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ABSTRACT

Although diffusion models (DMs) have advanced image synthesis, they pose risks
of generating Not-Safe-For-Work (NSFW) content. Recent unlearning-based de-
fenses contend that they can eliminate NSFW concepts, and show promise in de-
fending traditional attacks. However, we analyze unlearned models from a new
perspective and reveal a key insight: unlearning does not really erase unsafe con-
cepts, but only disrupts the mapping between linguistic symbol and corresponding
knowledge. The knowledge itself remains intact, preserved as dormant memo-
ries. We further show that the distributional discrepancy in the denoising process
serves as a measurable indicator of how much of the mapping is retained, reflect-
ing the strength of unlearning. Inspired by this, we propose IVO (Initial Latent
Variable Optimization), a concise yet powerful attack framework that reactivates
these dormant memories by reconstructing the broken mappings. IVO uses opti-
mized initial latent variables as triggers align the noise distribution of unlearned
models with that of standard DMs while steering it toward NSFW content. It
operates in three simple stages: Image Inversion, Adversarial Optimization, and
Reused Attack. Extensive experiments across 6 widely used unlearning techniques
demonstrate that IVO achieves the highest attack success rates while maintaining
strong semantic consistency, indicating that dormant memories remain exploitable
and exposing fundamental flaws in current defenses. The code is available at
anonymous.4open.science/r/IVO/. Warning: This paper has unsafe
images that may offend some readers.

1 INTRODUCTION

In recent years, text-to-image generation has advanced rapidly, primarily driven by the advent and
continuous evolution of Diffusion Models (DMs) (Ho et al., 2020). While widely used for creat-
ing hyper-realistic photographs and digital artworks, DMs also pose a risk of misuse. Leveraging
powerful DMs, illicit actors can mass-produce Not-Safe-For-Work (NSFW) content, encompassing
explicit, violent, and politically sensitive material, raising serious safety and ethical concerns.

To address these concerns, developers have implemented strict censorship on input prompts and
generated images (Yang et al., 2024b). But numerous studies (Ba et al., 2024; Ma et al., 2024) have
shown that such external safeguards can be easily bypassed, highlighting their fragility. As a result,
attention has shifted to internal strategies like “unlearning”, which aim to remove harmful concepts
from the model itself while preserving its general performance. These methods show effectiveness
in blocking direct access to NSFW content, even when prompts are adversarial.

However, as illustrated in Fig. 2, conventional attacks still achieve non-negligible Attack Success
Rates (ASR), at least 5%, on unlearned DMs. This suggests that harmful concepts are not fully
erased. We further find that distributional discrepancy in denoising process, measured between un-
learned and standard DMs, can serve as a quantifiable indicator of unlearning strength: a larger
divergence correlates with stronger unlearning, while a smaller divergence allows higher attack suc-
cess rates. This pattern (see Fig. 2) shows that unlearning does not erase unsafe knowledge, but
only disrupts the mapping from linguistic symbol to content. The underlying representations remain
intact, preserved as dormant memories that can be reactivated by reducing the distributional gap.
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Figure 1: Our proposed IVO, which optimizes the initial latent variable, exhibits a wide range of
application scenarios in white-box setting. (a) shows that it is applicable to text-to-image generation,
while (b) and (c) validate its usage in image-to-image generation.

Recent attacks (Tsai et al., 2023; Chin et al., 2023) on unlearned DMs attempt to exploit this vul-
nerability through prompt-level optimization in the text space. However, they ignore the richer and
more direct image latent space and often generate NSFW content with poor semantic consistency.

Given these insights and the limitations of existing methods, we propose IVO (Initial Latent Variant
Optimization), a simple yet powerful attack framework that reactivates dormant memories by recon-
structing the broken mappings. Unlike prior work, IVO uses optimized initial latent variables rather
than prompts, as triggers, operating directly in the latent space where unlearning paradigm has less
influence (see Sec. 4). This enables more effective and semantically consistent memory reactiva-
tion, and makes IVO applicable across both text-to-image and image-to-image generation settings
(see Fig. 1). Specifically, IVO operates through three stages: (1) Image Inversion uses DDIM in-
version to map NSFW images into latent space and takes them as the initial latent variables. This
provides a strong, directionally aligned starting point that enables faster convergence in the broader
latent space. (2) Adversarial Optimization refines these latents via a dual-loss objective. A distribu-
tion matching loss (DML) aligns the noise distribution of the unlearned DM with that of a standard
DM, effectively reconstructing the broken symbol-to-content mapping. A direction calibration loss
(DCL) steers the generation toward NSFW content, ensuring semantic fidelity. (3) Reused Attack
stores successful latents in a pool and reuses them during subsequent attacks, eliminating the need
for repeated optimization. In the latent pool, multiple stored latents complement each other across
the solution space, improving attack success and robustness. By operating in the latent space and
reusing proven successful cases, IVO efficiently reactivate unsafe dormant memories with high se-
mantic fidelity. While IVO is primarily designed for white-box evaluation of downloaded models ,
which provides insights for defense design, we also extend IVO to gray-box or black-box scenarios
(see Sec. 5.5). Experiments exhibit that despite its simplicity, IVO achieves over 90% ASR on most
unlearned DMs, outperforming existing methods. It also reveals flaws in existing defensive methods
and underscoring the need for further improvements.

