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Convergence of First-Order Algorithms for Meta-Learning
with Moreau Envelopes
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Abstract
In this work, we consider the problem of
minimizing the sum of Moreau envelopes of
given functions, which has previously appeared
in the context of meta-learning and personalized
federated learning. In contrast to the existing
theory that requires running subsolvers until a
certain precision is reached, we only assume
that a finite number of gradient steps is taken
at each iteration. As a special case, our
theory allows us to show the convergence
of First-Order Model-Agnostic Meta-Learning
(FO-MAML) to the vicinity of a solution of
Moreau objective. We also study a more
general family of first-order algorithms that can
be viewed as a generalization of FO-MAML.
Our main theoretical achievement is a theoretical
improvement upon the inexact SGD framework.
In particular, our perturbed-iterate analysis
allows for tighter guarantees that improve the
dependency on the problem’s conditioning. In
contrast to the related work on meta-learning,
ours does not require any assumptions on
the Hessian smoothness, and can leverage
smoothness and convexity of the reformulation
based on Moreau envelopes. Furthermore, to
fill the gaps in the comparison of FO-MAML
to the Implicit MAML (iMAML), we show that
the objective of iMAML is neither smooth nor
convex, implying that it has no convergence
guarantees based on the existing theory.

1. Introduction
Efficient optimization methods for empirical risk
minimization have helped the breakthroughs in many areas
of machine learning such as computer vision (Krizhevsky

1Anonymous Institution, Anonymous City, Anonymous
Region, Anonymous Country. Correspondence to: Anonymous
Author <anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

et al., 2012) and speech recognition (Hinton et al., 2012).
More recently, elaborate training algorithms have enabled
fast progress in the area of meta-learning, also known as
learning to learn (Schmidhuber, 1987). At its core lies
the idea that one can find a model capable of retraining
for a new task with just a few data samples from the
task. Algorithmically, this corresponds to solving a bilevel
optimization problem (Franceschi et al., 2018), where the
inner problem corresponds to a single task, and the outer
problem is that of minimizing the post-training error on a
wide range of tasks.

The success of Model-Agnostic Meta-Learning (MAML)
and its first-order version (FO-MAML) (Finn et al.,
2017) in meta-learning applications has propelled the
development of new gradient-based meta-learning
methods. However, most new algorithms effectively lead to
new formulations of meta-learning. For instance, iMAML
(Rajeswaran et al., 2019) and proximal meta-learning
(Zhou et al., 2019) define two MAML-like objectives
with implicit gradients, while Reptile (Nichol et al.,
2018) was proposed without defining any objective at all.
These dissimilarities cause fragmentation of the field and
make it particularly hard to have a clear comparison of
meta-learning theory. Nonetheless, having a good theory
helps to compare algorithms as well as identify and fix
their limitations.

Unfortunately, for most of the existing methods, the theory
is either incomplete as is the case with iMAML or even
completely missing. In this work, we set out to at least
partially mitigate this issue by proposing a new analysis for
minimization of Moreau envelopes. We show that a general
family of algorithms with multiple gradient steps is stable
on this objective and, as a special case, we obtain results
even for FO-MAML. Previously, FO-MAML was viewed
as a heuristic to approximate MAML (Fallah et al., 2020),
but our approach reveals that FO-MAML can be regarded
as an algorithm for a the sum of Moreau envelopes. While
both perspectives show only approximate convergence, the
main justification for the sum of Moreau envelopes is that
requires unprecedentedly mild assumptions. In addition,
the Moreau formulation of meta-learning does not require
Hessian information and is easily implementable by any
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First-Order Meta-Learning Algorithms

first-order optimizer, which Zhou et al. (2019) showed to
give good empirical performance.

Due to the space constraints, we provide detailed literature
comparison in Appendix A.1 and Table 1.

2. Background and mathematical formulation
Before we introduce the considered formulation of
meta-learning, let us provide the problem background. As
the notation in meta-learning varies, we correspond ours to
that of works in the next subsection.

We assume that training is performed over n tasks with
task losses f1, . . . , fn and we will introduce implicit and
proximal meta-losses {Fi} in the next section. We denote
by x the vector of parameters that we aim to train, which is
often called model, meta-model or meta-parameters in the
meta-learning literature, and outer variable in the bilevel
literature. Similarly, given task i, we denote by zi the
task-specific parameters that are also called as ground
model, base-model, or inner variable. We will use letters
α, β, γ to denote scalar hyper-parameters such as stepsize
or regularization coefficient. Given a function φ(·), we call
the following function its Moreau envelope:

Φ(x) = min
z∈Rd

{
φ(x) + 1

2α∥z − x∥2
}
,

where α > 0 is some parameter. Given the Moreau
envelope Fi of a task loss fi, we denote by zi(x) the
solution to the inner objective of Fi, i.e., zi(x)

def
=

argminz∈Rd

{
fi(z) +

1
2α∥z − x∥2

}
.

Finally, let us introduce some standard function properties
that are commonly used in the optimization literature.
Definition 1. We say that a function φ(·) is L-smooth if its
gradient is L-Lipschitz, i.e., for any x, y ∈ Rd,

∥∇φ(x)−∇φ(y)∥ ≤ L∥x− y∥.

Definition 2. Given a function φ(·), we call it µ-strongly
convex if it satisfies for any x, y ∈ Rd,

φ(y) ≥ φ(x) + ⟨∇φ(x), y − x⟩+ µ
2 ∥y − x∥2.

If the property above holds with µ = 0, we call φ to be
convex. If the property does not hold even with µ = 0, we
say that φ is nonconvex.

2.1. Meta-learning objectives

Assume that we are given n tasks, and that the performance
on task i is evaluated according to some loss function fi(x).
MAML has been proposed as an algorithm for solving the
following objective:

min
x∈Rd

1
n

n∑
i=1

fi(x− α∇fi(x)), (1)

Algorithm 1 FO-MAML: First-Order MAML

1: Input: x0, α, β > 0
2: for k = 0, 1, . . . do
3: Sample a subset of tasks Tk

4: for each sampled task i in Tk do
5: zki = xk − α∇fi(x

k)
6: end for
7: xk+1 = xk − β 1

|Tk|
∑

i∈Tk
∇fi(z

k
i )

8: end for

where α > 0 is a stepsize. Ignoring for simplicity
minibatching, MAML update computes the gradient of
a task meta-loss φi(x) = fi(x − α∇fi(x)) through
backpropagation and can be explicitly written as

xk+1 = xk − β
(
I− α∇2fi(x

k)
)
∇fi(x

k − α∇fi(x
k)),

(MAML update)

where β > 0 is a stepsize, i is sampled uniformly from
{1, . . . , n} and I ∈ Rd×d is the identity matrix.

Unfortunately, objective (1) might be nonsmooth and
nonconvex even if the task losses {fi} are convex and
smooth (Fallah et al., 2020). Moreover, generalizing
this objective for more than one gradient step inside
fi(·) further deteriorates its smoothness properties and
complicates the development of multistep methods.

To avoid differentiating through a graph, Rajeswaran et al.
(2019) proposed an alternative objective iMAML that
replaces the gradient step inside each function with an
implicit gradient step. In particular, if we define zi(x)

def
=

argminz∈Rd

{
fi(z) +

1
2α∥z − x∥2

}
, and the objective

min
x∈Rd

1
n

n∑
i=1

fi (x− α∇fi(zi(x))) . (iMAML objective)

However, it is not shown in (Rajeswaran et al., 2019) if the
objective of iMAML is solvable. As a sign that the problem
is rather ill-designed, we provide negative examples on the
problem’s convexity and smoothness. We are not aware of
any result showing when the problem is convex or smooth.

Theorem 1. There exists a convex function f with Lipschitz
gradient and Lipschitz Hessian such that the iMAML

meta-objective φ(x)
def
= f(z(x)) is nonconvex, where

z(x) = x− α∇f(z(x)).

Theorem 2. There exists a convex function f with Lipschitz
gradient and Lipschitz Hessian such that the iMAML

meta-objective φ(x)
def
= f(z(x)) is nonsmooth for any

α > 0, where z(x) = x− α∇f(z(x)).
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First-Order Meta-Learning Algorithms

2.2. Our objective: Moreau envelopes

We consider the following formulation of meta-learning

min
x∈Rd

F (x)
def
= 1

n

n∑
i=1

Fi(x), (2)

where Fi(x)
def
= min

z∈Rd

{
fi(z) +

1
2α∥z − x∥2

}
,

and α > 0 is a parameter controlling the level of adaptation
to the problem. In other words, we seek to find a parameter
vector x such that somewhere close to x there exists
a vector zi that verifies that fi(z) is sufficiently small.
This formulation of meta-learning was first introduced by
Zhou et al. (2019) and it has been used by Hanzely et al.
(2020) and T. Dinh et al. (2020) to study personalization in
federated learning.

