map is a weighted average of these random masks, where weights are
determined by the model’s output confidence for each corresponding masked image.

• SHAP IQ (SHAP Interaction-aware exPlanations for Quantifying feature importance)
[59] extends the SHAP framework to quantify the effects of feature interactions. Beyond
calculating the main effect of each feature, it also computes interaction indices to provide a
more complete picture of how combinations of features jointly influence a prediction.

• IntGrad (Integrated Gradients) [60] calculates the importance of each input feature by
integrating the gradients of the model’s output with respect to the feature’s inputs. This
integration is performed along a straight-line path from a baseline input (e.g., a black image)
to the actual input, satisfying key axioms like sensitivity.

• Grad-CAM (Gradient-weighted Class Activation Mapping) [61] produces a coarse
localization map for CNNs by using the gradients of the target class score with respect to
the feature maps of the final convolutional layer. These gradients are used to compute a
weighted combination of the activation maps, highlighting important image regions.

• FullGrad [62] enhances gradient-based explanations by aggregating gradient information
from all layers of a neural network. It combines the input gradients with bias gradients
from all intermediate feature maps to capture more comprehensive feature representations,
resulting in more detailed saliency maps.

• CALM (Class Activation Latent Mapping) [63] improves on Class Activation Mapping
(CAM) by introducing a probabilistic latent variable that directly represents the location
of the most important visual cue for a model’s prediction. Trained with the Expectation-
Maximization (EM) algorithm, the method outputs a probability map showing the likelihood
that each pixel is the critical cue for the decision.

• MFABA (More Faithful and Accelerated Boundary-based Attribution) [86] is a
boundary-based attribution method that constructs a path from an input toward the de-
cision boundary. Along this path, it uses a second-order Taylor expansion of the loss
function to better approximate how the model’s output or loss changes. The resulting
attribution scores reflect how much each feature contributes to pushing the input toward or
away from the boundary.

K.2 Additional Results for Concept Attribution

This section presents the full results for concept attribution across all experimental configurations,
which were summarized in Table 2 in the main text. These detailed tables are provided to demonstrate
that our main findings are consistent across all individual concepts and experimental settings. As these
results confirm, using the average embedding of local SuperActivators as the explanation objective
consistently leads to better performance than using the concept vector directly.
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(a) Original text (Sarcasm SuperActivators label in
green)

(b) Sarcasm global concept vector attribution map

Figure 35: SuperActivators produce attribution maps that better match the true sarcastic cues.
Shown are token-level attributions for the concept Sarcasm on a sample from the Sarcasm dataset,
using LLaMA token-level linear-separator concepts with LIME-based attribution. Red indicates
high alignment and blue indicates low alignment. In (b), many highly aligned tokens fall outside the
labeled sarcastic region, while SuperActivators (green boxes) align more closely with the ground-truth
cues.

We present our results across seven tables, each corresponding to one dataset and jointly evaluating
both supervised and unsupervised concept representations. For every dataset—four image tasks
(Tables 3, 4, 5, and 6) and three text tasks (Tables 7, 8, and 9)—we report the average F1 score across
all concepts, weighted by their frequency in the test set (Appendix C.5). Each table compares two
concept extraction methods (Clustering vs. Linear Separator) and two attribution objectives (global
concept vector vs. average local SuperActivators patch embedding). Within each table:

• Avg denotes supervised clustering-based concepts
• Linsep denotes supervised linear-separator concepts
• K-Means denotes unsupervised clustering-based concepts
• K-Linsep denotes unsupervised linear-separator concepts

Additional details on concept extraction and evaluation procedures are provided in Appendix C.2.

K.3 Qualitative Example Showing SuperActivators for Improved Concept Attribution

Figure 6 further illustrates the advantage: attribution using SuperActivators for the concept person
provides better coverage for the full target object while avoiding irrelevant regions such as tables,
which the global vector incorrectly highlights.

Figure 35 shows a similar pattern on text: SuperActivators attribution for sarcasm focuses on the true
sarcastic cues while avoiding irrelevant tokens that the global concept vector incorrectly highlights.

48



Table 3: Average F1 for the CLEVR Dataset.

Attribution Method Concept Type CLIP Llama

Concept SuperActivators Concept SuperActivators

CosSim Avg 0.60 ± 0.02 0.60 ± 0.01 0.78 ± 0.01 0.55 ± 0.03
Linsep 0.65 ± 0.01 0.61 ± 0.03 0.85 ± 0.02 0.54 ± 0.01
K-Means 0.63 ± 0.02 0.64 ± 0.01 0.46 ± 0.01 0.43 ± 0.03
K-Linsep 0.60 ± 0.01 0.59 ± 0.03 0.38 ± 0.02 0.33 ± 0.01

LIME Avg 0.49 ± 0.02 0.55 ± 0.04 0.76 ± 0.03 0.81 ± 0.02
Linsep 0.49 ± 0.00 0.68 ± 0.01 0.70 ± 0.01 0.85 ± 0.01
K-Means 0.52 ± 0.03 0.61 ± 0.01 0.76 ± 0.01 0.81 ± 0.02
K-Linsep 0.52 ± 0.02 0.77 ± 0.03 0.68 ± 0.03 0.83 ± 0.01

SHAP Avg 0.51 ± 0.01 0.53 ± 0.02 0.75 ± 0.02 0.80 ± 0.03
Linsep 0.52 ± 0.03 0.58 ± 0.01 0.75 ± 0.01 0.80 ± 0.01
K-Means 0.51 ± 0.01 0.53 ± 0.02 0.75 ± 0.02 0.80 ± 0.01
K-Linsep 0.52 ± 0.03 0.58 ± 0.01 0.75 ± 0.01 0.80 ± 0.03

RISE Avg 0.53 ± 0.02 0.53 ± 0.03 0.55 ± 0.03 0.56 ± 0.02
Linsep 0.58 ± 0.01 0.59 ± 0.02 0.60 ± 0.02 0.63 ± 0.01
K-Means 0.53 ± 0.02 0.53 ± 0.01 0.55 ± 0.03 0.56 ± 0.02
K-Linsep 0.58 ± 0.01 0.59 ± 0.03 0.60 ± 0.01 0.63 ± 0.02

SHAP IQ Avg 0.52 ± 0.04 0.53 ± 0.01 0.55 ± 0.01 0.58 ± 0.02
Linsep 0.58 ± 0.02 0.58 ± 0.03 0.60 ± 0.03 0.61 ± 0.01
K-Means 0.52 ± 0.03 0.53 ± 0.02 0.55 ± 0.02 0.58 ± 0.01
K-Linsep 0.58 ± 0.01 0.58 ± 0.02 0.60 ± 0.01 0.61 ± 0.03

IntGrad Avg 0.46 ± 0.01 0.53 ± 0.03 0.77 ± 0.02 0.80 ± 0.02
Linsep 0.49 ± 0.03 0.55 ± 0.01 0.72 ± 0.01 0.78 ± 0.03
K-Means 0.47 ± 0.02 0.47 ± 0.01 0.56 ± 0.03 0.58 ± 0.02
K-Linsep 0.58 ± 0.01 0.59 ± 0.03 0.62 ± 0.01 0.64 ± 0.02