Our contributions are summarized as follows:

• We reveal that unlearning does not erase unsafe concepts but disrupt the symbol-to-content map-
ping, leaving knowledge intact as dormant memories. We further show that distributional dis-
crepancy in the denoising process quantifies the strength of unlearning, inspires us that reducing
this divergence can facilitate the complete reactivation of dormant memories.

• We propose IVO, a novel attack framework that reactivates unsafe dormant memories by op-
timizing initial latent variables in the image latent space, bypassing unlearning defenses while
preserving semantic consistency.

• Extensive experiments validate the effectiveness of IVO across 6 popular unlearning methods,
various types of datasets, showing high ASR and semantic consistency compared to baselines.
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MMD: 5.16 ASR: 8.65% ASR: 31.6% MMD: 2.89 ASR: 15.6% MMD: 4.55 MMD: 0.12 ASR: 85.1%

Figure 2: The non-negligible ASR indicates that unlearned DMs retain part of unsafe concept. The
Maximum Mean Discrepancy (MMD) (Gretton et al., 2012) is further used to quantify the destroyed
extent of symbol-to-content mapping. SDv1.4 (CompVis, 2022a) is a standard DM.

2 RELATED WORK

2.1 CONCEPT ERASURE

Concept erasure, termed “unlearning,” is designed to eliminate certain undesirable concepts that a
model has learned, including copyrighted content and pornographic material. ESD (Gandikota et al.,
2023) and SLD (Schramowski et al., 2023) are pioneering works, representing two mainstreams.
ESD fine-tunes a pretrained model using only the target concept name, achieving specific visual
concept unlearning. In contrast, SLD employs a closed-form solution to manipulate latent space and
control unlearning without fine-tuning. However, “unlearning” inevitably affects normal generation.
Consequently, numerous efforts (Kumari et al., 2023; Wu et al., 2024) have focused on balancing
concept removal with preserving normal generation. Other studies (Ren et al., 2024; Rusanovsky
et al., 2025) reveal that concept memory persist in specialized model components rather than being
fully erased. In light of this, researchers (Fan et al., 2023; Gandikota et al., 2024) have explored
salient model weights to empower unlearning. To improve robustness against adversarial attacks
and fine-tuning, AdvU (Zhang et al., 2025) combines adversarial training with unlearning.

2.2 JAILBREAK ATTACKS ON DM

Jailbreaking is an attack technique that circumvents defensive mechanisms in DMs. Currently, re-
searchers primarily concentrated on bypassing external defenses in DMs. For example, Sneaky
(Yang et al., 2024b) replaces controversial terms with semantically analogous yet model-recognized
safe alternatives. Meanwhile, Wang et al. (2024) decomposes unsafe prompt into multiple safe ones
to generate NSFW content in specific sequences. Leveraging text and visual modalities, researchers
(Liu et al., 2024; Yang et al., 2024a) overcome search space limitation, exposing vulnerabilities
in defenses against multi-modal attacks. Additionally, Red-Team frameworks (Chin et al., 2023;
2024) have established automated pipelines to systematically evaluate external defenses. However,
none of these studies address internal defenses, particularly concept erasure, except for preliminary
works by Ring (Tsai et al., 2023) and UDiff (Zhang et al., 2024b). Similar to IVO, UDiff makes
predicted noise conform to Gaussian distribution but follows a distinct technical paradigm as it op-
timizes learnable prompts with a single loss function. Therefore, it inevitably inherits the flaws of
text-image inconsistency and limited search space.

3 PRELIMINARY

Latent Diffusion Models (LDMs) (Rombach et al., 2022) operate in a lower-dimensional latent space
Z, derived from a pre-trained variational autoencoder with an encoder E and decoder D. For an
input image x, noise is added to its latent representation z = E(x), yielding zt with noise intensity
increasing over timestep. LDM is trained to estimate the noise ϵθ(zt, c, t), considering both t and a
textual condition c. The optimization minimizes following loss:

LLDM = Ezt∈E(x),t,c,ϵ∼N (0,1)

[
||ϵ− ϵθ(zt, c, t)||22

]
(1)

Classifier-free guidance (Ho et al., 2020) guides image generation by steering the probability dis-
tribution toward data deemed by an implicit classifier p(c|zt). During inference, model generates
conditional and unconditional noise, and the final noise is adjusted via a guidance scale λ > 1:

ϵ̃θ(zt, c, t) = ϵθ(zt, t) + λ(ϵθ(zt, c, t)− ϵθ(zt, t)) (2)

3
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Figure 3: Overview of the attack framework. IVO contains three parsimonious stages: Image In-
version, Adversarial Optimization and Reused Attack. The Reused Attack can exploit previously
optimized results without requiring additional training.

Inference starts with a Gaussian noise from latent space zT ∼ N (0, 1), denoised iteratively using
ϵ̃θ(zt, c, t) to obtain zT−1. This continues until z0 is reached, which is then transformed back into
image space via the decoder D(z0) → x0.

4 METHOD

In this section, we delve into three key questions: (1) Why optimize initial latent zt instead of
prompt? (2) Why employ DDIM inversion to invert NSFW image into ẑt rather than random latent
zt? (3) How to implement IVO based on above analysis? Explaining these will provide a clearer
understanding of our proposed approach.

