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Abstract

The use of guidance in diffusion models was originally motivated by the premise
that the guidance-modified score is that of the data distribution tilted by a condi-
tional likelihood raised to some power. In this work we clarify this misconception
by rigorously proving that guidance fails to sample from the intended tilted distri-
bution. Our main result is to give a fine-grained characterization of the dynamics
of guidance in two cases, (1) mixtures of compactly supported distributions and (2)
mixtures of Gaussians, which reflect salient properties of guidance that manifest
on real-world data. In both cases, we prove that as the guidance parameter in-
creases, the guided model samples more heavily from the boundary of the support
of the conditional distribution. We also prove that for any nonzero level of score
estimation error, sufficiently large guidance will result in sampling away from the
support, theoretically justifying the empirical finding that large guidance results in
distorted generations. In addition to verifying these results empirically in synthetic
settings, we also show how our theoretical insights can offer useful prescriptions
for practical deployment.

1 Introduction

With diffusion models having emerged as the leading approach to generative modeling in domains
like image, video, and audio [31, 34, 18, 12, 33, 35, 36, 29, 26], there is a pressing need to develop
principled methods for modulating their output. For example, how do we impose certain constraints
on generated samples, or control their “temperature”? To formalize this, suppose one has access
to an unconditional diffusion model approximating the data distribution p, as well as a conditional
diffusion model approximating the conditional distribution p(· | z) for various choices of class labels
or prompts z.3 Given z and a parameter w, one might wish to sample from the distribution p tilted by
the conditional likelihood, i.e. the distribution pz,w with density

pz,w(x) ∝ p(x) · p(z | x)1+w .

(Throughout, we use lower-case letters to denote densities, and capital letters to denote distributions.)

By varying w, we can naturally trade off between diversity and quality: If w = −1 then pz,w is the
unconditional distribution, if w = 0 then pz,w is the conditional distribution p(· | z) by Bayes’ rule,
and as w → ∞, pz,w converges to being supported on the maximizers of the conditional likelihood.

∗Lead authors, equal contribution
†Equal contribution
3In some settings, instead of having access to p(· | z), one has access to some model for the conditional

likelihood p(z | ·). The distinction between the “classifier-free” setting [19] and the “classifier” setting is
immaterial to this paper, and our theory applies to both.
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(a) Ground Truth (b) Conditional Score (w = 0) (c) Guided Score (w = 3)

Figure 1: We consider sampling from the positive class of a 2D mixture of uniforms (a) using
the probability flow ODE with the conditional score (b) and the guided score (c). As can be seen,
increasing the guidance weight w clearly biases the distribution of samples to concentrate towards
points far away from the other class support.

In practice, the standard approach to try to sample from the tilted distribution is to use diffusion
guidance [13, 19]. The idea for this is roughly as follows. To sample from a given distribution using
diffusion generative modeling, one numerically solves a certain ODE or SDE whose drift depends on
the score function, i.e. gradient of the log-density, of p convolved with various levels of Gaussian
noise. By definition, the score function of pz,w satisfies

∇ log pz,w = ∇ log p+ (1 + w)∇ log p(z | ·) = −w∇ log p+ (1 + w)∇ log p(· | z) . (1)

Assuming we have access to approximations of both terms on the right, we can run the corresponding
ODE or SDE whose drift can be computed using the above to approximately sample from pz,w.

There is however one fundamental snag in the reasoning above. The aforementioned ODE or SDE
involves the score function at different noise levels, i.e. we would need access to ∇ log pz,wt , where
we use the notation qt to denote the distribution given by running a certain noising process (see
Section 2.1) for time t starting from a distribution q. Here pz,wt means we tilt before adding noise,
that is, we take q = pz,w and then apply noise to q. Unfortunately, as soon as t > 0, the analogue of
Eq. (1) no longer holds, i.e.

∇ log pz,wt ̸= −w∇ log pt + (1 + w)∇ log pt(· | z) . (2)

In other words, the operation of applying noise to p and the operation of tilting it in the direction
of the conditional likelihood do not commute. Nevertheless, in practice it is standard to use the
right-hand side of Eq. (2) as an approximation [13, 19]. Sampling using this approximation is called
diffusion guidance.

Intriguingly, for appropriate choices of w, this heuristic results in generations with high perceptual
quality. Yet despite the popularity and empirical success of guidance, our theoretical understanding
of this approach is lacking. In this work, we ask:

What distribution is diffusion guidance actually sampling from?

A motivating example. To see clearly that diffusion guidance is not simply sampling from the
tilted distribution, consider the following simple setting. Suppose that there are only two classes
z = −1 and z = +1, and that the corresponding conditional distributions p(· | z = −1) and
p(· | z = +1) have disjoint supports Ω−,Ω+. In this case, the conditional likelihood is simply given
by p(z = i | x) ∝ 1[x ∈ Ωi]. In particular, the conditional likelihood is binary-valued, which implies
that for any w > 0, the tilted distribution pz,w is exactly the same! On the other hand, as Figure 1
shows, increasing w changes the distribution of generated samples to concentrate towards the edge of
the support of the guided class.

This simple example already reflects two properties of diffusion guidance that manifest on real-world
data as the guidance parameter w increases:

• Drop in diversity: The entropy of the distribution over generated samples resulting from diffusion
guidance tends towards zero.

• Divergence towards “archetypes”: The generated outputs drift more and more to the extreme
points in the support of the conditional distribution p(· | z = i) to which the diffusion model is
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being guided. Note that these extreme points do not necessarily coincide with the set of maximizers
of the conditional likelihood, as our example shows.

These phenomena are surprising because we have shown that they can occur even when the conditional
likelihood contains no geometric information about the data distribution: in our example, all points
x ∈ Ω+ have the same conditional likelihood under p(z = +1 | x), so it is not at all clear why the
sampling process should end up preferring points in Ω+ which are furthest from points in Ω−.

In this work, we hone in on simple settings in which we can precisely characterize the dynamics of
diffusion guidance and explain this counterintuitive behavior. Our main result is to execute such an
analysis for mixtures of compactly supported distributions:
Theorem 1 (Compactly supported setting, informal – see Theorem 4). Consider a data distribution
p = 1

2p
(1) + 1

2p
(−1) where p(1), p(−1) are β-bounded and supported on disjoint intervals [α1, α2]

and [−α2,−α1] respectively (see Assumption 1). Suppose that one runs the probability flow ODE
with guidance parameter w which is larger than some absolute constant. Then with probability
1− e−Ω(w), the resulting sample lies in the interval(

α2

(
1−O(1/

√
lnw)

)
, α2

)
, (3)

where the O(·) notation hides constants depending on α1, α2, β.

We also conduct this analysis in a setting where the conditional distributions p(1) and p(−1) do not
have compact support by proving an analogous result for mixtures of Gaussians. The proofs in this
setting turn out to be somewhat simpler:
Theorem 2 (Gaussian setting). Consider the data distribution p = 1

2N (1, 1)+ 1
2N (−1, 1). Suppose

that one runs the probability flow ODE with guidance parameter w which is larger than some absolute
constant. Then if the resulting sample is denoted by x̃(1), we have

P(x̃(1) ≥ 0) ≥ 1− e−Ω(w2) P(x̃(1) ≥
√
w) ≥ 1− e−Ω(w) .

Theorems 1 and 2 illustrate that diffusion guidance results in a strong bias towards points in the
support of one conditional distribution which are far from points in the support of the other.

These results apply even when the unconditional and conditional diffusion models in question incur
zero score estimation error. One shortcoming however is that they fail to corroborate a third commonly
observed behavior of guidance in practice:

• Degradation when guidance is too large: In practice, even ignoring issues of diversity, there is
typically a “sweet spot” for the choice of w such that past that point, the quality of the generated
output begins to degrade.

Next, we show how to leverage ideas in the proof of Theorem 1 to explain this degradation. Concretely,
we give a simple example where a small perturbation to the score estimate at the tails of the data
distribution is enough to take the sampling trajectory given by diffusion guidance far away from the
trajectory predicted by Theorem 1:

Theorem 3. Given 0 < ϵ < 1, assume w ≥ Ω̃(
√
log log(1/ϵ)), where the hidden constant factor is

sufficiently large. There exist densities p(1), p(−1) satisfying the assumptions of Theorem 1, as well as
functions s(1)t , st satisfying

∥∇ log p
(1)
t + s

(1)
t ∥2

L2(p
(1)
t )

≤ ϵ and ∥∇ log pt + st∥2L2(pt)
≤ ϵ

such that, if one runs the probability flow ODE with guidance parameter w but with ∇ log p
(1)
t and

∇ log pt replaced by s
(1)
t and st respectively, then with probability at least 1− e−Ω(w), the resulting

sample lies outside of the domain of p.

In other words, for any level of score estimation error, if one takes the guidance parameter w to be
too large, the sampler will end up going off the support of the data distribution p. Roughly speaking,
the idea derives from the proof of Theorem 1. As we will see, one key feature of the guided ODE in
the setting of Theorem 1 is that the trajectory first swings past the edges of the support of p and into
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the tails of the noised data distribution pt before returning. As a result, errors in score estimation at
these tails can move the sampling process away from the intended trajectory and thus prevent the
trajectory from ever returning to the support of p, leading to corrupted outputs. We stress that this
phenomenon is not an issue of numerical precision: Theorem 3 applies even if one runs diffusion
guidance with infinite precision.

Taking inspiration from our theory, we posit that the optimal choice of guidance (from the perspective
of sample quality) for compactly supported distributions that approximately satisfy the assumptions
of our theory is the largest possible w for which the resulting trajectory does not exhibit this behavior
of swinging away from the support of the data distribution and returning. Specifically, we propose a
rule of thumb for selecting the guidance strength based on looking at a certain monotonicity property
of the trajectory and experimentally validate this rule of thumb in both synthetic settings and on
image classification datasets. Additionally, for compactly supported distributions that fall outside the
scope of Theorem 1, we propose an alternative heuristic based on the ideas of Theorem 3: we should
choose the guidance strength as large as possible while still ensuring that final samples are contained
within the distribution support. See Section 3 for details.

