
Under review for RLC 2025, to be published in RLJ
∣∣ Cover Page

Empirical Bound Information-Directed Sampling
Anonymous authors

Paper under double-blind review

Keywords: bandit algorithms, information-directed sampling, parameter bounds, heteroskedastic
noise

Summary
Information-directed sampling (IDS) is a powerful framework for solving bandit problems

which has shown strong results in both Bayesian and frequentist settings. However, frequentist
IDS, like many other bandit algorithms, requires that one have prior knowledge of a (relatively)
tight upper bound on the norm of the true parameter vector governing the reward model in order
to achieve good performance. Unfortunately, this requirement is rarely satisfied in practice. As
we demonstrate, using a poorly calibrated bound can lead to significant regret accumulation.
To address this issue, we introduce a novel frequentist IDS algorithm that iteratively refines a
high-probability upper bound on the true parameter norm using accumulating data. We focus on
the linear bandit setting with heteroskedastic subgaussian noise. Our method leverages a mixture
of relevant information gain criteria to balance exploration aimed at tightening the parameter
norm bound and directly searching for the optimal action. We establish regret bounds for our
algorithm that do not depend on an initially assumed parameter norm bound and demonstrate
that our method outperforms state-of-the-art IDS and UCB algorithms.

Contribution(s)
1. This paper introduces a novel frequentist information-directed sampling (IDS) algorithm that

does not require prior knowledge of a tight upper bound of the true parameter norm to achieve
good performance. Our method uses accumulating data to generate a sequence of high-
probability upper bounds on the parameter norm and accounts for potential heteroskedasticity
of the rewards.
Context: The performance of many frequentist bandit algorithms, including various IDS
(Kirschner & Krause, 2018; Kirschner et al., 2021) and UCB methods (Auer, 2002; Abbasi-
Yadkori et al., 2011), relies heavily on a (at least relatively) tight upper bound on the true
parameter norm being available to the algorithm. This is almost never the case in practice
which can lead to significant regret accumulation. Recently, some norm-agnostic bandit
algorithms have been proposed to address this issue (Gales et al., 2022), however, they do
not account for potential heteroskedasticity of the rewards.

2. We introduce a new composite information criterion that balances improving the requisite
upper bound on the parameter norm and direct search for the optimal action.
Context: To the best of our knowledge, no other IDS algorithm uses a mixture of information
gain criteria to balance acquiring information about different aspects of the environment’s
dynamics. We are also not aware of any existing method that uses an information gain
criterion aimed at improving the upper bound on the parameter norm.

3. We establish anytime sublinear regret bounds for our algorithm which eventually do not
depend on the initially assumed parameter norm bound.
Context: Previously proposed norm-agnostic bandits (Gales et al., 2022) rely on an initial
burn-in during which regret accumulation is not controlled, e.g., it need not be sublinear.
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Abstract
Information-directed sampling (IDS) is a powerful framework for solving bandit prob-1
lems which has shown strong results in both Bayesian and frequentist settings. How-2
ever, frequentist IDS, like many other bandit algorithms, requires that one have prior3
knowledge of a (relatively) tight upper bound on the norm of the true parameter vector4
governing the reward model in order to achieve good performance. Unfortunately, this5
requirement is rarely satisfied in practice. As we demonstrate, using a poorly calibrated6
bound can lead to significant regret accumulation. To address this issue, we introduce a7
novel frequentist IDS algorithm that iteratively refines a high-probability upper bound on8
the true parameter norm using accumulating data. We focus on the linear bandit setting9
with heteroskedastic subgaussian noise. Our method leverages a mixture of relevant10
information gain criteria to balance exploration aimed at tightening the estimated parame-11
ter norm bound and directly searching for the optimal action. We establish regret bounds12
for our algorithm that do not depend on an initially assumed parameter norm bound and13
demonstrate that our method outperforms state-of-the-art IDS and UCB algorithms.14

1 Introduction15

We consider linear stochastic bandits (Lattimore & Szepesvári, 2020) with heteroskedastic noise16
(see Weltz et al., 2023, for applications of such models in marketing and other areas). In this setting,17
information directed sampling (IDS) and upper confidence bound (UCB) algorithms have been shown18
to be extremely effective (Auer, 2002; Abbasi-Yadkori et al., 2011; Kirschner & Krause, 2018;19
Kirschner et al., 2021). However, many of these methods require strong prior information that can be20
used to inform a high-quality upper bound on the Euclidean norm of the parameter vector indexing21
the reward model. The choice of this bound is critical to algorithm performance. If the bound is too22
large, the algorithm risks incurring excess risk due to needless exploration, and if the bound is too23
small, the algorithm may fail to identify the optimal arm and thus suffer linear regret.24

To reduce sensitivity on a user-specified bound, we propose a novel version of frequentist IDS that25
uses accumulating data to generate a sequence of high-probability upper bounds on the norm of26
the reward model parameters. A key component of our method is a new information gain criterion27
that balances improving the requisite upper bound and regret minimization. Because improving28
the bound is critical to avoid over-exploration in early rounds of the bandit process, we develop a29
two-phase procedure that uses our new information criterion in the first phase and then defaults to a30
more standard IDS information criterion in the second phase.31

Unlike other bandit strategies, such as UCB (Auer, 2002; Garivier & Cappé, 2011; Cappé et al., 2013;32
Zhou et al., 2020) or Thompson sampling (TS) (Thompson, 1933; Agrawal & Goyal, 2013; Phan33
et al., 2019), which encourage exploration indirectly by leveraging uncertainty about the optimal34
arm, IDS explicitly balances exploration and exploitation. It selects actions that minimize estimated35
instantaneous regret while maximizing expected information gain about model parameters. As shown36
by Russo & Van Roy (2014) and Kirschner & Krause (2018), this approach allows IDS to avoid37
pitfalls inherent in UCB and TS-based algorithms, particularly in scenarios where certain suboptimal38
actions provide valuable information about the environment’s dynamics. In such cases, UCB and39
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TS tend to overlook these actions, whereas IDS plays them early on, enabling faster learning of the40
optimal policy and ultimately achieving superior long-term performance. IDS was first introduced41
for Bayesian bandits by Russo & Van Roy (2014) and later adapted to the frequentist setting by42
Kirschner & Krause (2018). Beyond the standard bandit setting, IDS has been applied to problems43
such as linear partial monitoring (Kirschner et al., 2020) — a generalization of bandits where the44
observed signal on the environment model parameters is not necessarily the same as the reward to be45
optimized — as well as reinforcement learning (Nikolov et al., 2019; Lindner et al., 2021; Hao &46
Lattimore, 2022), where the actions taken by the agent influence the state of the environment and the47
reward dynamics.48

To the best of our knowledge, no previous work has considered either the strategy of iteratively49
refining and utilizing a high-probability upper bound on the parameter norm in the heteroskedastic50
subgaussian linear bandit setting we work with here, or the use of the information gain criterion51
for tightening the bound on the parameter norm we introduce. We are also not aware of any work52
utilizing a mixture of information gain criteria to encourage simultaneously obtaining different types53
of information about the dynamics of the environment. We note that while we introduce this idea in54
the form of an IDS algorithm, the approach of iteratively refining and utilizing a high-probability55
upper bound of the true parameter norm can be regarded as a more general design principle beyond56
its IDS implementation in this setting.57

The remainder of this manuscript is structured as follows. The next section provides a brief review58
of related work. Section 3 introduces the problem setup and notation used throughout the paper. In59
Section 4, we present the necessary background on IDS. Section 5 introduces the novel empirical60
bound information-directed sampling (EBIDS) algorithm, which removes the need for a tight parame-61
ter norm bound to be known a priori. Section 6 establishes regret bound guarantees for EBIDS, and62
finally, Section 7 evaluates its empirical performance against competitor algorithms in a simulation63
study.64

2 Related works65

The assumption that the norm of the parameter indexing the reward model is known or that one has66
a (relatively) tight upper bound on this quantity is abundant in the IDS and UCB literature (Auer,67
2002; Abbasi-Yadkori et al., 2011; Kirschner & Krause, 2018; Hung et al., 2021); it has also been68
used in Thompson sampling (Xu et al., 2023). This assumption commonly arises through the use of69
self-normalized martingale bounds and related concentration results (Abbasi-Yadkori et al., 2011).70
Consequently, algorithms constructed through these concentration results require a user-specified71
upper bound on the norm or the true parameter vector. Critically, as noted previously, the performance72
of these algorithms can be highly sensitive to the choice of these bounds. Despite this, only a handful73
of papers have attempted to alleviate this sensitivity.74

Gales et al. (2022) propose norm-agnostic linear bandits which construct a series of confidence75
ellipsoids for the true parameter vector along with a projection interval to construct a UCB-type76
algorithm. However, their algorithms rely on an initial burn-in during which regret accumulation is77
not controlled, e.g., it need not be sublinear. In our simulation experiments, we find that the impact of78
this initial exploration on accumulated regret is not negligible. Furthermore, as UCB algorithms, their79
methods do not explicitly make use of heteroskedasticity in the reward distributions across arms.80

The algorithm proposed by Ghosh et al. (2021) shares some underlying ideas with our method in the81
sense that they use multi-phase exploration to iteratively update the bound on the unknown parameter82
norm. However, their algorithm is limited to the specialized setting of stochastic linear bandits83
introduced by Chatterji et al. (2020) with restrictive assumptions on the structure of the rewards84
which makes their methods generally not applicable to the settings we consider here. Similarly, Dani85
et al. (2008), Orabona & Cesa-Bianchi (2011), and Gentile & Orabona (2014) do not assume that one86
has a high-quality (i.e., relatively tight) bound on the norm of the parameter; however, they require87
bounded rewards for all arms. Other attempts to alleviate the assumption of known parameter norm88

2



Empirical Bound Information-Directed Sampling

bound have been made in spectral bandits (Kocák et al., 2020), and deep active learning (Wang et al.,89
2021). However, it is not clear how to port these methods to the setup we consider here.90

3 Setup and notation91

We denote the inner product of two vectors of the same dimension as ⟨·, ·⟩ so that the squared92
Euclidean norm of vector v is ||v||22 = ⟨v,v⟩. For a symmetric positive definite or semi-definite93
matrix A ∈ Rd×d, we denote the associated matrix norm (or semi-norm) of a vector v ∈ Rd as94
∥v∥2A = ⟨v,Av⟩. We let λmax(A) and λmin(A) denote the largest and the smallest eigenvalues of95
A. Throughout, log(x) denotes the natural logarithm of x ∈ R+.96

At each time step t ∈ {1, . . . , T} the agent selects an action At ∈ A and observes the outcome97
Yt ∈ R which is generated from the linear model98

Yt(At) = ⟨ϕ(At),θ
∗⟩+ ηt, (1)

where θ∗ ∈ Rd is a vector of unknown parameters and ϕ : A → Rd is a feature mapping, such that99
for any a ∈ A we have ∥ϕ(a)∥2 ∈ [L,U ] for some positive constants L ≤ U . The noise term ηt is100
assumed to be subgaussian and conditionally mean zero, i.e., for every c ∈ R we assume that101