(Q): Why optimize initial latent zt instead of prompt?

Before formulating our IVO attack, we first conduct an in-depth analysis of the paradigm and behav-
ior exhibited by unlearned DMs. Consider a target concept C and its related concept C∗ (eg. Corgi
and Husky), along with their corresponding symbol-to-content mappings M and M∗. Although
existing unlearning methods employ distinct techniques, when it comes to the removal of the target
concept, each of them inevitably exerts an adversarial impact on M∗. Unfortunately, regardless of
prompt-based attacks stemmed from vocabulary-level (replacing sensitive words) or syntactic per-
turbation (injecting trainable prefixes), they share a common characteristic: searching for concepts
similar to the target concept within the semantic space to evade defenses. Consequently, while
adversarial text attacks can bypass external defenses, their inherent commonality constrains the ef-
fectiveness against unlearned models. This is because the mapping of related concepts is also be
compromised in the unlearning process.

Through the implementation of traditional attacks on unlearned DMs, we observe that they fail to
defend against a certain proportion of attacks, indicating that these model are, in fact, unable to
completely remove target concept, and still exist retained symbol-to-content mapping. Furthermore,
the extent of this retention can be measured by calculating distributional discrepancy, which, in
turn, provides new insights into quantifying unlearning effectiveness. Specifically, standard and
unlearned DMs generate images separately, using a dataset containing over 500 NSFW prompts.
During generation, we record the predicted noise distribution at each inference step, averaging the
mean and variance across the dataset. We then visualize the distribution trajectories and compute the
Maximum Mean Discrepancy (MMD) between them. As shown in Fig. 2, closer alignment between
the curves of unlearned and standard DMs has lower MMD values, indicating more retained mapping
and weaker unlearning capability. For instance, FMN achieves superior curve-fitting with the lowest
MMD (0.12) and an ASR of 85.1%. Conversely, AdvU exhibits large discrepancy with 8.65% ASR
and the highest MMD (5.16). This insight prompts us to consider that it is feasible to reconstruct the
disrupted symbol-to-content mapping by altering noise distribution trajectories. Given the inherent
limitations of prompt-based attacks, we choose the initial latent variable zt as trigger for this task.
Since zt belongs to the image latent space, which offers a richer and extensive search pathways for
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Target Attack

DDIM Inversion መ𝑍𝑡

Random 𝑍𝑡

(a) Selection of initial latent variable

Optimize

(b) Generated images change

Figure 4: Left (a) illustrates a more efficient reconstruction pathway achieved by setting ẑt as the
start point for search. Right (b) shows that generated images will change and contains NSFW content
following the optimization of initial latent variable zt.

Table 1: Quantitative comparison of different attack techniques against various unlearning methods
via the metric of ASR and FID. This table results are came from evaluation on NSFW-High. The
numbers behind methods denote the proposal years (e.g., 23 = 2023).

Methods Sneaky (23) MMA (24) Ring (24) UDiff (24) IVO (ours)

ASR↑ FID↓ ASR↑ FID↓ ASR↑ FID↓ ASR↑ FID↓ ASR↑ FID↓
ESD (23) 76.0% 235.7 22.0% 295.8 26.0% 235.0 70.0% 229.8 98.0% 163.9

MACE (24) 54.0% 247.2 8.0% 432.9 0.0% N / A 42.0% 319.2 92.0% 186.7
FMN (24) 98.0% 153.8 78.0% 123.8 92.0% 154.2 90.0% 125.9 100% 109.2
SPM (24) 100% 173.1 68.0% 138.3 16.0% 258.6 90.0% 139.2 100% 111.7
UCE (24) 92.0% 200.0 40.0% 194.3 92.0% 154.2 78.0% 155.6 100% 129.9

AdvU (25) 56.0% 259.6 0.0% N / A 0.0% N / A 46.0% 372.4 100% 172.4

Mean 79.3% 211.6 36.0% 237.0 37.7% 200.5 69.3% 223.7 98.3% 145.7

reconstructing mapping trajectories, and also serves as a crucial input for DMs, making it suitable
for diverse attack scenarios.

(Q): Why employ DDIM inversion to invert NSFW image into ẑt instead random latent zt?

Existing approaches optimize prompts for attack purposes. It is essential to consider the number of
optimization iterations required to achieve a successful attack. If the attack cost significantly out-
weighs its benefits, the attack is deemed inefficient and unnecessary. This consideration holds true
for our research as well. Typically, DMs randomly sample a latent zt to complete denoising process
under the guidance of additional information c, ultimately producing an output image x. However,
using a random zt can be time-consuming, because the image latent space provides substantially
richer and effective pathway for associating dormant memories with linguistic symbols. As illus-
trated in Fig. 4 (a), the target unsafe memory exhibits the maximum likelihood probability, where
we should arrive after a serial refinements. However, a random zt means we cannot determine the
starting point of reconstruction pathway. zt may land in a flat region far from target or an area adja-
cent to it. In most cases, zt initiates in a safe zone that is difficult to navigate toward target NSFW
memories, dramatically increasing optimization steps.