We denote the solution to Problem (2) as x∗ def
=

argminx∈Rd F (x), and we can express the difficulty of (2)
by gradient variance at the optimum,

σ2
∗

def
= 1

n

n∑
i=1

∥∇Fi(x
∗)∥2. (3)

Note that σ∗ is always finite because it is defined on a single
point, in contrast to the maximum gradient variance over all
space, which might be infinite. For i = 1, . . . , n we use the
following variables for minimizers of meta-problems Fi:

zi(x)
def
= argmin

z∈Rd

{
fi(z) +

1
2α∥z − x∥2

}
. (4)

Notice that if α → 0, then Fi(x) ≈ fi(x), and Problem (2)
reduces to the well-known empirical risk minimization:

min
x∈Rd

f(x)
def
= 1

n

n∑
i=1

fi(x).

If, on the other hand, α → +∞, the minimization
problem in (2) becomes essentially independent of x and
it holds zi(x) ≈ argminz∈Rd fi(z). Thus, one has to
treat the parameter α as part of the objective that controls
the similarity between the task-specific parameters. For
notational simplicity, we keep α constant throughout the
paper and do not explicitly write the dependence of
x∗, F, F1, z1, . . . , Fn, zn on α.

Proposition 1 from (Beck, 2017) shows that convex, proper
and closed fi lead to differentiable and 1

α -smooth Fi.
However, the tasks in meta-learning are often defined
by training a neural network with nonconvex landscapes.
Therefore, we refine Proposition 1 for such application and
also improve the smoothness constant in the convex case.

Lemma 1. Let function fi be L-smooth.
• If fi is nonconvex and α < 1

L , then Fi is L
1−αL -smooth.

If α ≤ 1
2L , then Fi is 2L-smooth.

• If fi is convex, then Fi is L
1+αL -smooth. Moreover, for

any α, it is L-smooth.
• If fi is µ-strongly convex, then Fi is µ

1+αµ -strongly
convex. If α ≤ 1

µ , then Fi is µ
2 -strongly convex.

Whenever Fi is smooth, its gradient is given as in
equation (7), i.e., ∇Fi(x) = ∇fi(zi(x)).

The takeaway message of Lemma 1 is that the optimization
properties of Fi are always at least as good as those of fi
(up to constant factors). Furthermore, if fi is convex but
nonsmooth (L → +∞), Fi is still smooth with constant 1

α .

Finally, note that computing the exact gradient of Fi

requires solving its inner problem as per equation (7). Even
if the gradient of task ∇fi(x) is easy to compute, we still
cannot obtain ∇Fi(x) through standard differentiation or
backpropagation. However, one can approximate ∇Fi(x)
in various ways, as we will discuss later.

We can show that FO-MAML approximates SGD for
objective (2) with error proportional to the stochastic
gradient norm.

Lemma 2. Let task losses fi be L–smooth and α > 0.

Given i and x ∈ Rd, we define recursively zi,0
def
= x and

zi,j+1
def
= x− α∇fi(zi,j). Then, it holds for any s ≥ 0

∥∇fi(zi,s)−∇Fi(x)∥ ≤ (αL)s+1∥∇Fi(x)∥.

In particular, the iterates of FO-MAML (Algorithm 1)
satisfy for any k∥∥∇fi(z

k
i )−∇Fi(x

k)
∥∥ ≤ (αL)2∥∇Fi(x

k)∥.

3. Analysis of FO-MAML as inexact SGD
The prior literature views FO-MAML as an inexact version
of MAML for Problem (1). Even though we are interested
in Problem (2), one can use idea of inexact SGD to obtain
convergence guarantees even for (2). We can write

∇fi(z
k
i ) = ∇F (xk) +∇Fi(x

k)−∇F (xk)︸ ︷︷ ︸
def
=ξki (noise)

+ bki︸︷︷︸
bias

,

where it holds E[ξki ] = 0, and bki is a bias vector that also
depends on i but does not have zero mean. The best known
guarantees (Ajalloeian and Stich, 2020) for inexact SGD
are not applicable as they require independence of ξki and
bki . The analysis of Zhou et al. (2019) is not applicable
either because their inexactness assumption requires the
error to be smaller than a predefined constant ε, while the
error in Lemma 2 can be unbounded. To resolve these
issues, we provide a refined analysis in the next subsection.
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Algorithm 2 FO-MuML: First-Order Multistep
Meta-Learning (general formulation)

1: Input:x0, β > 0, accuracy δ ≥ 0 or ε ≥ 0.
2: for k = 0, 1, . . . do
3: Sample a subset of tasks Tk

4: for each sampled task i in Tk do
5: Find zki s.t.

∥∥ 1
α

(
xk − zki

)
−∇Fi(x

k)
∥∥ ≤

δ
∥∥∇Fi(x

k)
∥∥ ▷ E.g., Lemma 2 finds such δ.

6: end for
7: xk+1 = xk − β 1

|Tk|
∑

i∈Tk
∇fi(z

k
i )

8: end for

3.1. Strongly convex inexact SGD

For strongly convex objectives, we can modify analysis of
Ajalloeian and Stich (2020) for our purpose.

Theorem 3. Let losses f1, . . . , fn be µ-strongly convex
and L-smooth. If |Tk| = τ for all k, α ≤ 1

L , β ≤ 1
20L , δ ≤

1
4
√
κ

and κ
def
= L

µ , then iterates of Algorithm 2 satisfy

E
[
∥xk − x∗∥2

]
≤
(
1− βµ

4

)k
∥x0 − x∗∥2

+ 16
µ

(
2δ2

µ + β
τ + βδ2

)
σ2
∗. (5)

In particular, if α ≤ 1
4
√
κL

, then the iterates xk of
FO-MAML (Algorithm 1) satisfy

E
[
∥xk − x∗∥2

]
≤
(
1− βµ

4

)k
∥x0 − x∗∥2

+ 16
µ

(
2α2L2

µ + β
τ + β

)
σ2
∗. (6)

Comparing (6) to the rate of vanilla SGD (studied in Gower
et al. (2019)), the first term decreases exponentially as well.
The second term decreases only if we decrease β and α.
Decreasing β corresponds to using decreasing stepsizes in
SGD, which is fine, but α defines objective, so it is fixed.

Choosing δ according to Lemma 2 in Algorithm 2 leads to
better rate than of Algorithm 1, as i) it allows for larger α
and ii) decreasing convergence neighborhood requires the
inexactness parameter δ to go to 0.

3.2. Improved theory via virtual iterates

We show that the convergence theory can be improved by
considering a sequence of virtual iterates that appear only
in the analysis. The main difficulty of the analysis is we use
{∇fi} instead of desired but inaccessible meta-gradients
{∇Fi}. We aim to use virtual iterates to bridge this gap as

xk+1 = xk − α
τ

∑
i∈Tk

∇fi(z
k
i ) = xk − α

τ

∑
i∈Tk

∇Fi(y
k
i ),

for some point yki . Such yki lead to ∇Fi(y
k
i ) ≈ ∇Fi(x

k),

xk+1 = xk − α
τ

∑
i∈Tk

∇Fi(y
k
i ) ≈ xk − α

τ

∑
i∈Tk

∇Fi(x
k),

and it would allow us to better bound the bias. Fortunately,
Moreau Envelopes (2) allows us to find such point easily.

Lemma 3. For any points z, y ∈ Rd it holds y = z +
α∇fi(z) if and only if z = y−α∇Fi(y). Therefore, given

z, for y
def
= z + α∇fi(z) holds ∇fi(z) = ∇Fi(y).

This allows us to write

∇fi(z
k
i ) = ∇Fi(y

k
i ) = ∇F (xk) +∇Fi(x

k)−∇F (xk)︸ ︷︷ ︸
noise

+∇Fi(y
k
i )−∇Fi(x

k)︸ ︷︷ ︸
reduced bias

,

which leads to convergence to a smaller neighborhood,

O

(
β
τ +α2L

µ

)
in contrast to O

(
β+κα2L

µ

)
.

Theorem 4. Consider the iterates of Algorithm 2 (with
general δ) or Algorithm 1 (for which δ = αL). Let
task losses be L–smooth and µ–strongly convex and let
objective parameter satisfy α ≤ 1√

6L
. Choose stepsize

β ≤ τ
4L , where τ = |Tk| is the batch size. Then we have

E
[∥∥xk − x∗∥∥2] ≤ (1− βµ

12

)k ∥∥x0 − x∗∥∥2
+ 6

µ

(
β
τ + 3δ2α2L

)
σ2
∗.