GradCAM Avg 0.45 ± 0.02 0.48 ± 0.01 0.50 ± 0.03 0.52 ± 0.01
Linsep 0.48 ± 0.01 0.48 ± 0.02 0.50 ± 0.02 0.52 ± 0.02
K-Means 0.41 ± 0.03 0.45 ± 0.02 0.50 ± 0.02 0.47 ± 0.01
K-Linsep 0.48 ± 0.01 0.46 ± 0.02 0.48 ± 0.01 0.49 ± 0.03

FullGrad Avg 0.46 ± 0.02 0.46 ± 0.03 0.47 ± 0.01 0.49 ± 0.02
Linsep 0.50 ± 0.01 0.52 ± 0.02 0.51 ± 0.02 0.55 ± 0.01
K-Means 0.45 ± 0.02 0.42 ± 0.01 0.42 ± 0.03 0.45 ± 0.02
K-Linsep 0.49 ± 0.01 0.49 ± 0.03 0.50 ± 0.01 0.53 ± 0.02

CALM Avg 0.48 ± 0.03 0.52 ± 0.01 0.49 ± 0.03 0.53 ± 0.02
Linsep 0.55 ± 0.02 0.56 ± 0.02 0.57 ± 0.01 0.57 ± 0.03
K-Means 0.44 ± 0.03 0.50 ± 0.02 0.46 ± 0.02 0.48 ± 0.01
K-Linsep 0.50 ± 0.01 0.54 ± 0.02 0.53 ± 0.01 0.54 ± 0.03

MFABA Avg 0.50 ± 0.01 0.51 ± 0.01 0.51 ± 0.02 0.53 ± 0.01
Linsep 0.55 ± 0.03 0.55 ± 0.02 0.56 ± 0.01 0.58 ± 0.03
K-Means 0.45 ± 0.02 0.48 ± 0.01 0.47 ± 0.03 0.52 ± 0.02
K-Linsep 0.51 ± 0.01 0.50 ± 0.03 0.54 ± 0.01 0.55 ± 0.02
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Table 4: Average F1 for the COCO Dataset.

Attribution Method Concept Type CLIP Llama

Concept SuperActivators Concept SuperActivators

CosSim

Avg 0.43 ± 0.03 0.40 ± 0.02 0.36 ± 0.02 0.37 ± 0.01
Linsep 0.52 ± 0.02 0.45 ± 0.00 0.46 ± 0.03 0.44 ± 0.02
K-Means 0.34 ± 0.03 0.37 ± 0.02 0.22 ± 0.02 0.28 ± 0.01
K-Linsep 0.33 ± 0.02 0.36 ± 0.01 0.23 ± 0.03 0.26 ± 0.02

LIME

Avg 0.32 ± 0.01 0.38 ± 0.02 0.47 ± 0.01 0.51 ± 0.02
Linsep 0.29 ± 0.02 0.40 ± 0.03 0.49 ± 0.02 0.50 ± 0.03
K-Means 0.36 ± 0.02 0.38 ± 0.03 0.45 ± 0.03 0.52 ± 0.01
K-Linsep 0.38 ± 0.01 0.41 ± 0.02 0.49 ± 0.02 0.55 ± 0.03

SHAP

Avg 0.34 ± 0.03 0.38 ± 0.01 0.48 ± 0.03 0.51 ± 0.01
Linsep 0.35 ± 0.01 0.37 ± 0.02 0.49 ± 0.02 0.55 ± 0.04
K-Means 0.34 ± 0.03 0.38 ± 0.01 0.48 ± 0.03 0.51 ± 0.01
K-Linsep 0.35 ± 0.02 0.37 ± 0.03 0.49 ± 0.02 0.53 ± 0.01

RISE

Avg 0.34 ± 0.01 0.34 ± 0.02 0.36 ± 0.01 0.38 ± 0.01
Linsep 0.35 ± 0.02 0.38 ± 0.03 0.35 ± 0.03 0.40 ± 0.02
K-Means 0.34 ± 0.03 0.34 ± 0.02 0.36 ± 0.01 0.38 ± 0.03
K-Linsep 0.35 ± 0.02 0.38 ± 0.01 0.35 ± 0.03 0.40 ± 0.02

SHAP IQ

Avg 0.33 ± 0.03 0.35 ± 0.02 0.35 ± 0.02 0.36 ± 0.01
Linsep 0.34 ± 0.01 0.37 ± 0.01 0.36 ± 0.01 0.38 ± 0.03
K-Means 0.33 ± 0.01 0.35 ± 0.03 0.35 ± 0.02 0.36 ± 0.01
K-Linsep 0.34 ± 0.03 0.37 ± 0.01 0.36 ± 0.02 0.38 ± 0.01

IntGrad

Avg 0.30 ± 0.02 0.33 ± 0.02 0.42 ± 0.03 0.45 ± 0.01
Linsep 0.28 ± 0.00 0.35 ± 0.04 0.43 ± 0.02 0.48 ± 0.01
K-Means 0.28 ± 0.03 0.31 ± 0.02 0.48 ± 0.01 0.47 ± 0.03
K-Linsep 0.31 ± 0.02 0.35 ± 0.01 0.38 ± 0.03 0.39 ± 0.01

GradCAM

Avg 0.31 ± 0.03 0.31 ± 0.01 0.32 ± 0.02 0.35 ± 0.03
Linsep 0.37 ± 0.01 0.38 ± 0.02 0.37 ± 0.01 0.37 ± 0.02
K-Means 0.28 ± 0.01 0.31 ± 0.03 0.31 ± 0.03 0.33 ± 0.02
K-Linsep 0.35 ± 0.03 0.36 ± 0.01 0.36 ± 0.02 0.34 ± 0.01

FullGrad

Avg 0.33 ± 0.02 0.32 ± 0.01 0.35 ± 0.03 0.38 ± 0.01
Linsep 0.43 ± 0.01 0.43 ± 0.00 0.39 ± 0.01 0.39 ± 0.03
K-Means 0.29 ± 0.03 0.31 ± 0.02 0.30 ± 0.01 0.33 ± 0.03
K-Linsep 0.35 ± 0.02 0.39 ± 0.01 0.37 ± 0.03 0.34 ± 0.01

CALM

Avg 0.32 ± 0.02 0.32 ± 0.03 0.30 ± 0.01 0.29 ± 0.02
Linsep 0.42 ± 0.01 0.42 ± 0.01 0.38 ± 0.02 0.41 ± 0.01
K-Means 0.29 ± 0.01 0.29 ± 0.03 0.26 ± 0.02 0.25 ± 0.02
K-Linsep 0.35 ± 0.02 0.39 ± 0.01 0.35 ± 0.02 0.36 ± 0.01

MFABA

Avg 0.31 ± 0.04 0.37 ± 0.02 0.33 ± 0.03 0.34 ± 0.02
Linsep 0.33 ± 0.01 0.39 ± 0.03 0.35 ± 0.02 0.39 ± 0.01
K-Means 0.29 ± 0.03 0.33 ± 0.02 0.28 ± 0.01 0.32 ± 0.03
K-Linsep 0.30 ± 0.02 0.35 ± 0.01 0.33 ± 0.03 0.36 ± 0.01
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Table 5: Average F1 for the OpenSurfaces Dataset.

