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ABSTRACT

Graph neural networks (GNNs) have achieved remarkable progress in text-
attributed graph clustering. However, these approaches assume that different
classes are uniformly distributed, which hinders their applicability in real-world,
imbalanced scenarios. Towards this end, this paper studies the problem of imbal-
anced text-attributed graph clustering, and proposes a novel framework named
Text-guided Group Mixup with Canonical Mining (TRACI) for the problem.
The core of our TRACI lies in generating mixed groups with an emphasis on
minority classes, guided by large language models (LLMs). In particular, we
first utilize LLMs to produce diverse views for each sample and randomly as-
sign samples into balanced groups with mixed semantics for consistency learn-
ing. To further enhance robustness, we employ LLMs to compute correlation
scores among samples with respect to the synthesized groups, thereby reinforc-
ing minority-aware group representations. In addition, we encourage canonical
correlations between various augmented views of nodes to ensure semantic align-
ment. Extensive experiments on several benchmark datasets validate the effec-
tiveness of the proposed TRACI, demonstrating clear advantages over state-of-
the-art baselines under class-imbalanced conditions. The source code is available
athttps://anonymous.4open.science/r/TRACI-E087.

1 INTRODUCTION

Graph clustering (Tsitsulin et al., 2023; Ren et al., 2025; Xie et al., 2025), an unsupervised task
in graph data mining, aims to assign nodes into distinct clusters that reflect underlying structural
and conceptual commonalities. While recent algorithms have made significant progress (Yang et al.,
2023; Liu et al., 2023a; 2024b; Kulatilleke et al., 2025), their effectiveness in real-world scenarios re-
mains fundamentally constrained by the inherent class imbalance in graph-structured data (Shi et al.,
2020; Huang et al., 2022; Ma et al., 2025). Authentic graph data, such as citation networks (Qin
et al., 2025), often exhibit long-tailed distributions (Li & Jia, 2025), where head classes dominate
with dense connections, while tail classes are underrepresented, suffering from sparse data and weak
connectivity. These naturally occurring imbalances can impair the performance of traditional graph
clustering methods, leading to suboptimal results, as such methods are typically developed under
the assumption of class balance (Li et al., 2024; Ju et al., 2024; Ma et al., 2025).

To address category imbalance in graph-structured data, researchers have developed three primary
paradigms: (i) Re-sampling methods (Zhang et al., 2023; Gao et al., 2023; Avelino et al., 2024; Car-
valho et al., 2025; Nagler et al., 2024) that adjust class selection ratios between classes with varying
sample sizes; (i) Re-weighting techniques (Li et al., 2025) that modify loss functions based on class
frequencies; and (iii) Augmentation-based methods (Song et al., 2024; Tian et al., 2024; Ding et al.,
2025) that transfer knowledge from majority to minority classes using topological or feature seman-
tics. While these approaches have shown promise for attribute graphs with shallow features, they
largely neglect the rich contextual semantics in text-attributed graphs (TAGs) (Zhang et al., 2024; He
et al., 2025; Hu et al., 2025). This oversight introduces semantic bias, exacerbating challenges such
as term frequency-class correlation and topic distribution heterogeneity, which further amplify long-
tailed distributions (Chen et al., 2024a). Therefore, effectively leveraging node textual information
beyond shallow features, remains a critical challenge in imbalanced text-attributed graph clustering.
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The advent of large language models (LLMs) has opened new avenues for text-attributed graph clus-
tering (Chen et al., 2023; Fu et al., 2025). GCLR (Trivedi et al., 2024) leverages the zero-shot ca-
pabilities of LLMs to enhance clustering performance through LLM-generated feedback. However,
it overlooks the challenge of class imbalance caused by disparities in textual semantics. Although
SaVe-TAG (Wang et al., 2024) addresses this issue by synthesizing novel minority-class samples via
LLMs for supervised classification, such a strategy is ill-suited for unsupervised clustering and may
introduce semantic inconsistencies due to LLM hallucinations (Ji et al., 2023; Verma et al., 2024,
Huang et al., 2025). In this work, we seek to harness the zero-shot potential of LLMs for imbalanced
graph clustering while striving to preserve semantic consistency in the generated text.

To address the aforementioned challenges, we propose a novel unsupervised LLM-driven frame-
work called Text-guided Group Mixup with Canonical Mining (TRACI) to tackle this problem of
imbalance text-attributed graph clustering. The core idea of TRACI is to learn minority-aware group
representations that re-balance the contributions of majority and minority classes while preserving
semantic integrity as much as possible. We begin by leveraging an LLM to generate augmented texts
for nodes in a way that retains their core semantic representations. This is followed by a canoni-
cal mining module to align the augmented views in the embedding space. To alleviate imbalance
in an unsupervised setting, we randomly assign samples to different groups based on correlation
scores provided by the LLM, thereby making better use of textual semantics. For boundary samples
between clusters, TRACI utilizes the zero-shot capabilities of LLMs (Ye et al., 2025) to refine the
GNN encoder through ranking-based supervision from pseudo-labels generated by the LLM. The
effectiveness of TRACI is validated on text-attributed graph datasets and extensive class-imbalanced
experiments against state-of-the-art baselines.

In conclusion, our main contributions in this work are summarized as follows:

* New Perspective. To the best of our knowledge, we are the first to investigate the problem of
imbalanced text-attributed graph clustering enhanced by LLMs in an unsupervised manner.

* Novel Methodology. We propose TRACI, a framework that first leverages LLMs to generate text-
level augmented views while preserving semantic integrity, followed by the assignment of samples
into text-guided mixed groups with canonical correlation alignment.

» Comprehensive Experiments. Extensive experiments on multiple benchmark datasets under im-
balanced conditions demonstrate that TRACI consistently outperforms state-of-the-art baselines.

2 RELATED WORK

Text-attributed Graph Clustering. The classic paradigm for text-attributed graph clustering (Tsit-
sulin et al., 2023; Yan et al., 2023; Zhou et al., 2025; Zhu et al., 2025; Yu et al., 2025) typically
involves extracting textual embeddings from shallow, context-free features (Mikolov et al., 2013;
Wu et al., 2025; Zhang et al., 2025), which are then integrated with the graph’s topological structure
via graph neural networks (GNNs) (Liu et al., 2024b; Bhowmick et al., 2024; Wang et al., 2025b).
More recently, LLM-based approaches for text-attributed graphs have emerged and can be broadly
categorized into three paradigms (Chen et al., 2024b): LLM-as-Predictor, LLM-as-Enhancer and
LILM-as-Aligner. Specifically, the LLM-as-Predictor paradigm feeds structure-aware textual inputs
directly into LL.Ms to predict node labels (Qiao et al., 2025; Chen et al., 2023). In contrast, LLM-as-
Enhancer leverages LLMs to enrich text representations, either by extracting contextualized embed-
dings (fine-tuned (Mavromatis et al., 2023) or frozen (Qiao et al., 2025)) or by generating auxiliary
semantic signals (explanations or augmentations). More importantly, LLM-as-Aligner aims to align
the outputs from GNNs and LLMs iteratively or in parallel (Liu et al., 2025). This paradigm si-
multaneously leverage the structural aggregation capabilities of GNNs and the semantic extraction
abilities of LLMs. These methods are typically implemented through prediction alignment (Zhao
et al., 2021) or embedding alignment (Hu et al., 2025). While these paradigms have been actively
explored in supervised or self-supervised tasks such as node classification and link prediction, their
potential in unsupervised settings like graph clustering remains largely underexplored.

