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Abstract

Most curriculum learning methods require an approach to sort the data samples1

by difficulty, which is often cumbersome to perform. In this work, we propose a2

novel curriculum learning approach termed Learning Rate Curriculum (LeRaC),3

which leverages the use of a different learning rate for each layer of a neural4

network to create a data-free curriculum during the initial training epochs. More5

specifically, LeRaC assigns higher learning rates to neural layers closer to the input,6

gradually decreasing the learning rates as the layers are placed farther away from7

the input. The learning rates increase at various paces during the first training8

iterations, until they all reach the same value. From this point on, the neural model9

is trained as usual. This creates a model-level curriculum learning strategy that10

does not require sorting the examples by difficulty and is compatible with any11

neural network, generating higher performance levels regardless of the architecture.12

We conduct comprehensive experiments on eight datasets from the computer vision13

(CIFAR-10, CIFAR-100, Tiny ImageNet), language (BoolQ, QNLI, RTE) and14

audio (ESC-50, CREMA-D) domains, considering various convolutional (ResNet-15

18, Wide-ResNet-50, DenseNet-121), recurrent (LSTM) and transformer (CvT,16

BERT, SepTr) architectures, comparing our approach with the conventional training17

regime. Moreover, we also compare with Curriculum by Smoothing (CBS), a state-18

of-the-art data-free curriculum learning approach. Unlike CBS, our performance19

improvements over the standard training regime are consistent across all datasets20

and models. Furthermore, we significantly surpass CBS in terms of training time21

(there is no additional cost over the standard training regime for LeRaC). Our code22

is freely available at: http//github.com/link.hidden.for.review.23

1 Introduction24

Machine learning researchers relentlessly strive to improve the performance of AI models. Much of25

this effort has been directed to the development of novel neural architectures [1–9], which have grown26

in size and complexity [1, 7, 10] to leverage the availability of increasingly larger datasets. However,27

we believe the dominant trend to develop deeper and deeper neural networks is not sustainable on28

the long term. To this end, we turn our attention to an alternative approach to increase performance29

of deep neural models without growing the size of the respective models. More specifically, we30

focus on curriculum learning, an approach initially proposed by Bengio et al. [11] to train better31

neural networks by mimicking how humans learn, from easy to hard. As originally introduced by32

Bengio et al. [11], curriculum learning is a training procedure that first organizes the examples in their33

increasing order of difficulty, then starts the training of the neural network on the easiest examples,34

gradually adding increasingly more difficult examples along the way, until all training examples35

are fed to the network. The success of the approach relies in avoiding to force the learning of very36

difficult examples right from the beginning, instead guiding the model on the right path through the37

imposed curriculum. This type of curriculum is later referred to as data-level curriculum learning38

[12]. Indeed, Soviany et al. [12] identified several types of curriculum learning approaches in the39
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literature, dividing them into four categories based on the components involved in the definition of40

machine learning given by Mitchell [13]. The four categories are: data-level curriculum (examples41

are presented from easy to hard), model-level curriculum (the modeling capacity of the network is42

gradually increased), task-level curriculum (the complexity of the learning task is increased during43

training), objective-level curriculum (the model optimizes towards an increasingly more complex44

objective). While data-level curriculum is the most natural and direct way to employ curriculum45

learning, its main disadvantage is that it requires a way to determine the difficulty of the data samples.46

The task of estimating the difficulty of the data samples has been addressed in different domain-47

specific ways, e.g. the length of text has been used in natural language processing [14, 15], while48

the number or size of objects were shown to work well in computer vision [16, 17]. Despite having49

many successful applications [12, 18], there is no universal way to determine the difficulty of the50

data samples, making the data-level curriculum less applicable to scenarios where the difficulty is51

hard to estimate, e.g. classification of radar signals. The task-level and objective-level curriculum52

learning strategies suffer from similar issues, e.g. it is hard to create a curriculum when the model has53

to learn an easy task (binary classification) or the objective function is already convex.54