Attribution Method Concept Type CLIP Llama

Concept SuperActivators Concept SuperActivators

CosSim

Avg 0.22 ± 0.01 0.18 ± 0.04 0.19 ± 0.03 0.15 ± 0.02
Linsep 0.28 ± 0.03 0.22 ± 0.02 0.23 ± 0.01 0.17 ± 0.01
K-Means 0.19 ± 0.01 0.19 ± 0.03 0.14 ± 0.03 0.15 ± 0.02
K-Linsep 0.19 ± 0.03 0.18 ± 0.02 0.15 ± 0.01 0.14 ± 0.03

LIME

Avg 0.42 ± 0.03 0.50 ± 0.01 0.55 ± 0.03 0.62 ± 0.01
Linsep 0.46 ± 0.01 0.50 ± 0.03 0.60 ± 0.01 0.68 ± 0.02
K-Means 0.37 ± 0.01 0.41 ± 0.02 0.37 ± 0.02 0.37 ± 0.03
K-Linsep 0.39 ± 0.03 0.41 ± 0.01 0.38 ± 0.01 0.39 ± 0.02

SHAP

Avg 0.40 ± 0.02 0.42 ± 0.04 0.53 ± 0.02 0.57 ± 0.03
Linsep 0.42 ± 0.02 0.44 ± 0.01 0.55 ± 0.03 0.56 ± 0.01
K-Means 0.40 ± 0.02 0.42 ± 0.03 0.53 ± 0.02 0.57 ± 0.03
K-Linsep 0.42 ± 0.01 0.44 ± 0.02 0.55 ± 0.03 0.56 ± 0.01

RISE

Avg 0.40 ± 0.04 0.42 ± 0.01 0.51 ± 0.02 0.52 ± 0.03
Linsep 0.43 ± 0.01 0.45 ± 0.02 0.53 ± 0.01 0.55 ± 0.02
K-Means 0.40 ± 0.01 0.42 ± 0.03 0.51 ± 0.02 0.52 ± 0.01
K-Linsep 0.43 ± 0.03 0.45 ± 0.02 0.53 ± 0.01 0.55 ± 0.02

SHAP IQ

Avg 0.40 ± 0.02 0.43 ± 0.01 0.51 ± 0.03 0.53 ± 0.02
Linsep 0.42 ± 0.03 0.45 ± 0.02 0.52 ± 0.01 0.52 ± 0.02
K-Means 0.40 ± 0.02 0.43 ± 0.01 0.51 ± 0.03 0.53 ± 0.02
K-Linsep 0.42 ± 0.02 0.45 ± 0.03 0.52 ± 0.01 0.52 ± 0.02

IntGrad

Avg 0.43 ± 0.01 0.51 ± 0.02 0.46 ± 0.02 0.47 ± 0.03
Linsep 0.44 ± 0.02 0.49 ± 0.02 0.56 ± 0.01 0.62 ± 0.02
K-Means 0.33 ± 0.01 0.34 ± 0.03 0.32 ± 0.02 0.35 ± 0.01
K-Linsep 0.35 ± 0.03 0.35 ± 0.02 0.34 ± 0.02 0.35 ± 0.03

GradCAM

Avg 0.41 ± 0.02 0.43 ± 0.03 0.45 ± 0.01 0.46 ± 0.02
Linsep 0.44 ± 0.01 0.46 ± 0.01 0.45 ± 0.03 0.51 ± 0.01
K-Means 0.36 ± 0.02 0.40 ± 0.01 0.43 ± 0.01 0.42 ± 0.03
K-Linsep 0.42 ± 0.02 0.43 ± 0.03 0.44 ± 0.01 0.46 ± 0.02

FullGrad

Avg 0.38 ± 0.03 0.41 ± 0.02 0.40 ± 0.02 0.41 ± 0.01
Linsep 0.42 ± 0.04 0.45 ± 0.01 0.43 ± 0.01 0.47 ± 0.02
K-Means 0.36 ± 0.01 0.37 ± 0.03 0.36 ± 0.02 0.38 ± 0.01
K-Linsep 0.38 ± 0.03 0.40 ± 0.02 0.41 ± 0.01 0.44 ± 0.02

CALM

Avg 0.33 ± 0.01 0.35 ± 0.01 0.35 ± 0.02 0.37 ± 0.01
Linsep 0.35 ± 0.02 0.38 ± 0.03 0.36 ± 0.01 0.41 ± 0.03
K-Means 0.29 ± 0.02 0.32 ± 0.01 0.33 ± 0.01 0.36 ± 0.03
K-Linsep 0.32 ± 0.02 0.34 ± 0.03 0.34 ± 0.02 0.39 ± 0.01

MFABA

Avg 0.42 ± 0.02 0.44 ± 0.03 0.44 ± 0.01 0.44 ± 0.02
Linsep 0.45 ± 0.01 0.48 ± 0.01 0.44 ± 0.02 0.47 ± 0.03
K-Means 0.40 ± 0.01 0.40 ± 0.03 0.42 ± 0.01 0.41 ± 0.02
K-Linsep 0.43 ± 0.03 0.45 ± 0.02 0.42 ± 0.03 0.44 ± 0.01
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Table 6: Average F1 for the Pascal Dataset.

Attribution Method Concept Type CLIP Llama

Concept SuperActivators Concept SuperActivators

CosSim

Avg 0.42 ± 0.02 0.35 ± 0.01 0.40 ± 0.01 0.29 ± 0.04
Linsep 0.54 ± 0.01 0.42 ± 0.03 0.46 ± 0.02 0.33 ± 0.03
K-Means 0.27 ± 0.02 0.33 ± 0.01 0.22 ± 0.01 0.24 ± 0.03
K-Linsep 0.24 ± 0.01 0.30 ± 0.03 0.22 ± 0.02 0.24 ± 0.01

LIME

Avg 0.50 ± 0.02 0.52 ± 0.02 0.69 ± 0.02 0.71 ± 0.03
Linsep 0.51 ± 0.03 0.55 ± 0.01 0.71 ± 0.03 0.72 ± 0.01
K-Means 0.33 ± 0.03 0.34 ± 0.01 0.33 ± 0.01 0.32 ± 0.02
K-Linsep 0.36 ± 0.02 0.35 ± 0.03 0.33 ± 0.03 0.33 ± 0.01