Long-tailed Graph Learning. Class imbalance (Carvalho et al., 2025; Ma et al., 2025) in graph
data presents a significant obstacle to the effective deployment of Graph Neural Networks (GNNs).
Existing efforts to address long-tailed graph learning can be broadly categorized into three main
paradigms: re-sampling methods (Carvalho et al., 2025), re-weighting techniques (He, 2024a), and
augmentation-based strategies (Khan et al., 2024). On the re-sampling side, GraphSMOTE (Zhao
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Figure 1: The framework of TRACI. TRACI consists of four key modules: (a) data expansion, (b)
canonical correlation, (c) long-tailed group mixup and (d) fine-tuning with ranking guidance.

etal., 2021) and InGAGN (Qu et al., 2021) generate synthetic samples for minority classes through
oversampling and adversarial generation, respectively. On the re-weighting side, ReNode (Chen
etal., 2021) adaptively adjusts node weights by quantifying influence shifts near class boundaries. In
the augmentation line, RAHNet (Mao et al., 2023) enhances minority class representation through a
retrieval-augmented mechanism by incorporating external knowledge. Despite these advancements,
most existing methods overlook the rich contextual semantics embedded in node texts (Ghosh et al.,
2024; Wang et al., 2025a). To address this, we propose TRACI, a novel framework that leverages
textual semantics to generate balanced, minority-aware group representations.

3 METHODOLOGY

Problem Formulation. A TAG can be represented as G = {V, A, D, X}, where V denotes a set of
N nodes, A € RV*¥ is the adjacency matrix, D = {D;, Ds, - - - , Dy } represents the text attributes
associated with the nodes, and X € RV* is the text embedding matrix encoded by the frozen
language model Sentence-BERT (Reimers & Gurevych, 2019). In this work, we aim to partition the
nodes in G into K disjoint clusters C = {C1,Ca, -+ ,Cx } under a long-tailed distribution scenario,
where the number of samples in each cluster are highly imbalanced. Specifically, we quantify this
skewed distribution using the imbalance ratio, defined as p = fﬁ“ﬂ (Ma et al., 2025), where np,x =

max{|Ck|}H< | and nyin = min{|Ck|}X_,, with | - | denoting the sample size of a set.

3.1 FRAMEWORK OVERVIEW

The proposed framework of TRACI is illustrated in Figure 1. The pipeline consists of four key
modules: data expansion, canonical correlation, long-tailed mixup and fine-tuning with ranking
guidance. Specifically, we leverage an LLM to generate augmented textual views for each node,
which are subsequently encoded by the language model (LM) Sentence-BERT to produce input
embeddings for the GNN encoder. Subsequently, node-level embeddings are derived from the aug-
mented TAGs using a shared GNN encoder and are aligned in the embedding space via canonical
correlation. And the correlation scores computed by the LLM are employed to guide the synthesis of
mixed group representations, placing greater emphasis on the minority class and thereby reinforcing
minority-aware group representations. Finally, feedback responses from the LLM are utilized to
fine-tune TRACI with ranking guidance, enhancing the assignment of boundary nodes.

3.2 DATA EXPANSION WITH LARGE LANGUAGE MODELS

In this framework, we follow the standard augmentation-contrastive paradigm, as exemplified by
SimCLR (Chen et al., 2020). Previous text augmentation methods (Yan et al., 2021; Gao et al.,
2021) typically apply token-level transformations, such as shuffling, dropout, or cutoff to the orig-
inal text. However, these techniques can inadvertently alter the core semantics of sentences, po-
tentially compromising the performance of downstream tasks. To address this, we forgo such de-
structive augmentations and instead adopt a more semantically-preserving yet stylistically diverse
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strategy powered by LLMs. Specifically, the original text is input into an LLM, which is prompted

to generate two stylistically distinct versions: a technical version D(Y) = {Dgl), Dgl), e ,DS\})}
and a colloquial version D(?) = {Dgz), Df), e ,D](\?)}. This approach maintains the original se-

mantic content while introducing diverse linguistic expressions, enabling much more abundant se-
mantic representation learning. Finally, we construct two augmented views of the original TAG G:
G = (Y, A, DM XM} and G& = {Y, A, D@ X@}, where XV and X2 are embeddings
encoded by the augmentations, serving as inputs for following stages.

3.3 CANONICAL CORRELATION MAXIMIZATION FOR SEMANTICS ALIGNMENT

To encourage node-level semantic alignment, we adopt a maximum correlation objective (Andrew
et al., 2013) to ensure consistency between augmented views. As discussed in Section 3.2, the two
augmented views are processed through a shared GNN encoder to promote entity alignment across
different stylistic variations. This alignment mechanism ensures that semantically similar entities
are mapped closely in the embedding space, regardless of surface-level linguistic differences. Given
two augmented views G1) and G(?), we utilize the shared GNN encoder to extract the corresponding
node embeddings Z") and Z(?) € RV*P, We further compute the centered node embeddings Z()
and Z? as ZW = 2 — L1510 20 and 2 = Z(3) — L1515 ZP), respectively. Here, 1y
is a vector length of N with all elements equal to 1. The cross-covariance matrix between the two
views is calcultaed as C1 5 = (Z(M)TZ®) /(N — 1) € RP*P, and the self-covariance matrix for
each view is given by C; ; = (Z())TZ(") /(N — 1). Finally, the canonical correlation loss between
the augmented views is applied to align them in the embedding space, which is defined as:

Loorr (ZW,Z?) = ~Trace(C; )/ Cy 5C5 1C2,1C5 5 %), (1)

3.4 LONG-TAILED GROUP MIXUP WITH TEXTUAL GUIDANCE

To alleviate the imbalance issue, we design a mixup strategy guided by textual semantics to learn
minority-aware group representations. Specifically, samples from the augmented view G(!) are ran-
domly partitioned into M groups G = {G1, Gy, -, Gy}, where G, represents the index set of
samples in the m-th group. The corresponding samples from the other augmented view G(?) are
partitioned with the same index sets. Subsequently, each group of texts is fed into an LLM using the

prompt Pyix, which outputs a contribution score bS,’)n and a confidence score c,(q?n for the n-th text

in the m-th group from the i-th augmented view. The contribution score b%)n reflects the semantic
relevance and conceptual coherence of the text within the group, while the confidence score cg,?n
estimates the credibility of the corresponding contribution. Based on these scores, we finally derive
a correlation-based weight matrix S() € RM*N for each view (i = 1, 2) to improve awareness of

minority in the mixed groups, whose element-wise definitions are stated as follows:

o -,
Smin = T lneG, - (2)
S T e
neG,,

Here, 1,,cg,, is an indicator function that equals 1 if and only if n € G,,,. Subsequently, we construct
group-level synthetic embeddings as weighted combinations of the sample representations,

i) = Y szl /Y st e, 3)
n€EGm, n€Gm,
where || - ||2 denotes the ¢3 norm and 2} is the representation of the n-th sample in the i-th

view. Following the aforementioned steps, we obtain two group-level augmented representations
H® and H® ¢ RM*P for contrastive learning. In the contrastive learning setup, correspond-
ing group representations from the two views form positive pairs, while all other combinations are
considered negative pairs. The imbalance-aware contrastive loss is then defined as:
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where 77 is a temperature hyperparameter and 6 denotes cosine similarity between two vectors.