3.3. Nonconvex convergence

Theorem 5. Let variance of meta-loss gradients is
uniformly bounded E

[
∥∇Fi(x)−∇F (x)∥2

]
≤ σ2,

functions f1, . . . , fn be L–smooth and F be lower bounded
by F ∗ > −∞. Assume α ≤ 1

4L , β ≤ 1
16L . If we consider

the iterates of Algorithm 1 (with δ = αL) or Algorithm 2
(with general δ), then

min
t≤k

E
[
∥∇F (xt)∥2

]
≤ 4

βkE
[
F (x0)− F ∗]+ 4(αL)2δ2σ2

+ 32β(αL)2
(

1
|Tk| + (αL)2δ2

)
σ2.

The uniform bound assumption on meta-loss gradients
variance is stronger than one in (3). Yet, it is very common
in literature on stochastic optimization when studying
convergence on nonconvex functions.

To make cconvergence radius smaller than some given
target accuracy ε > 0, Algorithm 3 needs at most s =
O(log 1

ε ) inner-loop steps. FO-MAML converges to a
neighborhood of size O((αL)4).

4
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A distribution-dependent analysis of meta-learning. In
International Conference on Machine Learning. PMLR.
(Cited on page 7)

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012).
Imagenet classification with deep convolutional neural
networks. Advances in neural information processing
systems, 25:1097–1105. (Cited on page 1)

Mania, H., Pan, X., Papailiopoulos, D., Recht,
B., Ramchandran, K., and Jordan, M. I. (2017).
Perturbed iterate analysis for asynchronous stochastic
optimization. SIAM Journal on Optimization,
27(4):2202–2229. (Cited on page 9)

Mishchenko, K., Khaled, A., and Richtárik, P. (2020).
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A. Content left out
Table of frequently used notation

For clarity, we provide a table of frequently used notation.

Notation Meaning

fi The loss of task i
Fi(x) = minz{fi(z) + 1

2α∥z − x∥2} Meta-loss
F (x) = 1

n

∑n
i=1 Fi(x) Full meta loss

zi(x) = argminz{fi(z) + 1
2α∥z − x∥2} The minimizer of regularized loss

L, µ Smoothness and strong convexity constants of fi
LF Smoothness constant of F
α Objective parameter
β Stepsize of the outer loop
γ, s Stepsize and number of steps in the inner loop
δ Precision of the proximal oracle

A.1. Related work

MAML (Finn et al., 2017) has attracted a lot of attention due to its success in practice. Many improvements have been
proposed for MAML, for instance, (Zhou et al., 2020) suggested augmenting each group of tasks with its own global
variable, and (Antoniou et al., 2018) proposed MAML++ that uses intermediate task losses with weights to improve the
stability of MAML. (Rajeswaran et al., 2019) proposed iMAML that makes the objective optimizer-independent by relying
on implicit gradients. Zhou et al. (2019) used a similar implicit objective to that of iMAML with an additional regularization
term that, unlike iMAML, does not require inverting matrices. Reptile (Nichol et al., 2018) is an even simpler method that
merely runs gradient descent on each sampled task. Based on generalization guarantees, (Zhou et al., 2020) also provided
a trade-off between the optimization and statistical errors for a multi-step variant MAML, which shows that it may not
improve significantly from increasing the number of gradient steps in the inner loop. We refer to (Hospedales et al., 2021)
for a recent survey of the literature on meta-learning with neural networks.

On the theoretical side, the most relevant works to ours is that of (Zhou et al., 2019), whose main limitation is that it
requires a high-precision solution of the inner problem in Moreau envelope at each iteration. Another relevant work that
studied convergence of MAML and FO-MAML on the standard MAML objective is by (Fallah et al., 2020), but they do
not provide any guarantees for the sum of Moreau envelopes and their assumptions are more stringent. Fallah et al. (2020)
also study a Hessian-free variant of MAML, but its convergence guarantees still require posing assumptions on the Hessian
Lipschitzness and variance.

Some works treat meta-learning as a special case of compositional optimization (Sun et al., 2021) or bilevel programming
(Franceschi et al., 2018) and develop theory for the more general problem. Unfortunately, both approaches lead to worse
dependence on the conditioning numbers of both inner and outer objective, and provide very pessimistic guarantees.
Bilevel programming, even more importantly, requires computation of certain inverse matrices, which is prohibitive in
large dimensions. One could also view minimization-based formulations of meta-learning as instances of empirical risk
minimization, for which FO-MAML can be seen as instance of inexact (biased) SGD. For example, (Ajalloeian and Stich,
2020) analyzed SGD with deterministic bias and some of our proofs are inspired by theirs, except in our problem the bias
is not deterministic. We will discuss the limitations of their approach in the section on inexact SGD.

Several works have also addressed meta-learning from the statistical perspective, for instance, Yoon et al. (2018) proposed
a Bayesian variant of MAML, and Finn et al. (2019) analyzed convergence of MAML in online learning. Another example
is the work of Konobeev et al. (2021) who studied the setting of linear regression with task-dependent solutions that are
sampled from same normal distribution. These directions are orthogonal to ours, as we want to study the optimization
properties of meta-learning.
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Table 1: A summary of related work and conceptual differences to our approach. We mark as “N/A” unknown
properties that have not been established in prior literature or our work. We say that Fi “Preserves convexity” if for
convex fi, Fi is convex as well, which implies that Fi has no extra local minima or saddle points. We say that Fi

“Preserves smoothness” if its gradients are Lipschitz whenever the gradients of fi are, which corresponds to more
stable gradients. We refer to (Fallah et al., 2020) for the claims regarding nonconvexity and nonsmoothness of the
MAML objective.

Algorithm Fi: meta-loss of task i
Hessian-

free
Arbitrary

number of steps
No matrix
inversion

Preserves
convexity

Preserves
smoothness Reference

MAML fi(x − α∇fi(x)) ✗ ✗ ✓ ✗ ✗ (Finn et al., 2017)
Multi-step

MAML fi(GD(fi, x))
(1) ✗ ✓ ✓ ✗ ✗

(Finn et al., 2017)
(Ji et al., 2020)

iMAML(2) fi(zi(x)), where
zi(x) = x − α∇fi(zi(x))

✗ ✓ ✗
✗

(Theorem 1)
✗

(Theorem 2) (Rajeswaran et al., 2019)

Reptile N/A(3) ✓ ✓ ✓ N/A N/A (Nichol et al., 2018)
FO-MAML
(original) fi(x − α∇fi(x)) ✓ ✗ ✓ ✗ ✗ (Finn et al., 2017)

Meta-MinibatchProx min
xi

{fi(xi) +
1
2α∥xi − x∥2} ✓ ✗(4) ✓ ✓ ✓ (Zhou et al., 2019)

FO-MuML
(extended FO-MAML) min

xi
{fi(xi) +

1
2α∥xi − x∥2} ✓ ✓ ✓ ✓ ✓ This work

(1) Multi-step MAML runs an inner loop with gradient descent applied to task loss fi, so the objective of multi-step MAML is
Fi(x) = fi(xs(x)), where x0 = x and xj+1 = xj − α∇fi(xj) for j = 0, . . . , s− 1.

(2) To the best of our knowledge, iMAML is not guaranteed to work; Rajeswaran et al. (2019) studied only the approximation
error for gradient computation, see the discussion in our special section on iMAML.

(3) Reptile was proposed as an algorithm on its own, without providing any optimization problem. This makes it hard to say
how it affects smoothness and convexity. Balcan et al. (2019) and Khodak et al. (2019) studied convergence of Reptile on
the average loss over the produced iterates, i.e., Fi(x) =

1
m

∑s
j=0 fi(xj), where x0 = x and xj+1 = xj − α∇fi(xj) for

j = 0, . . . , s− 1. Analogously to the loss of MAML, this objective seems nonconvex and nonsmooth.
(4) Zhou et al. (2019) assumed that the subproblems are solved to precision ε, i.e., xi is found such that ∥∇fi(xi) +

1
α
(xi −

x)∥ ≤ ε with an absolute constant ε.

A.2. MAML objective remark

Sometimes, MAML update evaluates the gradient of φi using an additional data sample, but Bai et al. (2021) recently
showed that this is often unnecessary.

iMAML objective remarks

The idea of iMAML is to optimize this objective during training so that at inference, given a new function fn+1 and solution
xiMAML of the problem above, one can find an approximate solution to minz∈Rd

{
fn+1(z) +

1
2α∥z − xiMAML∥2

}
and use

it as a new model for task fn+1.