E {exp (cηt) | At = a} ≤ exp
{
c2ρ (a)

2
/2
}
, (2)

where 0 < ρmin ≤ ρ(a) ≤ ρmax < ∞ for all a ∈ A and E (ηt | A1, . . . , At, η1, . . . , ηt−1) = 0.102
Define B∗ := ∥θ∗∥2, in some of our theoretical results we assume that one has a conservative103
upper bound B such that B∗ ≤ B but that this bound may be quite conservative, i.e., it may be that104
B∗ ≪ B.105

The available history to inform action selection at time t is Ht = {(A1, Y1), . . . , (At−1, Yt−1)} of
past actions and rewards. A bandit algorithm is thus formalized as a map from histories to distributions
over actions πt(a|ht) = P(At = a|Ht = ht). Let

∆(At) = ⟨ϕ(a∗),θ∗⟩ − ⟨ϕ(At),θ
∗⟩

be the gap between the action At and the optimal action a∗ = arg maxa∈A⟨ϕ(a),θ
∗⟩. Our goal is to106

design an algorithm πt(· | ht) which maximizes the cumulative expected reward E
{∑T

t=1 Yt

}
, or107

equivalently, minimizes the regret, defined asRT = E
{∑T

t=1 ∆(At)
}
. While regret is a standard108

performance metric for bandit algorithms, it involves taking expectation over both the randomness in109
the policy and the noise in the rewards so it can be a poor indicator of the risk associated with the110
policy (Lattimore & Szepesvári, 2020). For this reason in this paper we also study the probabilistic111
bounds on the pseudo-regret defined as PRT =

∑T
t=1 ∆(At).112

4 Review of information-directed sampling113

Information-directed sampling (IDS Russo & Van Roy, 2014) is an algorithm design principle that114
balances minimizing the gap of an action with its potential for information gain. Let P(A) denote115
the space of distributions of A. For any µ ∈ A let ∆̂t(µ) be an estimator of the expected gap116
Eµ∆ := EA∼µ∆(A) constructed from the history Ht, and, similarly, let It(µ) be a measure of117
information again, e.g., the reduction of entropy in the posterior or sampling distribution the parameter118
indexing the mean reward model (see below for additional details). For any function f : P(A)→ R,119
if the argument is a point mass at a single action, e.g., where µ is the Dirac delta δa, we write f(a)120
rather than f(δa). The IDS distribution is defined as121

µIDS
t = arg min

µ∈P(A)

{
∆̂t(µ)

}2

It(µ)
. (3)
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The quantity Ψt(µ) :=
{
∆̂t(µ)

}2

/It(µ) being minimized is known as the information ratio. An122

IDS algorithm samples the actionAt ∼ µIDS
t at each time step t. Note that this results in a randomized123

algorithm, which, as shown by Russo & Van Roy (2014) and Kirschner & Krause (2018), always124
has at most two actions in its support. However, it is also possible to restrict the optimization in125
(3) to Dirac delta functions on the individual actions, thus obtaining what is often referred to as126
deterministic IDS (Kirschner & Krause, 2018)127

ÂDIDS
t = arg min

a∈A

{
∆̂t(a)

}2

It(a)
. (4)

Deterministic IDS is typically computationally cheaper, retains the same theoretical regret bounds128
as its randomized counterpart, and in simulation experiments was shown to be competitive with or129
superior to randomized IDS (Kirschner & Krause, 2018; Kirschner, 2021). Furthermore, deterministic130
IDS may be appealing in settings where randomized policies are unpalatable such as public health131
(Weltz et al., 2022) and site selection (Ahmadi-Javid et al., 2017).132

The information ratio provides a natural way of bounding regret within a Bayesian setting (Russo133
& Van Roy, 2014). Notably, the information ratio can also be used to bound the regret under a134
frequentist paradigm (Kirschner & Krause, 2018) as illustrated by the following result based on the135
work of Kirschner (2021) which we prove in Section 10.1 of the Supplementary Materials.136

Theorem 1 (Kirschner). For any T let G be a fixed subset of {1, . . . , T} and let {At}Tt=1 be an
Ht-adapted sequence in A. Then

E

{∑
t∈G

∆̂t (At)

}
≤

√√√√E

{∑
t∈G

Ψt (At)

}
E

{∑
t∈G

It (At)

}
,

and if ∆̂t(At) ≥ ∆(At) for all t ∈ G then with probability 1 we have

∑
t∈G

∆(At) ≤

√√√√{∑
t∈G

Ψt(At)

}{∑
t∈G

It(At)

}
.

Kirschner & Krause (2018) used weighted ridge regression to estimate θ∗ at each time step t so that137

θ̂
wls

t = W−1
t

t−1∑
s=1

1

ρ(As)2
ϕ(As)Ys, where W t =

t−1∑
s=1

1

ρ(As)2
ϕ(As)ϕ(As)

⊤ + γId, (5)

and γ ≥ 0 is a constant chosen by the user. The following result, proposed by Abbasi-Yadkori et al.138
(2011) and extended by Kirschner & Krause (2018), provides a means to perform inference using139
this estimator.140

Theorem 2. Suppose that the generative model follows the linear bandit model Yt = ⟨ϕ(At),θ
∗⟩+ηt141

given in (1), where the actions At are Ht-adapted and the errors ηt have conditional mean of zero142
and satisfy the subgaussian condition in (2). Let B ≥ ||θ∗||2 be a (potentially conservative) bound143
on the norm of the parameters indexing the reward model and define144

Ewls
t,δ :=

{
θ ∈ Rd :

∥∥∥θ − θ̂
wls

t

∥∥∥2
W t

≤ βt,δ(B)

}
,

where145

βt,δ(B) =

[√
2 log

1

δ
+ log

{
det (W t)

det (W 1)

}
+
√
γB

]2
. (6)
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Then

P

( ∞⋂
t=1

{
θ∗ ∈ Ewls

t,δ

})
≥ 1− δ,

i.e., Ewls
t,δ is a (1− δ)× 100% confidence ellipsoid for θ∗.146

Kirschner & Krause (2018) use Theorem 2 to formulate a weighted UCB algorithm which at each147
time step t takes the action148

A
UCB(δt)
t = arg max

a∈A

〈
ϕ(a), θ̂

wls

t

〉
+ β

1/2
t,δt

(B)∥ϕ(a)∥W−1
t
, (7)

maximizing the (1− δt)× 100% upper confidence bound on the expected reward based on the Ewls
t,δt

149
confidence set. Then they use150

∆̌t,δt(a) =
〈
ϕ
(
A

UCB(δt)
t

)
− ϕ(a), θ̂

wls

t

〉
+ β

1/2
t,δt

(B)

(∥∥∥ϕ(AUCB(δt)
t

)∥∥∥
W−1

t

+ ∥ϕ(a)∥W−1
t

)
.

as the gap estimate. This ensures that ∆(a) ≤ ∆̌t,δt(a) for all a ∈ A whenever θ∗ ∈ Ewls
t,δt

holds.151

The choice of the information gain criterion is crucial when designing an IDS algorithm. Kirschner &152
Krause (2018) introduce the following criterion153

I
UCB(δt)
t (a) =

1

2
log


∥∥ϕ (atUCB(δt)

)∥∥2
W−1

t∥∥∥ϕ(aUCB(δt)
t

)∥∥∥2
(W t+ρ(a)−2ϕ(a)ϕ(a)⊤)−1

 ,

for any a ∈ A. We present the resulting procedure in Algorithm 1, which we hereafter refer to as154
IDS-UCB. It can be shown that if one chooses δt = 1/t2, the regret of IDS-UCB satisfies

Algorithm 1 IDS-UCB
Input: Action set A, penalty parameter γ > 0, noise function ρ : A → R+, feature function
ϕ : A → R, sequence of confidence levels {δt}t≥1 ⊂ (0, 1), assumed true parameter norm bound B.

For t = 1, 2, . . . , T :

Compute W t and θ̂
wls

t using (5)

A
UCB(δt)
t ← arg maxa∈A

{〈
ϕ(a), θ̂

wls

t

〉
+ β

1/2
t,δt

(B)∥ϕ(a)∥W−1
t

}
I

UCB(δt)
t (a)← 1

2 log

(∥∥∥ϕ(AUCB(δt)
t

)∥∥∥2
W−1

t

)
− 1

2 log

(∥∥∥ϕ(AUCB(δt)
t

)∥∥∥2
(W t+ρ(a)−2ϕ(a)ϕ(a)⊤)−1

)
∆̌t,δt(a)←

〈
ϕ
(
A

UCB(δt)
t

)
− ϕ(a), θ̂

wls

t

〉
+ β

1/2
t,δt

(B)

(∥∥∥ϕ(AUCB(δt)
t

)∥∥∥
W−1

t

+ ∥ϕ(a)∥W−1
t

)
µt ← arg minµ∈P(A) ∆̌

2
t,δt

(µt)/I
UCB(δt)
t (µt)

Sample At ∼ µt

Play At, observe Yt = ⟨ϕ(At),θ
∗⟩+ ηt

155

RT ≤ O
(
max{U/√γ, ρmax}

√
γdB
√
T log T

)
,

while the pseudo-regret PRT of IDS-UCB with fixed δt = δ satisfies with probability at least 1− δ

PRT ≤ O(max{U/√γ, ρmax}
√
γdB
√
T log(T/δ));
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critically, both regret bounds scale directly with the assumed bound B on the Euclidean norm of the156
true parameter (see Kirschner, 2021, for a formal statement of the preceding results and additional157
discussion).158

We now demonstrate via a simple illustrative simulation experiment that the choice of B can have159
a significant impact on the finite time performance of IDS-UCB. Large values of B relative to B∗160
lead to excess exploration and large regret in early rounds of the algorithm, whereas small values of161
B can prevent the algorithm from identifying the optimal arm thus incurring linear regret. In this162
experiment we also include the weighted UCB policy given by (7). We evaluate versions of IDS-163
UCB and UCB that use a conservative value of B > B∗, and those which use an anti-conservative164
value B < B∗. The parameters indexing the generative model are θ∗ = [−5, 1, 1, 1.5, 2]⊤ so165
that B∗ = ∥θ∗∥2 ≈ 5.77. We take B = 100 for the conservative bound and B = 1 for the anti-166
conservative bound. For reference, we also include oracle versions of UCB and IDS-UCB that have167
access to the true value of B∗. However, we emphasize that these procedures are not generally168
possible in practice.169

We consider a setting with ten arms. Features for each arm are sampled from Unif[−1/
√
5, 1/
√
5].170

The error distribution for the first five arms are standard normal and for the remaining five arms171
they are normal with mean zero and variance 0.2. Figure 1 shows the mean regret averaged over172
200 repeated experiments with T = 500 steps along with 95% pointwise confidence bounds. As173
anticipated, using a conservative bound of B = 100 achieves sublinear regret but pays a strong initial174
cost due to excess exploration. Algorithms that used the anti-conservative bound of B = 1 fail to175
identify the optimal arm thus sustain linear regret.
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(a) Conservative B = 100
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UCB (oracle)

(b) Anti-conservative B = 1

Figure 1: Regret incurred by IDS-UCB and UCB with: (a) conservative B = 100; (b) anti-
conservative B = 1. In both plots we include the oracle versions of IDS-UCB and UCB using
B = B∗ for reference. However, note that it is not feasible to implement them in most practical
settings. The solid and dashes lines represent the regret averaged over 200 repeated experiments,
while the shaded bounds are 95% pointwise confidence bands.