3.5 FINE-TUNING WITH RANKING GUIDANCE

To further leverage the capabilities of LLMs to enhance the GNN encoder, we propose a two-stage
optimization strategy for TRACI. In the first stage, we align two augmented views in the embedding
space while applying text-guided mixup to learn minority-aware group representations. In the sec-
ond stage, we utilize LLMs to annotate the boundaries of imbalanced nodes, particularly between
clusters that are difficult for the GNN to distinguish. The feedback obtained from the LLM is then
used as ranking guidance to fine-tune the encoder for better representation learning. To jointly en-
force consistency between both augmented views and address the problem of class imbalance, we
combine Equation | and Equation 4 as follows, where o denotes the trade-off hyperparameter:

‘Cwarm = Oé[fcorr + (1 - a)Lmixup- (5)

Boundary Nodes for Querying LLMs. After completing the first-stage training, we obtain the
embeddings Z") and Z(? of the two augmented views using the frozen encoder fo, expressed as,

2 = fo(A,XW) and Z?) = fo(A,X®), ©

where © is the learned parameter. To mitigate uniform clustering under imbalanced settings, we
apply smooth k-means clustering (He, 2024b) to these embeddings, yielding the predicted label sets
C™M and C?), respectively. We then identify a set of challenging nodes S = {i € V| Ci(l) # CZ-(Q)},
which are subsequently used as queries to the LLM to obtain additional guidance for better learning.

Concept Induction for Each Cluster. Since the semantic meanings of clusters are initially un-
known, we select the top-k nearest nodes to each cluster centroid and construct a representative
sample set to query the LLM for inducing core concepts of each cluster via the prompt Pinqu, €X-
pressed as follows:

M = Pinqu(top-k texts for each cluster). (7)

Decision Filtering with Ranking Guidance. Subsequently, we feed the derived concept set M
together with the textual content of the challenging node set S from both augmented views into the

LLM using the prompt Ppred, yielding the predicted label sets Cc(;gl and Cc(ﬁl, as follows:

Cin = Porea(M, DY), €3 = Porea(M, D). ®)

Given that LLM predictions may inevitably contain errors, particularly for challenging nodes, we
introduce a dual-view consensus mechanism to filter out noisy labels and mitigate additional biases
introduced by the LLM. The detailed filtering process is described as follows:

Cum = {i € S| Ch(i) = Cip (i)} ©)

More importantly, we further apply a ranking-based contrastive loss to incorporate the LLM’s feed-
back and fine-tune the GNN model obtained in the first stage. Specifically,

exp (0 (2i, Lo s ) /T2
Lrank = — Z log K< ( Cotn )) ) . (10)
i€CLim > 1 €xp (0 (2, pi) /72)

Here, 75 denotes the temperature hyper-parameter, and € represents the cosine similarity between
the two vectors. p, refers to the cluster centroid of the kth cluster. We then employ the objective
Liine to fine-tune the final imbalanced graph clustering model:

Leine = aLcon + (1 - a)(ﬂﬁmixup + (1 - 6)£rank)- (1m)

Consequently, we first warm up a base model capable of handling imbalanced representation learn-
ing across two augmented views. Building upon this foundation, we identify challenging nodes and
leverage LLMs to further enhance the model’s ability to address class imbalance. This progressive
paradigm of TRACI results in more reliable predictions for imbalanced graph clustering.
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3.6 THEORETICAL ANALYSIS

Theoretically, our theorem establishes a tighter generalization error bound with the re-balanced
mixup strategy guided by the LLM, compared to the standard contrastive loss.

Theorem 3.1. Let X be the input space and Z C RP denotes the latent space. Suppose the
Sollowing conditions holds: (1) Imbalanced Distribution: 3p > 1 s.t. Ny /Nmin = p for cluster
sizes; (2) Group Mixup: Samples partitioned into M groups {G,, }M_| such that ||G,,|| = n/M.
(3) LLM-guided Weights: The weight matrix S € RM*N jn Eq. (2) satisfying DonSmn =1
Then, the generalization error bound for the mixup loss Lo, izyyp IS tighter than that of the classic
contrastive loss L. Specifically, with probability at least 1 — 9, for any encoder fo, the following
holds:

g [log(1/5

g(ﬁmixup) - 8* mzxup \/ o8 Oggv/ ))7 (12)
log N [log(1/0

E(Le) — \/Og Oggv/ ), (13)

where C' > 0is a constant, M < N, &€ denotes the generalization error, and £* is the Bayes optimal
error. L is the classic contrastive loss in the embedding space.

The proof sketch consists of three key steps: (1) reducing the effective sample complexity through
group-wise mixup, (2) bounding the empirical Rademacher complexity for both of £,z and Ly,
and (3) incorporating statistical learning theory to establish generalization bounds. A detailed proof
of Theorem 3.1 can be found in the Appendix, which provides theoretical support for our TRACI.

4 EXPERIMENTS
4.1 EXPERIMENTAL SETUP

Imbalanced Datasets. In this work, we evaluate the performance of TRACI under class-imbalanced
scenarios using four widely adopted TAG datasets: Cora (McCallum et al., 2000), CiteSeer (Giles
et al., 1998), WikiCS (Mernyei & Cangea, 2020), and PubMed (Sen et al., 2008). To simulate real-
world imbalance, we construct long-tailed variants of these datasets (Park et al., 2021) with varying

imbalance ratios. Specifically, the sample size for the k-th class is given by ng = Npaz-p~ = Ma
et al., 2025), with K denoting the total number of classes. To preserve the topological structure of
the original graph, nodes with higher connectivity are preferentially retained during the sampling
process. Detailed statistics corresponding to different imbalance ratios (p = 10, 20, 50, 100) are
illustrated in the following Figure 3. Additional details about the datasets, including their topological
structures, are provided comprehensively in Table A.

Baseline Methods. We compare TRACI with several state-of-the-art deep clustering meth-
ods: DMoN (Tsitsulin et al., 2023), Dink-Net (Liu et al., 2023a), HSAN (Liu et al., 2023b),
S3GC (Devvrit et al., 2022), DGCLUSTER (Bhowmick et al., 2024), MAGI (Liu et al., 2024b)
and IsoSEL (Sun et al., 2025), under class-imbalanced settings. In particular, we extend our evalua-
tion by comparing TRACI with established graph learning frameworks such as GraphSMOTE (Zhao
et al., 2021), GraphENS (Park et al., 2021), and BAT (Liu et al., 2024c), thereby providing a more
comprehensive validation of its effectiveness. Following prior work, we adopt accuracy (ACC),
normalized mutual information (NMI), and F1 score as evaluation metrics for comparison.