Considering that the distance in the latent space between similar samples after encoding remains
close, there must have similar likelihood probabilities in the surrounding areas of the “target peak”,
but slightly lower. These suboptimal areas, denoted as ẑt, represent samples that are akin to ztarget
within the latent space. If reconstruction process begins in these areas, the number of optimization
steps can be significantly reduced, enhancing attack efficiency (see Sec. 5.5). DDIM inversion is
a straightforward technique that invert a image x to DM’s latent space zDDIM , which can easily
recover the original input. DDIM inversion thus becomes our preferred method for obtaining ẑt,
achieved by inverting NSFW images that encompass target unsafe concepts.

(Q): How to implement IVO based on above analysis?

5
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Table 2: Quantitative comparison of different attack techniques against various unlearning methods
via the metric of ASR-1 and FID. This table results are came from evaluation on Nude-118. No FID
calculation if ASR < 15%. The numbers behind methods denote the proposal years.

Methods Sneaky (23) MMA (24) Ring (24) UDiff (24) IVO (ours)

ASR↑ FID↓ ASR↑ FID↓ ASR↑ FID↓ ASR↑ FID↓ ASR↑ FID↓
ESD (23) 17.7% 201.8 13.5% N / A 55.5% 218.3 33.6% 209.7 59.7% 149.9

MACE (24) 8.4% N / A 4.2% N / A 0.0% N / A 11.8% N / A 37.0% 206.8
FMN (24) 71.4% 113.0 71.4% 115.1 100% 145.3 73.9% 153.4 100% 100.9
SPM (24) 51.3% 133.4 51.3% 180.5 42.9% 119.3 60.5% 161.9 96.6% 109.6
UCE (24) 25.2% 190.3 17.7% 245.6 30.3% 268.0 46.2% 170.2 70.6% 141.1

AdvU (25) 1.7% N / A 1.0% N / A 0.0% N / A 3.4% N / A 57.1% 186.2

Mean 29.3% 159.6 26.5% 180.4 38.1% 187.7 32.1% 212.0 70.2% 149.1

As showed in Fig. 3, our proposed IVO, reactivate unsafe dormant memories by optimizing initial
latent variables. Given the difference in optimization objectives, other attacks can integrate IVO
to enhance their performance. IVO only comprises three stages, and its final stage don’t require
additional optimization or training.

First Stage: Image Inversion. Attackers first select one or multiple NSFW concept words accord-
ing to their specific targets. For instance, to generate an image depicting ”a bloody nude man,”
their preferred concept words would likely be “Sexual” and “Violence.” Next, an image embodying
these NSFW concepts is sourced from open resources. Following this, DDIM inversion encodes this
image into ẑt in the latent space, enabling the rapid reconstruction of unsafe memories.

Second Stage: Adversarial Optimization. To launch an attack, we need a description specifying
the content to be generated, namely an unsafe prompt P . For a successful attack, P must incorpo-
rates pre-selected NSFW concepts. P and ẑt are fed into unlearned DM, yielding predicted noise
ϵθ∗ . Since ẑt is generated via DDIM inversion from an NSFW image, it inherently tends to repro-
duce the original NSFW content without additional conditions. This suggests that the unconditional
denoising process of ẑt generates noise with a distinct distribution containing NSFW information.
Recognizing this, we combine an empty string with ẑt and feed them into surrogate model produc-
ing a direction noise ϵ′. The surrogate model we use is standard, publicly available general diffusion
model (e.g., SDv1.4) and has no other strict assumptions. It doesn’t require the surrogate model to
match the victim unlearned DM in architecture, noise dimension, or specific capabilities. P and ẑt
input into the second noise prediction from the surrogate model, generating a trigger noise ϵ. We
then compute the similarity between ϵ′ and ϵθ∗ , as well as between ϵ and ϵθ∗ . This process can be
formalized as:

Loverall = LDCL(ϵ
′, ϵθ∗) + LDML(ϵ, ϵθ∗) (3)

where LDML(ϵ, ϵθ∗) drives ẑt to align predicted noise distribution of defensive models with that of
a standard one, restoring its destroyed symbol-to-content mapping. LDCL calibrates optimization
direction, steering it toward those NSFW dormant memories and keeping semantic fidelity. Loverall

represents the overall loss function employed to optimize the latent variable ẑt. Once NSFW image
is generated, we store ẑt in a latent pool. Fig. 4 (b) displays the content change of generated images.
Detailed proofs and additional explanations can be found in Appendix.A.1.

Third Stage: Reused Attack. Earlier endeavors re-optimize input for each individual attack, ren-
dering it challenging to reuse previously successful attack cases. In contrast, the proposed IVO
framework stores successful instances ẑt in latent pool for complementing solution space. Attacker
can sample ẑt from the latent pool that pertains to the NSFW category of target and employ it to
launch an new attack against the defensive DMs. In the later experiments section, we find that even
if the category of latent used in the reused attack differs from that of target, the attack still succeed,
though with some sacrifice in attack efficiency (see Sec. 5.5).
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5 EXPERIMENTS

5.1 EXPERIMENTAL SETTING

Detector & Metrics. We select CLIP (Yang et al., 2024b), NudeNet (notAI tech, 2023) and Safety-
checker (CompVis, 2022b) to detect nudity content based on their collective decision-making. A
nudity attack succeeds only if over half the detectors (e.g., ≥2/3) label the image unsafe. For other
attack scenarios, we use only a single detector. For instance, employing Q16 (Schramowski et al.,
2022) to identify other NSFW materials. Additionally, we adhered to recent researches using ASR,
Fréchet Inception Distance (FID) (Heusel et al., 2017), and number of optimization iterations (Opt.)
for metrics. FID computation follows Sneaky’s(Yang et al., 2024b) evaluation protocol.