Considering the above observations, we recognize the potential of model-level curriculum learning55

strategies of being applicable across a wider range of domains and tasks. To date, there are only a few56

works [19–21] in the category of pure model-level curriculum learning methods. Furthermore, the57

existing methods have some drawbacks caused by their domain-dependent or architecture-specific58

design. For instance, Karras et al. [20] gradually increase the resolution of input images as new59

layers are appended to a generative network, but the notion of input resolution does not exist in other60

domains, e.g. text. Burduja et al. [19] blur the input images with Gaussian kernels, but this method is61

not applicable to an input format for which there is no convolution operation, e.g. tabular data. Sinha62

et al. [21] apply Gaussian kernel smoothing on convolutional activation maps, but this operation63

makes less sense for a feed-forward neural network formed only of dense layers.64

To benefit from the full potential of the model-level curriculum learning category, we propose LeRaC65

(Learning Rate Curriculum), a novel and simple curriculum learning approach which leverages the66

use of a different learning rate for each layer of a neural network to create a data-free curriculum67

during the initial training epochs. More specifically, LeRaC assigns higher learning rates to neural68

layers closer to the input, gradually decreasing the learning rates as the layers are placed farther away69

from the input. This prevents the propagation of noise caused by the random initialization of the70

network’s weights. The learning rates increase at various paces during the first training iterations,71

until they all reach the same value. From this point on, the neural model is trained as usual. This72

creates a model-level curriculum learning strategy that is applicable to any domain and compatible73

with any neural network, generating higher performance levels regardless of the architecture, without74

adding any extra training time. To the best of our knowledge, we are the first to employ a different75

learning rate per layer to achieve the same effect as conventional (data-level) curriculum learning.76

We conduct comprehensive experiments on eight datasets from the computer vision (CIFAR-10 [22],77

CIFAR-100 [22], Tiny ImageNet [23]), language (BoolQ [24], QNLI [25], RTE [25]) and audio (ESC-78

50 [26], CREMA-D [27]) domains, considering various convolutional (ResNet-18 [4], Wide-ResNet-79

50 [28], DenseNet-121 [29]), recurrent (LSTM [30]) and transformer (CvT [8], BERT [2], SepTr80

[31]) architectures, comparing our approach with the conventional training regime and Curriculum by81

Smoothing (CBS) [21], our closest competitor. Unlike CBS, our performance improvements over the82

standard training regime are consistent across all datasets and models. Furthermore, we significantly83

surpass CBS in terms of training time, since there is no additional cost over the conventional training84

regime for LeRaC, whereas CBS adds Gaussian kernel smoothing layers.85

In summary, our contributions are twofold:86

• We propose a novel and simple model-level curriculum learning strategy that creates a87

curriculum by updating the weights of each neural layer with a different learning rate,88

considering higher learning rates for the low-level feature layers and lower learning rates for89

the high-level feature layers.90

• We empirically demonstrate the applicability to multiple domains (image, audio and text),91

the compatibility to several neural network architectures (convolutional neural networks,92

recurrent neural networks and transformers), and the time efficiency (no extra training time93

added) of LeRaC through a comprehensive set of experiments.94
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2 Related Work95

Curriculum learning was initially introduced by Bengio et al. [11] as a training strategy that helps96

machine learning models to generalize better when the training examples are presented in the97

ascending order of their difficulty. Extensive surveys on curriculum learning methods, including98

the most recent advancements on the topic, were conducted by Soviany et al. [12] and Wang et99

al. [18]. In the former survey, Soviany et al. [12] emphasized that curriculum learning is not only100

applied at the data level, but also with respect to the other components involved in a machine101

learning approach, namely at the model level, the task level and the objective (performance measure)102

level. Regardless of the component on which curriculum learning is applied, the technique has103

demonstrated its effectiveness on a broad range of machine learning tasks, from computer vision104

[11, 16, 17, 21, 32–34] to natural language processing [11, 35–38] and audio processing [39, 40].105

The main challenge for the methods that build the curriculum at the data level is measuring the106

difficulty of the data samples, which is required to order the samples from easy to hard. Most studies107

have addressed the problem with human input [41–43] or metrics based on domain-specific heuristics.108