SHAP

Avg 0.48 ± 0.01 0.52 ± 0.03 0.65 ± 0.01 0.70 ± 0.02
Linsep 0.50 ± 0.00 0.52 ± 0.02 0.69 ± 0.02 0.72 ± 0.01
K-Means 0.48 ± 0.01 0.52 ± 0.02 0.65 ± 0.02 0.70 ± 0.01
K-Linsep 0.50 ± 0.03 0.52 ± 0.01 0.69 ± 0.01 0.72 ± 0.03

RISE

Avg 0.50 ± 0.03 0.51 ± 0.01 0.52 ± 0.01 0.55 ± 0.03
Linsep 0.54 ± 0.03 0.54 ± 0.02 0.55 ± 0.02 0.58 ± 0.01
K-Means 0.50 ± 0.02 0.51 ± 0.01 0.52 ± 0.01 0.55 ± 0.03
K-Linsep 0.54 ± 0.01 0.54 ± 0.03 0.55 ± 0.02 0.58 ± 0.01

SHAP IQ

Avg 0.50 ± 0.01 0.51 ± 0.03 0.52 ± 0.01 0.55 ± 0.04
Linsep 0.52 ± 0.02 0.53 ± 0.04 0.53 ± 0.03 0.54 ± 0.01
K-Means 0.50 ± 0.03 0.51 ± 0.02 0.52 ± 0.01 0.55 ± 0.02
K-Linsep 0.52 ± 0.01 0.53 ± 0.02 0.53 ± 0.03 0.54 ± 0.01

IntGrad

Avg 0.48 ± 0.03 0.51 ± 0.01 0.69 ± 0.01 0.71 ± 0.02
Linsep 0.49 ± 0.01 0.52 ± 0.03 0.67 ± 0.03 0.71 ± 0.01
K-Means 0.33 ± 0.02 0.33 ± 0.01 0.34 ± 0.02 0.35 ± 0.01
K-Linsep 0.34 ± 0.01 0.34 ± 0.03 0.34 ± 0.01 0.34 ± 0.02

GradCAM

Avg 0.43 ± 0.04 0.45 ± 0.02 0.45 ± 0.02 0.45 ± 0.03
Linsep 0.44 ± 0.03 0.47 ± 0.01 0.47 ± 0.02 0.50 ± 0.01
K-Means 0.42 ± 0.03 0.40 ± 0.02 0.43 ± 0.02 0.40 ± 0.01
K-Linsep 0.43 ± 0.01 0.45 ± 0.02 0.44 ± 0.01 0.47 ± 0.03

FullGrad

Avg 0.41 ± 0.01 0.44 ± 0.03 0.40 ± 0.01 0.42 ± 0.03
Linsep 0.44 ± 0.02 0.45 ± 0.01 0.44 ± 0.02 0.44 ± 0.02
K-Means 0.37 ± 0.02 0.42 ± 0.01 0.38 ± 0.03 0.38 ± 0.02
K-Linsep 0.43 ± 0.01 0.42 ± 0.03 0.42 ± 0.02 0.43 ± 0.01

CALM

Avg 0.42 ± 0.03 0.42 ± 0.02 0.44 ± 0.03 0.45 ± 0.01
Linsep 0.46 ± 0.01 0.48 ± 0.01 0.48 ± 0.02 0.52 ± 0.01
K-Means 0.37 ± 0.03 0.37 ± 0.02 0.41 ± 0.01 0.43 ± 0.02
K-Linsep 0.43 ± 0.01 0.46 ± 0.02 0.45 ± 0.02 0.49 ± 0.01

MFABA

Avg 0.50 ± 0.02 0.52 ± 0.02 0.50 ± 0.03 0.51 ± 0.01
Linsep 0.53 ± 0.02 0.55 ± 0.03 0.51 ± 0.01 0.52 ± 0.02
K-Means 0.46 ± 0.02 0.50 ± 0.01 0.48 ± 0.03 0.47 ± 0.02
K-Linsep 0.51 ± 0.01 0.49 ± 0.03 0.49 ± 0.01 0.47 ± 0.02
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Table 7: Average F1 for the Sarcasm Dataset.
Attribution

Method
Concept

Type
Llama Qwen Gemma

Concept Super
Activators Concept Super

Activators Concept Super
Activators

CosSim

Avg 0.39 ± 0.01 0.25 ± 0.03 0.38 ± 0.02 0.26 ± 0.03 0.42 ± 0.03 0.25 ± 0.02
LinSep 0.63 ± 0.02 0.37 ± 0.01 0.58 ± 0.01 0.37 ± 0.02 0.57 ± 0.01 0.40 ± 0.03
K-Means 0.28 ± 0.01 0.28 ± 0.03 0.26 ± 0.02 0.25 ± 0.01 0.24 ± 0.03 0.23 ± 0.02
K-LinSep 0.28 ± 0.02 0.28 ± 0.01 0.24 ± 0.01 0.24 ± 0.03 0.24 ± 0.02 0.23 ± 0.01

LIME

Avg 0.34 ± 0.01 0.46 ± 0.03 0.33 ± 0.03 0.45 ± 0.01 0.36 ± 0.02 0.50 ± 0.01
LinSep 0.52 ± 0.02 0.70 ± 0.02 0.51 ± 0.02 0.65 ± 0.03 0.54 ± 0.01 0.63 ± 0.03
K-Means 0.29 ± 0.01 0.50 ± 0.02 0.31 ± 0.02 0.45 ± 0.01 0.33 ± 0.01 0.51 ± 0.02
K-LinSep 0.50 ± 0.03 0.74 ± 0.01 0.53 ± 0.01 0.60 ± 0.03 0.55 ± 0.03 0.66 ± 0.01

SHAP

Avg 0.35 ± 0.03 0.47 ± 0.01 0.34 ± 0.01 0.46 ± 0.02 0.37 ± 0.03 0.51 ± 0.02
LinSep 0.53 ± 0.01 0.71 ± 0.03 0.52 ± 0.03 0.66 ± 0.01 0.55 ± 0.02 0.64 ± 0.01
K-Means 0.30 ± 0.02 0.46 ± 0.01 0.30 ± 0.03 0.45 ± 0.02 0.35 ± 0.02 0.46 ± 0.01
K-LinSep 0.54 ± 0.01 0.74 ± 0.03 0.54 ± 0.01 0.68 ± 0.02 0.51 ± 0.01 0.67 ± 0.03

RISE

Avg 0.39 ± 0.02 0.52 ± 0.01 0.38 ± 0.02 0.50 ± 0.03 0.42 ± 0.01 0.55 ± 0.03
LinSep 0.57 ± 0.01 0.76 ± 0.02 0.56 ± 0.01 0.71 ± 0.02 0.59 ± 0.03 0.69 ± 0.02
K-Means 0.40 ± 0.03 0.49 ± 0.02 0.39 ± 0.02 0.52 ± 0.01 0.46 ± 0.03 0.55 ± 0.02
K-LinSep 0.59 ± 0.01 0.72 ± 0.02 0.53 ± 0.01 0.74 ± 0.03 0.60 ± 0.01 0.70 ± 0.02