Implementation Details. The implementation of our proposed method, TRACI, is based on the
PyTorch library, and both the datasets and source codes are publicly available. To encode textual
information, we utilize Sentence-BERT (Reimers & Gurevych, 2019) to extract text embeddings.
For representation learning, we employ a Graph Convolutional Network (GCN) as the backbone
encoder for GNN to aggregate neighborhood semantics. For interactions with large language models
(LLMs), we use ChatGPT (gpt-40-mini) (Hurst et al., 2024) to provide guidance and feedback; the
detailed prompt design is described in Table E. For fair comparison, we report the performance as
the mean and standard deviation over five runs. In particular, more detailed information, including
hyperparameter settings and the training strategy, is thoroughly provided in Table H.
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Table 1: Clustering performance of TRACI compared to baseline methods under varying imbalance
ratios (p = 10 and 20). Boldfaced scores indicate the best results, while underlined scores denote
the second-best results. “OOM” means out-of-memory.

p | Dataset | Metric DMoN Dink-Net HSAN S3GC DGCluster MAGI IsoSEL TRACI
ACC 60.05:50s 61.6741351 63414517 56.68:961 56.861419 65341031 58661507 73485
Cora NMI 49.611072 51.8810095 49.264105 43541051 52.8041094 52.901030 50.321170 55.60+0.10
F1 51.021590 55.57 4101 57881155 51.26:05) 4990550 60.041055 43.70.719 67.03.3
ACC 56.971595 55881477 55281099 56.631017 47.48.337 63.13.031 54.7341043 67.5.07
CiteSeer NMI 39.64.1540 37631056 37.3li0ss 40.101056 36.62:0s3 40.75:040 37641115 41.72.010
0 F1 49171068 46.28 495 50.5645097 5159119 3209141 56441035 37391103 60.44. 1,
ACC 34.73108  54.89:557 56.344355 44.64.5- 55.404536  58.5510.67 6333 5
WikiCS NMI 241441 41 44304165 48284105 3837047 43931157 49.58. 5 OOM 49.2311 25
F1 27301515  46.6046097 50.761555 36481055 46.59.5.44 4747056 53.93. 1 60
ACC 55.6215 81 49110300 49.264003 54.07.075 58.31iogs 41.79:10.15 58244550 614253
PubMed NMI 8.171 46 11.014202  7.9540.03 15.1610.99 10.9811.00 8.08.10.03 12.69:5350  20.90. 4,
F1 42911551 41881555 4247003 4758 000 47171501 29.861011 42381515 5245, 05
ACC 60.171501 582015350 53.38:151 51.3010ss 53181505 57861077 60.28 95 68.89. 05
Cora NMI 50.52 11 o3 47811116 46.99:0s0 43.521145 48.71i027 49.331033 48.8811.43 5256317
F1 46.05:5091 46.0513355 47.22.503 431047 429705 51.68,049 41.68. 1151 57.65., >
ACC 59.07 1408 50871550 4912567 53.58:1 4793501 58921091 50.41.:505 67.15. 45
CiteSeer NMI 39.67+1 50 37564107 319641035 40.67:13 36.22.1 11 37.804025 31.504,05 4259 5
0 F1 46461556 39451450 43.11.555 44310150 27.58:515 50.331061 31.02.1005 55.67.7¢s
ACC 3729019 58731571 55611575 4541005 59.28.075 60.01( 7 60.57 .5 37
WikiCS NMI 28.22. 055 48.48.516 47401502 40.001017 46.71. 071 49.75. 009 OOM 47.4040.08
F1 27615 04 4894 ;o 45414035 35.76.019 44.69.5.45 45.88. 007 48.59 11 o7
ACC 56.011 1116 47.7741305 44351535 50.65.049 57341305 45601016 59.31i570 647254
PubMed NMI 7.34411 61 7.49.10.29 49210908 12121043 8.2410.45 6.79+0.09 8.03+0.87 13.76 . 1 35
F1 40591550 34120548 32.700419 4058050 38.62:511 29291004 36.0813:5 494351

4.2 PERFORMANCE COMPARISON

Performance of graph clustering under imbalance. To comprehensively assess the performance
of TRACI, we evaluate it against seven state-of-the-art baseline methods under imbalance ratios of
10 and 20. As shown in Table 1, TRACI consistently outperforms other state-of-the-art methods on
the Cora, CiteSeer, and PubMed datasets across all three metrics (ACC, NMI, and F1 score) under
both imbalance ratios (p = 10 and p = 20). Specifically, on the Cora dataset with p = 10, TRACI
achieves improvements of 8.14%, 2.70%, and 6.99% in ACC, NMI, and F1 score, respectively,
compared to the second-best baseline MAGI. On the WikiCS dataset, TRACI achieves the highest
accuracy scores under both p = 10 and p = 20. Although the NMI and F1 scores are not the highest
in all cases, they still rank among the top-performing methods. Interestingly, some baseline methods
demonstrate high ACC but relatively low NMI (e.g., DGCluster on PubMed under p = 10). This
discrepancy may be attributed to misclustered samples: either large clusters are fragmented into
smaller ones, or small clusters are merged into a larger one, which distorts the clustering quality
despite a seemingly good accuracy. In contrast, TRACI produces clustering results that more faith-
fully reflect the underlying long-tailed distribution, making it particularly well-suited for real-world
class-imbalanced scenarios. Overall, these findings strongly affirm the effectiveness and robustness
of TRACI in handling imbalanced data. Furthermore, we evaluate TRACI under even more severe
imbalance conditions (p = 50 and 100), and the corresponding results for more imbalanced scenarios
are provided comprehensively in Table 9.

Performance of graph learning un- Table 2: Graph learning Performance of TRACI in compar-
der imbalance. We evaluate the ison with baselines.

representations learned by TRACI  Dataset | Metric GraphSMOTE ~GraphENS BAT TRACI
against other imbalanced graph learn- ACC 834711 5s 8400115 84.84.(0; 84.92.;
ing methods on our established Cora NMI 65.31 15 15 65.711550 6731139 65.90. o5
dataset Specificall th Fl 777551 50 79.56. 050 807615 80.47.; 53
atasets. pecrhically, we use the ACC 73.31: 103 7314 056 7554056 78915 4
learned representations with an ad-  cieseer | NMI 4607, 46.11,,.. 4879, 5241,
ditional classifier for node classifica- Fl 6486110 64.25. 55 66.35.1 05 66.88.;
tion. As shown in Table 2, although ACC 81.32. 54 80.28. 07  8L56.051  82.01.00

- WikiCS | NMI 6283 61.52-1 10 63.12.07; 63355 45
TRACT performs relatively poorly on Fl 7862010 T7.52.05 7907055 7929070
Cpra, it consistently acmeves supe- ACC 86,40, 10 172,00 ST14... 89230,
rior performance on CiteSeer, Wi-  PubMed | NMI 45.0241 00 42.4T. 005 4564051 50.23.50
kiCS, and PubMed, demonstrating Fl 76.824138 75061045 TTddiosr 7923106
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Table 3: Comparison of TRACI with various model variants in terms of ACC and F1 scores under
imbalanced settings (p = 10 and 20). The best results are highlighted in bold.

Imbalance Variants Cora CiteSeer WikiCS PubMed
ACC F1 ACC F1 ACC F1 ACC Fl
w/o LLM Expansion | 69.45.5 5 61.83. 77 64.96.569 55501705 51.16:005 4649135, 5737015 47.83.1007
—10 w/o LLM Mixup 70.19:560 61.29:55 6431650 54811535 61331031 52.041065 59120615 50.1645 g7
p= w/o Smooth 68.60+417 63.11.569 60.06+514 51.3641651 58231304 53134167 59.720555 51134400
TRACI 7348551 67.03.57 6715.,,; 6044 ., 6333., ;5 5393.,5 61.42.;5;, 5245,
w/o LLM Expansion | 66.12. 563 57.35.55: 61.63:7.44 5178 775 50.92., 35 43571555 50.29.050 39.40.0 19
— 20 w/o LLM Mixup 61.771510 5279051 640865735 52.11.54 5383355 45.304, 60.44. 013 47.38.10.08
p= w/o Smooth 60.09 1416 49965093 583551135 49.04:515 549655 445811350 56.381 000 45.3410.17
TRACI 68.89 ;s 57.65..00 67.15.55, 55.67.765 605755, 4859, 64.72.-5.5 4943 .,
% %0 - ACC AcC
T 80 F1 Score | 8 80 F1 Soord § 70 F1 Score § 70 F1 Score
5] <
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Figure 2: Sensitivity analysis of group number and epoch interval for updating correlation scores
under an imbalance ratio of 10.

both the effectiveness and robustness of the proposed approach. More comprehensively, these re-
sults further validate that TRACI enhances representation learning in the hidden space, leading to
more discriminative representations.