Rajeswaran et al. (2019) proved, under some mild assumptions, that one can efficiently obtain an estimate of the gradient
of φi(x)

def
= fi (x− α∇fi(zi(x))) with access only to gradients and Hessian-vector products of fi, which rely on standard

backpropagation operations. In particular, Rajeswaran et al. (2019) showed that

∇φi(x) =
(
I+ α∇2fi(z(x))

)−1 ∇fi(z(x)),

where I is the identity matrix, and they proposed to run the conjugate gradient method to find ∇φi(x).

A.3. Moreau-Envelope objective remarks

Proposition 1 (Theorem 6.60 in (Beck, 2017)). Let Fi and zi(x) be defined as in (2) and (4). If fi is convex, proper and
closed, then Fi is differentiable and 1

α -smooth:

∇Fi(x) =
1
α (x− zi(x)) = ∇fi(zi(x)), (7)

∥∇Fi(x)−∇Fi(y)∥ ≤ 1
α∥x− y∥. (8)
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Algorithm 3 FO-MuML (implementation according to Lemma 2)

1: Input: x0, number of steps s, α > 0, β > 0
2: for k = 0, 1, . . . do
3: Sample a subset of tasks Tk

4: for each sampled task i in Tk do
5: zki,0 = xk

6: for l = 0, . . . , s− 1 do
7: zki,l+1 = xk − α∇fi(z

k
i,l)

8: end for
9: zki = zki,s

10: end for
11: xk+1 = xk − β 1

|Tk|
∑

i∈Tk
∇fi(z

k
i )

12: end for

Our refinement of Proposition 1, Lemma 1 is similar to Lemma 2.5 of (Davis and Drusvyatskiy, 2021), except their
guarantee is a bit weaker because they consider more general assumptions.

A.4. Parametrization of the inner loop of Algorithm 3

Note that Algorithm 3 depends on only one parameter – β. We need to keep in mind that parameter α is fixed by the
objective (2) and changing α shifts convergence neighborhood. Nevertheless, we can still investigate the case wehn α from
(2) and α from Line 6 of Algorithm 3 are different, as we can see in the following remark.

Remark. If we replace line 7 of Algorithm 3 by zkl+1 = xk − γ∇fi(z
k
i,l), we will have freedom to choose γ. However, if

we choose stepsize γ ̸= α, then similar analysis to the proof of Lemma 2 yields

1
γ ∥z

k
i,s − (xk − γ∇Fi(x

k))∥ ≤ ((γL)s + |α− γ|L) ∥∇Fi(x
k)∥. (9)

Note that in case γ ̸= α, we cannot set number of steps s to make the right-hand side of (9) smaller than δ∥∇Fi(x
k)∥

when δ is small. In particular, increasing the number of local steps s will help only as long as δ > |α− γ|L.

This is no surprise, for the modified algorithm (using inner loop stepsize γ) will no longer be approximating ∇Fi(x
k). It

will be exactly approximating ∇F̃i(x
k), where F̃i(x)

def
= minz∈Rd

{
fi(z) +

1
2γ ∥z − x∥2

}
(see Lemma 2). Thus, choice

of stepsize in the inner loop affects what implicit gradients do we approximate and also what objective we are minimizing.

A.5. Motivation for virtual iterate analysis

The literature on asynchronous optimization has established that getting gradient at a wrong point does not significantly
worsen its rate of convergence (Mania et al., 2017). A similar analysis with additional virtual sequence was used in the
so-called error-feedback for compression (Stich et al., 2018), where the goal of the sequence is to follow the path of exact
gradients even if compressed gradients are used by the algorithm itself. Motivated by these observations, we set out to find
a virtual sequence that could help us analyze FO-MAML.

The proof technique for this theorem also uses recent advances on the analysis of biased SGD methods by Mishchenko
et al. (2020). In particular, we show that the three-point identity (provided in the Appendix) is useful for getting a tighter
recursion.

A.6. Nonconvex analyses in literature

Our Theorem 5 is very similar to the one obtained by Fallah et al. (2020), except i) their convergence neighborhood depends
on α as O(α2), whereas ours has better dependency O(α4), ii) ours theory does not require any assumptions on the Hessian
smoothness and in addition iii) we study different objectives, as Fallah et al. (2020) does not consider Moreau envelopes.
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A.7. Summary

We presented a new analysis of first-order meta-learning algorithms for minimization of Moreau envelopes. Our theory
covers both nonconvex and strongly convex smooth losses and guarantees convergence of the family of methods covered by
Algorithm 2. As a special case, all convergence bounds apply to Algorithm 3 with an arbitrary number of inner-loop steps.
Compared to other results available in the literature, ours are more general as they hold with an arbitrary number of inner
steps and do not require Hessian smoothness. The main theoretical difficulty we faced was the limitation of the inexact
SGD framework, which we overcame by presenting a refined analysis using virtual iterates. As a minor contribution, we
also pointed out that standard algorithms, such as SGD, are not immediately guaranteed to work on the iMAML objective,
which might be nonconvex and nonsmooth even for convex and smooth losses. To show this, we presented examples of
losses whose convexity and smoothness cease when the iMAML objective is constructed.

B. Proofs
B.1. Basic facts

For any vectors a, b ∈ Rd and scalar ν > 0, Young’s inequality states that

2 ⟨a, b⟩ ≤ ν∥a∥2 + 1
ν ∥b∥

2. (10)

Moreover, we have

∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2. (11)

More generally, for a set of m vectors a1, . . . , am with arbitrary m, it holds

∥∥∥ 1
m

m∑
i=1

ai

∥∥∥2 ≤ 1
m

m∑
i=1

∥ai∥2. (12)

For any random vector X we have

E
[
∥X∥2

]
= ∥E [X] ∥2 + E

[
∥X − E [X] ∥2

]
. (13)

If f is Lf -smooth, then for any x, y ∈ Rd, it is satisfied

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ Lf

2 ∥y − x∥2. (14)

Finally, for Lf -smooth and convex function f , it holds

f(x) ≤ f(y) + ⟨∇f(x), x− y⟩ − 1
2Lf

∥∇f(x)−∇f(y)∥2. (15)

Proposition 2. [Three-point identity] For any u, v, w ∈ Rd, any f with its Bregman divergence Df (x, y) = f(x)−f(y)−
⟨∇f(y), x− y⟩, it holds

⟨∇f(u)−∇f(v), w − v⟩ = Df (v, u) +Df (w, v)−Df (w, u).

B.2. Proof of Theorem 1

Proof. The counterexample that we are going to use is given below:

f(x) = min
{

1
4x

4 − 1
3 |x|

3 + 1
6x

2, 2
3x

2 − |x|+ 5
12

}
=

{
1
4x

4 − 1
3 |x|

3 + 1
6x

2, if |x| ≤ 1,
2
3x

2 − |x|+ 5
12 , otherwise.

See also Figure 1 for its numerical visualization.
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Figure 1: Values of functions f and φ.
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®

Figure 2: Illustration of nonconvexity: the value of φ goes
below its tangent line from x0, which means that φ is
nonconvex at x0.

It is straightforward to observe that this function is smooth and convex because its Hessian is

f ′′(x) =

{
3x2 − 2|x|+ 1

3 , if |x| ≤ 1,
4
3 , otherwise.

,

which is always nonnegative and bounded. However, the function φ(x) = f(z(x)) is not convex at point x0 = 0.4 +
α∇f(0.4), because its Hessian is negative, i.e., φ′′(x0) < 0, which we shall prove below. First of all, by definition of x0,
it holds that 0.4 = x0 −α∇f(0.4), which is equivalent to the definition of z(x), implying z(x0) = 0.4. Next, let us obtain
the expression for the Hessian of φ. As shown in (Rajeswaran et al., 2019), it holds in general that

∇φ(x) = dz(x)
dx ∇f(z(x)),

where dz(x)
dx is the Jacobian matrix of the mapping z(x). Differentiating this equation again, we obtain

∇2φ(x) = d2z(x)
dx2 ∇f(z(x)) +∇2f(z(x))dz(x)dx

(
dz(x)
dx

)⊤
.

Moreover, we can compute d2z(x)
dx2 by differentiating two times the equation z(x) = x− α∇f(z(x)), which gives

dz(x)
dx = I− α∇2f(z(x))dz(x)dx ,

where I is the identity matrix. Rearranging the terms in this equation yields

dz(x)
dx = (I+ α∇2f(z(x)))−1.