176

5 Empirical bound information-directed sampling177

We propose the empirical bound information-directed sampling (EBIDS) algorithm, which, like178
existing IDS algorithms, relies on a conservative upper bound B, but, unlike existing algorithms,179
EBIDS refines this value with accruing data to obtain a tighter high-probability bound on B∗. Our180
algorithm proceeds in two phases. Throughout the first TB steps, which we will refer to as the bound181
exploration phase, the goal is to gather initial information on the optimal action as well as to improve182
the bound on B∗. At each time step t in this first phase, we use183

B̂t = min
{
B, ∥θ̂

wls

t ∥2 + β
1/2
t,ζt(δ)

(B)λmin(W t)
−1/2

}
. (8)

as the upper bound on B∗. The term βt,ζt(δ)(B) is defined in (6) and ζt(δ) = min{δ, 1/t2}, where
δ > 0 is a user-specified parameter that determines the confidence level for the upper bound on B∗.
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The geometric motivation for this estimator stems from the fact that the confidence set Ewls
t,ζt(δ)

is

an ellipsoid centered at θ̂
wls

t with the longest semi-axis of length β1/2
t,ζt(δ)

(B)λmin(W t)
−1/2, so by

adding it to ∥θ̂
wls

t ∥2, by the triangle inequality, we obtain a conservative upper bound on the distance
between the origin and the point of Ewls

t,ζt(δ)
furthest from it. We prove in the Supplementary Materials

that

P

( ∞⋂
t=1

{
B̂t ≥ B∗

})
≥ 1− δ.

Continuing our description of the bound exploration phase, for any t ≤ TB we use B̂t to obtain a184
UCB algorithm, which we will refer to as empirical bound UCB (EB-UCB) via185

A
EB-UCB(ζt(δ))
t = arg max

a∈A

〈
ϕ(a), θ̂

wls

t

〉
+ β

1/2
t,ζt(δ)

(B̂t)∥ϕ(a)∥W−1
t
. (9)

Subsequently, we use186

∆̂t,ζt(δ)(a) =
〈
ϕ
(
A

EB-UCB(ζt(δ))
t

)
− ϕ(a), θ̂

wls

t

〉
+ β

1/2
t,ζt(δ)

(B̂t)

(∥∥∥ϕ(AEB-UCB(ζt(δ))
t

)∥∥∥
W−1

t

+ ∥ϕ(a)∥W−1
t

)
(10)

as the gap estimate for any a ∈ A. We define a new information gain criterion that combines model187
improvement (classic information gain) with bound improvement. The first component of our new188
information gain criterion is given by189

I
EB-UCB(ζt(δ))
t (a) =

1

2
log


∥∥∥ϕ(AEB-UCB(ζt(δ))

t

)∥∥∥2
W−1

t∥∥∥ϕ(AEB-UCB(ζt(δ))
t

)∥∥∥2
(W t+ρ(a)−2ϕ(a)ϕ(a)⊤)−1

 , (11)

for any a ∈ A. It can be seen that this is analogous to the IDS-UCB information gain criterion
considered by Kirschner & Krause (2018). To ensure that improvement in the bound on B∗, we
introduce the second component of our information gain criterion IBt which is given by

IBt (a) =
1

2
log
(
∥vmin

t ∥2(W t+ρ(a)−2ϕ(a)ϕ(a)⊤)

)
− 1

2
log {λmin(W t)} ,

where vmin
t is the unit-length eigenvector of W t associated with the smallest eigenvalue λmin(W t).190

The maximizer of IBt (a) corresponds to the feature vector ϕ(a) which generates the most (weighted)191
information in the direction of the minimum eigenvector of the current information matrix. This192
direction corresponds to the longest axis of the confidence ellipsoid defined by the inverse information193
and is closely related to E-optimal experimental designs (Dette & Studden, 1993).194

In order to balance exploration aimed at reducing the uncertainty about B∗ and directly searching for195
the optimal arm in the initial phase, we use a mixture of information gain criteria, which we refer to196
as the bound-action mixture (BAM) criterion:197

I
BAM(ζt(δ))
t (a) = αIBt (a) + (1− α)IEB-UCB(ζt(δ))

t (a),

where α ∈ (0, 1) is a parameter chosen by the user. Note that while we use the IEB-UCB(ζt(δ))
t198

information gain criterion in this instance, we could use any information gain criterion of choice199
instead. For notational convenience we drop the ζt(δ) term and write IEB-UCB

t for IEB-UCB(ζt(δ))
t and200

IBAM
t for IBAM(ζt(δ))

t since we will use ζt(δ) = min{δ, 1/t2} in the remainder of this manuscript.201

Given the advantages of deterministic IDS and its strong performance in various experimental settings,202
we focus on this variant of IDS. Hence, we always select the action which minimizes the information203
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ratio on the set A, as given in (4). So at each time step t ∈ {1, . . . , TB} of the bound exploration204
phase we choose the action205

ABAM
t = arg min

a∈A

{
ΨBAM

t (a) :=
∆̂2

t,ζt(δ)
(a)

IBAM
t (a)

}
.

Throughout the second phase, which we refer to as the bound exploitation phase, for any t ≥ TB + 1206
we use207

B̃t = min

{
B,min

τ≤t

{
∥θ̂

wls

τ ∥2 + β
1/2
τ,ζτ (δ)

(B̂τ )λmin(W τ )
−1/2

}}
as the upper bound on B∗, with B̂t defined in (8). During this phase we drop the bound information208
gain criterion IBt from the mixture and use only the IEB-UCB

t criterion. The quantity B̃t is used as209
the upper bound for B∗ for both the gap estimate ∆̂t,ζt(δ) and IEB-UCB

t , which are defined in the210

same way as in equations (9), (10), and (11) with B̃t in place of B̂t. We summarize this method in211
Algorithm 2. Note that in the second phase we could use any algorithm which requires explicit use212
of an upper bound on B∗ by taking B = B̃t as that upper bound. Furthermore, we formulate this213
procedure specifically in the context of IDS, however, the approach of estimating a high-probability214
upper bound on the true parameter norm and using it to guide decision making can be thought of as a215
more general technique, rather than something specific only to IDS.216

6 Regret analysis of EBIDS algorithm217

In this section we present the regret and pseudo-regret bounds for both phases of the EBIDS algorithm.218
We defer the proofs of these propositions and relevant lemmas to the Supplementary Materials. For219
any t and ξt > 0, let Et,ξt be the event220

Et,ξt =

{∥∥∥θ∗ − θ̂
wls

t

∥∥∥2
W t

≤ βt,ξt(B∗)

}
, (12)

and define Eδ =
⋂∞

t=1Et,δ. Note that by Theorem 2 we have P(Eδ) ≥ 1 − δ. The following221
proposition summarizes the regret and pseudo-regret bounds for EBIDS during the bound exploration222
phase.223

Proposition 1. For any 2 ≤ T ≤ TB the regretRT of Algorithm 2 is bounded above by224

RT ≤ O

dmax{U/√γ, ρmax}√
1− α

√
T log T

√
log(1/δ) + log

(
1 +

ρ−2
minU

2

γ

)
+ γB2


and whenever event Eδ holds the pseudo-regret PRT is bounded above by the same rate.225

We also provide guarantees on the estimated upper bound on B∗ after the bound exploration phase.226
This, in turn, will allow us to obtain an improved bound for the regret and pseudo-regret in the227
subsequent phase.228

Proposition 2. For any constant g > 0, with sufficiently large TB and sufficiently large α, whenever229
event Eδ holds we have B∗ ≤ B̃t ≤ (1 + g)B∗ for any t ≥ TB + 1.230

Please see Section 10.6 in the Supplementary Materials for the exact constants required as lower231
bounds for TB and α depending on g. Finally, using the results of Proposition 2 we are able232
to establish a regret bound for the second phase of EBIDS which is independent of the original233
conservative bound B.234

Proposition 3. For any constant g > 0, with sufficiently large TB and sufficiently large α, with235
probability at least 1 − δ the regret and pseudo-regret of Algorithm 2 are both bounded above by236

O
(
dUρmax(1 + g)B∗

√
T log T

)
, for any T ≥ TB + 1.237
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Algorithm 2 EBIDS
Input: Action set A, penalty parameter γ > 0, noise function ρ : A → R+, feature func-
tion ϕ : A → R, conservative true parameter norm bound B, number of bound exploration
steps TB , information gain mixture parameter α ∈ (0, 1), error tolerance parameter δ ∈ (0, 1).

For t = 1, 2, . . . , TB :

Compute W t and θ̂
wls

t using (5)

B̂t ← min
{
B, ∥θ̂

wls

t ∥2 + β
1/2
t,ζt(δ)

(B)λmin(W t)
−1/2

}
AEB-UCB

t ← arg maxa∈A

〈
ϕ(a), θ̂

wls

t

〉
+ β

1/2
t,ζt(δ)

(B̂t)∥ϕ(a)∥W−1
t

IEB-UCB
t (a)← 1

2 log
(∥∥ϕ(AEB-UCB

t )
∥∥2
W−1

t

)
− 1

2 log
(∥∥ϕ(AEB-UCB

t )
∥∥2
(W t+ρ(a)−2ϕ(a)ϕ(a)⊤)−1

)
IBt (a)← 1

2 log
(
∥vmin

t ∥2(W t+ρ(a)−2ϕ(a)ϕ(a)⊤)

)
− 1

2 log {λmin(W t)}

IBAM
t (a)← αIBt (a) + (1− α)IEB-UCB

t (a)

∆̂t,ζt(δ)(a)←
〈
ϕ(AEB-UCB

t )− ϕ(a), θ̂
wls

t

〉
+β

1/2
t,ζt(δ)

(B̂t)
(
∥ϕ(AEB-UCB

t )∥W−1
t

+ ∥ϕ(a)∥W−1
t

)
At ← arg mina∈A ∆̂2

t,ζt(δ)
(a)/IBAM

t (a)

Play At, observe Yt = ⟨ϕ(At),θ
∗⟩+ ηt

For t = TB + 1, TB + 2, . . . , T :

Compute W t and θ̂
wls

t using (5)

B̂t ← min
{
B, ∥θ̂

wls

t ∥2 + β
1/2
t,ζt(δ)

(B)λmin(W t)
−1/2

}
B̃t ← min

{
B,minτ≤t

{
∥θ̂

wls

τ ∥2 + β
1/2
τ,ζτ (δ)

(B̂t)λmin(W τ )
−1/2

}}
AEB-UCB

t ← arg maxa∈A

〈
ϕ(a), θ̂

wls

t

〉
+ βt,ζt(δ)(B̃t)