4.3 ABLATION STUDY

To further investigate the contribution of each module in TRACI, we introduce three variant models
to evaluate the effectiveness of individual components, described as follows: (1) TRACI w/o LLM
Expansion: This variant removes the text-level augmentation generated by LLMs and replaces it
with random perturbations to node-level features. (2) TRACI w/o LLM Mixup: This version omits
the computation of correlation scores using LLMs and instead uses the average of sample embed-
dings to generate group representations. (3) TRACI w/o Smooth: This variant employs hard k-means
clustering in the embedding space, replacing smooth k-means which is designed to mitigate the ef-
fects of class imbalance. Based on above variants, the effectiveness of TRACI can be demonstrated.

Table 3 presents the performance of TRACI and its variants on the Cora, CiteSeer, WikiCS, and
PubMed datasets under imbalance ratios p = 10 and p = 20. Several key observations can be
drawn from the results: First, TRACI w/o LLM Expansion exhibits a significant performance de-
cline compared to the full model TRACI, indicating that the diverse views generated by LLMs
provide richer semantic information at both the textual and embedding levels than simple feature
perturbations. Second, the performance of TRACI w/o LLM Mixup also deteriorates under imbal-
anced settings, highlighting the importance of learning minority-aware group representations using
correlation scores derived from LLMs based on semantic relevance. Finally, removing smooth k-
means in TRACI w/o Smooth leads to further performance drops, demonstrating its effectiveness in
mitigating overly uniform clustering and better handling real-world imbalanced conditions. Overall,
these ablation results comprehensively validate the contributions of each module in enhancing the
robustness and performance of TRACI.

4.4 SENSITIVITY ANALYSIS ON HYPERPARAMETERS AND LLLM CHOICE

In this section, we conduct a sensitivity analysis of TRACI from two perspectives: (i) the impact of
hyperparameter configurations on model performance, and (ii) the effect of different LLM choices
on the overall effectiveness of TRACI. The results are presented in Figure 2 and Table 4.

Effect of Hyperparameters. We examine two hyperparameters involved in the text-guided mixup
process: the number of groups and the epoch interval for updating correlation scores. By default,
the group number and the epoch interval are set to 100 and 50, respectively, for both the Cora and
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CiteSeer datasets, as reported in Table 1. In the sensitivity analysis, we vary the group number in
{50, 75, 100, 125 150 } and the epoch interval in {40, 50, 60, 100, 200}, while keeping all other
hyperparameters fixed. Figure 2 presents the ACC, NMI and F1 scores under an imbalance ratio of
10. On the Cora dataset, the performance generally declines as the group number increases (e.g.,
ACC drops from 74.39% to 72.00%) and as the epoch interval becomes longer (e.g., ACC drops
from 73.85% to 70.82%). This observations suggest that an excessively large number of groups
may impair the model’s ability to capture minority-aware representations, while a prolonged epoch
interval may result in insufficient updates to the mixup groups, thereby weakening the interaction
between majority and minority classes in a long-tailed distribution. In conclusion, although the
sensitivity trends differ slightly across datasets under an imbalance ratio of 10, TRACI consistently
demonstrates robust and competitive performance across a wide range of hyperparameter settings.

Effect of LLM Selection. In our Table 4: Effect of LLM selection on TRACI’ performance.

TleA CL IWC 1everage dtlile ia]'ﬂil/})ﬂlty Dataset | Metric DeepSeek-V3  GPT-3.5 GPT-40-mini GPT-4.1-mini
of large language models ( ) to ACC 6927 .5  7316., .,  7348...,  70.07.,.
generate text-level augmented views  Cora NMI 538l 56.52.161  55.60.0.10 55.22. 1 53
and to comprehend contextual se- FIL 614l 0379+077 67034579  6l1licis
: ; _ ACC  66.74.715 6892 04  67.15.01; 681400y
mantics, 'thereby enhancing perfor CiteSeer | NMI ~ 42.95..,;  43.68.020 41.72..  43.40.0.0
mance in imbalance graph clustering. Fl 58.75. 756 6134000 6044101, 6177001

To quantitatively assess the impact of
LLM selection, we evaluate TRACI using the open-weight LLM DeepSeek-V3 (Liu et al., 2024a)
and three cost-effective ChatGPT variants: GPT-3.5 (Brown et al., 2020), GPT-40-mini (Achiam
et al., 2023) and GPT-4.1-mini (OpenAl, 2025). The corresponding results are reported in Figure
4. On the Cora dataset, the variant of TRACI equipped with GPT-40-mini generally yields the
best overall performance, while the GPT-3.5 based model also delivers impressive and competitive
results. Although DeepSeek-V3 shows comparatively lower performance overall, it remains com-
petitive on certain metric(e.g., NMI of 0.4295 + 0.0237 on CiteSeer).

4.5 CASE STUDY

To facilitate a more intuitive understanding of TRACI, we present two illustrative case studies. The
first case, showing in Figure 4 highlights the contribution of LLM-based expansion. Specifically,
we examine node 25, a sample from the minority class Reinforcement Learning in the Cora dataset
under an imbalance ratio of 10. Without LLM expansion, this node is misclassified into the majority
class Genetic Algorithms. In contrast, our approach leverage the LLM’s strong textual understanding
to generate augmented textual views for each sample. As a result, the LLM-guided view enables
the correct identification of node 25 as belonging to the intended minority class. This positive
feedback from the LLM further boosts the learning of minority-aware representations under class-
imbalanced settings. The second case study, involving CiteSeer’s minority-class node 141, labeled
as Human Computer Interaction, demonstrates text-guided long-tailed mixup. Our method assigns
it higher mixing weight based on LLM-assigned semantic relevance, enabling correct clustering,
whereas equal weighting results in misclassification into the majority class Information Retrieval.
In conclusion, these two representative cases strongly demonstrate the reliability and interpretability
of TRACT in learning minority-aware representations under long-tailed class distributions.

5 CONCLUSION

In this work, we propose a novel text-guided group mixup framework with canonical correlation
alignment to address the challenge of imbalanced text-attributed graph clustering. TRACI lever-
ages large language models (LLMs) to generate semantically enriched text augmentations, enhanc-
ing representation consistency across views. A text-guided mixup strategy is employed to adap-
tively prioritize minority samples based on LLM-derived semantic relevance. Furthermore, LLM-
generated ranking signals are utilized to refine the representations of boundary nodes. Extensive
experiments demonstrate the effectiveness of TRACI under long-tailed imbalanced conditions. In
future work, we plan to extend our method to cluster multi-modal graphs that integrate diverse in-
formation sources (e.g., text and images) (Fang et al., 2025), and further explore its scalability and
applicability to real-world, large-scale imbalanced datasets.
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A  DATASETS

To evaluate TRACIT under class-imbalanced scenarios, we construct several novel graphs with vary-
ing imbalance ratios for these four acknowledged datasets, Cora (McCallum et al., 2000), Cite-
Seer (Giles et al., 1998), WikiCS (Mernyei & Cangea, 2020) and PubMed (Sen et al., 2008). The
sampling criterion aims to ensure that nodes in each class follow a long-tailed distribution while
preserving the overall connectivity as much as possible. Specifically, nodes with higher degrees are
retained, whereas those with lower degrees are removed accordingly. Detailed statistics are provided
in Table 5.
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Figure 3: Sample size of per class in the Cora, CiteSeer, WikiCS and Pubmed with varying imbal-
ance ratios (p=10, 20, 50 and 100). It is evident that the sample size follows a long-tailed distribu-
tion.