For instance, the length of the sentence [36, 44] and the word frequency [11, 38] have been employed109

in natural language processing. In computer vision, the samples containing fewer and larger objects110

have been considered to be easier in some works [16, 17]. Other solutions employed difficulty111

estimators [45] or even the confidence level of the predictions made by the neural network [46, 47] to112

approximate the complexity of the data samples.113

The solutions listed above have shown their utility in specific application domains. Nonetheless,114

measuring the difficulty remains problematic when implementing standard (data-level) curriculum115

learning strategies, at least in some application domains. Therefore, several alternatives have emerged116

over time, handling the drawback and improving the conventional curriculum learning approach. In117

[48], the authors introduced self-paced learning to evaluate the learning progress when selecting the118

easy samples. The method was successfully employed in multiple settings [48–54]. Furthermore,119

some studies combined self-paced learning with the traditional pre-computed difficulty metrics120

[53, 55]. An additional advancement related to self-paced learning is the approach called self-paced121

learning with diversity [56]. The authors demonstrated that enforcing a certain level of variety among122

the selected examples can improve the final performance. Another set of methods that bypass the123

need for predefined difficulty metrics is known as teacher-student curriculum learning [57, 58]. In124

this setting, a teacher network learns a curriculum to supervise a student neural network.125

Closer to our work, a few methods [19–21] proposed to apply curriculum learning at the model level,126

by gradually increasing the learning capacity (complexity) of the neural architecture. Such curriculum127

learning strategies do not need to know the difficulty of the data samples, thus having a great potential128

to be useful in a broad range of tasks. For example, Karras et al. [20] proposed to gradually add129

layers to generative adversarial networks during training, while increasing the resolution of the input130

images at the same time. They are thus able to generate realistic high-resolution images. However,131

their approach is not applicable to every domain, since there is no notion of resolution for some132

input data types, e.g. text. Sinha et al. [21] presented a strategy that blurs the activation maps of133

the convolutional layers using Gaussian kernel layers, reducing the noisy information caused by the134

network initialization. The blur level is progressively reduced to zero by decreasing the standard135

deviation of the Gaussian kernels. With this mechanism, they obtain a training procedure that allows136

the neural network to see simple information at the start of the process and more intricate details137

towards the end. Curriculum by Smoothing (CBS) [21] was only shown to be useful for convolutional138

architectures applied in the image domain. Although we found that CBS is applicable to transformers139

by blurring the tokens, it is not necessarily applicable to any neural architecture, e.g. standard feed-140

forward neural networks. As an alternative to CBS, Burduja et al. [19] proposed to apply the same141

smoothing process on the input image instead of the activation maps. The method was applied with142

success in medical image alignment. However, this approach is not applicable to natural language143

input, as it it not clear how to apply the blurring operation on the input text.144

Different from Burduja et al. [19] and Karras et al. [20], our approach is applicable to various145

domains, including but not limited to natural language processing, as demonstrated throughout our146

experiments. To the best of our knowledge, the only competing model-level curriculum method147

which is applicable to various domains is CBS [21]. Unlike CBS, LeRaC does not introduce new148

operations, such as smoothing with Gaussian kernels, during training. As such, our approach does149

not increase the training time with respect to the conventional training regime, as later shown in150
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the experiments. In summary, we consider that the simplicity of our approach comes with many151

important advantages: applicability to any domain and task, compatibility with any neural network152

architecture, time efficiency (adds no extra training time). We support all these claims through the153

comprehensive experiments presented in Section 4.154

3 Method155

Deep neural networks are commonly trained on a set of labeled data samples denoted as:156

S = {(xi, yi)|xi ∈ X, yi ∈ Y, ∀i ∈ {1, 2, ...,m}}, (1)

where m is the number of examples, xi is a data sample and yi is the associated label. The training157

process of a neural network f with parameters θ consists of minimizing some objective (loss) function158

L that quantifies the differences between the ground-truth labels and the predictions of the model f :159

min
θ

1

m

m∑
i=1

L (yi, f(xi, θ)) . (2)

The optimization is generally performed by some variant of Stochastic Gradient Descent (SGD),160

where the gradients are back-propagated from the neural layers closer to the output towards the neural161

layers closer to input through the chain rule. Let f1, f2, ...., fn and θ1, θ2, ..., θn denote the neural162

layers and the corresponding weights of the model f , such that the weights θj belong to the layer163

fj , ∀j ∈ {1, 2, ..., n}. The output of the neural network for some training data sample xi ∈ X is164

formally computed as follows:165

ŷi = f(xi, θ) = fn (...f2 (f1 (xi, θ1) , θ2) ...., θn) . (3)