At the same time, if we do not rearrange and instead differentiate the equation again, we get

d2z(x)
dx2 = −α∇2f(z(x))d

2z(x)
dx2 − α∇3f(z(x))

[
dz(x)
dx , dz(x)

dx

]
,

where ∇3f(z(x))[dz(x)dx , dz(x)
dx ] denotes tensor-matrix-matrix product, whose result is a tensor too. Thus,

d2z(x)
dx2 = −α(I+ α∇2f(z(x)))−1∇3f(z(x))

[
dz(x)
dx , dz(x)

dx

]
,

and, moreover,

∇2φ(x) = −α(I+ α∇2f(z(x)))−1∇3f(z(x))
[
dz(x)
dx , dz(x)

dx

]
+∇2f(z(x))dz(x)dx

(
dz(x)
dx

)⊤
.
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For any x ∈ (0, 1], our counterexample function satisfies f ′′(x) = 3x2 − 2x + 1
3 and f ′′′(x) = 6x − 2. Moreover, since

z(x0) = 0.4, we have f ′′(z(x0)) =
1
75 , f ′′′(z(x0)) =

2
5 , dz(x)

dx = 1
1+α/75 , and

φ′′(x) = − 2α
5(1+α/75)3 + 1

75(1+α/75)2 .

It can be verified numerically that φ′′(x) is negative at x0 for any α > 75
2249 . Notice that this value of α is much smaller

than the value of 1
L = 3

4 , which can be obtained by observing that our counterexample satisfies f ′′(x) ≤ 4
3 .

Let us also note that obtaining nonconvexity of this objective for a fixed function and arbitrary α is somewhat challenging.
Indeed, in the limit case α → 0, it holds that φ(x)′′ → f ′′(x) for any x. If f ′′(x) > 0 then for a sufficiently small α it
would also hold φ′′(x) > 0. Finding an example that works for any α, thus, would require f ′′(x0) = 0.

B.3. Proof of Theorem 2

Proof. Consider the following simple function

f(x) = 1
2x

2 + cos(x).

The Hessian of f is f ′′(x) = 1− cos(x) ≥ 0, so it is convex. Moreover, it is apparent that the gradient and the Hessian of
f are Lipschitz. However, we will show that the Hessian of φ is unbounded for any fixed α > 0. To establish this, let us
first derive some properties of z(x). First of all, by definition z(x) is the solution of αf ′(z(x)) + (z(x) − x) = 0, where
by definition of f , it holds f ′(z(x)) = z(x)− sin(z(x)). Plugging it back, we get

(α+ 1)z(x)− α sin(z(x)) = x.

Differentiating both sides with respect to x, we get (α+ 1)dz(x)dx − α cos(z(x))dz(x)dx = 1 and

dz(x)
dx = 1

1+α−α cos(z(x)) .

Thus, using the fact that φ(x) = φ(z(x)), we get

φ′(x) = dφ(x)
dx = df(z)

dz
dz(x)
dx = z(x)−sin(z(x))

1+α−α cos(z(x)) .

Denoting, for brevity, z(x) as z, we differentiate this identity with respect to z and derive dφ′(x)
dz =

1+2α−αz sin(z)−(1+2α) cos(z)
(1+α−α cos(z))2 . Therefore, for the Hessian of φ, we can produce an implicit identity,

φ′′(x) = d2φ(x)
dx2 = dφ′(x)

dz
dz(x)
dx = 1+2α−αz sin(z)−(1+2α) cos(z)

(1+α−α cos(z))3 .

The denominator of φ′′(x) satisfies |1 + α − α cos(z)|3 ≤ (1 + 2α)3, so it is bounded for any x. The numerator, on
the other hand, is unbounded in terms of z(x) since |1 + 2α − αz sin(z) − (1 + 2α) cos(z)| ≥ α|z sin(z)| − 2(1 + 2α).
Therefore, |φ′′(x)| is unbounded. Moreover, z(x) is itself unbounded, since the previously established identity for z(x)
can be rewritten as |z(x)| =

∣∣∣ 1
1+αx− α

1+α sin(z(x))
∣∣∣ ≥ 1

1+α |x| − 1. Therefore, z(x) is unbounded, and since φ′′(x)

grows with z, it is unbounded too. The unboundedness of φ′′(x) implies that φ is not L-smooth for any finite L.

B.4. Proof of Lemma 1

Proof. The statement that Fi is µ
1+αµ -strongly convex is proven as Lemma 2.19 in (Planiden and Wang, 2016), so we skip

this part.

For nonconvex Fi and any x ∈ Rd, we have by first-order stationarity of the inner problem that ∇Fi(x) = ∇fi(zi(x)),
where zi(x) = argminz{fi(z) + 1

2α∥z − x∥2} = x− α∇Fi(x). Therefore,

∥∇Fi(x)−∇Fi(y)∥ = ∥∇fi(zi(x))−∇fi(zi(y))∥ ≤ L∥zi(x)− zi(y)∥
= L∥x− y − α(∇Fi(x)−∇Fi(y))∥
≤ L∥x− y∥+ αL∥∇Fi(x)−∇Fi(y)∥.
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Rearranging the terms, we get the desired bound:

∥∇Fi(x)−∇Fi(y)∥ ≤ L
1−αL∥x− y∥.

For convex functions, our proof of smoothness of Fi follows the exact same steps as the proof of Lemma 2.19 in (Planiden
and Wang, 2016). Let f∗

i be the convex-conjugate of fi. Then, it holds that Fi = (f∗
i + α

2 ∥ · ∥2)∗, see Theorem 6.60
in (Beck, 2017). Therefore, F ∗

i = f∗
i + α

2 ∥ · ∥2. Since fi is L-smooth, f∗
i is 1

L -strongly convex. Therefore, F ∗
i is

( 1
L + α)-strongly convex, which, finally, implies that Fi is 1

1
L+α

-smooth.

The statement L
1+αL ≤ L holds trivially since α > 0. In case α ≤ 1

µ , we get the constants from the other statements by
mentioning that µ

1+αµ ≥ µ
2 .

The differentiability of Fi follows from Theorem 4.4 of Poliquin and Rockafellar (1996), who show differentiability
assuming fi is prox-regular, which is a strictly weaker property than L-smoothness, so it automatically holds under the
assumptions of Lemma 1.

B.5. Proof of Lemma 2

Lemma 2. Let task losses fi be L–smooth and α > 0. Given i and x ∈ Rd, we define recursively zi,0 = x and
zi,j+1 = x− α∇fi(zi,j). Then, it holds for any s ≥ 0

∥∇fi(zi,s)−∇Fi(x)∥ ≤ (αL)s+1∥∇Fi(x)∥.

In particular, the iterates of FO-MAML (Algorithm 1) satisfy for any k∥∥∇fi(z
k
i )−∇Fi(x

k)
∥∥ ≤ (αL)2∥∇Fi(x

k)∥.

Proof. First, observe that by eq. (7) it holds

zi(x) = x− α∇Fi(x) = x− α∇fi(zi(x)).

For s = 0, the lemma’s claim then follows from initialization, zi,0 = x, since

∥∇fi(zi,s)−∇Fi(x)∥ = ∥∇fi(x)−∇fi(zi(x))∥ ≤ L∥x− zi(x)∥ = αL∥∇Fi(x)∥.

For s > 0, we shall prove the bound by induction. We have for any l ≥ 0

∥zi,l+1 − (x− α∇Fi(x))∥ = α∥∇fi(zi,l)−∇Fi(x)∥ = α∥∇fi(zi,l)−∇fi(zi(x))∥ ≤ αL∥zi,l − zi(x)∥
= αL∥zi,l − (x− α∇Fi(x))∥.

This proves the induction step as well as the lemma itself.

Lemma 3 For any points z, y ∈ Rd it holds y = z + α∇fi(z) if and only if z = y − α∇Fi(y). Therefore, given z, for
y

def
= z + α∇fi(z) holds ∇fi(z) = ∇Fi(y).

Proof. The result follows immediately from the last statement of Lemma 1.