Table 5: Statistics of datasets with varying imbalance ratios.

Imbalance p=10 p=20 p =50 p =100
Dataset #Nodes #Edges | #Nodes #Edges | #Nodes #Edges | #Nodes #Edges | #Features #Clusters
Cora 2,258 4,602 1,945 3,878 1,688 3,178 1,516 2,801 384 7
CiteSeer 1,737 2,791 1,476 2,375 1,248 2,023 1,131 1,807 384 6
WikiCS 10,848 214,593 | 9,117 206,770 | 7,496 186,880 | 6,645 172,124 384 10
PubMed 11,152 31,890 | 10,028 27,704 9,145 23,495 8,740 21,381 384 3

B BASELINES

The compared approaches are comprehensively described as follows:

* DMoN (Tsitsulin et al., 2023) is an unsupervised clustering framework for attributed graphs based
on GNNs. It enables end-to-end differentiable optimization of cluster assignments through mod-
ularity maximization combined with collapse regularization.

* Dink-Net (Liu et al., 2023a) proposes a self-supervised clustering approach designed to scale to
large graphs. Specifically, it jointly models representation learning and clustering by pushing apart
different clusters and pulling nodes closer to their assigned clusters, using an augmentation-based
discriminative strategy.

e HSAN (Liu et al., 2023b) is a contrastive deep graph clustering framework tailored to handle
both hard positive and hard negative sample pairs. It introduces a similarity measure that jointly
considers both attribute and structural information.

* S3GC (Devvrit et al., 2022) leverages contrastive learning in combination with Graph Neural
Networks and node features, making it well-suited for large-scale datasets.

DGCluster (Bhowmick et al., 2024) proposes a novel framework that uses pairwise soft member-
ships between nodes to address the graph clustering problem through modularity maximization.
Its computational complexity scales linearly with the size of the graph, making it well-suited for
large-scale datasets.

* MAGI (Liu et al., 2024b) is a contrastive learning method based on modularity maximization. It
forms positive pairs from nodes within the same module and negative pairs from nodes belonging
to different modules, thereby effectively leveraging the graph structure.
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* IsoSEL (Sun et al., 2025) proposes a Lorentz tree contrastive learning framework with isometric
augmentation to refine the deep partitioning tree in hyperbolic space, while also incorporating
attribute information.

For the above baselines, we retrain each model on our constructed datasets and report their perfor-
mance averaged over five runs to ensure a fair comparison.

C EVALUATION METRICS

In this work, we use three widely used clustering metrics: accuracy (ACC), normalized mutual in-
formation (NMI) and macro F1 score as metrics to evaluate comprehensively clustering performance
of methods.

* ACC is a commonly used metric for evaluating classification performance. In the context of
unsupervised clustering, the predicted clusters must first be aligned with the ground truth labels
using the Hungarian algorithm, based on the confusion matrix C € RX*X where K is the
number of classes and C; ; denotes the number of samples with ground truth label ¢ and predicted
label j. Specifically, ACC is defined as:

K
i—1 Clii
Acclglg(>c'. (14)
Zi:le:l 2}

* NMI calculates consistency between the predicted and true labels. Specifically, given two cluster-
ing results X = (X7, Xo,..., X, )and Y = (Y1, Y5, ..., Y),
I(X,)Y)
max{H(X), H(Y)}'
where I(X,Y) is the mutual information between X and Y, H(X) and H(Y") are the entropy of
X and Y respectively.

NMI =

5)

* F1 score is a widely used metric for evaluating multi-class classification performance. We com-
pute the macro F1 score by taking the arithmetic mean of the per-class F1 scores, treating all
classes equally regardless of their support. For a dataset with K classes, the macro F1 score is
calculated as:

K
> x_q F1 scorey,

Fl1 = 16
score % , (16)
where the F1 score for each class k is given by:
2TP
Fl scorey, = ——————, (17)
2TP + FP + FN

where TP denotes the number of samples correctly predicted as positive; FP represents the number
samples incorrectly predicted as positive; FN is the number of samples incorrectly predicted as
negative; and TN refers to the number of samples correctly predicted as negative.

D PROOF OF THEOREM 3.1

In this section, we present a detailed proof of Theorem 3.1, which is restated below for completeness.

Proof of Theorem 3.1: Without loss of generality, we assume the encoder fg is L-Lipschitz contin-
uous. Let F be the hypothesis class of L-Lipschitz encoders. For contrastive loss L¢; and Lizup,
we can decompose them in the following formula:

69( (1) (2))/7_

Cl__*ZIOg 0D 2 /7 |

1 N
oo~ v 2o talfet)), (8
v i=1

Zz._ €
and
M OB h®)/7 M
Emix = T35 lo = mix b2 ’ 19
w Mﬁ; gee<h£i>,h£3’)/T+Z O b T mZ:: w(fo(Cm)),  (19)
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N @ 2(DYT
(z",2{") = W

where 0 T

calculates the cosine similarity between two vectors.

For L1, the empirical Rademacher complexity is:

R(La) = Eq |sup Z aila( : (20)

where £ (fo(x;)) is the contrastive loss for the positive pair (z; (1) 2 )) Subsequently, we try to
bound the empirical Rademacher complexity for £.;. We define a functlon ¢ as the normalization-
score operation for positive-negative sample pairs:

eé’(zi,zj)/‘r

97;,-»’_,0 i7_ =-1 . 21
@ (023 27),0(24,27)) = ~log a7 5 P/ @

We then prove ¢ is @-Lipschitz continuous.

Define vector v = (0(2,2; ), 0(2i,2;);i,0(2i,2; )j2i) € R*N™!, then ¢ can be written as a
function of v

et/ )
_ _ Vj— T
¢(v) = —log Z?Zgl oy log Z e\ vo)/T, (22)
The derivative of ¢ with respect to vy is
1 ev/™ 1
Vo= —- (21\71._1> £~ po, (23)
T ijo evi/T T
and the derivative of ¢ with respect to v;(j > 0) is
1 evilT 1
Vob== —av——= == Dj- (24
T ijo e“y/" T

Thus, the ¢3-norm of ¢ satisfies: ||V |2 = \/(1 —P0)? + 25 3 ﬁ, where the inequality

holds because j>oPi = 1, which implies > >0 pj < 1. Therefore, ¢ is proved to be @-

Lipschitz continuous. Subsequently, by applying the contraction lemma with f € F, we can bound
the empirical complexity for L as follows:

R(LcL) = Eo [sup N Zaz o (f(x:) ]

feF
V2L 1
< Stelgﬁzai\\zill

>~ * Lo
T

\/§L
p

< — sup — o
fer N Z ]
< 2k sk 5)

T N’
where the first equality holds since ¢ is @—Lipschitz continuous and f € F is L-Lipschitz contin-
uous, the second inequality follows from the normalization condition ||z;|| < 1 is normalized, and

the third inequality holds due to Massart’s theorem, which states that E,, [sup feF % Zfil ol <

2log N
-~ -

For Lmizup, group embeddings are derived from h,,, = ZneGm Sm,nZn reduces the effective sam-
ple size from N to M, then the empirical Rademacher complexity is

R(‘Cmixup) Eo |sup — Z oml mlxup )) (26)

fe}‘
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where o; € {+1} are Rademacher variables, and lixup is the contrastive loss for the pair

(h%), hg,%)) Subsequently, we prove the empirical Rademacher complexity is bounded for £,izup-
Specifically, since ZneGm Sm,n = 1, then we have

[hon || < Z $mnl|Znll < [Ismll1 - [1z]lc <1, (27)
n€Gm

where the first inequality follows from the triangle inequality for norms, the second inequality holds
by Holder inequality, and the third inequality holds since ||z, || < 1. Similar to Equation 25, we can
derive the bound for Lixup:

R(»Cmixup) cr [Sup ar Z Um leUP ))‘|

fe}' m—1
< \/TQL B, [sup % mil am||hm|2‘| (28)
<Ly, cup 3 Z gm] (29)
< % loi M . (30)
log M <« log N since M < N under imbalanced scenarios, then we can derive that the empiri-

cal complex1ty for Liixup and L satisfies that R(Limixup) < R(La), implying a tighter generaliza-
tion error bound for £pxp compared to L.