To optimize the model via SGD, the weights are updated as follows:166

θ
(t+1)
j = θ

(t)
j − η(t) · ∂L

∂θ
(t)
j

,∀j ∈ {1, 2, ..., n}, (4)

where t is the index of the current training iteration, η(t) > 0 is the learning rate at iteration t, and the167

gradient of L with respect to θ
(t)
j is computed via the chain rule. Before starting the training process,168

the weights θ(0)j are commonly initialized with random values.169

Due to the random initialization of the weights, the information propagated through the neural model170

during the early training iterations can contain a large amount of noise [21], which can negatively171

impact the learning process. Due to the feed-forward processing, we conjecture that the noise level172

tends to grow with each neural layer, from fj to fj+1. The same issue can occur if the weights are173

pre-trained on a distinct task, where the misalignment of the weights with a new task is likely higher174

for the high-level feature layers. To alleviate this problem, we propose to introduce a curriculum175

learning strategy that assigns a different learning rate ηj to each layer fj , as follows:176

θ
(t+1)
j = θ

(t)
j − η

(t)
j · ∂L

∂θ
(t)
j

,∀j ∈ {1, 2, ..., n}, (5)

such that:177

η(0) ≥ η
(0)
1 ≥ η

(0)
2 ≥ ... ≥ η(0)n , (6)

178

η(k) = η
(k)
1 = η

(k)
2 = ... = η(k)n , (7)

where η
(0)
j are the initial learning rates and η

(k)
j are the updated learning rates at iteration k. The179

condition formulated in Eq. (6) indicates that the initial learning rate η
(0)
j of a neural layer fj gets180

lower as the level of the respective neural layer becomes higher (farther away from the input). With181

each training iteration t ≤ k, the learning rates are gradually increased, until they become equal,182

according to Eq. (7). Thus, our curriculum learning strategy is only applied during the early training183

iterations, where the noise caused by the random weight initialization is most prevalent. Hence, k is a184

hyperparameter of LeRaC that is usually adjusted such that k ≪ T , where T is the total number of185
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training iterations. In practice, we obtain optimal results by running LeRaC up to any epoch between186

2 and 7.187

We increase each learning rate ηj from iteration 0 to iteration k using an exponential scheduler that is188

based on the following rule:189

η
(l)
j = η

(0)
j · c

l
k ·

(
logc η

(k)
j −logc η

(0)
j

)
,∀l ∈ {0, 1, ..., k}. (8)

We set c = 10 in Eq. (8) across all our experiments. In practice, we obtain optimal results by190

initializing the lowest learning rate η
(0)
n with a value that is around five or six orders of magnitude191

lower than η(0), while the highest learning rate η(0)1 is usually equal to η(0). Apart from these general192

practical notes, the exact LeRaC configuration for each neural architecture is established by tuning193

the hyperparameters on the available validation sets.194

4 Experiments195

4.1 Datasets196

In general, we adopt the official data splits for the eight benchmarks considered in our experiments.197

When a validation set is not available, we keep 10% of the training data for validation.198

CIFAR-10. CIFAR-10 [22] is a popular dataset for object recognition in images. It consists of 60,000199

color images with a resolution of 32× 32 pixels. An images depicts one of 10 object classes, each200

class having 6,000 examples. We use the official data split with a training set of 50,000 images and a201

test set of 10,000 images.202

CIFAR-100. The CIFAR-100 [22] dataset is similar to CIFAR-10, except that it has 100 classes with203

600 images per class. There are 50,000 training images and 10,000 test images.204

Tiny ImageNet. Tiny ImageNet is a subset of ImageNet [23] which provides 100,000 training images,205

25,000 validation images and 25,000 test images representing objects from 200 different classes. The206

size of each image is 64× 64 pixels.207

BoolQ. BoolQ [24] is a question answering dataset for yes/no questions containing 15,942 examples.208

The questions are naturally occurring, being generated in unprompted and unconstrained settings.209

Each example is a triplet of the form: {question, passage, answer}. We use the data split provided in210

the SuperGLUE benchmark [59], containing 9,427 examples for training, 3,270 for validation and211