1.1 Related work

It has been observed previously [15, 20] that the score of the tilted distribution convolved with noise
is different from what is used in diffusion guidance, i.e. Eq. (2). These works conclude informally
that as a result, diffusion guidance should not be sampling from the tilted distribution. In contrast,
our work gives rigorous justification for this and provides a fine-grained analysis of the behavior
of diffusion guidance on simple toy examples, shedding new light on several key features of the
dynamics of guidance.

To our knowledge, only two prior works have sought to theoretically characterize the behavior of
guidance, one by Wu et al. [37] and one by Bradley and Nakkiran [3]. Here we discuss the connection
to these works in detail and briefly summarize some other relevant results.

Comparison to Wu et al. [37]. This previous work studied the effect of the guidance parameter w
when sampling Gaussian mixture models. They considered two summary statistics: the “classification
confidence” and the “diversity” of the generated output.

The former refers to the conditional likelihood p(z | x), where z is the index of the component of
the Gaussian mixture model to which the sampler is being guided, and x is the generated output.
They prove a comparison result showing that the classification confidence of the output of the guided
sampler is at least as high as that of the unguided sampler, and they give some quantitative bounds on
how much the former exceeds the latter. In particular, they prove that as w → ∞, the classification
confidence tends to 1.

As for diversity, they show that the differential entropy of the output distribution of the guided sampler
is at most that of the unguided sampler, though they do not provide quantitative bounds on the extent
to which the entropy decreases with w.

Instead of studying summary statistics of the generated output, we instead give a fine-grained analysis
of where exactly the trajectory ends up at different times in the reverse process. While we do not
directly study classification confidence, note that in the setting of our main result, Theorem 1, for
mixtures of compactly supported product distributions, the statement that classification confidence
increases is uninformative because, as mentioned previously, the conditional likelihood for any point
in the support of the target class is 1. The dynamics that we elucidate in our results can be thought of
as a more geometric notion of classification confidence. As for diversity, implicit in our Theorems 1
and 2 are quantitative bounds on how the diversity decreases as w increases.

Additionally, the analysis of how score estimation error impacts diffusion guidance, as well as our
empirical findings on real data, are unique to our work.

Comparison to Bradley and Nakkiran [3]. During the preparation of this manuscript, a very
recent theoretical work [3] also studied the extent to which diffusion guidance fails to sample from
the tilted distribution. They provided a simple example where the conditional likelihood p(z | x) is
Gaussian (so that the tilted distribution is also Gaussian) and the probability flow ODE with guidance
provably does not sample from the correct tilted distribution. Interestingly, they also study the reverse
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SDE with guidance and show that it behaves differently under this example than under the probability
flow ODE with guidance.

They also observed that diffusion guidance is equivalent to a predictor-corrector scheme where the
predictor makes a step according to the conditional distribution p(x | z), and the corrector makes a
step using Langevin dynamics with respect to the noised-then-tilted distribution.

In addition, they considered the mixture of two Gaussians example that we study here. They provide
numerical, but non-rigorous evidence that diffusion guidance results in a very different distribution
than the tilted one. In contrast, we provide a rigorous analysis of the dynamics proving that this is the
case. On the other hand, to our knowledge, the example of a mixture of distributions with compact
support has not been considered previously, and the qualitative difference in the behavior of guidance
in this setting versus under the mixture of Gaussians setting has not been reported in the literature.

Sampling guarantees for diffusion models. Most of the theoretical literature on diffusion models
has focused on unconditional sampling, e.g., proving that SDE diffusion models can efficiently sample
from essentially arbitrary data distributions assuming L2-accurate score estimation [21, 7, 5, 4, 1, 9].
Note the notion of L2 error matches the objective function used in practice. Similar results hold for
the ODE under additional smoothness constraints or by using a corrector step [23, 22, 6, 24].

We also mention various recent works on understanding other aspects of diffusion models using
mixture models, including provable score estimation [30, 10, 8, 17] and feature emergence [25].

Finally, an unrelated work that touches upon guidance and conditional generation is that of [16]. They
give representational bounds on how well conditional score functions can be approximated by ReLU
networks in nonparametric settings, which translate to sample complexity bounds for conditional
score estimation. In their work, “classifier-free guidance” does not refer to the sampling process that
we focus on (indeed, they take guidance parameter w = 0 so that the tilted distribution is simply
the conditional distribution p(x | z)). Instead, it refers to the training of a neural network that
simultaneously parametrizes the unconditional and conditional scores.

2 Preliminaries and proof overview

2.1 Technical preliminaries

Mixture models. We focus on data distributions p which are uniform mixtures of two constituent
distributions, taking the form

p ≜
1

2
p(1) +

1

2
p(−1) . (4)

Throughout, we freely conflate probability measures with their densities. Here p(1) and p(−1) are
meant to represent class-conditional distributions, and p is meant to represent the unconditional data
distribution.

We will denote a sample from p by the pair (x, z) where z ∈ {±1} specifies the class (±1 with
probability 1

2 ). Given class z, the conditional distribution on x is given by p(z).

Probability flow ODE. Here we briefly review some basics on diffusion models, specifically the
probability flow ODE, tailored to the mixture model setting outlined above. Throughout, let t be
a time variable which varies from 0 to some terminal time T , such that the output of the sampling
algorithm is the iterate at time T .

To formally introduce the probability flow ODE, we define the parameters at = e−T+t, bt =√
1− a2t . Let pt(·) be the distribution of (atx+ ξt, z) where x ∼ p is sampled from the mixture and

z denotes its class, and ξt ∼ N(0, b2t ) is Gaussian noise corresponding to time t of the backward
process. Hence, the marginal pt(x) is the convolution of the target p scaled by at, and N(0, b2t ).
Denote by a∗p the distribution of aX where X ∼ p. Then the distribution at time t given z is given
by pt(·|z = 1) = at∗p

(1) ⋆ N(0, b2t ) and pt(·|z = −1) = at∗p
(−1) ⋆ N(0, b2t ), respectively.

The probability flow ODE with respect to the component p(1) is given by

x′(t) = x(t) +∇ log pt(x(t)|z = 1) , (5)
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and analogously for the other component. This ODE has the property that if x(0) is distributed as a
sample from aT∗p

(1) ⋆ N(0, b2T ), then x(t) is a sample from a(T−t)∗p
(1) ⋆ N(0, b2T−t).

Guidance. Our goal is to understand the effect of introducing guidance into the probability flow
ODE (5). Given guidance parameter w, the resulting guided ODE is given by

x′(t) = x(t) +∇ log pt(x(t)) + (w + 1) log pt(z|x(t)) (6)
= x(t) + (w + 1)∇ log pt(x(t)|z)− w∇ log pt(x(t)) , (7)

where in the second step we used Bayes’ rule. We will sometimes refer informally to the position of
x(t) (or time-reparametrizations thereof) as a particle.

Note that when w = 0, this is identical to the vanilla probability flow ODE in Eq. (5) for z = 1. When
w = −1, then this is identical to the probability flow ODE for the unconditional distribution p. Our
goal in this work is to understand the behavior of the guided ODE for general w, especially large w. In
particular, as noted at the outset, the “guided score” term (w+1)∇ log pt(x(t)|z)−w∇ log pt(x(t))
in Eq. (7) does not correspond to the score function of the tilted distribution convolved with noise, so
it is not a priori clear what the distribution over the final iterate x(T ) actually is.

2.2 Intuition for our characterization of the dynamics of guidance

Having formalized the probability flow ODE with guidance, we now provide a high-level overview
of our proofs by presenting general intuition for the effect of guidance. The behavior of the guided
ODE in the setting of mixtures of compactly supported distributions is the richest, so we focus on
illustrating the proof of Theorem 1. In that setting, roughly speaking, we will show that there are three
distinct regimes for the evolution of the guided ODE, depending on how the posterior probabilites
pt(z = −1|x(t)) and pt(z = 1|x(t)) relate to each other.

First, when the posterior probability pt(z = −1|x(t)) is much larger than pt(z = 1|x(t)), then the
score function of the convolved mixture model is dominated by the score of p(−1) convolved with the
appropriate Gaussian; in particular, the guided score term in Eq. (7) is almost

(w + 1)∇ log pt(x(t)|z)− w∇ log pt(x(t)) ≈ (2w + 1) log pt(x(t)|z),
i.e. x(t) gets pushed toward the p(1) component with maximum velocity.

The second case is when the posterior probabilities pt(z = 1|x(t)) and pt(z = −1|x(t)) are
approximately equal. In this case, the score of the convolved mixture is almost zero since the
influences from p(1) and p(−1) cancel each other out. Hence, the guided score term in (7) roughly
becomes

(w + 1)∇ log pt(x(t)|z)− w∇ log pt(x(t)) ≈ (w + 1)∇ log pt(x(t)|z).
We can see that here x(t) will still converge to the right component with high velocity proportional to
w + 1 in this regime.

Finally the third regime is when pt(z = 1|x(t)) > pt(z = −1|x(t)), i.e. x(t) is “closer” to p(1).
Then the RHS roughly becomes

(w + 1)∇ log pt(x(t)|z)− w∇ log pt(x(t)) ≈ ∇ log pt(x(t)|z).
In this case x(t) converges to the right component with minimum speed, i.e. proportional to a constant
independent of w.

Overall, we observe the behavior that when the particle is close to the wrong component, guidance
adds more biasing on it to repel it from that component toward the correct one, whereas when the
particle is closer to the correct component, it decreases in velocity. This intuitively means that
guidance somehow biases the distribution of the correct component to points that are “farther” from
the other component, an intuition that we rigorize in Appendices A and B where we prove formal
versions of Theorems 1 and 2.