Lemma 4. If task losses f1, . . . , fn are L-smooth and β ≤ 1
L , then it holds∥∥∥ 1

|Tk|

∑
i∈Tk

gki

∥∥∥2 ≤
(
1 + 2(αL)2s + 2

|T |

)
4L(F (xk)− F (x∗)) + 4

(
1

|Tk| + (αL)2s
)
σ2
∗ (16)

≤ 20L(F (xk)− F (x∗)) + 4
(

1
|Tk| + δ2

)
σ2
∗. (17)
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Proof. First, let us replace gki with ∇Fi(x
k), which gki approximates:∥∥∥ 1

|Tk|

∑
i∈Tk

gki

∥∥∥2 =
∥∥∥ 1
|Tk|

∑
i∈Tk

∇Fi(x
k) + 1

|Tk|

∑
i∈Tk

(gki −∇Fi(x
k))
∥∥∥2

(11)
≤ 2

∥∥∥ 1
|Tk|

∑
i∈Tk

∇Fi(x
k)
∥∥∥2 + 2

∥∥∥ 1
|Tk|

∑
i∈Tk

(gki −∇Fi(x
k))
∥∥∥2

(12)
≤ 2

∥∥∥ 1
|Tk|

∑
i∈Tk

∇Fi(x
k)
∥∥∥2 + 2

|Tk|

∑
i∈Tk

∥gki −∇Fi(x
k)∥2

≤ 2
∥∥∥ 1
|Tk|

∑
i∈Tk

∇Fi(x
k)
∥∥∥2 + 2

|Tk|

∑
i∈Tk

δ2∥∇Fi(x
k)∥2.

Taking the expectation on both sides, we get

E

[∥∥∥ 1
|Tk|

∑
i∈Tk

gki

∥∥∥2] (13)
≤ 2∥∇F (xk)∥2 + 2E

[∥∥∥ 1
|Tk|

∑
i∈Tk

∇Fi(x
k)−∇F (xk)

∥∥∥2]+ 2
n

n∑
i=1

δ2∥∇Fi(x
k)∥2.

Moreover, each summand in the last term can be decomposed as

∥∇Fi(x
k)∥2

(11)
≤ 2∥∇Fi(x

∗)∥2 + 2∥∇Fi(x
k)−∇Fi(x

∗)∥2 (3)
= 2σ2

∗ + 2∥∇Fi(x
k)−∇Fi(x

∗)∥2.

Since Fi is convex and L-smooth, we have for any i

∥∇Fi(x
k)−∇Fi(x

∗)∥2 ≤ 2L(Fi(x
k)− Fi(x

∗)−
〈
∇Fi(x

∗), xk − x∗〉).
Averaging and using 1

n

∑n
i=1 ∇Fi(x

∗) = 0, we obtain

1
n

n∑
i=1

∥∇Fi(x
k)−∇Fi(x

∗)∥2 ≤ 2L(F (xk)− F (x∗)).

Thus,

2
n

n∑
i=1

δ2∥∇Fi(x
k)∥2 ≤ 4δ2σ2

∗ + 8Lδ2(F (xk)− F (x∗)) (18)

≤ 4δ2σ2
∗ + 8L(F (xk)− F (x∗)).

Proceeding to another term in our initial bound, by independence of sampling i ∈ Tk we have

E

[∥∥∥ 1
|Tk|

∑
i∈Tk

∇Fi(x
k)−∇F (xk)

∥∥∥2] = 1
|Tk|

1
n

n∑
i=1

E
[
∥∇Fi(x

k)∥2
]

(11)
≤ 2

|Tk|
1
n

n∑
i=1

(
E
[
∥∇Fi(x

k)−∇Fi(x
∗)∥2

]
+ E

[
∥∇Fi(x

∗)∥2
])

(15)
≤ 2

|Tk|
(
2L(F (xk)− F (x∗)) + σ2

∗
)

≤ 4L
|Tk| (F (xk)− F (x∗)) + 2

|Tk|σ
2
∗.

Finally, we also have ∥∇F (xk)∥2 ≤ 2L(F (xk)− F (x∗)). Combining all produced bounds, we get the claim∥∥∥ 1
|Tk|

∑
i∈Tk

gki

∥∥∥2 ≤
(
1 + 2δ2 + 2

|T |

)
4L(F (xk)− F (x∗)) + 4

(
1

|Tk| + δ2
)
σ2
∗. (19)
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B.6. Proof of Theorem 3

Theorem 3. Let task losses f1, . . . , fn be L-smooth and µ-strongly convex. If |Tk| = τ for all k, α ≤ 1
L , β ≤ 1

20L and

δ ≤ 1
4
√
κ

, where κ
def
= L

µ , then the iterates of Algorithm 2 satisfy

E
[
∥xk − x∗∥2

]
≤
(
1− βµ

4

)k
∥x0 − x∗∥2 + 16

µ

(
2δ2

µ + β
τ + βδ2

)
σ2
∗.

Proof. For the iterates of Algorithm 2, we can write

xk+1 = xk − β
τ

∑
i∈Tk

gki .

We also have by Lemma 2 that

∥gki −∇Fi(x
k)∥2 ≤ (αL)2δ2∥∇Fi(x

k)∥2 ≤ δ2∥∇Fi(x
k)∥2,

so let us decompose gki into ∇Fi(x
k) and the approximation error:

∥xk+1 − x∗∥2 = ∥xk − x∗∥2 − 2β
τ

∑
i∈Tk

〈
gki , x

k − x∗〉+ β2
∥∥∥ 1
τ

∑
i∈Tk

gki

∥∥∥2
= ∥xk − x∗∥2 − 2β

τ

∑
i∈Tk

〈
∇Fi(x

k), xk − x∗〉+ 2β
τ

∑
i∈Tk

〈
∇Fi(x

k)− gki , x
k − x∗〉+ β2

∥∥∥ 1
τ

∑
i∈Tk

gki

∥∥∥2.
First two terms can be upperbounded using strong convexity (recall that by Lemma 1, Fi is µ

2 -strongly convex):

∥xk − x∗∥2 − 2β
τ

∑
i∈Tk

〈
∇Fi(x

k), xk − x∗〉 ≤ (1− βµ
2

)
∥xk − x∗∥2 − 2β

τ

∑
i∈Tk

(Fi(x
k)− Fi(x

∗)).

For the third term, we will need Young’s inequality:

2
〈
∇Fi(x

k)− gki , x
k − x∗〉 (10)

≤ 4
µ∥∇Fi(x

k)− gki ∥2 +
µ
4 ∥x

k − x∗∥2 ≤ 4
µδ

2∥∇Fi(x
k)∥2 + µ

4 ∥x
k − x∗∥2,

which we can scale by β and average over i ∈ Tk to obtain

2β
τ

∑
i∈Tk

〈
∇Fi(x

k)− gki , x
k − x∗〉 ≤ 4βδ2

µ
1
τ

∑
i∈Tk

∥∇Fi(x
k)∥2 + βµ

4 ∥xk − x∗∥2.

Plugging in upper bounds and taking expectation yields

E
[
∥xk+1 − x∗∥2

]
≤
(
1− βµ

4

)
∥xk − x∗∥2 − 2β(F (xk)− F (x∗)) + 4

µβδ
2 1
n

n∑
i=1

∥∇Fi(x
k)∥2 + β2

∥∥∥ 1
τ

∑
i∈Tk

gki

∥∥∥2
(17)
≤
(
1− βµ

4

)
∥xk − x∗∥2 − 2β(1− 10βL)(F (xk)− F (x∗)) + 4

µβδ
2 1
n

n∑
i=1

∥∇Fi(x
k)∥2

+ 4β2
(
1
τ + δ2

)
σ2
∗

(18)
≤
(
1− βµ

4

)
∥xk − x∗∥2 − 2β(1− 10βL)(F (xk)− F (x∗))

+ 8
µβδ

2
(
σ2
∗ + 2L(F (xk)− F (x∗))

)
+ 4β2

(
1
τ + δ2

)
σ2
∗

=
(
1− βµ

4

)
∥xk − x∗∥2 − 2β

(
1− 10βL− 8L

µ δ2
)
(F (xk)− F (x∗)) + 8

µβδ
2σ2

∗ + 4β2
(
1
τ + δ2

)
σ2
∗.

By assumption β ≤ 1
20L , δ ≤ 1

4
√
κ

, we have 10βL ≤ 1
2 and 8L

µ δ
2 ≤ 1

2 , so 1− 10βL− 8L
µ δ2 ≥ 0, hence

E
[
∥xk+1 − x∗∥2

]
≤
(
1− βµ

4

)
∥xk − x∗∥2 + 8

µβδ
2σ2

∗ + 4β2
(
1
τ + δ2

)
σ2
∗.
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Recurring this bound, which is a standard argument, we obtain the theorem’s claim.

E
[
∥xk − x∗∥2

]
≤
(
1− βµ

4

)k
∥x0 − x∗∥2 +

(
8
µβδ

2σ2
∗ + 4β2

(
1
τ + δ2

)
σ2
∗

) 1−
(
1−βµ

4

)k

βµ
4

≤
(
1− βµ

4

)k
∥x0 − x∗∥2 + 32

µ2 δ
2σ2

∗ +
16
µτ βσ

2
∗ +

16
µ βδ2σ2

∗

≤
(
1− βµ

4

)k
∥x0 − x∗∥2 + 16

µ

(
2δ2

µ + β
τ + βδ2

)
σ2
∗.