3,245 for testing.212

QNLI. The QNLI (Question-answering NLI) dataset [25] is a natural language inference benchmark213

automatically derived from SQuAD [60]. The dataset contains {question, sentence} pairs and the214

task is to determine whether the context sentence contains the answer to the question. The dataset215

is constructed on top of Wikipedia documents, each document being accompanied, on average, by216

4 questions. We consider the data split provided in the GLUE benchmark [25], which comprises217

104,743 examples for training, 5,463 for validation and 5,463 for testing.218

RTE. Recognizing Textual Entailment (RTE) [25] is a natural language inference dataset containing219

pairs of sentences with the target label indicating if the meaning of one sentence can be inferred from220

the other. The training subset includes 2,490 samples, the validation set 277, and the test set 3,000221

examples.222

CREMA-D. The CREMA-D multi-modal database [27] is formed of 7,442 videos of 91 actors (48223

male and 43 female) of different ethnic groups. The actors perform various emotions while uttering224

12 particular sentences that evoke one of the 6 emotion categories: anger, disgust, fear, happy, neutral,225

and sad. Following [54], we conduct experiments only on the audio modality, dividing the set of226

audio samples into 70% for training, 15% for validation and 15% for testing.227

ESC-50. The ESC-50 [26] dataset is a collection of 2,000 samples of 5 seconds each, comprising 50228

classes of various common sound events. Samples are recorded at a 44.1 kHz sampling frequency,229

with a single channel. In our evaluation, we employ the 5-fold cross-validation procedure, as described230

in related works [26, 31].231
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Table 1: Optimal hyperparameter settings for the various neural architectures used in our experiments.

Architecture Optimizer Mini-batch #Epochs η(0)
CBS LeRaC

σ d u k η
(0)
1 - η(0)n

ResNet-18 SGD 64 100-200 10−1 1 0.9 2-5 5-7 10−1 - 10−8

Wide-ResNet-50 SGD 64 100-200 10−1 1 0.9 2-5 5-7 10−1 - 10−8

CvT-13 Adamax 64-128 150-200 2·10−3 1 0.9 2-5 2-5 2·10−3 - 2·10−8

CvT-13pre-trained Adamax 64-128 25 5·10−4 1 0.9 2-5 3-6 5·10−4 - 5·10−10

BERTlarge-uncased Adamax 10 7-25 5·10−5 1 0.9 1 3 5·10−5 - 5·10−8

LSTM AdamW 256-512 25-70 10−3 1 0.9 2 3-4 10−3 - 10−7

SepTR Adam 2 50 10−4 0.8 0.9 1-3 2-5 10−4 - 10−8

DenseNet-121 Adam 64 50 10−4 0.8 0.9 1-3 2-5 10−4 - 5·10−8

4.2 Experimental Setup232

Architectures. To demonstrate the compatibility of LeRaC with multiple neural architectures, we233

select several convolutional, recurrent and transformer models. As representative convolutional234

neural networks (CNNs), we opt for ResNet-18 [4], Wide-ResNet-50 [28] and DenseNet-121 [29].235

As representative transformers, we consider CvT-13 [8], BERTuncased-large [2] and SepTr [31]. For236

CvT, we consider both pre-trained and randomly initialized versions. We use an uncased large pre-237

trained version of BERT. As Ristea et al. [31], we train SepTr from scratch. In addition, we employ238

a long short-term memory (LSTM) network [30] to represent recurrent neural networks (RNNs).239

The recurrent neural network contains two LSTM layers, each having a hidden dimension of 256240

components. These layers are preceded by one embedding layer with the embedding size set to 128241

elements. The output of the recurrent layers is passed to a classifier comprised of two fully connected242

layers. The LSTM is activated by rectified linear units (ReLU). We apply the aforementioned models243

on distinct input data types, considering the intended application domain of each model1. Hence,244

ResNet-18, Wide-ResNet-50 and CvT are applied on images, BERT and LSTM are applied on text,245

and SepTr and DenseNet-121 are applied on audio.246

Baselines. We compare LeRaC with two baselines: the conventional training regime (which uses247

early stopping and reduces the learning rate on plateau) and the state-of-the-art Curriculum by248