According to Theorem 26.5 in (Shalev-Shwartz & Ben-David, 2014), we can derive the generaliza-
tion bound under the condition that £ and £y;x,p are bounded, which is ensured by the normalization
of z in the embedding space. Then, with probability at least 1 — &, for any encoder f € F, there
exists a constant C' such that the generalization error bound satisfies:

log(1/6)

N )
where R is the empirical Rademacher complexity for loss function £. By substituting the loss
function with Lcl and Lmixup, we can derive the respective generalization error bounds for the
above contrastive losses, which are expressed as follows:

E-E"<2R+C (31)

. lo M log(1/6
E(Lumivap) — £ (Lisap) ¢ 8 gg\/ ), (32)
lo N log(1/6
E(La) — E*(La) < C \/ 8 ggv/ ), (33)
where C' is a constant. Thus, we conclude that Ly yields a significantly tighter bound on the
generalization error in comparison to L. O]

E PROMPT DESIGN

Table 6 presents the prompts used to generate textual augmented views via the LLM.

Table 7 presents the prompts provided to the LLM for different purposes, including Group Mixup,
Concept Induction, and Ranking Guidance.

F IMPLEMENTATION DETAILS

The implementation details are organized into two parts: the first describes the process of updating
cluster centroids and assigning soft labels using the smooth k-means approach proposed by (He,
2024b), while the second outlines the hyperparameter settings of TRACI for different datasets.
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Table 6: Prompts for Data Expansion.

Augmentation

Prompt

Technical

You are an Al assistant specializing in text optimization. Please rewrite the fol-
lowing article while preserving its core ideas.

Requirements:

1. Use formal academic language with domain-specific terminology.

2. Maintain strict factual consistency with the original content.

Colloquial

You are an Al assistant specializing in text optimizing. Please simplify this article
for non-experts while retaining key information.

Requirements:

1. Avoid technical jargon.

2. Use short sentences and everyday vocabulary.

Table 7: Prompts for Group Mixup, Concept Induction and Ranking Guidance.

Usage of the LLM

Prompt

Group Mixup

You are an Al assistant specializing in semantic analysis. Please evaluate
the contribution and confidence scores of each text with respect to the whole
cluster.

Requirements for contribution scores:

1. The contribution score should range from 0.00 to 1.00. A lowest score of
0.00 indicates the lowest contribution while 1.00 reflects the highest contri-
bution.

2. Consider its semantic relevance to the cluster, the density it contains, its
conceptual representativeness, and its contextual coherence with other texts.
3. Derive an overall contribution score by synthesizing these individual eval-
uations.

Requirements for confidence scores:

1. Fall within the range of 0.00 to 1.00.

2. Evaluate the accuracy and credibility of the contribution score.

Concept Induction

You are an Al assistant specializing in topic modeling. Please examine the
core themes and contextual elements within the input texts to generate a
concise, accurate topic name.

Requirements:

1. Analyze the commonalities and core content of these samples.

2. Provide a concise summary of the cluster’s theme.

3. Output the theme as a short name.

Ranking
ance

Guid-

You are an Al assistant specializing in text prediction. Please analyze the
content to determine the most relevant topic cluster it belongs to.
Requirements:

1. Consider comprehensively which cluster this article most likely belongs
to.

2. The optimal clusters are | Topics induced by Concept Induction,.

3. Answer the cluster number directly.

Smooth K-means. Inspired by the problem of imbalanced clustering, (He, 2024b) proposes a novel
method based on k-means with a Boltzmann operator, which we adopt in place of the traditional hard
k-means for clustering. Specifically, the cluster centroids c; and the weighted cluster assignments
wn, k are defined as follows:

Wn,k

= =K . 1*’7 dn,k*

—~-dy, K —~-dp
ek 2y dn ek

22(:1 e_'Y'dn,k

; (34)
Z}f}{:]. e_’)"dn,k
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and

o Zn W, kZn

cp = =2 = —
Zn U)n’k;

where w,, , denotes the weight of the n-th sample with respect to the k-th cluster such that
> i Wnk = 1, dy 1 is the distance between the n-th sample and the k-th cluster, v is a smooth-
ing hyperparameter, and z,, represents the embedding of the n-th sample.

(35)

Hyperparamter Settings. Additional hyperparameter details are thoroughly described in Table 8.

Table 8: Hyperparameter settings. Hidden Dimensions refers to the dimension of the GCN encoder
in the latent space. Ir; and Ir, denote the learning rates used during the warmup and fine-tuning
stages, respectively. « and (3 are hyperparameters that weight different loss components, while -y
controls the strength of the smooth k-means term. 7; and 7 are the temperature parameters for the
mixup loss and ranking loss, respectively. M represents the number of groups.

Dataset | Hidden Dimensions Ir; Irsy « 5] Yy N T2 M

Cora [64] 0.0005 0.0001 0.1 09 10 05 0.01 100
CiteSeer [128,64] 0.0001 0.0001 02 09 10 09 0.01 100
WikiCS [256, 128] 0.0001 0.0001 0.1 09 16 09 0.09 500
PubMed [128,64] 0.0005 0.0001 0.1 09 10 0.5 0.01 500

G PERFORMANCE ON MORE IMBALANCED SCENARIOS

Previously, we have evaluated the performance of TRACI against baselines under imbalance ratios
of p = 10 and p = 20. In this section, we explore more extreme scenarios with imbalance ratios
of p = 50 and p = 100, where the minority class contains substantially fewer samples, making the
imbalanced graph clustering considerably more challenging. As shown in Table 9, TRACI consis-
tently demonstrates competitive overall performance across these settings, further highlighting its
robustness and effectiveness under severe class imbalance conditions.

Table 9: Clustering performance of TRACI compared to baseline methods under more imbalanced
scenarios (p = 50 and 100).