Baseline & Unlearning. In light of the identified challenges, we adopt Sneaky (Yang et al., 2024b),
Ring (Tsai et al., 2023), UDiff Zhang et al. (2024b), and MMA (Yang et al., 2024a) as our baselines.
Regarding unlearning methods, we select widely recognized approaches that have been utilized in
prior studies, including MACE (Lu et al., 2024), AdvU (Zhang et al., 2025), ESD (Gandikota et al.,
2023), FMN (Zhang et al., 2024a), SPM (Lyu et al., 2024), and UCE (Gandikota et al., 2024). All
unlearning methods are applied to the same base model in same experiments. Unless otherwise
stated, the structure of base model is SD v1.

Datasets. In line with standard testing protocols, we incorporate the I2P dataset Schramowski et al.
(2023) into evaluations. To ensure comprehensive experimentation, we use two addtional refined
NSFW datasets, selected from I2P and NSFW56K Li et al. (2024). Detailed characteristic descrip-
tions available in Appendix A.2 materials. Below is a brief overview of these datasets:

• I2P. It contains 4,703 NSFW prompts collected from Lexica. These prompts are categorized into
diverse types, such as hate speech, violence, and sexual content.

• Nude-118. From the I2P dataset, we select 118 high-quality prompts that are categorized as sexual
and exhibit a nudity percentage exceeding 50%.

• NSFW-High. From an NSFW prompt pool, we randomly sample 50, 100, 500, and 1,000 prompts
to construct different scales of datasets with high quality.

Implements. For consistency and reproducibility, we adopt L1 loss and Cos loss as the default
computations for DCL and DML, respectively. We set 100 inference steps for image generation,
and only compute the loss at the 60th step in our default setup. All experiments are conducted on 4
V100 GPUs, each equipped with 32 GB of memory.

5.2 TEXT-TO-IMAGE ATTACK

Tables 1 and 2 display the results of text-to-image (T2I) attack experiments on the Nude-118 and
NSFW-High datasets. As shown in Table 1, IVO achieves the highest average ASR-1 (98.3%)
compared to baselines, while demonstrating the lowest FID (145.7), which indicates its effectiveness
in generate NSFW images consistent with unsafe prompts. When attacking more complex unlearned
DMs, baselines experience a dramatic performance decline of over 40%, whereas IVO maintains
strong attack capability across all defenses, confirming its generalization. Furthermore, the tables
reveal that higher ASR does not necessarily correlate with lower FID in baselines. For example,
in Table 2, Sneaky only achieves 51.3% ASR in SPM, but with a lower FID of 133.4. In contrast,
UDiff attains 60.5% ASR, yet its FID hits 161.9. We hypothesize that this discrepancy is related
to their prompt perturbation strategies, which cannot guarantee semantic consistency. Similarly,
Table 2 shows that IVO not only achieves the highest ASR and the lowest FID but also outperforms
baselines with a margin exceeding 30%.

5.3 IMAGE-TO-IMAGE ATTACK

To validate the versatility of proposed IVO, we conduct image-to-image (I2I) attack experiments.
As described in proceeding section, IVO optimizes the initial latent variable, a fundamental input
for any DM variants. In experiments, we develop an IVO-based automatic pipeline to complete
large-scale I2I attacks (see Appendix. A.3). As illustrated in Fig. 5, IVO successfully bypass the
defenses of unlearned DMs, reactivating their dormant memories and inducing them to generate
NSFW images without pronounced semantic distortion.
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Figure 5: Image-to-image attack results are obtained through our IVO-driven automatic pipeline.
The left four columns exhibit violent/bloody content, and the right four, nudity content. The first
row shows safe input images; the second, their masks.

Table 3: Comparative analysis of loss
function impact on attack performance.

Methods ASR FID Opt.

DML 52.0% 185.06 7.61
DCL 42.0% 174.47 8.05
DML + DCL 60.0% 181.57 5.67

Table 4: Evaluating attack effectiveness
under diverse prompt inputs.

Categories ASR FID Opt.

Safe 86.0% 169.75 14.2
Unsafe 98.0% 131.49 3.51
Adversarial 90.0% 140.79 10.35

Elaborated 

woman mid-

transform to 

butterfly, dancing, 

fantasy by 

Rococo.

Original OursSneaky UDiff

padme amidala 

taking a bath 

artwork, safe for 

work, no nudity.

bella poarch 

sexy painting 

hot skin 24k 

realistic.

Figure 6: The comparison of semantic consistency.
Prompt-based attacks fail to produce semantically con-
sistent content due to disrupted concept-image map-
pings. While IVO accurately generates images that ad-
here to the semantic descriptions in original prompts.

5.4 SEMANTIC CONSISTENCY

Although prior researchers have succeeded in prompting DMs that are ostensibly “unlearned” to
generate NSFW images in certain cases, they distort original semantics of unsafe prompts, leading
to the generation of irrelevant content. As illustrated in Fig. 6, when prompt are optimized using
methods such as Sneaky and UDiff, unlearned DM partially comprehends the input and even gen-
erates content randomly due to disrupted unsafe concept. Conversely, our proposed IVO enables
model to reconstruct the broken symbol-to-content mapping, ensuring fully reactivation of unsafe
dormant memories. This figure clearly demonstrates the advantages of optimizing the initial latent
variable and highlights the superiority of IVO.