Smoothing [21]. For CBS, we use the official code released by Sinha et al. [21] at https://github.249

com/pairlab/CBS, to ensure the replicability of their method in our experimental settings, which250

include a more diverse selection of input data types and neural architectures.251

Hyperparameter tuning. We tune all hyperparameters on the validation set of each benchmark.252

In Table 1, we present the optimal hyperparameters chosen for each architecture. In addition to the253

standard parameters of the training process, we report the parameters that are specific for the CBS254

and LeRaC strategies. In the case of CBS, σ denotes the standard deviation of the Gaussian kernel, d255

is the decay rate for σ, and u is the decay step. Regarding the parameters of LeRaC, k represents256

the number of iterations used in Eq. (8), and η
(0)
1 and η

(0)
n are the initial learning rates for the first257

and last layers of the architecture, respectively. We underline that η(0)1 = η(0) and c = 10, in all258

experiments. Moreover, η(k)j = η(0), i.e. the initial learning rates of LeRaC converge to the original259

learning rate set for the conventional training regime. All models are trained with early stopping and260

the learning rate is reduced by a factor of 10 when the loss reaches a plateau.261

Evaluation. We evaluate all models in terms of the classification accuracy. We repeat the training262

process of each model for 5 times and report the average accuracy and the standard deviation.263

Image preprocessing. For the image classification experiments, we apply the same data preprocessing264

approach as Sinha et al. [21]. Hence, we normalize the images and maintain their original resolution,265

32 × 32 pixels for CIFAR-10 and CIFAR-100, and 64 × 64 pixels for Tiny ImageNet. Similar to266

Sinha et al. [21], we do not employ data augmentation.267

1The only exception is DenseNet-121, which is applied on audio instead of image data.
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Table 2: Average accuracy rates (in %) over 5 runs on CIFAR-10, CIFAR-100 and Tiny ImageNet for
various neural models based on different training regimes: conventional, CBS [21] and LeRaC. The
accuracy of the best training regime in each experiment is highlighted in bold.

Architecture Training Regime CIFAR-10 CIFAR-100 Tiny ImageNet

ResNet-18 conventional 89.20± 0.43 65.28± 0.16 57.41± 0.05
ResNet-18 CBS [21] 89.53± 0.22 66.41± 0.21 55.49± 0.20
ResNet-18 LeRaC (ours) 89.56± 0.16 66.02± 0.17 57.86± 0.20

Wide-ResNet-50 conventional 91.22± 0.24 68.14± 0.16 55.97± 0.30
Wide-ResNet-50 CBS [21] 89.05± 1.00 65.73± 0.36 48.30± 1.53
Wide-ResNet-50 LeRaC (ours) 91.58± 0.16 69.38± 0.26 56.48± 0.60

CvT-13 conventional 71.84± 0.37 41.87± 0.16 33.38± 0.27
CvT-13 CBS [21] 72.64± 0.29 44.48± 0.40 33.56± 0.36
CvT-13 LeRaC (ours) 72.90± 0.28 43.46± 0.18 33.95± 0.28

CvT-13pre-trained conventional 93.56± 0.05 77.80± 0.16 70.71± 0.35
CvT-13pre-trained CBS [21] 85.85± 0.15 62.35± 0.48 68.41± 0.13
CvT-13pre-trained LeRaC (ours) 94.15± 0.03 78.93± 0.05 71.34± 0.08

Table 3: Average accuracy rates (in %) over 5 runs on BoolQ, RTE and QNLI for BERT and LSTM
based on different training regimes: conventional, CBS [21] and LeRaC. The accuracy of the best
training regime in each experiment is highlighted in bold.