B.7. Proof of Theorem 4

Theorem 4. Consider the iterates of Algorithm 2 (with general δ) or Algorithm 1 (for which δ = αL). Let task losses be
L–smooth and µ–strongly convex and let objective parameter satisfy α ≤ 1√

6L
. Choose stepsize β ≤ τ

4L , where τ = |Tk|
is the batch size. Then we have

E
[∥∥xk − x∗∥∥2] ≤ (1− βµ

12

)k ∥∥x0 − x∗∥∥2 + 6

(
β
τ +3δ2α2L

)
σ2
∗

µ .

Proof. Denote LF , µF , κF = LF

µF
smoothness constant, strong convexity constant, condition number of Meta-Loss

functions F1, . . . , Fn, respectively. We have

∥∥xk+1 − x∗∥∥2 =

∥∥∥∥xk − x∗ − β
τ

∑
i∈Tk

∇Fi(y
k
i )

∥∥∥∥2

=
∥∥xk − x∗∥∥2 − 2β

τ

∑
i∈Tk

⟨∇Fi(y
k
i ), x

k − x∗⟩+ β2

∥∥∥∥∥ 1
τ

∑
i∈Tk

∇Fi(y
k
i )

∥∥∥∥∥
2

≤
∥∥xk − x∗∥∥2 − 2β

τ

∑
i∈Tk

⟨∇Fi(y
k
i )−∇Fi(x

∗), xk − x∗⟩+ 2β2

∥∥∥∥∥ 1
τ

∑
i∈Tk

(∇Fi(y
k
i )−∇Fi(x

∗))

∥∥∥∥∥
2

− 2β
τ

∑
i∈Tk

⟨∇Fi(x
∗), xk − x∗⟩+ 2β2

∥∥∥∥ 1
τ

∑
i∈Tk

∇Fi(x
∗)

∥∥∥∥2.
Using Proposition 2, we rewrite the scalar product as ⟨∇Fi(y

k
i ) − ∇Fi(x

∗), xk − x∗⟩ = DFi
(x∗, yki ) + DFi

(xk, x∗) −
DFi(x

k, yki ), which gives∥∥xk+1 − x∗∥∥2 ≤
∥∥xk − x∗∥∥2 − 2β

τ

∑
i∈Tk

[
DFi

(x∗, yki ) +DFi
(xk, x∗)−DFi

(xk, yki )
]

+ 2β2

∥∥∥∥ 1
τ

∑
i∈Tk

(∇Fi(y
k
i )−∇Fi(x

∗))

∥∥∥∥2 − 2β
τ

∑
i∈Tk

⟨∇Fi(x
∗), xk − x∗⟩+ 2β2

∥∥∥∥ 1
τ

∑
i∈Tk

∇Fi(x
∗)

∥∥∥∥2.
Since we sample Tk uniformly and {∇Fi(x

∗)}i∈Tk
are independent random vectors, we obtain

E
[∥∥xk+1 − x∗∥∥2] ≤ ∥∥xk − x∗∥∥2 + 2β

τ E

[∑
i∈Tk

[
−DFi

(x∗, yki )−DFi
(xk, x∗) +DFi

(xk, yki )
]]

+ 2β2

τ2 E

[∑
i∈Tk

∥∥∇Fi(y
k
i )−∇Fi(x

∗)
∥∥2]+ 2β2

τ σ2
∗.
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Next, we are going to use the following three properties of Bregman divergence:

−DFi(x
∗, yki )

(15)
≤ − 1

2LF

∥∥∇Fi(y
k
i )−∇Fi(x

∗)
∥∥2

−DFi(x
k, x∗) ≤ −µF

2

∥∥xk − x∗∥∥2 (20)

DFi
(xk, yki ) ≤ LF

2

∥∥xk − yki
∥∥2 .

Moreover, using identity yki = zki + α∇Fi(y
k
i ), we can bound the last divergence as

DFi(x
k, yki ) ≤ LF

2

∥∥xk − zki − α∇Fi(y
k
i )
∥∥2

= 1
2α

2LF

∥∥∥ 1
α (x

k − zki )−∇Fi(y
k
i )
∥∥∥2

≤ 3
2α

2LF

(∥∥∥ 1
α (x

k − zki )−∇Fi(x
k)
∥∥∥2 + ∥∥∇Fi(x

k)−∇Fi(x
∗)
∥∥2 + ∥∥∇Fi(x

∗)−∇Fi(y
k
i )
∥∥2)

≤ 3
2α

2LF

(
δ2
∥∥∇Fi(x

k)
∥∥2 + ∥∥∇Fi(x

k)−∇Fi(x
∗)
∥∥2 + ∥∥∇Fi(x

∗)−∇Fi(y
k
i )
∥∥2) ,

where the last step used the condition in Algorithm 2. Using inequality (11) on ∇Fi(x
k) = ∇Fi(x

∗) + (∇Fi(x
k) −

∇Fi(x
∗)), we further derive

DFi
(xk, yki ) ≤ 3

2α
2LF

(
2δ2 ∥∇Fi(x

∗)∥2 + (1 + 2δ2)
∥∥∇Fi(x

k)−∇Fi(x
∗)
∥∥2 + ∥∥∇Fi(x

∗)−∇Fi(y
k
i )
∥∥2)

(15)
≤ 3

2α
2LF

(
2δ2 ∥∇Fi(x

∗)∥2 + (1 + 2δ2)LFDFi
(xk, x∗) +

∥∥∇Fi(x
∗)−∇Fi(y

k
i )
∥∥2) .

Assuming α ≤
√

2
3 (1 + 2δ2) 1

LF
so that 1− 3

2α
2L2

F (1 + 2δ2) > 0, we get

−DFi
(xk, x∗) +DFi

(xk, yki ) ≤ −
(
1− 3

2α
2L2

F (1 + 2δ2)
)
DFi

(xk, x∗)

+ 3
2α

2LF

(
2δ2 ∥∇Fi(x

∗)∥2 +
∥∥∇Fi(x

∗)−∇Fi(y
k
i )
∥∥2)

(20)
≤ −

(
1− 3

2α
2L2

F (1 + 2δ2)
)

µF

2

∥∥xk − x∗∥∥2
+ 3

2α
2LF

(
2δ2 ∥∇Fi(x

∗)∥2 +
∥∥∇Fi(x

∗)−∇Fi(y
k
i )
∥∥2) .

Plugging these inequalities yields

E
[∥∥xk+1 − x∗∥∥2] ≤ (1− βµF

(
1− 3

2α
2L2

F (1 + 2δ2)
)) ∥∥xk − x∗∥∥2

+ β
τ

(
3α2LF + 2β

τ − 1
LF

)
E

[∑
i∈Tk

∥∥∇Fi(y
k
i )−∇Fi(x

∗)
∥∥2]

+ 2β
(

β
τ + 3α2δ2LF

)
σ2
∗.

Now, if α ≤ 1√
6LF

and β ≤ τ
4LF

, then 3α2LF + 2β
τ − 1

LF
≤ 0, and consequently

E
[∥∥xk+1 − x∗∥∥2] ≤ (1− βµF

(
1− 3

2α
2L2

F (1 + 2δ2)
)) ∥∥xk − x∗∥∥2 + 2β

(
β
τ + 3α2δ2LF

)
σ2
∗.
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We can unroll the recurrence to obtain the rate

E
[∥∥xk − x∗∥∥2] ≤ (1− βµF

(
1− 3

2α
2L2

F (1 + 2δ2)
))k ∥∥x0 − x∗∥∥2

+

(
k−1∑
i=0

(
1− βµF

(
1− 3

2α
2L2

F (1 + 2δ2)
))i)

2β
(

β
τ + 3α2δ2LF

)
σ2
∗

=
(
1− βµF

(
1− 3

2α
2L2

F (1 + 2δ2)
))k ∥∥x0 − x∗∥∥2

+

(
1−

(
1−βµF

(
1− 3

2α
2L2

F (1+2δ2)
))k

1− 3
2α

2L2
F (1+2δ2)

)
2
µF

(
β
τ + 3α2δ2LF

)
σ2
∗

≤
(
1− βµF

(
1− 3

2α
2L2

F (1 + 2δ2)
))k ∥∥x0 − x∗∥∥2 + 2

(
β
τ +3α2δ2LF

)
σ2
∗

µF (1− 3
2α

2L2
F (1+2δ2))

.