3 Experiments

Here we empirically verify the guidance dynamics predicted by Theorems 1 and 2. All experiments
in this section were conducted on a single A5000 GPU. We use Jax [2] for the experiments in Section
3.1 and PyTorch [27] for all other experiments.
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3.1 Synthetic experiments

We first revisit the distribution used in Figure 1 (mixture of uniforms), and then consider the case
of mixture of Gaussians in Appendix C.1. The distribution in Figure 1 is constructed by taking p(z)

to be Uniform([−1/2, 1/2] ⊗ [−1/2, 1/2]) shifted by 2z in the x-coordinate. Note that although
this is a 2-D distribution, the distributions p(1) and p(−1) can be written as p(z)1 ⊗ q with q shared,
which does not affect the dynamics of Theorem 1. We demonstrated in Figure 1 how sampling with a
larger guidance parameter yields a distribution of samples that is more concentrated than the true
conditional distribution of the data. We now examine the ODE dynamics that produced these samples
and compare them to the dynamics predicted by our theory.

We generate samples using guidance by numerically solving the guided probability flow ODE (7)
using the Dormand-Prince method [14] as implemented in JAX [2]. For solving, we use 1000
evaluation steps and take T = 10, which we is sufficiently large based on the stipulations of
Theorem 1. For obtaining the unconditional and conditional scores necessary for the ODE, it is
straightforward to write down exact expressions for this case (which consist of integrals that we can
numerically approximate). However, we estimate the scores using a more general approach that can
be effectively applied to any mixture distribution for which we can sample both conditionally and
unconditionally from.

For brevity, let At follow the distribution of atX , where at is defined as before and X ∼ p (the
mixture distribution). Similarly, let At,z follow the conditional distribution atX | z. Lastly, letting
pbtξ denote the density of ξt, we have the following expressions for the scores:

∇ log pt(x) =
EAt

[∇pbtξ(x−At)]

EAt
[pbtξ(x−At)]

, (8)

= −
EAt

[
1
b2t
pbtξ(x−At)(x−At)

]
EAt [pbtξ(x−At)]

, (9)

∇ log pt(x | z) =
EAt,z

[∇pbtξ(x−At,z)]

EAt,z [pbtξ(x−At,z)]
. (10)

Both (8) and (10) follow from rewriting the convolutions as expectations and then using dominated
convergence to pass the gradient into the expectations. Using the above, we can compute the scores
by standard Monte-Carlo.

We use this ODE solving procedure to generate 500 samples from the conditional distribution
p(x | z = +1) with varying levels of guidance. For each generated sample, we project the computed
ODE trajectory on to the x-coordinate (as this is the coordinate handled by our theory in this case).

Theorem 1 suggests that as we increase the guidance parameter w, the ODE dynamics will push
samples farther and farther in the direction of the guided class support before ultimately pulling them
back to the support if necessary (i.e. w is large). As we show in Theorem 3, this behavior can be
undesirable if the sampling trajectory moves too far away from the desired class support, as it can
amplify score estimation errors and lead to issues in the fidelity of the final produced samples.

We can thus intuitively think of increasing the guidance parameter as not only trading off diversity and
sample quality, but also trading off stability with sample concentration. This observation indicates
that there should be some range of guidance values that allow for the sampling concentration effect
while not entering the unstable regime; i.e. those guidance values that do not lead to sampling
trajectories that move far away from the guided class support.

To verify this, we plot the mean of the projected ODE trajectories for increasing guidance parameter
values alongside the final produced samples from each trajectory in Figure 2. Since large choices
of the guidance parameter lead to some trajectories diverging due to numerical instability/score
approximation errors, we visualize only the samples and trajectories that were “good” in that they
produced final samples constrained within the guided class support (and we indicate this proportion
on the plots). The results show that the projected trajectories do indeed follow the predicted dynamics,
with larger choices of w leading to a pronounced pullback towards the end of the trajectories.

Furthermore, as suggested earlier, the qualitatively best choices of w appear to correspond to
trajectories that do not (significantly) exhibit this pullback effect. In our case, w = 3 exhibits the
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(a) Samples (b) Trajectories

Figure 2: Final samples and mean sampling trajectories produced from solving the probability flow
ODE guided towards y = +1 in the distribution of Figure 1. The proportion of good samples (i.e.
those that were correctly in the class support) is shown with each sample plot, and a 1 standard
deviation band is shown around each mean trajectory.

sharpest sample concentration while having significantly better sample fidelity when compared to
higher guidance values.

3.2 Approximately separable image data

While the synthetic experiments serve to verify our theory, they obviously do not constitute a practical
setting in which guidance is used. The most popular use case for guidance in the literature is sampling
from image data, and indeed this is what motivated our investigation of guidance for distributions
with compact support in the first place.

However, typical image datasets used in the diffusion literature such as ImageNet [11] are known to
not be linearly separable, and therefore cannot fall under the exact conditions of Theorem 1. That
being said, simpler image datasets are known to be close to linearly separable - in particular, MNIST.

We thus consider using the classifier-free guidance formulation (which corresponds to the second
equality in (1)) of [19] to conditionally sample from MNIST with guidance. We use the open-source
classifier-free guidance implementation of [28] designed for MNIST.

Although MNIST is perhaps the simplest generative image modeling testbed, it still presents a
significant increase in complexity from the synthetic setting. Firstly, compared to the experiments of
Section 3.1 and the setting of our theory, we are no longer considering only two classes. Furthermore,
there is no guarantee that the class supports are well-separated, or even disjoint. Even more worrying,
we do not have access to approximations of the true score functions of the conditional distributions
that are guaranteed to be close as in (8) and (10); we have to instead learn a model-based score.

We address the multi-class issue by using the standard one-vs-all reduction. In particular, we fix
a single class as the positive class y = +1, and then let the union of all other classes represent
the negative class y = −1. We note that after this reduction, the distribution is close to linearly
separable, and we are thus at least close in spirit to maintaining the separation from Theorem 1 under
an appropriate basis.

To obtain a projection direction for the sampling dynamics analogous to what was done in Section 3.1,
we generate 100 samples from the positive and negative classes using a guidance of w = 0, to
approximate sampling from the conditional distributions. We then let the projection direction be the
difference between the two sample means. For sampling, we use DDPM [18] with 400 time steps and
a linear noise schedule, and we found that training the guidance model of [28] for 40 epochs was
sufficient to generate high quality samples.

Figure 3 shows the mean projected sampling trajectories alongside the final produced samples for the
same choices of guidance parameters used in Figure 2 and the positive class fixed to be the digit 0. We
observe the same phenomenon as before: after the guidance parameter w is taken to be sufficiently
large, there is a pullback effect in the projected sampling dynamics. Furthermore, once again as
before we note that the qualitatively best choice of w (again w = 3) is the largest choice for which
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(a) Samples (b) Trajectories

Figure 3: Final samples and mean projected trajectories produced from sampling using the classifier-
free guidance model of [28]. For the positive class, we fix the digit to be 0, and the negative class
corresponds to all other digits. Each row of samples from top to bottom corresponds to increasing
guidance values.

we can preserve monotonicity of the projected sampling dynamics. These results are not sensitive to
the choice of positive class; we show similar plots for every other choice of positive class (i.e. all
the non-zero digits) in Appendix C.2. Interestingly, for almost any choice of positive class used in
the reduction, the qualitatively optimal choice of guidance amongst the values we consider remains
roughly the same.

3.3 ImageNet experiments

Although we previously mentioned that experiments on more complicated datasets such as ImageNet
are outside the scope of Theorem 1, we show in this section that it is still possible to make qualitative
guidance recommendations in such settings based on the ideas of Theorem 3. The idea is that as we
scale the guidance parameter w to be large, we start to obtain samples that are no longer within the
original data distribution support due to amplification of score/precision errors.

To conduct experiments on ImageNet, we use the classifier-guided ImageNet models available from
[13]. This is due to the fact that there are no classifier-free guidance models available from [19].
The classifier-guidance formulation corresponds to the first equality in (1). To be consistent with the
notation in [13] and to also clearly distinguish the classifier-guided setting from the classifier-free
setting of Section 3.2, we will use s = 1 + w throughout the experiments in this section.

First, we illustrate that the behavior exhibited in Figure 3 no longer holds when running diffusion
with guidance on ImageNet, at least using the same experimental setup as before. To parallel the
experiments of Section 3.2, we use the 256× 256 conditional diffusion model released by [13] to
generate samples from a fixed ImageNet class (corresponding to y = +1 as before), and then use
the same model to generate samples from all other classes (corresponding to y = −1). We generate
50 samples from the positive and negative classes (due to the cost of sampling at this resolution and
the overhead of storing the entire sampling trajectories), and then compute the normalized direction
between the two sample means as before.4 For sampling, we use DDIM [32] with 25 steps, once
again because storing the entire sampling trajectories using DDPM with a large number of steps is
prohibitive.

For sampling with guidance, we use the unconditional diffusion model of [13] with the 256× 256
ImageNet classifier also released by [13]. Note here that [13] combined diffusion guidance with their
conditional model for their best results, but this does not fall in to the formulation of (1) and so we
use the unconditional model. We use DDIM with 25 steps for the guidance samples as well.