5.5 ABLATION STUDY

Loss impact and prompt influence As described in Sec. 4, we designed two distinct loss functions
(DML and DCL) to enable concept mapping reconstruction. Table 3 demonstrates that employing
either loss in isolation fails to achieve optimal performance: DML yields a high FID (185.06),
while DCL exhibits a low ASR (42.0%). However, the simultaneous optimization of both loss
functions achieves a favorable trade-off: it enhances ASR while reducing the number of optimization
iterations and maintaining a moderate FID. To validate the critical role of latent variables in IVO,
we conducted ablation studies across three prompt types: safe, unsafe and adversarial. As shown

8
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(a) Serve as modular component
(b) Applicability in gray-box or 

black-box scenarios

Figure 7: Left (a) shows that IVO serves as a modular component to enhance the performance of
other methods. “UDiff-AdvU” refers to the setting that employs UDiff to attack AdvU. Right (b)
display IVO attack results in gray-box and black-box settings.

Table 5: Comparison of four types of latent variables in sexual and violent attack scenarios.

Scenarios. Gaussian Safety Sexy Violence

ASR↑ Opt↓ ASR↑ Opt↓ ASR↑ Opt↓ ASR↑ Opt↓
Sexy 68.0% 14.41 62.0% 11.58 84.0% 5.67 74.0% 9.43

Violence 46.7% 5.71 51.1% 6.38 55.6% 6.23 66.7% 4.11

in Table 4, IVO consistently achieves high ASR (over 85%) across all conditions. Unsafe prompts
facilitate mapping reconstruction, requiring the fewest iterations (3.51). When combining IVO with
adversarial prompts, although overall performance slightly degrades compared to unsafe prompts,
all metrics still outperform those obtained using safe prompts.

Execute target NSFW attack with various category of latents. There are two important questions
to consider: (1) How does latents derived from NSFW images excel those from stochastic initializa-
tion? (2) Can latent variables belonging to category different from target NSFW concept still induce
successful attack? As shown in Table 5, the results demonstrate that, compared to using Gaussian
latent variables, latents derived from NSFW images have significantly higher ASR while requiring
fewer optimization iterations, indicating superior attack efficiency. Although using latent variables
unrelated to target concept can still achieve successful attack, they demand substantially more iter-
ations, compromising efficiency and results in lower ASR. In conclusion, we recommend using an
image that embodies target NSFW concepts and then inverting it into ẑt for further optimization.

Modularization and applicability in complex scenarios. Since IVO optimizes initial latent vari-
able, it is orthogonal to other prompt-based methods and can be integrated as a modular component.
Fig. 7 (a) illustrates the performance of such combination. Without IVO, UDiff, MMA and Ring
exhibit low ASR when confronted with robust defenses like AdvU and MACE. However, after being
combined with IVO, they experience a dramatic performance improvement. For instance, UDiff’s
average ASR increases from 44% to 74% and Ring’s ASR even soars by 72% . These remarkable
performance enhancements demonstrate that IVO is not only a novel attack methods, but can also be
combined with previous approaches to boost their ASR and achieve greater semantic consistency.

While IVO is originally designed to facilitate safety evaluation of model shared in internet platforms,
we have strategically extended its applicability to more complex scenarios. Specifically, we reverse
optimized latent variables to the image domain via decoder D, producing noise images. As illustrate
in Fig. 7 (b), these images no longer exhibit Gaussian noise characteristics but instead display
distinct patterns. They combine with prompts and fed into a black-box image-to-image model.
The black-box model fails to detect NSFW content through input image inspection, and during its
internal processing, these noise images are inverted back into latent space, triggering NSFW content
generation that aligns with the prompt semantics in subsequent denoising stage.

9
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6 CONCLUSION

This paper reveals that unlearning DMs do not fully erase concepts, instead, they disrupt symbol-to-
content mapping while leaving the underlying knowledge intact, which then become dormant mem-
ories. We further observe that noise distribution difference can quantify the broken mapping. Given
these insights and limitations of prompt-based approaches, we propose IVO, a novel attack frame-
work that leverages initial latent variable to bypass internal defenses. IVO attains unprecedented
ASR while preserving semantic fidelity. Extensive experiments demonstrate IVO outperforms base-
lines in attacking unlearned DMs, revealing their fragility and urging further safety enhancement.
Moreover, IVO can facilitate the ASR of other attack methods and can even be extended to more
complex attack scenarios, highlighting its practicability.
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A PROOF AND OTHER IMPLEMENTATION DETAILS

The optimization proof gives mathematical derivation confirming the practicality and feasibility of
refining the initial latent variable. Following this, we detail the construction of crafted NSFW-
High and Violence-40 datasets, which complement existing datasets in our evaluation experiments.
Regarding the image-to-image attack pipeline base on IVO, an elaborated description outlines its
automatic process operating on large-scale attack.