Choice of δ implies 0 ≤ δ ≤ 1; Proposition 1 yields µ
2 ≤ µ

1+αµ ≤ µF and LF ≤ L
1+αL ≤ L, so we can simplify

E
[∥∥xk − x∗∥∥2] ≤ (1− βµ

2

(
1− 5α2L2

))k ∥∥x0 − x∗∥∥2 + 4

(
β
τ +3α2Lδ2

)
σ2
∗

µ(1−2α2L2) .

B.8. Proof of Theorem 5

Assumption 1. We assume that the variance of meta-loss gradients is uniformly bounded by some σ2, i.e.,

E
[
∥∇Fi(x)−∇F (x)∥2

]
≤ σ2. (21)

Theorem 5 Let Assumption 1 hold, functions f1, . . . , fn be L–smooth and F be lower bounded by F ∗ > −∞. Assume
α ≤ 1

4L , β ≤ 1
16L . If we consider the iterates of Algorithm 1 (with δ = αL) or Algorithm 2 (with general δ), then

min
t≤k

E
[
∥∇F (xt)∥2

]
≤ 4

βkE
[
F (x0)− F ∗]+ 16β(αL)2

(
1

|Tk| + (αL)2δ2
)
σ2.

Proof. We would like to remind the reader that for our choice of zki and yki , the following three identities hold. Firstly, by
definition yki = zki +α∇fi(z

k
i ). Secondly, as shown in Lemma 3, zki = yki −α∇Fi(y

k
i ). And finally, ∇fi(z

k
i ) = ∇Fi(y

k
i ).

We will frequently use these identities in the proof.

Since functions f1, . . . , fn are L-smooth and α ≤ 1
4L , functions F1, . . . , Fn are (2L)-smooth as per Lemma 1. Therefore,

by smoothness of F , we have for the iterates of Algorithm 2

E
[
F (xk+1)

] (14)
≤ E

[
F (xk) +

〈
∇F (xk), xk+1 − xk

〉
+ L∥xk+1 − xk∥2

]
= E

[
F (xk)− β

〈
∇F (xk), 1

|Tk|

∑
i∈Tk

∇fi(z
k
i )

〉
+ β2L

∥∥∥∥ 1
|Tk|

∑
i∈Tk

∇fi(z
k
i )

]∥∥∥∥2

= F (xk)− β∥∇F (xk)∥2 + βE

[〈
∇F (xk),∇F (xk)− 1

n

n∑
i=1

∇fi(z
k
i )

〉]

+ β2LE

[∥∥∥∥ 1
|Tk|

∑
i∈Tk

∇fi(z
k
i )

∥∥∥∥2
]

(11)
≤ F (xk)− β

2 ∥∇F (xk)∥2 + β
2

1
n

n∑
i=1

∥∥∇Fi(x
k)−∇fi(z

k
i )
∥∥2 + β2LE

[∥∥∥∥ 1
|Tk|

∑
i∈Tk

∇fi(z
k
i )

∥∥∥∥2
]
.
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Next, let us observe, similarly to the proof of Lemma 4, that the gradient approximation error satisfies∥∥∇Fi(x
k)−∇fi(z

k
i )
∥∥ =

∥∥∇Fi(x
k)−∇Fi(y

k
i )
∥∥ ≤ L

∥∥xk − yki
∥∥ = L

∥∥xk − zki − α∇Fi(y
k
i )
∥∥

≤ αL
∥∥∇F (xk)−∇Fi(y

k
i )
∥∥+ αL

∥∥∥ 1
α (x

k − zki )−∇Fi(x
k)
∥∥∥

= αL
∥∥∇F (xk)−∇fi(z

k
i )
∥∥+ αL

∥∥∥ 1
α (x

k − zki )−∇Fi(x
k)
∥∥∥.

By rearranging and using our assumption on error δ as formulated in Algorithm 2, we have

∥∥∇Fi(x
k)−∇fi(z

k
i )
∥∥ ≤ αL

1−αL

∥∥∥ 1
α (x

k − zki )−∇Fi(x
k)
∥∥∥ ≤ αL

1−αLδ∥∇Fi(x
k)∥

α≤ 1
4L
≤ 4

3αLδ∥∇Fi(x
k)∥.

Squaring this bound and averaging over i, we obtain

1
n

n∑
i=1

∥∥∇Fi(x
k)−∇fi(z

k
i )
∥∥2 ≤ 16

9 (αL)2δ2 1
n

n∑
i=1

∥∇Fi(x
k)∥2

= 16
9 (αL)2δ2∥∇F (xk)∥2 + 16

9 (αL)2δ2 1
n

n∑
i=1

∥∇Fi(x
k)−∇F (xk)∥2

(21)
≤ 16

9 (αL)2δ2∥∇F (xk)∥2 + 16
9 (αL)2δ2σ2

≤ 1
9∥∇F (xk)∥2 + 2(αL)2δ2σ2.

For the other term in the smoothness upper bound, we can write

E

[∥∥∥∥ 1
|Tk|

∑
i∈Tk

∇fi(z
k
i )

∥∥∥∥2
]
= E

[∥∥∥∥ 1
|Tk|

∑
i∈Tk

∇Fi(x
k) + 1

|Tk|

∑
i∈Tk

(∇fi(z
k
i )−∇Fi(x

k))

∥∥∥∥2
]

(11)
≤ 2E

[∥∥∥∥ 1
|Tk|

∑
i∈Tk

∇Fi(x
k)

∥∥∥∥2
]
+ 2E

[∥∥∥∥ 1
|Tk|

∑
i∈Tk

(∇fi(z
k
i )−∇Fi(x

k))

∥∥∥∥2
]

(12)
≤ 2E

[∥∥∥∥ 1
|Tk|

∑
i∈Tk

∇Fi(x
k)

∥∥∥∥2
]
+ 2

|Tk|E

[∑
i∈Tk

∥∇fi(z
k
i )−∇Fi(x

k)∥2
]

≤ 2E

[∥∥∥∥ 1
|Tk|

∑
i∈Tk

∇Fi(x
k)

∥∥∥∥2
]
+ E

[
32
9

1
|Tk|

∑
i∈Tk

(αL)2δ2∥∇Fi(x
k)∥2

]
.

Using bias-variance decomposition, we get for the first term in the right-hand side

2E

[∥∥∥∥ 1
|Tk|

∑
i∈Tk

∇Fi(x
k)

∥∥∥∥2
]

(13)
= 2∥∇F (xk)∥2 + 2E

[∥∥∥∥ 1
|Tk|

∑
i∈Tk

∇Fi(x
k)−∇F (xk)

∥∥∥∥2
]

= 2∥∇F (xk)∥2 + 2
|Tk|

1
n

n∑
i=1

∥∇Fi(x
k)−∇F (xk)∥2.

Similarly, we simplify the second term using 32
9 < 4 and then obtain

32
9 E

[
1

|Tk|

∑
i∈Tk

(αL)2δ2∥∇Fi(x
k)∥2

]
(13)
≤ 4(αL)2δ2∥∇F (xk)∥2 + 4(αL)2δ2

n

n∑
i=1

∥∇Fi(x
k)−∇F (xk)∥2.

Thus, using α ≤ 1
4L and δ ≤ 1, we get

E

[∥∥∥∥ 1
|Tk|

∑
i∈Tk

∇fi(z
k
i )

∥∥∥∥2
]
≤ 3∥∇F (xk)∥2 +

(
2

|Tk| + 4(αL)2δ2
) n∑

i=1

∥∇Fi(x
k)−∇F (xk)∥2

(21)
≤ 3∥∇F (xk)∥2 + 4

(
1

|Tk| + (αL)2δ2
)
σ2.
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Now we plug these inequalities back and continue:

E
[
F (xk+1)

]
− F (xk) ≤ −β

2 ∥∇F (xk)∥2 + β
18∥∇F (xk)∥2 + β(αL)2δ2σ2

+ 3β2L∥∇F (xk)∥2 + 4β2Lσ2
(

1
|Tk| + (αL)2δ2

)
σ2

β≤ 1
16L
≤ −β

4 ∥∇F (xk)∥2 + 4β2Lσ2
(

1
|Tk| + (αL)2δ2

)
σ2 + β(αL)2δ2σ2.

Rearranging the terms and telescoping this bound, we derive

min
t≤k

E
[
∥∇F (xt)∥2

]
≤ 4

βkE
[
F (x0)− F (xk+1)

]
+ 16β

(
1

|Tk| + (αL)2δ2
)
σ2 + 4(αL)2δ2σ2

≤ 4
βkE

[
F (x0)− F ∗]+ 16β

(
1

|Tk| + (αL)2δ2
)
σ2 + 4(αL)2δ2σ2.

The result for Algorithm 1 is obtained as a special case with δ = αL.
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