Figure 4 shows the final produced samples alongside the mean projected trajectories for an arbitrarily
fixed positive class as in the experiments of Section 3.2. We see that even for extreme guidance scales
s = 25 the previously observed non-monotonicity phenomenon in the projected trajectories no longer

4We should note that, in contrast to the MNIST experiments, this choice of direction is very noisy in the
ImageNet setting. However, we use the same setup as before both for consistency and to show that Theorem 3
can be applied even in this imperfect experimental setting.
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(a) Samples (b) Trajectories

Figure 4: Final samples and mean projected trajectories produced from sampling using the classifier-
guided ImageNet diffusion model of [13]. The positive class here is taken to be 292 (tiger). As before,
each row of samples from top to bottom corresponds to increasing guidance values.

occurs. We suspect this can largely be attributed to the fact that the class supports are no longer
close to separated, and as a result the direction corresponding to the difference in sample means is no
longer a direction for which we can expect the dynamics of Theorem 1 (in fact, we can expect that
there is no such direction along which these dynamics occur since the data is not linearly separable
even after reducing to two classes). However, we note that as we increase the guidance strength, the
final sample correlation along this mean difference direction continues to increase, more akin to the
result of Theorem 2.

In tandem with this increasing correlation, we also observe an increase in the mean “support error” of
the final samples, which is overlain on to the trajectory plots in Figure 4. This error is computed by
taking the mean absolute deviation of every dimension of the final produced samples from the range
of valid RGB values [0, 255]; dimensions that are outside of this range are truncated so as to form
valid images. We find that, at least qualitatively, the largest guidance value (s = 5) for which we
have no support error seems to perform the best, as taking guidance values larger seems to introduce
various visual idiosyncrasies and taking guidance small leads to insufficient concentration on the
correct class (as we are guiding an unconditional diffusion model).

We verify that these observations hold for a number of different choices of the positive class; these
experiments, along with further discussion of limitations of our experimental setup, are available in
Appendix C. We emphasize again that this is merely a minimal demonstration of a possibly useful
heuristic, and once again point out that this setting is outside the scope of our theory. Still, an
interesting direction for future work could be to run more comprehensive experiments regarding
this heuristic (and other heuristics in this section) - such experiments were outside the scope of our
available compute resources.

4 Conclusion

In this work we gave the first fine-grained analysis of the dynamics of the probability flow ODE with
guidance, focusing on two toy settings involving mixture models in one dimension. Our key finding
was that not only does the guided ODE fail to sample from the tilted distribution that originally
motivated the formulation of guidance, but in fact the guided ODE implicitly leverages geometric
information about the data distribution even if such information is absent in the classifier being used
for guidance.

Our results open up a number of interesting follow-up directions. For example, our guarantees are
restricted to one-dimensional settings, and it would be useful to obtain analogous guarantees for
non-trivial high-dimensional settings such as mixtures of bounded densities over disjoint convex
bodies. Additionally, we have made no effort to optimize the choice of w in our theoretical guarantees,
and it would be interesting to see how small one can take w in theory while still obtain the behavior
in our results.
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A Mixtures of compactly supported distributions

Consider the case when p(1) and p(−1) are supported on [α1, α2] and [−α2,−α1], respectively, for
parameters 0 < α1 ≤ α2. The simplest case is when we are dealing with two points, i.e., when
α1 = α2. However, this case is trivial as adding guidance has no effect: the final distribution with
any guidance parameter w remains a point mass on α2.

In contrast, the behavior is unclear if the length of the intervals is nonzero, which is the focus of our
results below.

We make the following assumption on p(1) and p(−1):
Assumption 1. We assume the densities p(1), p(−1) have β-bounded densities with respect to each
other for some β ≥ 1. Namely ∀x1 ∈ (−α2,−α1), x2 ∈ (α1, α2):

1

β
≤ p(−1)(x1)

p(1)(x2)
≤ β.

Under Assumption 1 we show that by running the guided ODE starting from Gaussian initialization,
we sample from a distribution concentrated at the edge of p(1). In particular, we prove the following
result:
Theorem 4 (Convergence to the edge of the support). Assume ln(w)

16
√
w

≤ α1α2

β , ln(w)
ln ln(w) ≥

1024
(

α2

α1∧1

)2
. Then running the guided ODE with T ≥ 2 log 2 and parameter w for the mix-

ture model p defined in (4) under Assumption 1, with probability at least 1 − exp(− wα2
1

512β2 ), the
resulting sample lies in the interval (

α2

(
1− 32√

ln(w)

)
, α2

)
. (11)

The formal proof of Theorem 4 which combines all the pieces that we present in this section comes at
the end of the section. At a high level, we show that the particle goes through two major phases: first,
if we have the condition that the initial point satisfies x(0) ≥ −Θ(−

√
w), then it goes towards the

support of p(1) and swings past it, ending up at position Θ(w). Then, in the second phase, it comes
back to the support of p(1), but by the time it reaches the rightmost edge of the support, it is already
close to the end of the process; in particular, we show that it cannot move too much on the support of
p(1) once it arrives there. Hence the particle gets stuck near the edge of the support. We formalize
this intuition below.

A.1 Reformulating the ODE

In the setting of this section, the score can be written as

∇ log pt(x) = −

∫
α∈(α1,α2)∪(−α2,−α1)

x−atα
b2t

e−(x−atα)
2/(2b2t )dα∫

α∈(α1,α2)∪(−α2,−α1)
e−(x−atα)2/(2b2t )dα

,

and

∇ log pt(x|z = +1) = −

∫
α∈(α1,α2)

x−atα
b2t

e−(x−atα)
2/(2b2t )dα∫

α∈(α1,α2)
e−(x−atα)2/(2b2t )dα

.

To simplify the notation, for all t ∈ [0, T ], denote the random variable atx+ ξt by Xt (observe that
X0 = x). Then by Tweedie’s formula, the score at time t can be obtained from the posterior mean of
X0 given Xt:

∇ log(pt(y)) = atE[X0 − y|Xt = y], (12)
∇ log(pt(y|z = ±1)) = atE[X0 − y|Xt = y, z = ±1]. (13)

We denote E[X0|Xt = y] in short by E[X0|y] and E[X0|Xt = y, z = ±1] in short by E[X0|y, z =
±1]. Then, the probability flow ODE can be written as

x′(t) = x(t) +
w + 1

b2t
(atE[X0|x(t), z = 1]− x(t))− w

b2t
(atE[X0|x(t)]− x(t)) .
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Next, we consider the change of variable s(t) ≜ at = et−T and its corresponding inverse function
t(s) = ln(s) + T , and x̃(s) = x(t(s)), where s varies in the interval [s0, 1] for s0 = e−T . Define
the following conditional probabilities of the two components of the mixture, conditioned on Xt:

q
(+1)
t = P(z = 1|Xt = x(t)),

q
(−1)
t = P(z = −1|Xt = x(t)).

Before proceeding with the proof of Theorem 4, we present a key algebraic manipulation of the
probability flow ODE in (7) which enables us to analyze it more easily:
Lemma 1 (Alternative view on probability flow ODE). The probability flow ODE can be written as

x′(t) =
1

b2t

(
atE[X0|x(t), z = 1]− a2tx(t)

)
+
w

b2t
q
(−1)
t (atE[X0|x(t), z = 1]− atE[X0|x(t), z = −1]) ,

(14)
or with respect to x̃(s) in variable s:

x̃′(s) =
1

b2t
(E[X0|x̃(s), z = 1]− atx̃(s)) +

w

b2t
q
(−1)
t (E[X0|x̃(s), z = 1]− E[X0|x̃(s), z = −1]) ,

(15)

Proof. Note that combining (7) and (13), we can write

x′(t)− x(t) =
w + 1

b2t
(atE[X0|x(t), z = 1]− x(t))

− w

b2t

(
q
(+1)
t (atE[X0|x(t), z = 1]− x(t)) + q

(−1)
t (atE[X0|x(t), z = −1]− x(t))

)
=

w + 1

b2t
(atE[X0|x(t), z = 1]− x(t))− w

b2t
(atE[X0|x(t), z = 1]− x(t))

+
w

b2t
q
(−1)
t ((atE[X0|x(t), z = 1]− x(t))− (atE[X0|x(t), z = −1]− x(t)))

=
1

b2t
(atE[X0|x(t), z = 1]− x(t)) +

w

b2t
q
(−1)
t (atE[X0|x(t), z = 1]− atE[X0|x(t), z = −1]) ,

which using a2t + b2t = 1 implies

x′(t) =
1

b2t

(
atE[X0|x(t), z = 1]− a2tx(t)

)
+
w

b2t
q
(−1)
t (atE[X0|x(t), z = 1]− atE[X0|x(t), z = −1]) .

(16)
Now changing variable from t to s(t) ≜ at, taking the derivative we get x′(t) = ds

dt x̃
′(s) = atx̃

′(s).
Plugging this into the above, we obtain its equivalent form in variable s:

x̃′(s) =
1

b2t
(E[X0|x̃(s), z = 1]− atx̃(s)) +

w

b2t
q
(−1)
t (E[X0|x̃(s), z = 1]− E[X0|x̃(s), z = −1]) .

A.2 Analyzing the guided ODE

We begin by sketching our argument in greater detail. First note that the second term in (14), namely
w

b2t
q
(−1)
t (E[X0|x(t), z = 1]− E[X0|x(t), z = −1]) , (17)

is a positive dominant term (compared to the first term) unless we have q
(−1)
t = O(1/w), which

happens only when x(t) = Ω(ln(w)). First, we show that (1) starting from a high probability region
for x(0), the particle will get to x(t) ≥ Ω(ln(w)) at some time t, using the dominance of the second
term (Lemma 3). Then, in the case where x(t0) = Ω(ln(w)) for some time t0, (2) we show a lower
bound on the time that it takes for x(t) to get back to the proximity of the origin and then an upper
bound on how much it can move inside the support (Lemma 5). Finally in Lemma 6 we show that x(t)
does converge to the interval, provided the event of Lemma 3 holds. Building upon these Lemmas,
we prove the final result in Theorem 4.

We now proceed with the formal proof. We start with a Lemma showing that as long as x(t) is less
than the threshold Θ

(
log(w)
α2

)
, then x′(t) is at least of order Ω(

√
w); hence the particle has a strong

push toward the positive direction.
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Lemma 2 (Positive push toward right). If x(t) ≤ log(w)
16α2

∧ α1
√
w

2β , α2
2 ≤ log(w)

4 , and given that
α1

√
w ≥ log(w), then for times t s.t. a2t ≤ 1

2 , we have

x′(t) ≥ atα1
√
w

2βb2t
.