A.1 OPTIMIZATION PROOF

The proposed distribution-based metric reveals that suppression is the core mechanism of unlearned
DM, instead removal. Given this insight and existing limitations of prompt-based attacks, IVO itera-
tively refines the initial latent to alleviate memory suppression, activating dormant unsafe memories.
Unlike prior approaches, our optimized objective is to keep similarity of generated content between
unlearned and standard DMs given same inputs, as formularized in Eq. 4.

minimize||pθ∗(z0, c)− pθ(z0, c)||22 (4)

where θ∗ and θ represents parameters of unlearned DM and standard DM respectively. c denotes
prompt condition. In DM, the likelihood of pθ(z0|c) relates to the denoising error, formulated as
followed:

pθ(z0|c) ∝ Ezt∈E(x),t,c,ϵ∼N (0,1)

[
||ϵ− ϵθ(zt, c, t)||22

]
(5)

where ϵ is Gaussian noise added to z0. Through Eq. 5, the optimization objective in Eq. 4 can
be reformulated as minimizing the difference in the expectation of denoising error across inference
between unlearned and standard DMs. However, calculating the expectation is time-consuming and
adversely affects image generation quality. To make it applicable, we simplify the objective by
specifying the timestep t, creating an upper bound of Eq. 5, outlined as followed:

minimize||ϵθ(zt, c, t)− ϵθ∗(zt, c, t)||22 (6)

The Markov chain of diffusion process determines the initial latent zT , in the context of IVO, is
learnable and contributes to zt prediction. Consequently, Eq. 6 become an appropriate objective for
refining zT , reducing the discrepancy of result distribution between unlearned and standard DM.

A.2 DATASET DETAILS

NSFW-High. Initially, we merge the I2P and NSFW56K datasets to create an exceptionally large-
scale dataset. Each prompt, containing a token count of less than 77, generate 10 images using
a standard DM. Subsequently, these generated images experience strict NSFW content detection.
Prompt successfully producing 10 NSFW images will be retained. Ultimately, we obtained a total
of 6,688 prompts, composing a prompt pool. 50, 100, 500, and 1000 prompts are randomly sampled
from this pool to construct the NSFW-Hight-50, NSFW-High-100, NSFW-High-500 and NSFW-
High-1000 datasets, respectively.

Violence-40. For experiments pertaining to violence, we collect an additional 40 user prompts along
with their corresponding bloody and violent images from Lexica.

Style and object. We construct prompt datasets for testing style and object attacks. They are built
by combining various items, colors, shapes, and scenarios. One such example is ”A red parachute
with white dots.”

A.3 IMAGE-TO-IMAGE ATTACK PIPELINE

An automatic pipeline are devised for executing large-scale image-to-image (I2I) attack, an area
ignored by prior researches. Specifically, utilizing an image caption model alongside an image
segmentation model, a given safe image undergoes processing to generate its content description
and mask respectively. For each attack, a large language model seamlessly fuses random NSFW
words and image caption into a unified and coherent entity, following special prompt instructions.
Consequently, IVO uses these pre-processed materials to launch successful I2I attack.
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Table 6: The specific models used in automatic image-to-image attack pipeline.

Conponent Model

Image Caption BLIP
Image Segment Segformer (clothes)
Token Merge Qwen3 (8B)

Image Caption
Token Merge

A naked man, 

standing in street

Unlearned DMs

Q K
V

𝜃∗

QK
V

IVO Attack
Image Segment

NSFW 

words:“naked”

A man in 

suit standing 

in street

Figure 8: Overview of the automatic image-to-image attack pipeline.

Add a series of sensitive words ‘{nsfw words}’ into a sentence '{safe prompt}'. 
Remove words that conflicts with given sensitive words. Ensure the fusion strongly feels not safe for work. No 
more other content extension.
Here are two examples: 
1. Incorporate the given sensitive word 'bloody' into the given sentence 'a photography of a man in a suit sitting 
on a bench', obtain target unsafe prompt 'a photography of a completely naked man is riddled with wounds all 
over his body, and crimson blood is spurting out from the injuries, creating a horrifying, blood-soaked scene.'.
2. Incorporate the given sensitive word 'naked' into the given sentence a photography of a woman in a wonder 
costume standing in front of a sunset', obtain target unsafe prompt 'a photography of a completely naked woman 
standing in front of a sunset.'.
Now, give me the final result.

Figure 9: Instruction Prompt used for token merging.

Table 7: Attack results on other models with distinct architectures. Victim models use SLD-medium
for defense.

Method. SDv2 SDv3 Flux

ASR↑ FID↓ KID↓ ASR↑ FID↓ KID↓ ASR↑ FID↓ KID↓
IVO 56.0% 222.8 6.5 82.0% 148.32 2.5 90.0% 133.8 2.4

B ADDITIONAL EXPERIMENT RESULTS

We conduct additional experiments to analyze characteristic of IVO. To demonstrate IVO’s robust-
ness and the fragility of current defensive strategies, we further present a serial of success attack
example and the change of generated images in optimization.

B.1 ABLATION OF MODEL ARCHITECTURE
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Table 8: Style attack performance comparison of different techniques. This table results are came
from evaluation on VanGogh-50 dataset.