1/2∥ϕ(a)∥W−1
t

IEB-UCB
t (a)← 1

2 log
(∥∥ϕ(AEB-UCB

t )
∥∥2
W−1

t

)
− 1

2 log
(∥∥ϕ(AEB-UCB

t )
∥∥2
(W t+ρ(a)−2ϕ(a)ϕ(a)⊤)−1

)
∆̂t,ζt(δ)(a)←

〈
ϕ(AEB-UCB

t )− ϕ(a), θ̂
wls

t

〉
+β

1/2
t,ζt(δ)

(B̃t)
(
∥ϕ(AEB-UCB

t )∥W−1
t

+ ∥ϕ(a)∥W−1
t

)
At ← arg mina∈A ∆̂2

t,ζt(δ)
(a)/IEB-UCB

t (a)

Play At, observe At = ⟨ϕ(At),θ
∗⟩+ ηt

Similarly, we give the exact constants required as lower bounds for TB and α in Supplementary238
Materials, in Section 10.7. Thus, Propositions 1 and 3 together give us regret and pseudo-regret239
guarantees for both bound exploration phase and the subsequent bound exploitation phase of EBIDS.240
This is different from Gales et al. (2022) who do not control the regret in the initial stages of their241
norm-agnostic algorithms.242

7 Simulation study243

We evaluate the performance of EBIDS using simulation studies and compare it with the norm-244
agnostic competitor algorithms NAOFUL and OLSOFUL by Gales et al. (2022) which also aim245
at alleviating the dependence on access to a high-quality bound on the true parameter norm. We246
include the EB-UCB algorithm to demonstrate the advantage of using the IDS strategy in addition247
to utilizing the empirical norm bound. We run the comparison also against the oracle versions of248
EBIDS, IDS-UCB and UCB with access to the true value of B∗. We use the same setting as in the249
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simulation illustration in Section 4 with θ∗ = [−5, 1, 1, 1.5, 2]⊤ as the true parameter and ten arms250
with features sampled from Unif[−1/

√
5, 1/
√
5]. The error distribution for the first five arms are251

standard normal and for the remaining five arms they are normal with mean zero and variance 0.2. We252
take the conservative B = 100 as the assumed upper bound on B∗. Both the oracle and non-oracle253
versions of EBIDS use α = 0.5, giving equal weight to both components of the BAM criterion, and254
run the bound exploration phase for TB = 50 steps.255

Figure 2 shows the mean regret averaged over 200 repeated experiments with T = 500 steps along256
with 95% pointwise confidence bounds. As we can see, EB-UCB is competitive with NAOFUL and257
OLSOFUL, while EBIDS performs best among all the algorithms which do not have access to the258
true parameter norm. It achieves significantly lower regret than IDS-UCB and UCB. Meanwhile, the259
performance of oracle EBIDS is better than that of oracle UCB and almost indistinguishable from the260
one achieved by oracle IDS-UCB.261

0 100 200 300 400 500
Time

0

20

40

60

80

100
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gr

et

EBIDS
IDS-UCB
UCB
EB-UCB
NAOFUL
OLSOFUL
EBIDS (oracle)
IDS-UCB (oracle)
UCB (oracle)

Figure 2: Regret incurred by EBIDS, EB-UCB, NAOFUL, OLSOFUL, IDS-UCB and UCB with
conservative B = 100. We include the oracle versions of EBIDS, IDS-UCB and UCB using B = B∗

for reference. The solid and dashes lines represent the regret averaged over 200 repeated experiments,
while the shaded bounds represent 95% pointwise confidence bounds.

We also perform an ablation study to determine the sensitivity of EBIDS to the tuning param-262
eter α and the length TB of the bound exploration phase. We consider all combinations of263
α ∈ {0.1, 0.3, 0.5, 0.7} and TB ∈ {50, 100}. We use the same setting as above and present the264
results for T = 500 steps averaged over 200 repeated experiments in Figure 3. Using TB = 50265
leads to somewhat better results than TB = 100 and α = 0.3 performs best for both values of266
TB . However, the performance is similar for all considered combinations of the tuning parameters,267
especially compared to the differences in performance of the competitor algorithms. This shows that268
while EBIDS, like most other bandit algorithms, uses tuning parameters, its performance is not very269
sensitive to their choice, with several considered combinations of α and TB achieving practically270
indistinguishable regret.271

8 Discussion272

Bandit algorithms often require access to a high-quality upper bound on the Euclidean norm of273
the true parameter vector in order to achieve good performance. In practice, such information is274
rarely available a priori, which can lead to significant regret accumulation. Despite its prevalence,275
this problem has received relatively little attention in the bandit literature. We introduced the276
empirical bound information-directed sampling (EBIDS) algorithm which addresses this challenge by277
iteratively refining a high-probability upper bound on the true parameter norm. We developed a novel278
information criterion that balances tightening the bound on the true parameter norm and explicitly279
searching for the optimal arm. In simulation experiments, EBIDS showed improved performance280
compared to the competing norm-agnostic algorithms. Furthermore, we proved regret bounds that281
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Figure 3: Average regret for EBIDS averaged over 200 repeated experiments with T = 500 steps
under different values of the tuning parameter α and the length TB of the bound exploration phase.

eventually do not depend on the initially assumed bound for the parameter norm, and unlike prior282
regret guarantees, our bounds are anytime in that they apply to all phases of the algorithm.283

Broader Impact Statement284

This paper introduces novel methodology for frequentist IDS that does not require strong prior285
information on the norm of the true parameter indexing the reward model. Our methodology, which286
involves a novel information criterion, can be viewed as a general approach to balancing bound287
improvement and regret minimization that is applicable in a wide range of UCB and IDS bandit288
algorithms.289
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Supplementary Materials368

The following content was not necessarily subject to peer review.369
370

In these supplementary materials we provide the proofs to the propositions we have stated in the371
paper.372

9 Notation and lemmas373

We begin by introducing some notation and basic facts. For any unit vector v ∈ Rd and any a ∈ A,
let ψv(ϕ(a)), ψ

⊥
v (ϕ(a)) ∈ R denote the orthogonal decomposition of ϕ(a), i.e.,

ϕ(a) = ψv(ϕ(a))v + ψ⊥
v (ϕ(a))v

⊥,

where ∥v⊥∥2 = 1 and v⊥ ⊥ v. Let374

κ = min
v∈Rd s.t. ∥v∥2=1

max
a∈A

{
ρ(a)−2ψv(ϕ(a))

2
}
. (13)

Note that κ > 0. Let375

ωt(a) = ρ(a)−2ψvmin
t

(ϕ(a))2. (14)

Also, note that for any a ∈ A we have376

∥ϕ(a)∥2
W−1

t
=

d∑
i=1

ψvi(ϕ(a))
2λ−1

i

where {(λi,vi)}di=1 are the eigenvalue-eigenvector pairs of W t. Hence for every t ≥ 1 and a ∈ A377
we have378

∥ϕ(a)∥22λmax(W t)
−1 ≤ ∥ϕ(a)∥2

W−1
t
≤ ∥ϕ(a)∥22λmin(W t)

−1,

so379

L2λmax(W t)
−1 ≤ ∥ϕ(a)∥2

W−1
t
≤ U2λmin(W t)

−1. (15)

Also from Cauchy-Schwarz inequality380

〈
ϕ(a), θ̂

wls

t

〉2
≤ ∥ϕ(a)∥22

∥∥∥θ̂wls

t

∥∥∥2
2
≤ U2

∥∥∥θ̂wls

t

∥∥∥2
2

(16)

From Weyl’s inequality (Franklin, 1968), for any positive semi-definite matrices A,B we have381

λmax(A+B) ≤ λmax(A) + λmax(B).

Thus, for every t ≥ 1 we have382

λmax(W t) ≤ λmax(γId) +

t−1∑
τ=1

λmax(ρ(aτ )
−2ϕ(aτ )ϕ(aτ )

⊤) ≤ γ + (t− 1)ρ−2
minU

2, (17)

so from (15), for any t ≥ 1 we have383

∥ϕ(a)∥2
W−1

t
≥ L2

γ + (t− 1)ρ−2
minU

2
≥ L2

t(γ + ρ−2
minU

2)
. (18)
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Also from (17) for T ≥ 2 we have384

log

(
det(W T )

det(W 1)

)
= log(det(W T ))− log(det(γId)) ≤ d log(γ + (T − 1)ρ−2

minU
2)− d log γ

=d log

[
1 + (T − 1)

ρ−2
minU

2

γ

]
≤ d log

[
(T − 1)

(
1 +

ρ−2
minU

2

γ

)]
=d log(T − 1) + d log

(
1 +

ρ−2
minU

2

γ

)
. (19)

Applying the data processing inequality (Cover & Thomas, 2012) in an analogous way as Kirschner385
& Krause (2018), we obtain386

IEB-UCB
t (a) ≤ 1

2
log

(
det(W t + ρ(a)−2ϕ(a)ϕ(a)⊤)

det(W t)

)
=

1

2
log
(
1 + ρ(a)−2∥ϕ(a)∥2

W−1
t

)
(20)

for any a ∈ A. So from (19) we get387

T∑
t=1

IEB-UCB
t (at) ≤

1

2
log

(
det(W T+1)

det(W 1)

)
≤ 1

2
d log T +

1

2
d log

(
1 +

ρ−2
minU

2

γ

)
= O(d log T ),

(21)

for any sequence {at}Tt=1 ⊂ A.388

We now state and prove some additional lemmas that will be useful throughout the proofs of389
Propositions 1 - 3.390

Lemma 1. Let ∆̂t : A → R+ be a gap estimate function and let IXt , I
Y
t : A → R+ be two

information gain criteria. Let IXY
t be the mixture information gain criterion given by

IXY
t (a) = αIXt (a) + (1− α)IYt (a)

for some α ∈ (0, 1). Consider now a deterministic IDS algorithm which at each time step t plays
action aXY

t given by

aXY
t = arg min

a∈A

∆̂2
t (a)

IXY
t (a)

Then at each time step t the information gain on to the first criterion IXt is lower-bounded by

IXt
(
aXY
t

)
≥

∆̂2
t

(
aXY
t

)
∆̂2

t

(
aI,Xt

)IXt (aI,Xt

)
− 1− α

α
IYt
(
aXY
t

)
,

where aI,Xt = arg maxa∈A I
X
t (a).391

Lemma 2. Recall the definition ωt(a) = ρ(a)−2ψvmin
t

(ϕ(a))2. For any T ≥ 1 and any sequence of
actions {at}Tt=1 we have

λmin(W T+1) ≥ γ − ρ−2
minU

2 +
1

d

T∑
t=1

ωt(at).

Lemma 3. Let {xt}T+1
t=1 ⊂ [0, U ] be a bounded sequence for some constant U > 0. Then for any

constant c > 0 we have
T∑

t=1

xt+1

c+
∑t

τ=1 xτ
≤ log T +

U

c
+ 1.