Proof. From the assumption s2 = a2t ≤ 1
2 , note that we get b2t = 1 − s2 ≥ 1

2 and a2t = s2 ≤ b2t .
Hence, for any two points x1 ∈ (−atα2,−atα1) and x2 ∈ (atα1, atα2), we have

e−(x(t)−x2)
2/(2b2t )

e−(x(t)−x1)2/(2b2t )
=

e−(x(t)−x1+(x1−x2))
2/(2b2t )

e−(x(t)−x1)2/(2b2t )

= e(x(t)−x1)(x2−x1)/b
2
t−(x2−x1)

2/(2b2t )

≤ e(x(t)+atα2)(x2−x1)/b
2
t

≤ e4α2x(t)+2α2
2a

2
t/b

2
t

≤ e4α2(log(w)/(16α2))+2α2
2 =

√
w.

Therefore, ∫ atα2

atα1
p(1)(x)e−(x(t)−x)2/(2b2t )dx∫ −atα1

−atα2
p(−1)(x)e−(x(t)−x)2/(2b2t )dx

≤ β
√
w,

which gives

q
(+1)
t

q
(−1)
t

=
P(z = 1|Xt = x(t))

P(z = −1|Xt = x(t))
≤ β

√
w.

Therefore, using β,w ≥ 1,

q
(−1)
t ≥ 1

1 + β
√
w

≥ 1

2β
√
w
.

Therefore, for the second term in Equation (14) we have

w

b2t
q
(−1)
t (atE[X0|x̃(s), z = 1]− atE[X0|x̃(s), z = −1]) ≥ w

b2t
q
(−1)
t 2atα1 ≥ atα1

√
w

βb2t
.

On the other hand, for the first term we have

1

b2t

(
atE[X0|x̃(s), z = 1]− a2tx(t)

)
≥ −a2tx(t)

b2t
.

Plugging this into Equation (14) and using the fact that x(t) ≤ α1
√
w

2β and at ≤ 1, we get

x′(t) ≥ atα1
√
w

2βb2t
.

Next, we show that starting from x̃(s0) ≥ −Θ(
√
w), the particle x̃(s) reaches at least Θ(ln(ω))

before time 1. This results from the strong acceleration force toward the right in this phase, coming
from the dominance of the aforementioned second term in (14).

Lemma 3 (First phase). Assuming ln(w)
α2

≤
√
wα1

β , T ≥ 2 ln 2, under the conditions of Lemma 2,

given that x̃(s(0)) ≥ −
√
wα1

16β , there exists a time s0 such that

x̃(s0) ≥
ln(w)

16α2
,

where recall s(0) = e−T is the initial time for the ODE (15).
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Proof. Note that as long as x̃(s) < ln(w)/(16α2), Lemma 2 gives

x̃′(s) =
x′(s(t))

at
≥

√
wα1

2βb2t
≥

√
wα1

2β

which means starting from x̃(s(0)) ≥ −
√
wα1

16β we definitely reach
√
wα1

16β by time s = 1
2 if we continue

with the same speed. (Note that the condition a2t ≤ 1
2 of Lemma 2 is satisfied up to time s = 1

2 .) But
since ln(w)

16α2
≤

√
wα1

4β , then we definitely have to pass the point ln(w)
16α2

.

Next, we show that once the particle passes the threshold x̃(s) ≥ ln(w)/(4α2), then by time 1 it
cannot reach any point much to the left of α2, the edge (right end-point) of the interval. To show this,
we need the following helper lemma showing that near the end of the reverse process, the particle is
quite close to its conditional denoising.
Lemma 4 (Conditional Gaussian estimate). Given bt ≤ c1α2√

ln(w)
≤ 1 for constant c1 ≥ 1 with

ln(w)
ln ln(w) ≥ 16c21

(
α2

α1

)2
, we have∣∣E[X0|x̃(s), z = 1]− x̃(s)

∣∣ ≤ 2

π
bt.

Proof. We can observe the quantity E[X0|x̃(s), z = 1] − x̃(s) as the expectation of a gaussian
variable, ξ̃(t), which is conditioned on the union of intervals (−α2,−α1) ∪ (α1, α2), i.e.

Eξ̃(t) =

∫ α2

α1

1√
2πbt

e(x−x̃(s))2/(2b2t )(x− x̃(s))dx∫
(−α2,−α1)∪(α1,α2)

1√
2πbt

e(x−x̃(s))2/(2b2t )
+

∫ −α1

−α2

1√
2πbt

e(x−x̃(s))2/(2b2t )(x− x̃(s))dx∫
(−α2,−α1)∪(α1,α2)

1√
2πbt

e(x−x̃(s))2/(2b2t )
.

(18)
For the first integral, we estimate the numerator by half of the integral of absolute value of centered
Gaussian with variance b2t , denoted by ξt, and the denominator by Gaussian tail bound:∣∣∣ ∫ α2

α1

1√
2πbt

e(x−x̃(s))2/(2b2t )(x− x̃(s))dx
∣∣∣ ≤ 1

2
E|ξt| ≤

2

π
bt. (19)

For the denominator,∫
(−α2,−α1)∪(α1,α2)

1√
2πbt

e(x−x̃(s))2/(2b2t )dx ≥
∫
(α1,α2)

1√
2πbt

e(x−x̃(s))2/(2b2t )dx (20)

≥ 1− 2

∫ ∞

α1+α2
2

1√
2πbt

ex
2/(2b2t )dx (21)

But using integration by parts:∫ ∞

α1+α2
2

1√
2πbt

e−x2/(2b2t )dx =
−bt

x
√
2π

e−x2/(2b2t )
∣∣∣∞
α1+α2

2

+

∫ ∞

α1+α2
2

bt

x2
√
2π

e−x2/(2b2t )dx

≤ bt
α1+α2

2

√
2π

e−(
α1+α2

2 )
2
/(2b2t ) +

b2t(
α1+α2

2

)2 ∫ ∞

α1+α2
2

1√
2πbt

e−x2/(2b2t )dx,

which implies∫ −α1

−∞

1√
2πbt

e−(x−x̃(s))2/(2b2t )dx ≤ 1

1− 4b2t/ (α1 + α2)
2

bt
α1+α2

2

√
2π

e−(
α1+α2

2 )
2
/(2b2t )

≤ 1

1− 4b2t/α
2
2

2bt

α2

√
2π

e−(α
2
2/(8b

2
t )).

Therefore, combining with Equation (21),∫
(−α2,−α1)∪(α1,α2)

1√
2πbt

e(x−x̃(s))2/(2b2t )dx ≥ 1−
2bt
α2

1−
(

2bt
α2

)2 1√
2π

e−(α
2
2/(8b

2
t )).
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Now using the assumption on bt,∫
(−α2,−α1)∪(α1,α2)

1√
2πbt

e(x−x̃(s))2/(2b2t )dx ≥ 1− 4c1√
2π ln(w)

w
− 1

8c21 ≥ 1

2
, (22)

where the last inequality is due to the fact that ln(w) ≥ 16c21. Combining this with Equation (19), we
can bound the first term in Equation (18):∣∣∣ ∫ α2

α1

1√
2πbt

e(x−x̃(s))2/(2b2t )(x− x̃(s))dx∫
(−α2,−α1)∪(α1,α2)

1√
2πbt

e(x−x̃(s))2/(2b2t )

∣∣∣ ≤ 1

π
bt. (23)

On the other hand, for the second term in Equation (18), we can upper bound the numerator as∣∣∣ ∫ −α1

−α2

1√
2πbt

e(x−x̃(s))2/(2b2t )(x− x̃(s))dx
∣∣∣ ≤ 2α2

∫ −α1

−α2

1√
2πbt

e(x−x̃(s))2/(2b2t )dx. (24)

But ∫
(−α2,−α1)

1√
2πbt

e(x−x̃(s))2/(2b2t )dx ≤
∫ −α1

−∞

1√
2πbt

e(x−x̃(s))2/(2b2t )dx

≤
∫ ∞

2α1

1√
2πbt

e−x2/(2b2t )dx.

Using similar integration by part for the tail and the assumption on bt, we get∫
(−α2,−α1)

1√
2πbt

e(x−x̃(s))2/(2b2t )dx ≤
bt
2α1

1−
(

bt
2α1

)2 1√
2π

e−(2α
2
1/(b

2
t ))

≤ bt
α1

1√
2π

w−2α2
1/(c

2
1α

2
2)

≤ bt√
2πα1

w−2α2
1/(c

2
1α

2
2)

≤ bt√
2πα1 ln(w)

≤ bt

16
√
2πα2

.

Plugging this back into (24)∣∣∣ ∫ −α1

−α2

1√
2πbt

e(x−x̃(s))2/(2b2t )(x− x̃(s))dx
∣∣∣ ≤ bt

16
√
2π

.

Combining this with Equation (22), we obtain the following upper bound for the second term in
Equation (18): ∣∣∣∫ −α1

−α2

1√
2πbt

e(x−x̃(s))2/(2b2t )(x− x̃(s))dx∫
(−α2,−α1)∪(α1,α2)

1√
2πbt

e(x−x̃(s))2/(2b2t )

∣∣∣ ≤ bt

8
√
2π

.

Finally combining this with our upper bound for the first part in Equation (32) completes the
proof.

With this helper lemma in hand, we are ready to prove that near the end of the reverse process, the
particle does not move much to the left of α2.