SHAP IQ

Avg 0.36 ± 0.03 0.49 ± 0.01 0.36 ± 0.03 0.48 ± 0.01 0.39 ± 0.02 0.53 ± 0.01
LinSep 0.55 ± 0.01 0.73 ± 0.03 0.54 ± 0.02 0.68 ± 0.03 0.57 ± 0.01 0.66 ± 0.03
K-Means 0.38 ± 0.02 0.46 ± 0.01 0.37 ± 0.03 0.45 ± 0.02 0.40 ± 0.02 0.51 ± 0.01
K-LinSep 0.52 ± 0.01 0.74 ± 0.03 0.52 ± 0.01 0.70 ± 0.02 0.59 ± 0.01 0.66 ± 0.03

IntGrad

Avg 0.27 ± 0.02 0.40 ± 0.01 0.27 ± 0.01 0.39 ± 0.02 0.29 ± 0.02 0.43 ± 0.01
LinSep 0.39 ± 0.01 0.64 ± 0.02 0.38 ± 0.03 0.59 ± 0.01 0.41 ± 0.01 0.58 ± 0.02
K-Means 0.39 ± 0.03 0.27 ± 0.02 0.38 ± 0.02 0.29 ± 0.01 0.41 ± 0.03 0.27 ± 0.02
K-LinSep 0.38 ± 0.01 0.67 ± 0.02 0.41 ± 0.01 0.58 ± 0.03 0.39 ± 0.01 0.58 ± 0.02

GradCAM

Avg 0.31 ± 0.01 0.44 ± 0.03 0.30 ± 0.02 0.43 ± 0.03 0.33 ± 0.03 0.47 ± 0.01
LinSep 0.43 ± 0.02 0.68 ± 0.01 0.42 ± 0.01 0.63 ± 0.02 0.45 ± 0.02 0.62 ± 0.03
K-Means 0.31 ± 0.02 0.45 ± 0.01 0.33 ± 0.03 0.44 ± 0.02 0.34 ± 0.02 0.48 ± 0.01
K-LinSep 0.44 ± 0.01 0.70 ± 0.03 0.42 ± 0.01 0.65 ± 0.02 0.46 ± 0.01 0.62 ± 0.03

FullGrad

Avg 0.28 ± 0.03 0.41 ± 0.02 0.28 ± 0.03 0.40 ± 0.01 0.30 ± 0.01 0.44 ± 0.02
LinSep 0.40 ± 0.01 0.65 ± 0.03 0.39 ± 0.02 0.60 ± 0.03 0.42 ± 0.02 0.59 ± 0.01
K-Means 0.28 ± 0.03 0.39 ± 0.02 0.26 ± 0.02 0.43 ± 0.01 0.29 ± 0.03 0.41 ± 0.02
K-LinSep 0.38 ± 0.01 0.65 ± 0.02 0.41 ± 0.01 0.58 ± 0.03 0.42 ± 0.01 0.60 ± 0.02

CALM

Avg 0.34 ± 0.02 0.47 ± 0.01 0.33 ± 0.01 0.46 ± 0.02 0.36 ± 0.02 0.50 ± 0.03
LinSep 0.52 ± 0.01 0.71 ± 0.02 0.51 ± 0.03 0.66 ± 0.01 0.54 ± 0.01 0.65 ± 0.02
K-Means 0.34 ± 0.02 0.49 ± 0.01 0.34 ± 0.03 0.46 ± 0.02 0.36 ± 0.02 0.49 ± 0.01
K-LinSep 0.51 ± 0.01 0.72 ± 0.03 0.50 ± 0.01 0.67 ± 0.02 0.56 ± 0.01 0.66 ± 0.03

MFABA

Avg 0.33 ± 0.03 0.46 ± 0.01 0.32 ± 0.02 0.45 ± 0.03 0.35 ± 0.03 0.49 ± 0.01
LinSep 0.51 ± 0.01 0.70 ± 0.03 0.50 ± 0.01 0.65 ± 0.02 0.53 ± 0.02 0.64 ± 0.03
K-Means 0.34 ± 0.03 0.48 ± 0.02 0.35 ± 0.02 0.43 ± 0.01 0.32 ± 0.03 0.50 ± 0.02
K-LinSep 0.54 ± 0.01 0.71 ± 0.02 0.52 ± 0.01 0.66 ± 0.03 0.51 ± 0.01 0.65 ± 0.02
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Table 8: Average F1 for the iSarcasm Dataset.
Attribution

Method
Concept

Type
Llama Qwen Gemma

Concept Super
Activators Concept Super

Activators Concept Super
Activators

CosSim

Avg 0.70 ± 0.02 0.65 ± 0.01 0.57 ± 0.01 0.55 ± 0.02 0.65 ± 0.01 0.60 ± 0.03
LinSep 0.81 ± 0.03 0.74 ± 0.02 0.74 ± 0.03 0.65 ± 0.01 0.83 ± 0.02 0.71 ± 0.01
K-Means 0.56 ± 0.02 0.57 ± 0.01 0.59 ± 0.03 0.59 ± 0.02 0.60 ± 0.01 0.60 ± 0.03
K-LinSep 0.60 ± 0.03 0.60 ± 0.02 0.57 ± 0.02 0.58 ± 0.01 0.60 ± 0.03 0.60 ± 0.02

LIME

Avg 0.71 ± 0.02 0.78 ± 0.01 0.63 ± 0.02 0.67 ± 0.03 0.67 ± 0.03 0.73 ± 0.02
LinSep 0.79 ± 0.01 0.87 ± 0.02 0.71 ± 0.01 0.80 ± 0.02 0.76 ± 0.02 0.89 ± 0.01
K-Means 0.68 ± 0.03 0.75 ± 0.01 0.61 ± 0.02 0.62 ± 0.03 0.72 ± 0.01 0.69 ± 0.02
K-LinSep 0.76 ± 0.02 0.80 ± 0.03 0.76 ± 0.01 0.83 ± 0.02 0.76 ± 0.02 0.94 ± 0.01

SHAP

Avg 0.72 ± 0.03 0.79 ± 0.01 0.64 ± 0.03 0.68 ± 0.01 0.68 ± 0.01 0.74 ± 0.03
LinSep 0.80 ± 0.02 0.88 ± 0.01 0.72 ± 0.02 0.81 ± 0.03 0.77 ± 0.03 0.90 ± 0.02
K-Means 0.69 ± 0.03 0.83 ± 0.02 0.65 ± 0.01 0.71 ± 0.03 0.65 ± 0.03 0.78 ± 0.02
K-LinSep 0.81 ± 0.02 0.88 ± 0.01 0.69 ± 0.02 0.79 ± 0.01 0.74 ± 0.01 0.92 ± 0.03