10 Proofs of theoretical results392

In this section we provide the proofs of Theorem 1, Lemmas 1 - 3, and Propositions 1 - 3.393
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10.1 Proof of Theorem 1394

Recall that by Cauchy-Schwarz inequality, for any random variables {Xt}t∈G, {Yt}t∈G with non-395
negative support, with probability 1 we have396

∑
t∈G

√
XtYt ≤

√√√√(∑
t∈G

Xt

)(∑
t∈G

Yt

)
,

and for any random variables X,Y with nonnegative support we have397

E
[√

XY
]
≤
√

E[X]E[Y ].

Hence if ∆̂(At) ≥ ∆(At), for all t ∈ G, then with probability 1 we have

∑
t∈G

∆(At) ≤
∑
t∈G

∆̂t (At) =
∑
t∈G

√
Ψt(At)It(At) ≤

√√√√[∑
t∈G

Ψt(At)

][∑
t∈G

It(At)

]
.

Also398

E

[∑
t∈G

∆̂t (At)

]
=E

[∑
t∈G

√
Ψt(At)It (At)

]
≤ E

√√√√[∑
t∈G

Ψt (At)

][∑
t∈G

It (At)

]
≤

√√√√E

[∑
t∈G

Ψt (At)

]
E

[∑
t∈G

It (At)

]
.

10.2 Proof of Lemma 1399

By the definition of aXY
t we have

∆̂2
t (a

XY
t )

αIXt (aXY
t ) + (1− α)IYt (aXY

t )
≤ ∆̂2

t (a
I,X
t )

αIXt (aI,Xt ) + (1− α)IYt (aI,Xt )
,

hence

αIXt (aXY
t ) + (1− α)IYt (aXY

t ) ≥ ∆̂2
t (a

XY
t )

∆̂2
t (a

I-X
t )

[
αIXt (aI,Xt ) + (1− α)IYt (aI,Xt )

]
,

and thus400

IXt (aXY
t ) ≥∆̂2

t (a
XY
t )

∆̂2
t (a

I,X
t )

IXt (aI,Xt ) +
(1− α)
α

· ∆̂
2
t (a

XY
t )

∆̂2
t (a

I,X
t )

IYt (aI,Xt )− 1− α
α

IYt (aXY
t )

≥∆̂2
t (a

XY
t )

∆̂2
t (a

I,X
t )

IXt (aI,Xt )− 1− α
α

IYt (aXY
t ).

10.3 Proof of Lemma 2401

Recall that we define λ(t)1 , . . . , λ
(t)
d as the (not necessarily ordered) eigenvalues of W t. Let

i∗(t) = arg min
1≤i≤d

λ
(t)
i .

By Weyl’s inequality (Franklin, 1968), for any symmetric positive semi-definite matrices A,B ∈402
Rm×m we have403

λ(i)(A+B) ≥ λ(i)(A) (22)
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where λ(i)(A) is the i-th largest eigenvalue of A for any 1 ≤ i ≤ m. Let vmin
t be the unit eigenvector404

corresponding to the smallest eigenvalue of W t. Then for any 1 ≤ i ≤ d we have405

λ(i)(W t+1) =λ(i)
(
W t + ρ(at)

−2ϕ(at)ϕ(at)
⊤)

=λ(i)

(
W t + ρ(at)

−2ψvmin
t

(ϕ(a))vmin
t (vmin

t )⊤

+ ρ(at)
−2ψ⊥

vmin⊥
t

(ϕ(a))vmin⊥
t (vmin⊥

t )⊤
)

≥λ(i)
(
W t + ρ(at)

−2ψvmin
t

(ϕ(a))vmin
t (vmin

t )⊤
)

=λ(i)
(
W t + ωt(at)v

min
t (vmin

t )⊤
)
.

Note that the matrix W t + ωt(at)v
min
t (vmin

t )⊤ has the same eigenvectors as W t and the smallest
eigenvalue of W t, i.e., the one corresponding to vmin

t is increased by ωt(at). So for any t we can
order the eigenvalues λ(t+1)

1 , . . . , λ
(t+1)
d in such way that λ(t+1)

i ≥ λ(t)i and

λ
(t+1)
i∗(t) ≥ λ

(t)
i∗(t) + ωt(at).

Since we have d eigenvalues and at each time step t we add at least ωt(at) to the smallest eigenvalue
at that time step without reducing the other ones we have

λ
(T )
i∗(T ) − λ

(1)
i∗(1) + ωT (aT ) ≥

1

d

T∑
t=1

ωt(at).

Note that λ(1)1 = . . . = λ
(1)
d = γ and ωT (aT ) ≤ ρ−2

minU
2, so406

λmin(W T+1) = λ
(T+1)
i∗(T+1) ≥ λ

(T )
i∗(T ) ≥ γ − ρ

−2
minU

2 +
1

d

T∑
t=1

ωt(at).

10.4 Proof of Lemma 3407

Let

f(x1, . . . , xT+1) =

T∑
t=1

xt+1

c+
∑t

τ=1 xτ

We use induction to show that the maximum of f is achieved at x1 = 0 and

x2 = x3 = . . . = xT+1 = U.

Note that for any x̃1, . . . , x̃T ∈ [0, U ] we have

arg max
xT+1∈[0,U ]

f(x̃1, . . . , x̃T , xT+1) = U.

Suppose that for any t ≥ 2 it holds that for any t ≤ k ≤ T and any x̃1, . . . , x̃k ∈ [0, U ] we have408

(x∗k+1, . . . , x
∗
T+1) := arg max

xk+1,...,xT+1∈[0,U ]

f(x̃1, . . . , x̃k, xk+1, . . . , xT+1) = (U, . . . , U) ∈ RT−k+1.

(23)

Take any x̃1, . . . , x̃t−1 ∈ [0, U ]. Then by taking k = t+ 1 the above statement gives us409

max
xt,xt+1,...,xT+1∈[0,U ]

f(x̃1, . . . , x̃t−1, xt, xt+1, . . . , xT+1) = max
xt,xt+1∈[0,U ]

f(x̃1, . . . , x̃t−1, xt, xt+1, U, . . . , U).

Let410

(x̌t, x̌t+1) = arg max
xt,xt+1∈[0,U ]

f(x̃1, . . . , x̃t−1, xt, xt+1, . . . , xT+1).
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Note that x̌t+1 = x∗t+1 = U by taking the induction statement with k = t. For notational convenience411
let b = c+

∑t−1
τ=1 x̃τ . Then412

(x̌t, x̌t+1) = arg max
xt,xt+1∈[0,U ]

{
xt
b

+
xt+1

b+ xt
+

T−t−1∑
τ=0

U

b+ xt + xt+1 + τU

}
.

Let413

gt(xt, xt+1) =
xt
b

+
xt+1

b+ xt
+

T−t−1∑
τ=0

U

b+ xt + xt+1 + τU
.

Suppose that x̌t = x for some 0 ≤ x < U . Note that414

gt(U, x)− gt(x, U) =

(
U

b
+

x

b+ U

)
−
(
x

b
+

U

b+ x

)
=

Ux(U − x)
b(b+ U)(b+ x)

> 0.

So gt(U, x) > gt(x, U) = gt(x̌t, x̌t+1) which is a contradiction, since (x̌t, x̌t+1) is the maximizer
of gt(xt, xt+1). So x̌t = U . Thus, we have shown that for any x̃1, . . . , x̃t−1 ∈ [0, U ] we have

(x∗t , . . . , x
∗
T+1) = arg max

xt,...,xT+1∈[0,U ]

f(x̃1, . . . , x̃t−1, xt, . . . , xT+1) = (U, . . . , U) ∈ RT−t+2.

Hence by induction we get that for any x̃1 ∈ [0, U ] we have

arg max
x2,...,xT+1∈[0,U ]

f(x̃1, x2, . . . , xT+1) = (U, . . . , U) ∈ RT .

Clearly
arg max
x1∈[0,U ]

f(x1, U, . . . , U) = 0,

so415

max
x1,...,xT+1∈[0,U ]

f(x1, . . . , xT+1) =f(0, U, . . . , U) =

T∑
t=1

U

c+ (t− 1)U

≤U
c
+

T∑
t=2

1

t− 1
< log T +

U

c
+ 1.

10.5 Proof of Proposition 1416

From Theorem 1, for any T ≤ TB we have417

E

[
T∑

t=1

∆̂t,ζt(δ)(A
BAM
t )

]
≤

√√√√(E[ T∑
t=1

ΨBAM
t

(
ABAM

t

)])(
E

[
T∑

t=1

IBAM
t

(
ABAM

t

)])

≤

√√√√(E[ T∑
t=1

∆̂2
t,ζt(δ)

(
ABAM

t

)
IBAM
t

(
ABAM

t

) ])(E[ T∑
t=1

IBAM
t

(
ABAM

t

)])

=

√√√√E

[
T∑

t=1

∆̂2
t,ζt(δ)

(
ABAM

t

)
αIBt

(
ABAM

t

)
+ (1− α)IEB-UCB

t

(
ABAM

t

)]

×

√√√√αE

[
T∑

t=1

IBt
(
ABAM

t

)]
+ (1− α)E

[
T∑

t=1

IEB-UCB
t

(
ABAM

t

)]
.

18



Empirical Bound Information-Directed Sampling

By the definition of ABAM
t we have418

E

[
T∑

t=1

∆̂2
t,ζt(δ)

(
ABAM

t

)
αIBt

(
ABAM

t

)
+ (1− α)IEB-UCB

t

(
ABAM

t

)] ≤E[ T∑
t=1

∆̂2
t,ζt(δ)

(
AEB-UCB

t

)
αIEB-UCB

t

(
AEB-UCB

t

)
+ (1− α)IBt

(
AEB-UCB

t

)]

≤ 1

1− α
E

[
T∑

t=1

∆̂2
t,ζt(δ)

(
AEB-UCB

t

)
IEB-UCB
t

(
AEB-UCB

t

)] . (24)

The next couple of steps are similar to the analysis by Kirschner (2021). Let aEB-UCB
t be the realization419

of AEB-UCB
t . From the Sherman-Morrison formula, we obtain420

(
W t + ρ(aEB-UCB

t )−2ϕ(aEB-UCB
t )ϕ(aEB-UCB

t )⊤
)−1

= W−1
t −

ρ(aEB-UCB
t )−2W−1

t ϕ(aEB-UCB
t )ϕ(aEB-UCB

t )⊤W−1
t

1 + ρ(aEB-UCB
t )−2ϕ(aEB-UCB

t )⊤W−1
t ϕ(aEB-UCB

t )

so421

∥∥ϕ(aEB-UCB
t )

∥∥2
(W t+ρ(aEB-UCB

t )−2ϕ(aEB-UCB
t )ϕ(aEB-UCB

t )⊤)
−1 =

∥∥ϕ(aEB-UCB
t )

∥∥2
W−1

t
−

ρ(aEB-UCB
t )−2

∥∥ϕ(aEB-UCB
t )

∥∥4
W−1

t

1 + ρ(aEB-UCB
t )−2

∥∥ϕ(aEB-UCB
t )

∥∥2
W−1

t

.