Architecture Training Regime BoolQ RTE QNLI

BERTlarge-uncased conventional 74.12± 0.32 74.48± 1.36 92.13± 0.08
BERTlarge-uncased CBS [21] 74.37± 1.11 74.97± 1.96 91.47± 0.22
BERTlarge-uncased LeRaC (ours) 75.55± 0.66 75.81± 0.29 92.45± 0.13

LSTM conventional 64.40± 1.37 54.12± 1.60 59.42± 0.36
LSTM CBS [21] 64.75± 1.54 54.03± 0.45 59.89± 0.38
LSTM LeRaC (ours) 65.80± 0.33 55.71± 1.04 59.98± 0.34

Text preprocessing. For the text classification experiments with BERT, we lowercase all words and268

add the classification token ([CLS]) at the start of the input sequence. We add the separator token269

([SEP]) to delimit sentences. For the LSTM network, we lowercase all words and replace them with270

indexes from vocabularies constructed from the training set. The input sequence length is limited to271

512 tokens for BERT and 200 tokens for LSTM.272

Speech preprocessing. We transform each audio sample into a time-frequency matrix by computing273

the discrete Short Time Fourier Transform (STFT) with Nx FFT points, using a Hamming window of274

length L and a hop size R. For CREMA-D, we first standardize all audio clips to a fixed dimension275

of 4 seconds by padding or clipping the samples. Then, we apply the STFT with Nx = 1024,276

R = 64 and a window size of L = 512. For ESC-50, we keep the same values for Nx and L, but277

we increase the hop size to R = 128. Next, for each STFT, we compute the square root of the278

magnitude and map the values to 128 Mel bins. The result is converted to a logarithmic scale and279

normalized to the interval [0, 1]. Furthermore, in all our speech classification experiments, we use the280

following data augmentation methods: noise perturbation, time shifting, speed perturbation, mix-up281

and SpecAugment [61]. The speech preprocessing steps are carried out following Ristea et al. [31].282

4.3 Results283

Image classification. In Table 2, we present the image classification results on CIFAR-10, CIFAR-284

100 and Tiny ImageNet. On the one hand, there are two scenarios (ResNet-18 on CIFAR-100 and285

CvT-13 on CIFAR-100) in which CBS provides the largest improvements over the conventional286

regime, surpassing LeRaC in the respective cases. On the other hand, there are seven scenarios287

where CBS degrades the accuracy with respect to the standard training regime. This shows that the288

improvements attained by CBS are inconsistent across models and datasets. Unlike CBS, our strategy289
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Table 4: Average accuracy rates (in %) over 5 runs on CREMA-D and ESC-50 for SepTr and
DenseNet-121 based on different training regimes: conventional, CBS [21] and LeRaC. The accuracy
of the best training regime in each experiment is highlighted in bold.

Architecture Training Regime CREMA-D ESC-50

SepTr conventional 70.47± 0.67 91.13± 0.33
SepTr CBS [21] 69.98± 0.71 91.15± 0.41
SepTr LeRaC (ours) 70.95± 0.56 91.58± 0.28

DenseNet-121 conventional 67.21± 0.12 88.91± 0.11
DenseNet-121 CBS [21] 68.16± 0.19 88.76± 0.17
DenseNet-121 LeRaC (ours) 68.99± 0.08 90.02± 0.10

Table 5: Average accuracy rates (in %) over 5 runs on CIFAR-10, CIFAR-100 and Tiny ImageNet
for CvT-13 based on different training regimes: conventional, CBS [21], LeRaC with linear update,
LeRaC with exponential update (proposed), and a combination of CBS and LeRaC.

Architecture Training Regime CIFAR-10 CIFAR-100 Tiny ImageNet

CvT-13 conventional 71.84± 0.37 41.87± 0.16 33.38± 0.27
CvT-13 CBS [21] 72.64± 0.29 44.48± 0.40 33.56± 0.36
CvT-13 LeRac (linear update) 72.49± 0.27 43.39± 0.14 33.86± 0.07
CvT-13 LeRaC (exponential update) 72.90± 0.28 43.46± 0.18 33.95± 0.28
CvT-13 CBS [21] + LeRaC 73.25± 0.19 44.90± 0.41 34.20± 0.61

surpasses the baseline regime in all twelve cases, thus being more consistent. In four of these cases,290

the accuracy gains of LeRaC are higher than 1%. Moreover, LeRaC outperforms CBS in ten out of291

twelve cases. We thus consider that LeRaC can be regarded as a better choice than CBS, bringing292

consistent performance gains.293

Text classification. In Table 3, we report the text classification results on BoolQ, RTE and QNLI.294