Lemma 5 (Second phase). For some time s0 ∈ [s(0), 1], suppose x̃(s(0)) ≥ ln(w)
16α2

, α2
2 ≤ ln(w), and

ln(w)
ln ln(w) ≥ 1024

(
α2

α1∧1

)2
. Then for all s ∈ [s0, 1], we have

x̃(s) ≥ α2

(
1− 32√

ln(w)

)
.
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Proof. From Equation (15), as long as x̃(s) ≥ 0, we have

x̃′(s) ≥ 1

b2t
(E[X0|x̃(s), z = 1]− atx̃(s)) ≥ −atx(s)

b2t
= −atx̃(s)

1− s2
≥ − x̃(s)

1− s
,

which implies
ln(x̃(s))− ln(x̃(s0)) ≥ ln(1− s)− ln(1− s0). (25)

If we denote by s1 the first time s ≥ s0 when x(s) = at(s)α2 = sα2, then s1 is certainly larger
than the first time that x(s) = α2 as for all t, at ≤ 1. Let s2 denote the first time s ≥ s0 such that
x(s) = α2. From Equation (25),

1− s2
1− s0

≤ x̃(s2)

x̃(s0)

which implies

s1 ≥ s2 ≥ 1− α2

ln(w)/(16α2)
= 1− 16α2

2

ln(w)
.

But once we reach the interval (atα1, atα2), we can lower bound x′(s) using Lemma 4 In particular,
note that b2t(s1) = 1 − s21 ≤ 32α2

2

ln(w) . Hence, we can use Lemma 4 with c1 = 8, and given that
ln(w)

ln ln(w) ≥ 1024
(

α2

α1∧1

)2
the conditions of Lemma 4 are satisfied, so we get

1

b2t
(E[X0|x̃(s), z = 1]− x̃(s)) ≥ 2

π
bt.

Therefore, for s ≥ s1,

x̃′(s) ≥ 1

b2t
(E[X0|x̃(s), z = 1]− atx̃(s))

≥ 1

b2t
(E[X0|x̃(s), z = 1]− x̃(s))

= − 2

π

1

bt

= −

√
4

π2(1− s2)

≥ −

√
4

π2(1− s)
.

On the other hand, note that from our definition of s1:

x̃(s1) = α2s1 ≥ α2

(
1− 16α2

2

ln(w)

)
.

Therefore, using α2
2 ≤ ln(w),

x̃(1) ≥ x̃(s1)−
∫ 1

s1

√
4

π2(1− s)

= x̃(s1)−
√

16(1− s1)

π2

≥ α2

(
1− 16α2

2

ln(w)

)
− 16

√
α2
2

π2 ln(w)

≥ α2 −
32α2√
ln(w)

.

Next, we show that when the process gets close to the end, if the particle is on the right side of both
of the intervals, then the first term in Equation (14) will dominate the second term and the particle is
most likely to converge to some point in the interval (α1, α2).

18



Lemma 6 (Convergence to the support). Assume α2 − α1 ≥ 16√
lnw

. For s0 ≥ 3
4 suppose x̃(s) ≥

α1+α2

2 for all s ∈ [s0, 1]. Then, for any s ∈ [s1, 1] where

s1 =

(
1− 16(1− s0)

5

(1− 2(1− s0))
4
(x(s0)− α2)

4

)
∨ s0,

we have

x̃(s) ≤ α2

(
1 + 4(1− s0)

(
1 +

α2w

α2
1

))
.

Proof. First note that for every x1 ∈ (−atα2,−atα1) and x2 ∈ (atα1, atα2) when s ≥ 1
2 ,

e−(x(t)−x2)
2/(2b2t )

e−(x(t)−x1)2/(2b2t )
=

e−(x(t)−x1+(x1−x2))
2/(2b2t )

e−(x(t)−x1)2/(2b2t )

= e(x(t)−x1)(x2−x1)/b
2
t−(x2−x1)

2/(2b2t ).

But since x(t) ≥ α1+α2

2 , we have

(x(t)− x1)(x2 − x1)

b2t
≥ (atα1 + atα2 − 2x1)(x2 − x1)

2b2t

≥ (x2 − x1)
2

2b2t
+

(atα1 − x1)(x2 − x1)

2b2t

≥ 4a2tα
2
1

2b2t
.

Therefore

e−(x(t)−x2)
2/(2b2t )

e−(x(t)−x1)2/(2b2t )
≥ e4s

2α2
1/(2(1−s2))

= e4s
2α2

1/(2(1−s)(1+s))

≥ eα
2
1/4(1−s).

Therefore
q
(−1)
t ≤ e−α2

1/4(1−s),

which implies∣∣∣w
b2t
q
(−1)
t (atE[X0|x(t), z = 1]− atE[X0|x(t), z = −1])

∣∣∣ ≤ we−α2
1/4(1−s)

1− s2
(2sα2)

≤ α2w
e−α2

1/4(1−s)

1− s
.

But integrating this upper bound from s0 to 1 by changing variable κ = 1
1−s (hence dκ = − 1

(1−s)2 ds)∫ 1

s0

α2w
e−α2

1/4(1−s)

1− s
ds =

∫ 1

κ0

α2w
1

κ
e−α2

1κ/4dκ

≤ α2w

κ0

∫ 1

κ0

e−α2
1κ/4dκ

=
4α2w

α2
1κ0

=
4α2w

α2
1

(1− s0) . (26)

19



On the other hand, for the first term in Equation (15), as long as x̃(s) ≥ 1
2s0−1α2, we get

α2 − s0x̃(s) ≤
α2 − x̃(s)

2
.

Therefore,

1

b2t
(E[X0|x̃(s), z = 1]− atx̃(s)) ≤

1

1− s2
(α2 − s0x̃(s))

≤ 1

2(1− s2)
(α2 − x̃(s))

≤ 1

4(1− s)
(α2 − x̃(s)). (27)

Now let

ϕ1(s, x) =
1

b2t
(E[X0|x+ α2, z = 1]− at(x+ α2)) , (28)

ϕ2(s, y) = − 1

4(1− s)
y, (29)

and define the following ODEs for s ∈ [s0, 1]:

B′(s) = ϕ1(s,B(s)),

d′(s) = ϕ2(s, d(s)),

with
B(s0) = d(s0) = x̃(s0)− α2.

Note that using (27) and (29), we have

ϕ1(s, x) ≤ ϕ2(s, x).

Define the integral of the first term as

A(s1) ≜
∫ s1

s0

1

b2t
(E[X0|x̃(s), z = 1]− atx̃(s)) ds =

∫ s1

s0

ϕ1(s, x̃(s))ds, (30)

First comparing Equations (15) and (30), since the second term in the RHS of the ODE in (15) is
always positive, from ODE comparison theorem we get B(s) ≥ x̃(s0) +A(s).

Therefore, assuming x̃(s) ≥ 1
2s0−1α2 and letting s′1 ≥ s0 be the first time that B(s′1) =

1
2s0−1α2,

by ODE comparison theorem we have B(s′1)−B(s0) ≤ d(s′1)− d(s0). Hence

A(s′1) ≤ B(s′1)− x̃(s0) = B(s′1)−B(s0) ≤ d(s′1)− d(s0). (31)

But we can solve the ODE in (29):

ln

(
d(s1)

d(s0)

)
=

1

4
ln

(
1− s1
1− s0

)
.

Note that inequality (31) is valid more generally up to time s′1, when B(s) reaches 1
2s0−1α2 − α2 =

2(1−s0)
1−2(1−s0)

α2. Now we solve for the value of s̃1 when d(s̃1) reaches 2(1−s0)
1−2(1−s0)

α2, which upper
bounds s′1 due to (31):

2(1−s0)
1−2(1−s0)

x(s0)− α2
=

(
1− s̃1
1− s0

)1/4

.

Therefore

s′1 ≤ s̃1 = 1− 16(1− s0)
5

(1− 2(1− s0))
4
(x(s0)− α2)

4 ,

and from definition for this choice of s̃1 we get from Equation (31)

A(s̃1) ≤ d(s1)− d(s0) =
1

2s0 − 1
α2 −α2 − (x̃(s0)− α2) =

2(1− s0)

2s0 − 1
α2 − (x̃(s0)−α2). (32)
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On the other hand, note that for any time s2 ≥ s′1 before x̃(s) reaches α1+α2

2 (if it ever reaches that
value), the first term in (15) is always non-positive. Hence, we have

A(s2) ≤
2(1− s0)

2s0 − 1
α2 − (x̃(s0)− α2). (33)

Note that the inequality (33) is true even when x̃(s0) ≤ 1
2s0−1α2 as the right hand side is positive

and the left hand side is negative in (33) in this case. Hence, overall we showed that for any time
s2 ≥ s̃1 ∨ s0, as long as x̃ has not reached α1+α2

2 , we have (33).

Finally combining the upper bounds on the first and second terms in RHS of the ODE in (15) that we
derived in Equations (26) and (32):

x̃(s2) ≤ x̃(s0) +A(s2) +
4α2w

α2
1

(1− s0)

≤ x̃(s0) +
2(1− s0)

2s0 − 1
α2 − (x̃(s0)− α2) +

4α2w

α2
1

(1− s0)

≤ α2

(
1 + (1− s0)

(
2

1− 2(1− s0)
+

4α2w

α2
1

))
≤ α2

(
1 + 4(1− s0)

(
1 +

α2w

α2
1

))
.

where we used s0 ≥ 3
4 . This completes the proof.

Next, combining all the pieces, we prove Theorem 4.

Proof of Theorem 4. First, note that we sample the initial point x(s0) according to N (0, 1), hence

with probability at least 1− e
− wα2

1
512β2 we have

x̃(s0) ≥ −
√
wα1

16β
.

Then, from Lemma 3, we get that for some time s0 ≤ 1,

x̃(s0) ≥
ln(w)

16α2
.