Thus422

IEB-UCB
t

(
aEB-UCB
t

)
=

1

2
log
(
1 + ρ(aEB-UCB

t )−2
∥∥ϕ(aEB-UCB

t )
∥∥2
W−1

t

)
.

From (15), we have
∥∥ϕ(aEB-UCB

t )
∥∥
W−1

t
≤ U2γ−1. Thus, using the fact that log(1 + x) ≥ x

2q for423

q ≥ 1 and x ∈ [0, q] we get424

IEB-UCB
t

(
aEB-UCB
t

)
≥ 1

4
min{U−2γ, ρ(aEB-UCB

t )−2}
∥∥ϕ(aEB-UCB

t )
∥∥2
W−1

t
.

So425

∆̂2
t,ζt(δ)

(
aEB-UCB
t

)
IEB-UCB
t

(
aEB-UCB
t

) ≤ 4βt,ζt(δ)(B̂t)
∥∥ϕ(aEB-UCB

t )
∥∥2
W−1

t

1
4 min{U−2γ, ρ(aEB-UCB

t )−2}
∥∥ϕ(aEB-UCB

t )
∥∥2
W−1

t

=16βt,ζt(δ)(B̂t)max{U2γ−1, ρ(aEB-UCB
t )2}

≤16βt,ζt(δ)(B)max{U2γ−1, ρ(aEB-UCB
t )2}

≤16βT,ζT (δ)(B)max{U2γ−1, ρ2max}. (25)

So426

E

[
T∑

t=1

∆̂2
t,ζt(δ)

(
AEB-UCB

t

)
IEB-UCB
t

(
AEB-UCB

t

)] ≤ 16TβT,ζT (δ)(B)max{U2γ−1, ρ2max}. (26)

Since 1/ζT (δ) = max{1/δ, T 2}, from (19) we have427

βT,ζT (δ)(B) =

(√
2 log (1/ζt(δ)) + log

(
det (W t)

det (W 1)

)
+
√
γB

)2

≤2max{2 log T, log(1/δ)}+ 2 log

(
detW T

detW 1

)
+ 2γB2

≤2max{2 log T, log(1/δ)}+ 2d log(T − 1) + 2d log

(
1 +

ρ−2
minU

2

γ

)
+ 2γB2

<(2d+ 4) log T + 2 log(1/δ) + 2d log

(
1 +

ρ−2
minU

2

γ

)
+ 2γB2. (27)
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So from (24), (26), and (27) we have428

E

[
T∑

t=1

∆̂2
t,ζt(δ)

(
ABAM

t

)
αIBt

(
ABAM

t

)
+ (1− α)IEB-UCB

t

(
ABAM

t

)] ≤ 16

1− α
max{U2γ−1, ρ2max}T

×
[
(2d+ 4) log T + 2 log(1/δ) + 2d log

(
1 +

ρ−2
minU

2

γ

)
+ 2γB2

]
. (28)

Also, for any sequence {at}Tt=1 ⊂ A we have429

IBt (at) =
1

2
log
(
∥vmin

t ∥2(W t+ρ(a)−2ϕ(a)ϕ(a)⊤)

)
− 1

2
log (λmin(W t))

=
1

2
log

(
(vmin

t )⊤
(
W t + ρ(at)

−2ϕ(at)ϕ(at)
⊤)vmin

t

λmin(W t)

)

=
1

2
log

(
λmin(W t) + ρ(at)

−2vmin
t ϕ(at)ϕ(at)

⊤vmin
t

λmin(W t)

)
=
1

2
log

(
1 +

ρ(at)
−2ψvmin

t
(ϕ(at))

2

λmin(W t)

)
=

1

2
log

(
1 +

ωt(at)

λmin(W t)

)
. (29)

Let

T0 = max

{
t :

t∑
τ=1

ωτ (aτ ) ≤ d(ρ−2
minU

2 − γ)

}
.

Without loss of generality, assume that T0 ≤ T . Then using Lemma 2 we get430

T∑
t=1

IBt (at) =

T∑
t=1

log

(
1 +

ωt(at)

λmin(W t)

)

=

T0∑
t=1

log

(
1 +

ωt(at)

λmin(W t)

)
+

T∑
t=T0+1

log

(
1 +

ωt(at)

λmin(W t)

)

≤
T0∑
t=1

ωt(at)

λmin(W t)
+

T∑
t=T0+1

log

(
1 +

ωt(at)

γ − ρ−2
minU

2 + 1
d

∑t−1
τ=1 ωτ (aτ )

)

≤ 1

γ

T0∑
t=1

ωt(at) +

T∑
t=T0+1

log

(
1 +

dωt(at)

d(γ − ρ−2
minU

2) +
∑t−1

τ=1 ωτ (aτ )

)

≤d(ρ
−2
minU

2 − γ)
γ

+

T∑
t=T0+1

dωt(at)

d(γ − ρ−2
minU

2) +
∑T0

τ=1 ωτ (aτ ) +
∑t−1

τ=T0+1 ωτ (aτ )
.

Let

c = d(γ − ρ−2
minU

2) +

T0∑
τ=1

ωτ (aτ )

and
xt = ωT0+t(aT0+t).

Then from Lemma 3, since c > 0 and xt ∈ [0, ρ−2
minU

2] for all t we have431

T∑
t=1

IBt (at) ≤
d(ρ−2

minU
2 − γ)

γ
+

T∑
t=T0+1

dωt(at)

c+
∑t−1

τ=T0+1 ωτ (aτ )

=
d(ρ−2

minU
2 − γ)

γ
+ d

T−T0∑
t=1

xt

c+
∑t−1

τ=1 xτ

≤O(d log(T − T0)) ≤ O(d log T ). (30)
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Thus, from (21) we have432

αE

[
T∑

t=1

IBt
(
ABAM

t

)]
+ (1− α)E

[
T∑

t=1

IEB-UCB
t

(
ABAM

t

)]
≤ O(d log T ).

So from Theorem 1 and (28) we have433

E

[
T∑

t=1

∆̂t,ζt(δ)(A
BAM
t )

]
≤O

(√
d

16

1− α
max{U2γ−1, ρ2max}T log T

×

√
(4 + 2d) log T + 2 log(1/δ) + 2d log

(
1 +

ρ−2
minU

2

γ

)
+ 2γB2


≤O

(
dmax{U/√γ, ρmax}√

1− α
√
T log T

×

√
log(1/δ) + log

(
1 +

ρ−2
minU

2

γ

)
+ γB2

 . (31)

Take any t ≥ 1 and suppose that the event Et,ζt(δ), as defined in (12), holds. Note that the set{
θ ∈ R :

∥∥∥θ − θ̂
wls

t

∥∥∥2
W t

≤ βt,ζt(δ)(B
∗)

}

is an ellipsoid in Rd centered at θ̂
wls

t with the longest semi-axis of length β1/2
t,ζt(δ)

(B∗)λmin(W t)
−1/2,434

so435 ∥∥∥θ̂wls

t − θ∗
∥∥∥
2
≤ β1/2

t,ζt(δ)
(B∗)λmin(W t)

−1/2. (32)

Since B ≥ B∗ we have βt,ζt(δ)(B) ≥ βt,ζt(δ)(B∗), so by the triangle inequality we get436

B∗ = ∥θ∗∥2 ≤
∥∥∥θ̂wls

t

∥∥∥
2
+β

1/2
t,ζt(δ)

(B∗)λmin(W t)
−1/2 ≤

∥∥∥θ̂wls

t

∥∥∥
2
+β

1/2
t,ζt(δ)

(B)λmin(W t)
−1/2 = B̂t.

(33)
So B∗ ≤ B̂t for all t ≥ 1 and thus βt,ζt(δ)(B̂t) ≥ βt,ζt(δ)(B∗), so437

θ∗ ∈
{
θ ∈ R :

∥∥∥θ − θ̂
wls

t

∥∥∥2
W t

≤ βt,ζt(δ)(B
∗)

}
⊆
{
θ ∈ R :

∥∥∥θ − θ̂
wls

t

∥∥∥2
W t

≤ βt,ζt(δ)(B̂t)

}
Hence ∆(a) ≤ ∆̂t,ζt(δ)(a) for all a ∈ A. So for any a ∈ A we have438

P
(
∆(a) > ∆̂t,ζt(δ)(a)

)
≤ 1− P(Et,ζt(δ)) ≤ ζt(δ) ≤ 1/t2.

Thus, letting ∆max = maxa∈A ∆(a), for any sequence {at}Tt=1 ⊂ A we have439

E

[
T∑

t=1

∆(at)− ∆̂t,ζt(δ)(at)

]
≤ ∆max

T∑
t=1

P
(
∆(at) > ∆̂t,1/t2(at)

)
≤ ∆max

T∑
t=1

1

t2
≤ O(∆max).

(34)
So from (31), for T ≤ TB the regret of EBIDS is bounded above by440

RT ≤ O

dmax{U/√γ, ρmax}√
1− α

√
T log T

√
log(1/δ) + log

(
1 +

ρ−2
minU

2

γ

)
+ γB2

 .
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From (21) and (30) with probability 1 we have441

T∑
t=1

IBAM
t (ABAM

t ) ≤ O(d log T ). (35)

Following the same steps as in (24), using (25) and (28) we have442

T∑
t=1

ΨBAM
t

(
ABAM

t

)
=

T∑
t=1

∆̂2
t,ζt(δ)

(
ABAM

t

)
IBAM
t

(
ABAM

t

) ≤ T∑
t=1

∆̂2
t,ζt(δ)

(
ABAM

t

)
αIBt

(
ABAM

t

)
+ (1− α)IEB-UCB

t

(
ABAM

t

)
≤

T∑
t=1

∆̂2
t,ζt(δ)

(
AEB-UCB

t

)
αIEB-UCB

t

(
AEB-UCB

t

)
+ (1− α)IBt

(
AEB-UCB

t

)
≤ 1

1− α

T∑
t=1

∆̂2
t,ζt(δ)

(
AEB-UCB

t

)
IEB-UCB
t

(
AEB-UCB

t

)
≤ 16

1− α

T∑
t=1

βT,ζT (δ)(B)max{U2γ−1, ρ2max}

≤ 16

1− α
max{U2γ−1, ρ2max}T

×
[
(4 + 2d) log T + 2 log(1/δ) + 2d log

(
1 +

ρ−2
minU

2

γ

)
+ 2γB2

]
. (36)

Following analogous steps as above, since 1/ζt(δ) ≥ 1/δ we have βt,ζt(δ)(B) ≥ βt,δ(B) ≥443

βt,δ(B
∗). So for any t ≥ 1, whenever event Et,δ holds, the inequality B∗ ≤ B̂t holds as well and444

thus ∆(a) ≤ ∆̂t,ζt(δ)(a), for all a ∈ A. So if Eδ =
⋂∞

t=1Et,δ holds, then ∆(a) ≤ ∆̂t,ζt(δ)(a), for445
all a ∈ A and for all t ≥ 1. So from (36) and (35), by Theorem 1 we have446

PRT ≤ O

dmax{U/√γ, ρmax}√
1− α

√
T log T

√
log(1/δ) + log

(
1 +

ρ−2
minU

2

γ

)
+ γB2

 .