Here, there are only two cases (BERT on QNLI and LSTM on RTE) where CBS leads to performance295

drops compared to the conventional training regime. In all other cases, the improvements of CBS are296

below 0.6%. Just as in the image classification experiments, LeRaC brings accuracy gains for each297

and every model and dataset. In four out of six scenarios, the accuracy gains yielded by LeRaC are298

higher than 1.3%. Once again, LeRaC proves to be the best and most consistent regime, generally299

outperforming CBS by significant margins.300

Speech classification. In Table 4, we present the results obtained on the audio data sets, namely301

CREMA-D and ESC-50. We observe that the CBS strategy obtains lower results compared with302

the baseline in two cases (SepTr on CREMA-D and DenseNet-121 on ESC-50), while our method303

provides superior results for each and every case. By applying LeRaC on SepTr, we set a new304

state-of-the-art accuracy level (70.95%) on the CREMA-D audio modality, surpassing the previous305

state-of-the-art value attained by Ristea et al. [31] with SepTr alone. When applied on DenseNet-121,306

LeRaC brings performance improvements higher than 1%, the highest improvement (1.78%) over307

the baseline being attained on CREMA-D.308

Additional results. An interesting aspect worth studying is to determine if putting the CBS and309

LeRaC regimes together could bring further performance gains. Across all our experiments, we310

identified a single model (CvT-13) for which both CBS and LeRaC bring accuracy gains on all311

datasets (see Table 2). We thus consider this model to try out the combination of CBS and LeRaC.312

The corresponding results are shown in Table 5. The reported results show that the combination brings313

accuracy gains across all three datasets (CIFAR-10, CIFAR-100, Tiny ImageNet). We thus conclude314

that the combination of curriculum learning regimes is worth a try, whenever the two independent315

regimes boost performance.316

Another important aspect is to establish if the exponential learning rate update proposed in Eq. (8) is317

a good choice. To test this out, we keep the CvT-13 model and change the LeRaC regime to use a318

linear update of the learning rate. We observe performance gains with both types of update rules,319
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Figure 1: Validation accuracy (on the y-axis) versus training time (on the x-axis) for four distinct
architectures. The number of training epochs is the same for both LeRaC and CBS, the observable
time difference being caused by the overhead of CBS due to the Gaussian kernel layers.

but our exponential learning rate update seems to bring higher gains on all three datasets. We thus320

conclude that the update rule defined in Eq. (8) is a sound option.321

Training time comparison. For a particular model and dataset, all training regimes are executed for322

the same number of epochs, for a fair comparison. However, the CBS strategy adds the smoothing323

operation at multiple levels inside the architecture, which increases the training time. To this end,324

we compare the training time (in hours) versus the validation error of CBS and LeRaC. For this325

experiment, we selected four neural models and illustrate the evolution of the validation accuracy326

over time in Figure 1. We underline that LeRaC introduces faster convergence times, being around327

7-12% faster than CBS. It is trivial to note that LeRaC requires the same time as the conventional328

regime.329

5 Conclusion330

In this paper, we introduced a novel model-level curriculum learning approach that is based on331

starting the training process with increasingly lower learning rates per layer, as the layers get closer332

to the output. We conducted comprehensive experiments on eight datasets from three domains333

(image, text and audio), considering multiple neural architectures (CNNs, RNNs and transformers),334

to compare our novel training regime (LeRaC) with a state-of-the-art regime (CBS [21]) as well as335

the conventional training regime (based on early stopping and reduce on plateau). The empirical336

results demonstrate that LeRaC is significantly more consistent than CBS, perhaps being the most337

versatile curriculum learning strategy to date, due to its compatibility with multiple neural models338

and its usefulness across different domains. Remarkably, all these benefits come for free, i.e. LeRaC339

does not add any extra time over the conventional approach.340
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• Did you include the license to the code and datasets? [Yes]517

• Did you include the license to the code and datasets? [No] The code and the data are518

proprietary.519
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identify any negative societal impacts.530
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them? [Yes]532
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(b) Did you include complete proofs of all theoretical results? [N/A]535
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information or offensive content? [N/A]557

5. If you used crowdsourcing or conducted research with human subjects...558

(a) Did you include the full text of instructions given to participants and screenshots, if559

applicable? [N/A]560

(b) Did you describe any potential participant risks, with links to Institutional Review561
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