RISE

Avg 0.76 ± 0.01 0.83 ± 0.03 0.67 ± 0.01 0.73 ± 0.02 0.72 ± 0.02 0.79 ± 0.01
LinSep 0.84 ± 0.02 0.92 ± 0.01 0.76 ± 0.03 0.85 ± 0.01 0.81 ± 0.01 0.94 ± 0.03
K-Means 0.80 ± 0.01 0.80 ± 0.03 0.64 ± 0.01 0.75 ± 0.02 0.74 ± 0.02 0.81 ± 0.01
K-LinSep 0.84 ± 0.03 0.84 ± 0.01 0.75 ± 0.03 0.89 ± 0.01 0.84 ± 0.01 0.85 ± 0.02

SHAP IQ

Avg 0.74 ± 0.02 0.81 ± 0.02 0.65 ± 0.02 0.70 ± 0.03 0.70 ± 0.03 0.76 ± 0.02
LinSep 0.82 ± 0.01 0.90 ± 0.02 0.74 ± 0.01 0.83 ± 0.03 0.79 ± 0.02 0.92 ± 0.01
K-Means 0.74 ± 0.02 0.85 ± 0.01 0.61 ± 0.02 0.71 ± 0.03 0.67 ± 0.02 0.80 ± 0.01
K-LinSep 0.85 ± 0.01 0.83 ± 0.02 0.74 ± 0.01 0.82 ± 0.02 0.80 ± 0.01 0.82 ± 0.03

IntGrad

Avg 0.66 ± 0.03 0.71 ± 0.01 0.56 ± 0.03 0.58 ± 0.01 0.61 ± 0.01 0.66 ± 0.03
LinSep 0.75 ± 0.02 0.82 ± 0.03 0.66 ± 0.02 0.75 ± 0.03 0.72 ± 0.02 0.84 ± 0.01
K-Means 0.74 ± 0.01 0.68 ± 0.03 0.56 ± 0.03 0.53 ± 0.02 0.65 ± 0.01 0.63 ± 0.02
K-LinSep 0.75 ± 0.02 0.74 ± 0.01 0.66 ± 0.02 0.77 ± 0.01 0.74 ± 0.02 0.88 ± 0.01

GradCAM

Avg 0.69 ± 0.01 0.75 ± 0.02 0.59 ± 0.01 0.62 ± 0.02 0.64 ± 0.03 0.70 ± 0.01
LinSep 0.78 ± 0.03 0.86 ± 0.01 0.69 ± 0.03 0.78 ± 0.01 0.74 ± 0.02 0.87 ± 0.03
K-Means 0.67 ± 0.03 0.72 ± 0.02 0.56 ± 0.01 0.61 ± 0.03 0.63 ± 0.01 0.68 ± 0.02
K-LinSep 0.70 ± 0.02 0.74 ± 0.01 0.70 ± 0.01 0.71 ± 0.02 0.76 ± 0.02 0.78 ± 0.01

FullGrad

Avg 0.67 ± 0.02 0.72 ± 0.01 0.57 ± 0.02 0.60 ± 0.01 0.62 ± 0.01 0.67 ± 0.02
LinSep 0.76 ± 0.01 0.83 ± 0.02 0.67 ± 0.01 0.76 ± 0.03 0.73 ± 0.03 0.85 ± 0.01
K-Means 0.66 ± 0.01 0.73 ± 0.02 0.56 ± 0.02 0.63 ± 0.01 0.61 ± 0.03 0.65 ± 0.02
K-LinSep 0.73 ± 0.02 0.82 ± 0.01 0.64 ± 0.01 0.75 ± 0.03 0.70 ± 0.02 0.87 ± 0.01

CALM

Avg 0.71 ± 0.03 0.78 ± 0.01 0.61 ± 0.03 0.66 ± 0.01 0.66 ± 0.02 0.73 ± 0.01
LinSep 0.81 ± 0.01 0.89 ± 0.03 0.73 ± 0.02 0.81 ± 0.03 0.78 ± 0.01 0.91 ± 0.02
K-Means 0.74 ± 0.03 0.72 ± 0.02 0.61 ± 0.01 0.64 ± 0.03 0.66 ± 0.02 0.65 ± 0.01
K-LinSep 0.80 ± 0.02 0.82 ± 0.01 0.72 ± 0.02 0.73 ± 0.01 0.75 ± 0.01 0.79 ± 0.03

MFABA

Avg 0.70 ± 0.02 0.77 ± 0.01 0.60 ± 0.02 0.65 ± 0.01 0.65 ± 0.03 0.72 ± 0.01
LinSep 0.80 ± 0.01 0.88 ± 0.02 0.72 ± 0.01 0.80 ± 0.02 0.77 ± 0.02 0.90 ± 0.03
K-Means 0.73 ± 0.01 0.75 ± 0.02 0.62 ± 0.01 0.66 ± 0.03 0.66 ± 0.03 0.71 ± 0.02
K-LinSep 0.81 ± 0.02 0.85 ± 0.01 0.74 ± 0.02 0.79 ± 0.01 0.80 ± 0.01 0.88 ± 0.03
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Table 9: Average F1 for the GoEmotions Dataset.
Attribution

Method
Concept

Type
Llama Qwen Gemma

Concept Super
Activators Concept Super

Activators Concept Super
Activators

CosSim

Avg 0.18 ± 0.03 0.16 ± 0.02 0.25 ± 0.03 0.23 ± 0.01 0.19 ± 0.02 0.16 ± 0.01
LinSep 0.29 ± 0.01 0.25 ± 0.03 0.31 ± 0.02 0.28 ± 0.03 0.25 ± 0.03 0.23 ± 0.02
K-Means 0.18 ± 0.03 0.18 ± 0.02 0.23 ± 0.01 0.26 ± 0.03 0.15 ± 0.02 0.15 ± 0.01
K-LinSep 0.18 ± 0.01 0.19 ± 0.03 0.23 ± 0.03 0.25 ± 0.02 0.14 ± 0.01 0.16 ± 0.03

LIME

Avg 0.20 ± 0.03 0.25 ± 0.01 0.27 ± 0.01 0.31 ± 0.02 0.21 ± 0.01 0.24 ± 0.03
LinSep 0.29 ± 0.02 0.34 ± 0.03 0.33 ± 0.03 0.37 ± 0.01 0.28 ± 0.03 0.30 ± 0.02
K-Means 0.18 ± 0.02 0.26 ± 0.01 0.28 ± 0.02 0.26 ± 0.03 0.23 ± 0.02 0.25 ± 0.01
K-LinSep 0.25 ± 0.01 0.35 ± 0.02 0.34 ± 0.01 0.38 ± 0.02 0.24 ± 0.01 0.31 ± 0.03

SHAP

Avg 0.21 ± 0.02 0.26 ± 0.02 0.28 ± 0.02 0.32 ± 0.03 0.22 ± 0.02 0.25 ± 0.01
LinSep 0.30 ± 0.01 0.35 ± 0.04 0.34 ± 0.01 0.38 ± 0.02 0.29 ± 0.01 0.31 ± 0.03
K-Means 0.22 ± 0.01 0.27 ± 0.03 0.32 ± 0.02 0.37 ± 0.01 0.19 ± 0.03 0.27 ± 0.02
K-LinSep 0.27 ± 0.02 0.31 ± 0.01 0.33 ± 0.01 0.40 ± 0.02 0.29 ± 0.01 0.28 ± 0.03