10.6 Proof of Proposition 2447

In order to precisely state the conditions on TB and α, i.e., how large each of them needs to be for448
B∗ ≤ B̃t ≤ (1+ g)B∗ to hold for all t ≥ TB +1, we will first define several constants for notational449
convenience.450

Let451

c0 = L2

[
U2(γ + ρ−2

minU
2)

(
1

κ
+

1

γ

)]−1

(37)

and452

h0 = 8 log(5/4) + 4 log(1/δ) + 2d log

(
1 +

ρ−2
minU

2

γ

)
+ 2γB2. (38)

Then let453

u0 =
c0

6 + 16g−2
log 2 +

1− α
α

d log

(
1 +

ρ−2
minU

2

γ

)
(39)

u1 =
c0

12 + 32g−2
− 1− α

2α
d (40)

w0 =
c0

6 + 16g−2
+

1− α
α

d log

(
1 +

ρ−2
minU

2

γ

)
(41)

w1 =
c0

12 + 32g−2
− 1− α

α
d. (42)
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and finally let454

b0 =
1

d

[
w0

(γ
d
u0 − γ + ρ−2

minU
2
)
− γu0

]
+ γ − ρ−2

minU
2 (43)

b1 =
1

d

(
γu1 −

γ

d
u1w0 −

γ

d
u0w1 + γw1 − ρ−2

minU
2w1

)
(44)

b2 =
γ

d2
u1w1 (45)

We make the following assumptions.455

Assumption 1. B ≥ B∗.456

Assumption 2.

TB ≥ max

{
4, exp

[
h0 + 2d+ 8

b2

(
4g−2B∗−2 +

|b1|
2d+ 8

+
|b0|

h0 + 2d+ 8

)]}
.

Assumption 3.

α ≥ d

d+ c0
12+32g−2

.

We will now show that if Assumptions 1-3 are satisfied and eventEδ holds thenB∗ ≤ B̃t ≤ (1+g)B∗457
for all t ≥ TB + 1.458

Proof. Suppose that event Eδ holds. For any t let459

s(t) = arg min
τ≤t

β
1/2
τ,ζτ (δ)

(B̂τ )λmin(W τ )
−1/2 (46)

From (32) in the proof of Proposition 1, using the triangle inequality we get460 ∥∥∥θ̂wls

t

∥∥∥
2
≤∥θ∗∥2 + β

1/2
t,ζt(δ)

(B∗)λmin(W t)
−1/2 = B∗ + β

1/2
t,ζt(δ)

(B∗)λmin(W t)
−1/2. (47)

From (33) in the proof of Proposition 1, for any t we have B̂t ≥ B∗, so461 ∥∥∥θ̂wls

t

∥∥∥
2
≤ B∗ + β

1/2
t,ζt(δ)

(B̂t)λmin(W t)
−1/2.

Hence462

B̃t =min
τ≤t

{∥∥∥θ̂wls

τ

∥∥∥
2
+ β

1/2
τ,ζτ (δ)

(B̂τ )λmin(W τ )
−1/2

}
≤
∥∥∥θ̂wls

s(t)

∥∥∥
2
+ β

1/2
s(t),ζs(t)(δ)

(B̂s(t))λmin(W s(t))
−1/2

≤B∗ + 2β
1/2
s(t),ζs(t)(δ)

(B̂s(t))λmin(W s(t))
−1/2. (48)

Also, analogously as in (33), using (32) and the triangle inequality, for any t ≥ 1 we have463

B∗ = ∥θ∗∥2 ≤
∥∥∥θ̂wls

t

∥∥∥
2
+ β

1/2
t,ζt(δ)

(B∗)λmin(W t)
−1/2 ≤

∥∥∥θ̂wls

t

∥∥∥
2
+ β

1/2
t,ζt(δ)

(B̂t)λmin(W t)
−1/2.

So464
B∗ ≤ B̃t (49)

for any t ≥ 1.465

From Lemma 1, for any t ≤ TB we have466

IBt (aBAM
t ) ≥

∆̂2
t,ζt(δ)

(aBAM
t )

∆̂2
t,ζt(δ)

(
aI,Bt

)IBt (aI,Bt

)
− 1− α

α
IEB-UCB
t

(
aBAM
t

)
(50)
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where aI,Bt = arg maxa∈A I
B
t (a). For any t ≤ TB we have467

∆̂t,ζt(δ)

(
aBAM
t

)
=max

b∈A

{〈
ϕ(b), θ̂

wls

t

〉
+ β

1/2
t,ζt(δ)

(B̂t)∥ϕ(b)∥W−1
t

}
−
(〈

ϕ
(
aBAM
t

)
, θ̂

wls

t

〉
− β1/2

t,ζt(δ)
(B̂t)

∥∥ϕ (aBAM
t

)∥∥
W−1

t

)
=max

b∈A

{〈
ϕ(b), θ̂

wls

t

〉
+ β

1/2
t,ζt(δ)

(B̂t)∥ϕ(b)∥W−1
t

}
−
(〈

ϕ
(
aBAM
t

)
, θ̂

wls

t

〉
+ βt,ζt(δ)(B̂t)

1/2
∥∥ϕ (aBAM

t

)∥∥
W−1

t

)
+ 2β

1/2
t,ζt(δ)

(B̂t)
∥∥ϕ (aBAM

t

)∥∥
W−1

t

≥2β1/2
t,ζt(δ)

(B̂t)
∥∥ϕ (aBAM

t

)∥∥
W−1

t
.

So from (18)468

∆̂2
t,ζt(δ)

(
aBAM
t

)
≥ 4βt,ζt(δ)(B̂t)

∥∥ϕ (aBAM
t

)∥∥2
W−1

t
≥ 4βt,ζt(δ)(B̂t)

L2

t(γ + ρ−2
minU

2)
(51)

Also469

∆̂2
t,ζt(δ)

(
aI,Bt

)
=β

1/2
t,ζt(δ)

(B̂t)

(∥∥ϕ(aEB-UCB
t )

∥∥
W−1

t
+
∥∥∥ϕ(aI,Bt )

∥∥∥
W−1

t

)
+
〈
ϕ(aEB-UCB

t ), θ̂
wls

t

〉
−
〈
ϕ(aI,Bt ), θ̂

wls

t

〉
,

so470

∆̂2
t,ζt(δ)

(
aI,Bt

)
≤4βt,ζt(δ)(B̂t)

(∥∥ϕ(aEB-UCB
t )

∥∥2
W−1

t
+
∥∥∥ϕ(aI,Bt )

∥∥∥2
W−1

t

)
+ 4

〈
ϕ(aEB-UCB

t ), θ̂
wls

t

〉2
+ 4

〈
ϕ(aI,Bt ), θ̂

wls

t

〉2
.

Since Eδ holds, from (16) and (47) for any t and any a ∈ A we have471 〈
ϕ(a), θ̂

wls

t

〉2
≤ 2U2(B∗2 + βt,ζt(δ)(B

∗)λmin(W t)
−1)

so from (15) we have472

∆̂2
t,ζt(δ)

(
aI,Bt

)
≤ 8βt,ζt(δ)(B̂t)U

2λmin(W t)
−1 + 16U2(B∗2 + βt,ζt(δ)(B

∗)λmin(W t)
−1).

(52)

From (29) from the proof of Proposition 1, for any a ∈ A we have473

IBt (a) =
1

2
log

(
1 +

ρ(a)−2ψvmin
t

(ϕ(a))
2

λmin(W t)

)
, (53)

so474

IBt

(
aI,Bt

)
=max

a∈A
IBt (a) = max

a∈A

{
1

2
log

(
1 +

ρ(a)−2ψvmin
t

(ϕ(a))
2

λmin(W t)

)}

≥1

2
log

(
1 +

κ

λmin(W t)

)
.

Thus, since log x ≥ 1− 1
x for all x > 0, we have475

IBt

(
aI,Bt

)
≥ κ

2(λmin(W t) + κ)
=

[
2λmin(W t)

(
1

κ
+

1

λmin(W t)

)]−1

≥
[
2λmin(W t)

(
1

κ
+

1

γ

)]−1

. (54)
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So combining (50), (51), (52), and (54), for any t ≤ TB we have476

IBt (aBAM
t ) ≥

L2λmin(W t)
−1
[
2t(γ + ρ−2

minU
2)
(

1
κ + 1

γ

)]−1

2U2λmin(W t)−1 + 4U2βt,ζt(δ)(B̂t)−1 (B∗2 + βt,δ(B∗)λmin(W t)−1)

− 1− α
α

IEB-UCB
t

(
aBAM
t

)
=

=
1

t
L2

[
U2(γ + ρ−2

minU
2)

(
1

κ
+

1

γ

)(
4 + 8B∗2 λmin(W t)

βt,ζt(δ)(B̂t)
+ 8

βt,δ(B
∗)

βt,ζt(δ)(B̂t)

)]−1

− 1− α
α

IEB-UCB
t (aBAM

t ) ≥

≥1

t
L2

[
U2(γ + ρ−2

minU
2)

(
1

κ
+

1

γ

)(
12 + 8B∗2 λmin(W t)

βt,ζt(δ)(B̂t)

)]−1

− 1− α
α

IEB-UCB
t (aBAM

t ),

where the last inequality follows from the fact that B̂t ≥ B∗ and 1/ζt(δ) ≥ 1/δ which gives us477

βt,δ(B
∗)

βt,ζt(δ)(B̂t)
≤ 1.

So from (37) we have478

IBt (aBAM
t ) ≥ 1

t
c0

(
12 + 8B∗2 λmin(W t)

βt,ζt(δ)(B̂t)

)−1

− 1− α
α

IEB-UCB
t (aBAM

t ). (55)

From (53) we have479

IBt (aBAM
t ) =

1

2
log

(
1 +

ωt(a
BAM
t )

λmin(W t)

)
≤ ωt(a

BAM
t )

2λmin(W t)
.

So480

ωt(a
BAM
t ) ≥ 2λmin(W t)I

B
t (aBAM

t ). (56)

If481

β
1/2
t,ζt(δ)

(B̂t)λmin(W t)
−1/2 ≤ 1

2
gB∗ (57)

for some t ≤ TB + 1 then482

β
1/2
s(t),ζs(t)(δ)

(B̂s(t))λmin(W s(t))
−1/2 ≤ 1

2
gB∗,

so from (48) and (49), since event Eδ holds, for any t ≥ TB + 1 we have483

B∗ ≤ B̃t ≤ B∗ + 2β
1/2
s(t),ζs(t)(δ)

(B̂t)λmin(W s(t))
−1/2 = (1 + g)B∗ (58)

which is what we want to show. We will prove by contradiction that since Eδ holds, (57) holds as484
well for some t ≤ TB + 1. Suppose that (57) does not hold. Then for all t ≤ TB + 1 we have485

λmin(W t)

βt,ζt(δ)(B̂t)
< 4g−2B∗−2, (59)
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so from (55) we have486

IBt (aBAM
t ) ≥1

t
c0

(
12 + 8B∗2 λmin(W t)

βt,ζt(δ)(B̂t)

)−1

− 1− α
α

IEB-UCB
t (aBAM

t )

>
1

t
· c0
12 + 32g−2

− 1− α
α

IEB-UCB
t (aBAM

t ).