Imbalance | | Dataset | Metric | DMoN Dink-Net HSAN S3GC DGCluster ~ MAGI IsoSEL TRACI
ACC | 53.89.5:s 47.2001 51 47.390161 47571160 56.53.550 48.85:070 6232545 587347

Cora NMI | 48.13..c 46301055 44.71.030 43371043 44.7200 97 46.004010 44965030 47.44. 99

Fl 39.78 506 37.33:100 4024, : 3757y 4248.4., 39.79.045 3841.,5 4262, 4

ACC | 54.87 555 554655, 50.64-005 47.691550 538956 56.36410.0 57.02.4 1) 59.631¢0

CiteSeer | NMI | 3640, 53 38.96:, 41 37.99. 095 37241 75 34.08.019 39.21,029 347245 39975,

p =50 Fl 39.28 540 39370415 39.9311. 3804160 25650500 4532005 34.09.¢4; 43.93.: s
ACC | 3779 0, 5497056 5437 600 56181150 47935, 49464 5 63.19.; ¢,

WikiCS | NMI | 31204, 71 46.77:000 473411 s 41611043 47172100 47695016 OOM 4898, .,

Fl 2841, 05 4038547 41.13.5,5 309104  39.96.54 39.88.) s 4979,

ACC | 50.631 450 49.09:5,, 45.83.555 457715357 55400575 46214000 52.61.; 62.18.5 1

Cora NMI | 45.03.556 39404133 4345.160 42.03110s 41631061 45.01.060 4184007 43.641; 63

Fl 36.33.5 11 35.89. 0 36.83.0s 348205 35.65.55 37.02..5 27.68.54 37.93.,

ACC | 5622405 46.08:.506 45181550 47.04157 56.78 55 56.76.057 56.62.c19 57.24.0.03

CiteSeer | NMI | 37.22 50 35.69:15 3439005 3661075 33.27.0x 3941.045 326005 3915033

p =100 Fl 38.614051 34.65..7 35.17:165 36311055 255357 43.99.005 3134608 41.72.0 07
ACC | 4135 545 44.64.50; 46.89.575 4958 55 41.44.4550 48.98, 503 50.78 ;o

WikiCS | NMI | 33.45., 43.072100 4536015 363105 450107 4741, OOM 46.4710 57

F1 2887410 3271145 34820507 1787104 3234000 36.23:1 15 40.65.; ;.

H ALGORITHM
We present the overall algorithm of TRACI in Algorithm 1.

I CASE STUDY

Here, we provide a case to illustrate the effect of TRACI.
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Algorithm 1: The algorithm of TRACI

Input: G = (A, D), GNN encoder Fg, training epoch T', the LLM execution interval 7",
learning rates Ir; and lry, number of selected nodes n, number of groups M.
1 Augment D into DY) and D), yielding GV and G2, respectively ;
/* Warmup */
2 fort < 1to7 do
3 | Encode: ZW = F(GW) and Z*) = F(GP);
4 ift % T" == 0 then
5 S, 8(?)  GetWeightMatrix (D), D?)) ;
6 Obtain the group-level synthetic embeddings H® = (h{2))M_, through Eq. 3 for
1=1,2;
7 Calculate the warmup loss Lyam in Eq. 5 using Leor in Eq. 1 and Liyixyp in Eq. 4;
8 Update: © < © —1Ir; - VLyam:
/* Fine-tuning with Ranking Guidance */
9 Obtain ranking guidance in Eq. 8 with challenge nodes S;
o Update X via mean pooling over nodes in Crpm;
1 fort < 1toT do

2 | Encode: Z) = F(GW) and Z?) = F(G?);
13 Obtain group embeddings similar to line 4 to 6;
14 Calculate the fine-tuning loss L. in Eq. 11 using Lo in Eq. 1, Liixup in Eq. 4, Lignk in
Eq. 10;
15 | Update: © <= © —Irz - VLpe;
Qutput: Final cluster assignments.
16 Function GetWeightMatrix (DM, D))
17 Randomly partition the samples into M groups G = {G1,Go, -+ , G };
18 for m < 1to M do
19 for i < 1to2do
20 Query contribution score b%)n and confidence score c%)n by an LLM through Pyix;
21 Compute correlation-based weight score Sgﬁ)n through Eq. 2;
2 | return S, S

Minority Class Majority Class LLM Expansion
. Augmented View1: {Title: Adaptive Sensor Evolution in Controlled Complexity
Uncertain Environments; Abstract: Sensors serve as a vital interface between the evolutionary

Title: Evolving sensors in environments of
controlled complexity.

Abstract: Sensors represent a crucial link
between the evolutionary forces shaping a
species' relationship with its environment...

dynamics influencing a species' interaction with its environment ...}

Augmented View2: {Title: Understanding Evolving Sensors in Simple Environ-
ments; Abstract: Sensors play a vital role in how species adapt to their surroundings
and learn. This article discusses experiments using a new type of model called latent
energy environments' (LEE)...}

\Node 25

— LLM Prediction LLM Prediction LLM Prediction
N /\ Prediction: Genetic Algorithms Prediction:| Reinforcement Learning| Prediction:|Reinforcement Learning
% Explaination: The article focuseson  Explaination: The article discussesthe  Explaination: The focus on how different
— evolving sensors in neural networks application of reinforcement learning learning methods impact sensor performance
= using a steady-state genetic algorithm. in the context of adaptive sensors. fits well into reinforcedment learning.

Figure 4: Case study of node 25 from the Cora dataset under an imbalance ratio of 10.

J COMPUTATIONAL COST

In this work, we propose TRACI, a method that integrates Graph Neural Networks (GNNs) with
Large Language Models (LLMs) for graph clustering under class imbalance scenarios. The com-
putational cost associated with the use of LLMs mainly arises from three components: the first is
Data Expansion, where the LLM is used to generate augmented textual views for nodes; the sec-
ond, termed Group Mixup, leverages the LLM to compute semantic correlation scores between texts
within the same group to enhance contextual representations; and the third, referred to as Ranking
Guidance, involves using the LLM to predict the most likely cluster assignment, thereby providing
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feedback to guide the GNN. The total running time of TRACI consists of the time required for LLM
inference on queries and the GNN’s execution time when incorporating LLM-derived feedback.

To comprehensively evaluate the efficiency of TRACI, we report both its computational cost and
runtime, as summarized in Table 10, under imbalance ratios p = 10 and p = 20. The computational
cost is calculated based on the token-level pricing of GPT-40-mini for both input and output tokens,
while the runtime is estimated using its per-minute rate limit. As expected, larger datasets incur
higher cost and longer runtime, which may hinder scalability to extremely large graphs. Notably,
the Expansion step incurs no additional cost or runtime, as the construction of datasets with varying
imbalance ratios allows it to reuse a subset of nodes from the version with a lower p, thus making it
computationally free.

Table 10: Computational cost and Running time of TRACI on datasets under imbalanced settings
(p = 10 and 20).

Imbalance ‘ Datasets Comp ional Cost ($) Running Time (min)

Data Expansion ~ Group Mixup Ranking Guidance Total | Data Expansion Group Mixup Ranking Guidance GNN  Total

Cora 0.88 1.30 0.13 2.32 5.98 5.10 2.72 .20 15.01

p=10 CiteSeer 0.71 1.05 0.08 1.84 4.66 4.16 1.73 1.50  12.05
WikiCS 7.26 8.74 0.56 16.56 66.66 45.30 13.86 323 129.05

PubMed 6.55 8.12 0.13 14.81 48.27 38.15 2.73 1.72 90.86

Cora 0.00 1.15 0.09 1.23 0.00 4.45 1.82 1.12 7.38

p=20 CiteSeer 0.00 0.90 0.04 0.95 0.00 3.59 0.98 1.50 6.07
WikiCS 0.00 7.47 0.37 7.84 0.00 38.61 9.43 397 5201

PubMed 0.00 7.35 0.12 7.48 0.00 3437 2.63 1.67  38.67

K LLM USAGE CLARIFICATION

In this study, we use a large language model (LLM) solely to detect grammatical errors and improve
sentence clarity. No content is generated automatically beyond these language edits, and all sug-
gested modifications are carefully reviewed by the authors. All scientific aspects, including research
hypotheses, experimental design, data analysis, and conclusions, are fully conceived and verified by
the authors.
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