RISE

Avg 0.24 ± 0.03 0.30 ± 0.01 0.30 ± 0.03 0.35 ± 0.01 0.25 ± 0.03 0.28 ± 0.02
LinSep 0.33 ± 0.01 0.39 ± 0.02 0.37 ± 0.02 0.42 ± 0.03 0.32 ± 0.02 0.35 ± 0.01
K-Means 0.21 ± 0.03 0.27 ± 0.02 0.32 ± 0.02 0.38 ± 0.01 0.24 ± 0.02 0.27 ± 0.01
K-LinSep 0.36 ± 0.01 0.36 ± 0.02 0.37 ± 0.01 0.42 ± 0.03 0.32 ± 0.01 0.34 ± 0.02

SHAP IQ

Avg 0.22 ± 0.02 0.28 ± 0.03 0.29 ± 0.01 0.33 ± 0.02 0.23 ± 0.01 0.26 ± 0.03
LinSep 0.31 ± 0.03 0.37 ± 0.01 0.35 ± 0.03 0.40 ± 0.01 0.30 ± 0.03 0.33 ± 0.02
K-Means 0.20 ± 0.02 0.27 ± 0.01 0.28 ± 0.01 0.31 ± 0.02 0.24 ± 0.03 0.22 ± 0.01
K-LinSep 0.34 ± 0.01 0.35 ± 0.03 0.35 ± 0.02 0.38 ± 0.01 0.29 ± 0.02 0.35 ± 0.03

IntGrad

Avg 0.17 ± 0.01 0.19 ± 0.02 0.24 ± 0.02 0.26 ± 0.03 0.17 ± 0.01 0.20 ± 0.01
LinSep 0.26 ± 0.02 0.30 ± 0.01 0.29 ± 0.01 0.32 ± 0.02 0.24 ± 0.02 0.26 ± 0.03
K-Means 0.23 ± 0.01 0.19 ± 0.02 0.27 ± 0.03 0.25 ± 0.01 0.18 ± 0.01 0.19 ± 0.02
K-LinSep 0.28 ± 0.02 0.29 ± 0.01 0.27 ± 0.02 0.32 ± 0.03 0.24 ± 0.02 0.23 ± 0.01

GradCAM

Avg 0.19 ± 0.03 0.23 ± 0.01 0.26 ± 0.03 0.29 ± 0.01 0.19 ± 0.03 0.22 ± 0.02
LinSep 0.28 ± 0.02 0.34 ± 0.02 0.31 ± 0.02 0.36 ± 0.03 0.27 ± 0.02 0.29 ± 0.01
K-Means 0.20 ± 0.01 0.21 ± 0.03 0.25 ± 0.02 0.31 ± 0.01 0.20 ± 0.03 0.21 ± 0.02
K-LinSep 0.27 ± 0.02 0.34 ± 0.01 0.33 ± 0.01 0.35 ± 0.02 0.25 ± 0.01 0.26 ± 0.03

FullGrad

Avg 0.18 ± 0.01 0.21 ± 0.03 0.25 ± 0.01 0.27 ± 0.02 0.18 ± 0.01 0.21 ± 0.02
LinSep 0.27 ± 0.03 0.31 ± 0.02 0.30 ± 0.03 0.33 ± 0.01 0.25 ± 0.03 0.27 ± 0.02
K-Means 0.18 ± 0.03 0.19 ± 0.02 0.23 ± 0.01 0.26 ± 0.03 0.16 ± 0.02 0.22 ± 0.01
K-LinSep 0.26 ± 0.02 0.30 ± 0.01 0.29 ± 0.02 0.32 ± 0.01 0.27 ± 0.01 0.25 ± 0.03

CALM

Avg 0.21 ± 0.02 0.26 ± 0.01 0.27 ± 0.02 0.32 ± 0.03 0.22 ± 0.02 0.25 ± 0.01
LinSep 0.30 ± 0.02 0.36 ± 0.03 0.34 ± 0.01 0.39 ± 0.02 0.29 ± 0.01 0.32 ± 0.03
K-Means 0.23 ± 0.01 0.24 ± 0.02 0.28 ± 0.01 0.30 ± 0.02 0.22 ± 0.02 0.25 ± 0.01
K-LinSep 0.29 ± 0.02 0.35 ± 0.01 0.33 ± 0.02 0.37 ± 0.01 0.27 ± 0.01 0.30 ± 0.03

MFABA

Avg 0.20 ± 0.01 0.25 ± 0.03 0.26 ± 0.03 0.31 ± 0.01 0.21 ± 0.03 0.24 ± 0.01
LinSep 0.29 ± 0.02 0.35 ± 0.01 0.33 ± 0.02 0.38 ± 0.03 0.28 ± 0.02 0.31 ± 0.03
K-Means 0.19 ± 0.01 0.26 ± 0.03 0.27 ± 0.02 0.34 ± 0.01 0.23 ± 0.02 0.26 ± 0.01
K-LinSep 0.28 ± 0.02 0.36 ± 0.01 0.32 ± 0.01 0.36 ± 0.03 0.29 ± 0.03 0.34 ± 0.02
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L Sparse Autoencoders

L.1 SAEs for Concept Detection

Sparse autoencoders [20] (SAEs) are mechanism for uncovering latent concepts in large models. By
training an encoder–decoder architecture with sparsity constraints, SAEs aim to discover a set of basis
features that are both interpretable and disentangled. This approach is attractive for concept analysis
because sparsity encourages individual hidden units to capture relatively specific and semantically
meaningful directions in representation space. In principle, such units could act as natural “concept
detectors” without additional supervision.

Despite these benefits, SAEs come with notable limitations. Training them at scale is extremely
resource-intensive, and thus only a small number of pretrained SAEs have been made publicly
available. These models are typically trained on very specific layers of particular architectures
and cannot be easily transferred to other checkpoints or layers. For this reason, we restrict our
comparisons to what is currently feasible: an SAE trained on the penultimate residual stream of
CLIP [43, 87, 88] (covering 92% of the model depth for images) and SAEs trained on intermediate
layers of Gemma [45, 89] (covering 81% of the depth for text). A second practical issue is that
SAEs output thousands of candidate units, which makes automatic labeling more difficult. To address
this, we filtered out units that activated on nearly all samples or no samples [90], or with insufficient
activation strength [91].

After filtering, we evaluated the retained SAE units as potential unsupervised concept detectors. We
apply the same SuperActivator paradigm for detection, treating [CLS] and token-alignment with the
retained SAE units as concept activation scores.