Hence, from (56) for any t ≤ TB we have487

ωt(a
BAM
t ) ≥ λmin(W t)

(
1

t
· c0
6 + 16g−2

− 2
1− α
α

IEB-UCB
t (aBAM

t )

)
.

Let ⌊x⌋ denote the largest integer smaller than or equal to x for any x ∈ R. From Weyl’s inequality488
(Franklin, 1968)489

λmin(W t+1) ≥ λmin(W t) ≥ γ (60)

for any t. Also note that ωt(a) ≥ 0 for any t and any a ∈ A. So490

⌊
√
TB⌋∑

t=1

ωt(a
BAM
t ) ≥ γ

 c0
6 + 16g−2

⌊
√
TB⌋∑

t=1

1

t
− 2

1− α
α

⌊
√
TB⌋∑

t=1

IEB-UCB
t (aBAM

t )

 .

From (21) we have491

⌊
√
TB⌋∑

t=1

IEB-UCB
t (aBAM

t ) ≤1

2
d log⌊

√
TB⌋+

1

2
d log

(
1 +

ρ−2
minU

2

γ

)
≤1

4
d log TB +

1

2
d log

(
1 +

ρ−2
minU

2

γ

)
.

Also since TB ≥ 4 we have ⌊
√
TB⌋ ≥

√
TB − 1 ≥

√
TB/2, so492

⌊
√
TB⌋∑

t=1

1

t
> log⌊

√
TB⌋ ≥ log

(
1

2

√
TB

)
=

1

2
log TB − log 2.

So493

⌊
√
TB⌋∑

t=1

ωt(a
BAM
t ) ≥γ

(
c0

6 + 16g−2

[
1

2
log TB − log 2

]
− 1− α

α
d

[
1

2
log TB + log

(
1 +

ρ−2
minU

2

γ

)])
≥γ
([

c0
12 + 32g−2

− 1− α
2α

d

]
log TB −

[
c0

6 + 16g−2
log 2 +

1− α
α

d log

(
1 +

ρ−2
minU

2

γ

)])
=γ(u1 log TB − u0), (61)

where the constants u0 and u1 were defined in (39) and (40), respectively. Similarly from (60) we494
have495

TB∑
t=⌊

√
TB⌋+1

ωt(a
BAM
t ) ≥ λmin(W ⌊

√
TB⌋+1)

 c0
6 + 16g−2

TB∑
t=⌊

√
TB⌋+1

1

t
− 2

1− α
α

TB∑
t=⌊

√
TB⌋+1

IEB-UCB
t (aBAM

t )


Note hat496

TB∑
t=⌊

√
TB⌋+1

IEB-UCB
t (aBAM

t ) ≤
TB∑
t=1

IEB-UCB
t (aBAM

t ) ≤ 1

2
d log TB +

1

2
d log

(
1 +

ρ−2
minU

2

γ

)
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and497

TB∑
t=⌊

√
TB⌋+1

1

t
=

TB∑
t=1

1

t
−

⌊
√
TB⌋∑

t=1

1

t
> log TB − (log

√
TB + 1) =

1

2
log TB − 1.

So498

TB∑
t=⌊

√
TB⌋+1

ωt(a
BAM
t ) ≥λmin(W ⌊

√
TB⌋+1)

×
(

c0
6 + 16g−2

[
1

2
log TB − 1

]
− 1− α

α
d

[
log TB + log

(
1 +

ρ−2
minU

2

γ

)])
=λmin(W ⌊

√
TB⌋+1)

×
([

c0
12 + 32g−2

− 1− α
α

d

]
log TB −

[
c0

6 + 16g−2
+

1− α
α

d log

(
1 +

ρ−2
minU

2

γ

)])
=λmin(W ⌊

√
TB⌋+1)(w1 log TB + w0),

where the constants w0 and w1 were defined in (41) and (42), respectively.499

From Lemma 2 and (61) we have500

λmin(W ⌊
√
TB⌋+1) ≥ γ − ρ

−2
minU

2 +
1

d

⌊
√
TB⌋∑

t=1

ωt(a
BAM
t ) ≥ γ

d
(u1 log TB − u0) + γ − ρ−2

minU
2.

So501

TB∑
t=1

ωt(a
BAM
t ) =

⌊
√
TB⌋∑

t=1

ωt(a
BAM
t ) +

TB∑
t=⌊

√
TB⌋+1

ωt(a
BAM
t )

≥γ(u1 log TB − u0) +
(γ
d
(u1 log TB − u0) + γ − ρ−2

minU
2
)
(w1 log TB − w0)

=
γ

d
u1w1(log TB)

2 +
(
γu1 −

γ

d
u1w0 −

γ

d
u0w1 + γw1 − ρ−2

minU
2w1

)
log TB

+ w0

(γ
d
u0 − γ + ρ−2

minU
2
)
− γu0

=db2(log TB)
2 + db1 log TB + d(b0 − γ + ρ−2

minU
2),

where the constants b0, b1 and b2 were defined in (43), (44), and (45), respectively.502

Then, applying Lemma 2 again we get503

λmin(W TB+1) ≥ γ − ρ−2
minU

2 +
1

d

TB∑
t=1

ωt(a
BAM
t ) ≥ b2(log TB)2 + b1 log TB + b0. (62)

Note that by Assumption 3, we have u1 > 0 and w1 > 0, so b2 > 0.504

From (19) we have505

βTB+1,ζTB+1(δ)(B̂t) =

(√
2 log(1/ζTB+1(δ)) + log

(
detW TB+1

detW 1

)
+
√
γB̂TB+1

)2

≤

≤ 4 log(1/ζTB+1(δ)) + 2 log

(
detW TB+1

detW 1

)
+ 2γB̂2

TB+1 ≤

≤ 4max{log(1/δ), 2 log(TB + 1)}+ 2d log TB + 2d log

(
1 +

ρ−2
minU

2

γ

)
+ 2γB2.
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Since TB ≥ 4 we have

log(TB + 1) ≤ log

(
5

4
TB

)
= log TB + log(5/4),

so506

βTB+1,ζTB+1(δ)(B̂t) ≤(2d+ 8) log TB + 8 log(5/4) + 4 log(1/δ) + 2d log

(
1 +

ρ−2
minU

2

γ

)
+ 2γB2

=(2d+ 8) log TB + h0, (63)

with h0 defined in (38). Note that h0 > 0. Also, since TB ≥ 4 we have log TB > 1 so from (62),507
(63) and the fact that b2 > 0 we get508

λmin(W TB+1)

βTB+1,ζTB+1(δ)(B̂t)
≥b2(log TB)

2 + b1 log TB + b0
(2d+ 8) log TB + h0

=
b2

2d+ 8 + h0

log TB

log TB +
b1

(2d+ 8) + h0

log TB

+
b0

(2d+ 8) log TB + h0

≥ b2
h0 + 2d+ 8

log TB −
|b1|

2d+ 8
− |b0|
h0 + 2d+ 8

.

Note that by Assumption 2 we have509

TB ≥ exp

[
h0 + 2d+ 8

b2

(
4g−2B∗−2 +

|b1|
2d+ 8

+
|b0|

h0 + 2d+ 8

)]
so510

λmin(W TB+1)

βTB+1,ζTB+1(δ)(B̂t)
≥ 4g−2B∗−2

which is the required contradiction to (59). So there exists t ≤ TB + 1 such that511

λmin(W t)

βt,ζt(δ)(B̂t)
≥ 4g−2B∗−2

and thus, since Eδ holds, from (58) for any t ≥ TB + 1 we have512

B∗ ≤ B̃t ≤ (1 + g)B∗.

10.7 Proof of Proposition 3513

The exact assumptions made by Propositions 3 are as follows. We assume that TB and α are514
sufficiently large so Assumptions 1 - 3 hold and (TB + 1)2 ≥ 1/δ. We can now proceed to the proof.515

Proof. Suppose that event Eδ holds.516

E

[
T∑

t=1

∆̂t,ζt(δ)(A
BEIDS
t )

]
= E

[
TB∑
t=1

∆̂t,ζt(δ)(A
BAM
t )

]
+ E

[
T∑

t=TB+1

∆̂t,ζt(δ)(A
EB-UCB
t )

]
.

From (21) with probability 1 we have517

T∑
t=TB+1

IEB-UCB
t (At) ≤ O(d log T ). (64)

28



Empirical Bound Information-Directed Sampling

Let aEB-UCB
t be the realization of AEB-UCB

t . Since event Eδ holds and Assumptions 1 - 3 hold, from518
Proposition 2 we have B∗ ≤ B̃t ≤ (1 + g)B∗ for all t ≥ TB + 1. Also from the assumptions of519
this proposition, 2 log T ≥ log(1/δ), so analogously as in (25) and (27), for any t ∈ {TB + 1, TB +520
2, . . . , T} we have521

∆̂2
t,ζt(δ)

(
aEB-UCB
t

)
IEB-UCB
t

(
aEB-UCB
t

) ≤16βT,ζT (δ)(B̃t)max{U2γ−1, ρ2max}

≤16max{U2γ−1, ρ2max}

×
[
2max{2 log T, log(1/δ)}+ 2d log(T − 1) + 2d log

(
1 +

ρ−2
minU

2

γ

)
+ 2γB̃2

t

]
≤16max{U2γ−1, ρ2max}

×
[
(2d+ 4) log T + 2d log

(
1 +

ρ−2
minU

2

γ

)
+ 2γB̃2

t

]
≤16max{U2γ−1, ρ2max}

×
[
(2d+ 4) log T + 2d log

(
1 +

ρ−2
minU

2

γ

)
+ 2γ ((1 + g)B∗)

2

]
.

Hence from Theorem 1 and (64) we have522

E

[
T∑

t=TB+1

∆̂t,ζt(δ)(A
EB-UCB
t )

]
≤O

(
dmax{U/√γ, ρmax}

√
T log T

×

√
log

(
1 +

ρ−2
minU

2

γ

)
+ γ ((1 + g)B∗)

2


≤O

(
dUρmax(1 + g)B∗

√
T log T

)
,

and thus from (34) we get that523

E

[
T∑

t=TB+1

∆(AEB-UCB
t )

]
≤ O

(
dUρmax(1 + g)B∗

√
T log T

)
.

and similarly with probability 1 we have524

T∑
t=TB+1

∆(AEB-UCB
t ) ≤ O

(
dUρmax(1 + g)B∗

√
T log T

)
.

Thus, since TB is fixed with respect to T with probability at least P(Eδ) ≥ 1− δ we have525

RT ≤ O
(
dUρmax(1 + g)B∗

√
T log T

)
and526

PRT ≤ O
(
dUρmax(1 + g)B∗

√
T log T

)
.
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