Let s0 be the minimum such time. Now plugging this into Lemma 5 then implies for all s ≥ s0

x̃(s) ≥ α2

(
1− 32√

ln(w)

)
. (34)

Now take s̃0 ≥ s0∨ 3
4 . Then we can use Lemma 6 with s0 = s̃0 because α2

(
1− 32√

ln(w)

)
≥ α1+α2

2

so its condition is satisfied from (34); then, Lemma 6 implies that there exists a time s1 such that for
all s ∈ [s1, 1]:

x̃(s) ≤ α2

(
1 + 4(1− s̃0)

(
1 +

α2w

α2
1

))
. (35)

Note that s̃0 can be picked any value in the interval (s0 ∨ 3
4 , 1). Therefore, picking s̃0 → 1,

Equations (34) and (35) show that with probability at least 1− e
−wα2

1
8β2 , x̃(s) converges to the interval(

α2

(
1− 32√

ln(w)

)
, α2

)
.

B Mixtures of Gaussians

In this section we adapt our analysis to the setting of mixtures of two equal-variance Gaussians.
Given mean parameter µ and variance σ2

0 , consider the random variables
z ∼ Uniform({±1})
x ∼ N (zµ, σ2

0).
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The random variable x is distributed according to a mixture of two Gaussians. Let p0 denote its
density.

Whereas in the case of mixtures of compactly supported distributions, we found that the guided ODE
converges to the edge of the support of one of the components, in the case of mixtures of Gaussians
we find that as the guidance parameter increases, the resulting sample moves further and further
towards infinity at a rate that scales with Θ(

√
w). This is formalized in the following main result of

this section. For convenience, we take µ = 1 and σ0 = 1, but our analysis naturally extends to other
choices for these parameters.
Theorem 5. For w larger than some absolute constant (see Lemmas 7 and 8), running the guided
ODE with parameter w for the mixture 1

2N (1, 1) + 1
2N (−1, 1) results in a sample x̃(1) for which

P(x̃(1) ≥ 0) ≥ 1− e−Ω(w2)

P(x̃(1) ≥
√
w + 1/4) ≥ 1− e−Ω(w) .

The first bound implies that an overwhelming fraction of the probability mass in the output distribution
is given by positive values. In fact, our proof says more. Based on where the particle is initialized,
there is a bifurcation in where the guided ODE sends the particle: points to the left of −2w− 1 do not
result in positive samples, whereas points to the right of −2w −Θ(lnw) result in positive samples.

The second bound in Theorem 5 gives a qualitatively stronger guarantee at the cost of a weaker
high-probability bound: not only is the overwhelming majority of the output distribution concentrated
on positive values, but most of that mass is concentrated on values at least Ω(

√
w).

B.1 Reformulating the ODE

We begin by performing some preliminary calculations to simplify the guided ODE, culminating in
the simplified expression in Equation (39) below.

Recall that pt(·) denotes the distribution of (atx+ ξt, z) where x ∼ p is sampled from the mixture
and z denotes its class, and ξt ∼ N(0, b2t ) for at = e−T+t and bt =

√
1− a2t . We will often omit

the subscript t when referencing at and bt when the context is clear. Hence for ξ ∼ N(0, I),

pt(y) ∝ exp

(
− (y − aµ)

2

2(a2σ2
0 + b2)

)
+ exp

(
− (y + aµ)

2

2(a2σ2
0 + b2)

)
.

Let σt = a2σ2
0 + b2. Then a straightforward calculation shows that

∇ log pt(y) =
1

σ2
t

(
−y + aµ tanh

(
aµy

σ2
t

))
.

We also have

pt(z|y) =
exp
(

−(y−zaµ)2

2(a2σ2
0+b)

)
exp
(

−(y−aµ)2

2σ2
t

)
+ exp

(
−(y+aµ)2

2σ2
t

) =
exp
(

zaµy
σ2
t

)
exp
(

aµy
σ2
t

)
+ exp

(
−aµy

σ2
t

)
∇ log pt(z|y) =

aµ

σ2
t

(
z − tanh

(
aµy

σ2
t

))
.

Then

∇ log pt(y) + (w + 1)∇ log pt(z|y) =
1

σ2
t

(
(w + 1)zaµ− y − waµ tanh

(
aµy

σ2
t

))
.

As a sanity check, for w = 0, this gives 1
σ2
t
(zaµ− y), which is the score for N(zaµ, σ2

t ).

The probability flow ODE for the guided model is then

x′(t) = x(t) +
1

σ2
t

(
(w + 1)zatµ− x(t)− watµ tanh

(
atµx(t)

σ2
t

))
= x(t) +

1

σ2
t

(
(zatµ− x(t)) + watµ

(
z − tanh

(
atµx(t)

σ2
t

)))
, (36)
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where x(0) ∼ N(0, I) and t varies in [0, T ]. For simplicity we assume µ = σ0 = 1. Then, writing
the guidance equation for this mixture in the form (7):

x′(t) = x(t)− (w + 1)(x(t)− at) + w(x(t)− at tanh(atx(t))).

Now changing variables to s = e−T+t, x̄(s) = x(ln(s) + T ), we can rewrite the ODE in terms of
x̄(s): (Note that we have sx̄′(s) = x′(t))

sx̄′(s) = x̄(s)− (w + 1)(x̄(s)− s) + w
(
x̄(s)− s tanh(sx̄(s))

)
,

= s(w + 1)− sw
(
tanh(sx̄(s))

)
,

which boils down to
x̄′(s) = (w + 1)− w tanh(sx̄(s)), (37)

for s ∈ [s0, 1], s0 = e−T , with initial condition x̄(s0) = x(0) = x.

Now sending T → ∞, the interval [s0, 1] converges to [0, 1], and we define the corresponding ODE
in variable x̃(s):

x̃(0) = x, (38)

x̃′(s) = (w + 1)− w tanh(sx̃(s)), (39)

where x ∼ N (0, 1). Below, we study the behavior of the ODE in (39) for different initial conditions
x̃(0) = x.

B.2 Analyzing the guided ODE

The proof of Theorem 5 is based on two key results which break down the behavior of the guided
ODE dynamics into two cases depending on where the initialization lies.

First, Lemma 7 below controls how far x̃(1) moves to the right when the initialization x̃(0) = x is in
the interval [−2w + Θ(lnw), 0]. This gives rise to the first bound in Theorem 5. Lemma 8 below
handles the case when the initialization is in the interval [−Θ(

√
w), 0], giving rise to the second

bound in Theorem 5. In the first case, we show that the movement of x̃(t) can be as large as Θ(w)
while in the second lemma we show movement of order Θ(

√
w).

Lemma 7 (Characterizing when the particle moves to the positive side). Suppose w ≥ 100. Then
provided that x̃(0) > −2w + 26 ln(w), we have x̃(1) ≥ 0.

Before proceeding with the proof, we note that up to the Θ(lnw) term, this analysis is nearly tight
in the regime of large w. The reason is that if x̃(0) < −2w − 1, then because the velocity in
Equation (39) is upper bounded by 2w + 1 at all times, the particle will remain negative at all times.

Proof. First, note that the right-hand side of Equation (39) is lower bounded by 1, so if x̃(0) ≥ 0,
then x̃(1) ≥ x̃(0)+w ≥ 0. More generally, this implies that as soon as the particle becomes positive,
it continues to move to the right at rate lower bounded by 1.

Next, we handle the case of x̃(0) < 0. Observe that w ≥ 100 implies w ≥ 18 ln(w) + 2. Moreover,
for x̃(s) ≤ 0 we have x̃′(s) ≥ w+1. If x̃(0) ≥ −w, then we are done as this implies that the particle
moves at rate at least w + 1 to the right until it becomes positive, at which point it remains positive
by the argument in the previous paragraph.

In the rest of the proof, we assume x < −w. Define c = ln(w). Now for the first s ∈ [0, c/(w + 1)]
window of time, using the fact that −1 ≤ tanh(sx̃(s)) ≤ 0, we get

x̃(c/(w + 1)) ≥ x+ (w + 1)
c

w + 1
= x+ c

x̃(c/(w + 1)) ≤ x+ (2w + 1)
c

w + 1
≤ x+ 2c ,

where the last inequality is due to the definition of x and the fact that w ≥ 18c+ 2 ≥ 6c+ 1. From
this, we see that for time s0 = c/(w + 1),

s0x̃(s0) ≤ −c .
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Now let s1 ≥ s0 be the first time (if any) where

s1x̃(s1) = −c .

In the following we upper bound s1. Defining ϵ by ϵ/w = 1 + tanh(−c), we see from the definition
of ODE (39) that for all s0 ≤ s ≤ s1:

x̃′(s) ≥ 2w + 1− ϵ.

Therefore, we get for all times s0 ≤ s ≤ s1:

0 ≥ x̃(s) ≥ x̃(c/(w + 1)) + (2w + 1− ϵ)

(
s− c

w + 1

)
≥ x+ c+ (2w + 1− ϵ)

(
s− c

w + 1

)
≥ x− c+ (2w + 1− ϵ)s.

(40)

This means from the definition of s1:

(x− c+ (2w + 1− ϵ)s1)s1 ≤ −c.

Therefore, if s∗ is the larger zero of the following quadratic function (in variable s),

(x− c+ (2w + 1− ϵ)s)s+ c,

then s1 ≤ s∗. Now we estimate s∗ by completing the square:

s2 − −x+ c

2w + 1− ϵ
s+

c

2w + 1− ϵ
= 0,

which implies(
s∗ − −x+ c

2(2w + 1− ϵ)

)2

=

(
−x+ c

2(2w + 1− ϵ)

)2

− c

2w + 1− ϵ
≤
(

−x+ c

2(2w + 1− ϵ)
− c

−x+ c

)2

.