Table 10 shows the F1 concept detection performance for the best-perfoming SAE units for each
ground truth concept. Our SuperActivators method performs quite well across all datasets. However,
we note in Figure 36 that our method achieved peak performance by just using a much larger subset of
the most activated tokens (larger δ). We suspect this is due to the sparsity constraint in SAE training
objectives. By penalizing high activations, SAEs eliminate weak and noisy responses and shrink the
scale of the surviving ones. With less contrast between the strongest and moderate responses, concept
evidence becomes spread across more activated tokens and less concentrated in the tail.

Table 10: Detection F1 (avg. across concepts) from SAE concepts: 92% through CLIP for image
datasets and 81% through Gemma for text datasets.

Concept Detection Methods

CLS RandTok LastTok MeanTok SuperTok (Ours)

CLEVR 0.898 ± 0.135 0.504 ± 0.077 0.504 ± 0.077 0.609 ± 0.083 0.992 ± 0.090
COCO 0.462 ± 0.064 0.335 ± 0.049 0.339 ± 0.049 0.591 ± 0.069 0.582 ± 0.000
Surfaces 0.419 ± 0.062 0.345 ± 0.042 0.344 ± 0.042 0.479 ± 0.074 0.501 ± 0.085
Pascal 0.570 ± 0.063 0.398 ± 0.049 0.404 ± 0.053 0.601 ± 0.060 0.662 ± 0.000
Sarcasm 0.662 ± 0.075 0.659 ± 0.052 0.659 ± 0.052 0.659 ± 0.052 0.659 ± 0.052
iSarcasm 0.706 ± 0.069 0.676 ± 0.044 0.676 ± 0.044 0.703 ± 0.051 0.777 ± 0.054
GoEmotions 0.159 ± 0.067 0.124 ± 0.062 0.124 ± 0.062 0.350 ± 0.106 0.395 ± 0.093

L.2 SAEs for Concept Attribution

Having established that SAEs can act as competitive unsupervised detectors, we next evaluate whether
they can also support concept attribution. Tables 11 and 12 report average attribution F1 across both
image and text datasets.

Across all methods, we observe a consistent pattern: using the average of local SuperActivators
derived from SAE concepts produces attribution maps that align better with ground truth labels and
score higher on faithfulness. On image datasets, SuperActivators improves scores in nearly every
setting, often by non-trivial margins. Similar trends appear in text, where SuperActivators again
provides the strongest performance in most cases.
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Figure 36: For SAEs The strongest globally applicable concept signals are not concentrated in a very
sparse set of signals.

While the average F1 across all concepts remains modest relative to supervised baselines, the results
highlight a consistent trend: even for SAEs, SuperActivators consistently provides a more accurate
signal for both concept detection and attribution than global CLS-based pooling. This suggests that
fine-grained, token-level alignment is crucial for extracting interpretable signals from unsupervised
representations.

Table 11: Average Attribution F1 for SAEs on Image Datasets with CLIP model.

(a) CLEVR and COCO Dataset

Attribution Method CLEVR COCO

CLS SuperActivators CLS SuperActivators

LIME 0.45 ± 0.04 0.49 ± 0.01 0.32 ± 0.03 0.33 ± 0.04
SHAP 0.47 ± 0.05 0.51 ± 0.03 0.31 ± 0.03 0.34 ± 0.02
RISE 0.44 ± 0.03 0.48 ± 0.03 0.30 ± 0.02 0.33 ± 0.01
SHAP IQ 0.46 ± 0.04 0.46 ± 0.02 0.28 ± 0.05 0.33 ± 0.04
IntGrad 0.40 ± 0.05 0.44 ± 0.04 0.27 ± 0.04 0.31 ± 0.03
GradCAM 0.36 ± 0.05 0.40 ± 0.05 0.26 ± 0.05 0.30 ± 0.04
FullGrad 0.37 ± 0.04 0.41 ± 0.02 0.32 ± 0.03 0.31 ± 0.04
CALM 0.44 ± 0.02 0.49 ± 0.04 0.27 ± 0.05 0.32 ± 0.03
MFABA 0.44 ± 0.03 0.49 ± 0.02 0.28 ± 0.04 0.30 ± 0.03

(b) OpenSurfaces and Pascal Dataset

Attribution Method OpenSurfaces Pascal

CLS SuperActivators CLS SuperActivators

LIME 0.41 ± 0.04 0.43 ± 0.04 0.40 ± 0.05 0.44 ± 0.04
SHAP 0.31 ± 0.03 0.35 ± 0.02 0.41 ± 0.04 0.45 ± 0.03
RISE 0.36 ± 0.05 0.40 ± 0.02 0.40 ± 0.05 0.44 ± 0.05
SHAP IQ 0.37 ± 0.04 0.41 ± 0.05 0.41 ± 0.05 0.45 ± 0.01
IntGrad 0.39 ± 0.02 0.43 ± 0.02 0.46 ± 0.05 0.50 ± 0.02
GradCAM 0.32 ± 0.05 0.36 ± 0.02 0.34 ± 0.03 0.38 ± 0.04
FullGrad 0.34 ± 0.03 0.38 ± 0.03 0.36 ± 0.05 0.40 ± 0.02
CALM 0.26 ± 0.05 0.30 ± 0.02 0.35 ± 0.04 0.39 ± 0.03
MFABA 0.39 ± 0.04 0.39 ± 0.02 0.41 ± 0.03 0.46 ± 0.02
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Table 12: Average Attribution F1 for SAEs on Text Datasets with Gemma Model.
Attribution

Method Sarcasm iSarcasm GoEmotions

CLS Super
Activators CLS Super

Activators CLS Super
Activators

LIME 0.37 ± 0.05 0.36 ± 0.02 0.62 ± 0.03 0.65 ± 0.04 0.16 ± 0.04 0.20 ± 0.04
SHAP 0.33 ± 0.04 0.37 ± 0.04 0.59 ± 0.05 0.64 ± 0.01 0.18 ± 0.03 0.23 ± 0.02
RISE 0.37 ± 0.05 0.42 ± 0.03 0.68 ± 0.04 0.72 ± 0.04 0.20 ± 0.05 0.22 ± 0.02
SHAP IQ 0.40 ± 0.05 0.40 ± 0.02 0.68 ± 0.05 0.69 ± 0.02 0.18 ± 0.04 0.23 ± 0.02
IntGrad 0.31 ± 0.05 0.35 ± 0.04 0.52 ± 0.05 0.57 ± 0.04 0.10 ± 0.04 0.15 ± 0.05
GradCAM 0.34 ± 0.04 0.39 ± 0.03 0.53 ± 0.03 0.58 ± 0.01 0.16 ± 0.05 0.20 ± 0.02
FullGrad 0.28 ± 0.05 0.33 ± 0.03 0.59 ± 0.04 0.59 ± 0.03 0.14 ± 0.03 0.18 ± 0.04
CALM 0.37 ± 0.04 0.39 ± 0.04 0.56 ± 0.05 0.60 ± 0.04 0.16 ± 0.03 0.21 ± 0.02
MFABA 0.33 ± 0.03 0.38 ± 0.03 0.55 ± 0.04 0.60 ± 0.02 0.18 ± 0.03 0.23 ± 0.02
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