(41)
This means

s1 ≤ s∗ ≤ −x+ c

2w + 1− ϵ
− c

−x+ c
. (42)

Using this bound on s1 we want to show that x̃(1) ≥ 0. Indeed, it is enough to show that for time
s∗ which is an upper bound on s1, for the remainder of the time (1− s1), the movement of x̃(s∗),
which is at least (1− s∗)(w + 1), is at least −x̃(s∗). First note that

(1− s∗)(w + 1) ≥
(
2w + 1− ϵ+ x− c

2w + 1− ϵ
+

c

−x+ c

)
(w + 1),

and using the inequalities 2w + 1− ϵ ≤ 2w + 2 and −x+ c ≤ 2w we get

(1− s∗)(w + 1) ≥ 2w + 1− ϵ+ x− c

2
+

c

2
. (43)

On the other hand, note that from (37), x̃′(s) ≤ (2w+1), we have x̃(s) ≤ x̃(s0)+ (2w+1)(s− s0).
In particular, from the definition of s1,

s1 (x̃(s0) + (2w + 1)(s1 − s0)) ≥ −c. (44)

In particular, consider the following quadratic

Q(s) = (2w + 1)s2 + s (x̃(s0)− (2w + 1)s0) + c = 0, (45)

and let its roots be s∗0 < s∗1. First note that Q(0) = c > 0 and Q(s0) = s0x̃(s0) + c ≤ 0, hence Q
has a root in the interval [0, s0] and s∗0 ≤ s0. On the other hand, s1 > s0, so (44) implies that s1
should greater or equal to the larger root s∗1. Now we lower bound s∗1. Defining G = x̃(s0)−(2w+1)s0

2(2w+1) ,
completing the square for (45) gives

(s∗1 +G)
2
= G2 − c

2w + 1
≥
(
G− 2c

(x̃(s0)− (2w + 1)s0)

)2

. (46)
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Note that for the last inequality in (46) to hold, we need to show

−G ≥ 2c

(−x̃(s0) + (2w + 1)s0)
,

or equivalently
(−x̃(s0) + (2w + 1)s0)

2 ≥ 4c(2w + 1).

But from x ≤ −w, we get (−x̃(s0)− (2w + 1)s0)
2 ≥ (w−2c)2, which follows from the assumption

w ≥ 18c+2. Now based on (46) and using x̃(s0) ≤ −w+2c and s0 = c/(w+1) ≤ c, we have for
the larger root s∗1:

s∗ ≥ s1 ≥ s∗1 ≥ −2G+
2c

x̃(s0)− (2w + 1)s0

≥ −2G+
2c

−w + 2c− 2c+ s0

≥ −2G− 2c

w − c

≥ −x− 4c

2w + 1
− 2c

w − c
.

But note that
w − c ≥ w

2
+

1

4
+

w

2
− c− 1

4
≥ 2w + 1

4
.

Hence
s∗ ≥ −x− 12c

2w + 1
.

Therefore, from (40),

|x̃(s∗)| ≤ |x|+ c− (2w + 1− ϵ)s∗

≤ |x|+ c− (2w + 1− ϵ)
−x− 12c

2w + 1
≤ 13c+ ϵ

−x− 12c

2w + 1
≤ 13c+ ϵ. (47)

where the last inequality follows from −x ≤ 2w. Combining Equations (43) and (47), it is enough to
show the following to prove x̃(1) > 0:

2w + 1− ϵ− |x| − c

2
+

c

2
≥ 13c+ ϵ.

Using x ≥ −2w+26c it suffices to show ϵ ≤ 1
2 . But unwrapping the definition of ϵ, this is equivalent

to showing

w
2

e2c + 1
≤ 1

2
.

From the definition c = ln(w), this inequality holds for w ≥ 100.

Lemma 8 (Moving the mass to Θ(
√
w)). Assume w ≥ 0. Then for x̃(0) = x ≥ −

√
w + 1/2 we

have
x̃(1) ≥

√
w + 1/4 .

Proof. Below, we will use the fact that w ≥ 0 implies 1√
w+1

≤ 1.

As in the previous proof, note that for x̃(s) ≤ 0 we have

x̃′(s) ≥ w + 1.

Hence if s0 is the first time that x̃(s) reaches zero, we have s0 ≤ 1
2
√
w+1

. Note that for x̃(s) ≥ 0 we

have x̃′(s) ≤ w+1, so for s ≤ s0+
1

2
√
w+1

we have x̃(s) ≤
√
w + 1/2. But since tanh(1/2) < 1/2,

we get that if s ≤ s0 + 1
2
√
w+1

≤ 1√
w+1

, then tanh(sx̃(s)) < 1
2 . Therefore, we get that for all

s ≤ s0 +
1

2
√
w+1

,

x′(s) ≥ w + 1− w

2
>

w + 1

2
.
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As a result, for s1 = s0 +
1

2
√
w+1

≤ 1, we see that

x̃(s1) ≥ x̃(s0) + (s1 − s0)
w + 1

2
≥

√
w + 1

4
,

which completes the proof, as x̃(1) ≥ x̃(s1) because the particle continues to move to the right as
long as it is positive.

We can now conclude the proof of the main result of this section:

Proof of Theorem 5. The first inequality follows from Lemma 7 as for the standard normal we have
P(x ≤ −2w + ln(w)) ≤ e−Θ(w2). The second inequality follows from Lemma 8, as P(x ≤
−
√
w + 1/4) ≤ e−Θ(w).

C Additional experiments

C.1 Gaussian experiments

Here we consider a 2-D version of the mixture distribution of Theorem 2, i.e. p(1) = N(1, 1)⊗N(0, 1)
and p(−1) = N(−1, 1)⊗N(0, 1). We follow the exact same experimental setup as Section 3.1 and
generate 500 samples from the conditional distribution p(x | z = +1) with varying levels of guidance.

We once again plot the mean of the probability flow ODE trajectories (projected on to the x-coordinate)
for increasing guidance parameter values alongside the final produced samples from each trajectory
in Figure 5. The figure is analogous to Figure 2, except for larger choices of the guidance parameter
w and the fact that the proportion of “good” samples here is the proportion of samples that did not
result in NaNs (since we are no longer in the compact support setting).

We use larger w values to better illustrate the behavior predicted in Theorem 2. As can be seen
from Figure 5 (a), we produce more samples with larger (positive) x-coordinates as we increase w.
However, we also get significantly more numerical instability, and as a result the mean trajectory plot
in Figure 5 (b) is much less meaningful than it was in Figure 2.

C.2 MNIST experiments

In Figures 6 to 14 we collect the MNIST experiments considering every other possible one-vs-all
reduction. As mentioned in Section 3.2, they have near-identical behavior to the experiments of
Figure 3.

C.3 ImageNet experiments

Figures 15 to 18 show the results of repeating the experimental setup of Section 3.3 for different
choices of the positive class, and also illustrate limitations of this experimental setup in the context of
ImageNet.

In Figures 15 to 17, we see approximately the same behavior as in 4. Namely, guidance values for
which we have support error lead to distorted samples. Similar to Figure 4, the choice s = 5 works
well in Figure 15. However, for Figures 16 and 17, we see that we have non-zero support error
even for s = 5. In these latter two cases, we expect the qualitatively best choice of guidance to be
somewhere between s = 1 and s = 5.

Figure 18 demonstrates some limitations of our experimental setup for classes which have high
levels of noise/variance. Indeed, we see that for the “basketball” class the support error is not
even monotonically increasing with the guidance parameter, and that sample quality is poor across
guidance levels. Furthermore, the projected trajectories become progressively more negative as
opposed to positive, indicating that the direction between the means of the positive class samples and
the negative class samples is likely useless in this case. Despite these various issues, there appears to
still be some positive correlation between support error and sample distortion.
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(a) Samples

(b) Trajectories

Figure 5: Mixture of Gaussians analogue to Figure 2. Proportion of good samples corresponds
to non-diverged samples. Some trajectories explode due to numerical instability, leading to less
meaningful mean projected trajectory plots.

(a) Samples (b) Trajectories

Figure 6: Experiments of Figure 3 but with the positive class fixed to be 1.
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(a) Samples (b) Trajectories

Figure 7: Experiments of Figure 3 but with the positive class fixed to be 2.

(a) Samples (b) Trajectories

Figure 8: Experiments of Figure 3 but with the positive class fixed to be 3.

(a) Samples (b) Trajectories

Figure 9: Experiments of Figure 3 but with the positive class fixed to be 4.

(a) Samples (b) Trajectories

Figure 10: Experiments of Figure 3 but with the positive class fixed to be 5.
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(a) Samples (b) Trajectories

Figure 11: Experiments of Figure 3 but with the positive class fixed to be 6.

(a) Samples (b) Trajectories

Figure 12: Experiments of Figure 3 but with the positive class fixed to be 7.

(a) Samples (b) Trajectories

Figure 13: Experiments of Figure 3 but with the positive class fixed to be 8.

(a) Samples (b) Trajectories

Figure 14: Experiments of Figure 3 but with the positive class fixed to be 9.
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(a) Samples (b) Trajectories

Figure 15: Experiments of Figure 4 except with the positive class taken to be 84 (peacock).

(a) Samples (b) Trajectories

Figure 16: Experiments of Figure 4 except with the positive class taken to be 148 (killer whale).

(a) Samples (b) Trajectories

Figure 17: Experiments of Figure 4 except with the positive class taken to be 334 (porcupine).
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(a) Samples (b) Trajectories

Figure 18: Experiments of Figure 4 except with the positive class taken to be 430 (basketball).
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Our theoretical results only hold for the simple scenario considered in the
paper. Extension to more complicated models remains open research directions.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: The assumptions of our theorems are clearly stated.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The numerical results are reproducible following the description in the
manuscript.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We include code in the supplementary material for recreating the numerical
experiments in the paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The setup of the numerical experiments are clearly specified.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Deviation band is provided for the numerical trajectory.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Computing resource is specified in the beginning of the numerics section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted conforms with the code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Since the paper focuses on theoretical study of the guidance dynamics, it does
not have immediate societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper only considers theoretical understanding of the guidance model, it
does not pose such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The code package used is properly cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new asset is released.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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