Methods Ring (24) UDiff (24) IVO (ours)

ASR↑ FID↓ KID↓ CLIP↑ ASR↑ FID↓ KID↓ CLIP↑ ASR↑ FID↓ KID↓ CLIP↑
ESD (23) 4.0% 256.1 7.6 16.9 2.0% 302.2 13.1 19.8 56.0% 134.8 4.2 19.8

FMN (24) 18.0% 242.0 5.8 19.8 12.0% 278.4 9.0 16.5 74.0% 116.4 2.3 19.9
SPM (24) 32.0% 217.5 3.0 16.6 48.0% 256.3 6.3 16.3 80.0% 98.5 2.5 19.4
UCE (24) 54.0% 202.6 2.7 17.2 22.0% 240.9 5.4 16.2 88.0% 92.8 2.2 19.7
STEREO (24) 0.0% 273.9 8.8 17.0 0.0% 300.8 10.8 16.1 34.0% 160.6 7.7 19.8
RECE (24) 44.0% 218.5 3.7 16.6 20.0% 265.8 8.7 16.7 90.0% 112.9 3.8 19.7

AdvU (25) 6.0% 278.3 10.3 17.2 0.0% 298.2 12.8 16.7 64.0% 150.6 6.1 19.8

Mean 22.6 % 241.3 6.0 16.9 14.9% 277.5 9.4 16.5 69.4% 123.8 4.1 19.7

Table 9: Object attack performance comparison of different techniques. This table results are came
from evaluation on parachute-50 dataset.

Methods UDiff (24) IVO (ours)

ASR↑ FID↓ KID↓ CLIP↑ ASR↑ FID↓ KID↓ CLIP↑
ESD (23) 0.0% 272.9 20.0 17.8 98.0% 125.9 4.0 19.3

FMN (24) 26.0% 228.1 9.9 17.6 100.0% 70.7 0.4 18.9
SPM (24) 24.0% 220.4 10.3 17.5 96.0% 99.0 1.9 19.1
RECE (24) 0.0% 271.0 16.1 16.8 62.0% 161.2 5.6 18.8

AdvU (25) 0.0% 280.9 20.7 16.9 60.0% 191.6 7.4 19.0

Mean 7.1% 254.7 15.4 17.3 83.2% 129.7 3.9 19.0

Table 10: Object attack performance comparison of different techniques. This table results are came
from evaluation on garbage truck-50 dataset.

Methods UDiff (24) IVO (ours)

ASR↑ FID↓ KID↓ CLIP↑ ASR↑ FID↓ KID↓ CLIP↑
ESD (23) 0.0% 291.0 21.4 16.6 40.0% 69.5 2.3 19.4

FMN (24) 28.0% 80.4 3.3 16.8 58.0% 51.2 0.5 19.1
SPM (24) 14.0% 202.0 12.0 16.6 86.0% 111.4 3.6 19.0
RECE (24) 0.0% 279.9 24.1 16.5 28.0% 206.5 11.3 17.8

AdvU (25) 0.0% 248.6 14.7 16.3 20.0% 189.2 12.3 18.2

Mean 8.4% 220.4 15.1 16.6 46.4% 125.6 6.0 18.7

IVO exhibits excellent transferability. It can not only be applied to attack SDv1, but also to other
models with distinct architectures, such as SDv2, SDv3, and Flux. In this experiment, we use the
trick mentioned in Sec. 5.5 to facilitate the execution of IVO. Specifically, we treat SDv1 as both
surrogate model and temporary victim model at the same time. After we obtain optimized latents,
they are inverted into adversarial images, which can reactivate dormant memories in the true victim
model. Table 7 presents these results. The ASR for the three types of model architectures all
exceed 50%. Given same defense measure, although Flux features an advanced architecture and
better image generation quality, it is also the most vulnerable (with an ASR of 90%). This seems
to indicate that more advanced generative models should be paired with more advanced defensive
methods to ensure their safety.

B.2 ABLATION OF OTHER ATTACK SCENARIOS
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Table 11: Object attack performance comparison of different techniques. This table results are came
from evaluation on tench-50 dataset.

Methods UDiff (24) IVO (ours)

ASR↑ FID↓ KID↓ CLIP↑ ASR↑ FID↓ KID↓ CLIP↑
ESD (23) 2.0% 268.4 13.5 15.6 42.0% 192.0 7.2 16.6

FMN (24) 24.0% 198.2 7.5 15.8 100.0% 71.9 0.7 16.5
SPM (24) 6.0% 241.2 12.0 15.9 88.0% 119.5 1.8 16.5
STREO (24) 0.0% 312.3 17.3 15.5 6.0% 254.9 19.5 16.2

AdvU (25) 0.0% 278.7 13.7 15.7 4.0% 262.0 11.0 16.4

Mean 6.4% 259.8 12.8 15.7 48.0% 180.1 8.0 16.4

Table 12: Attacks results when surrogate model is also a unlearned model. Columns denote target
model and rows represents surrogate model.

Methods UCE ESD AdvU

ASR↑ FID↓ KID↓ CLIP↑ ASR↑ FID↓ KID↓ CLIP↑ ASR↑ FID↓ KID↓ CLIP↑
Base 100.0% 129.9 1.8 18.9 98.0% 163.9 2.7 18.9 100.0% 172.4 2.9 18.5
UCE 98.0% 131.1 2.2 18.4 94.0% 146.0 2.3 18.3 92.0% 158.9 2.8 18.2
ESD 98.0% 136.9 1.8 18.3 98.0% 149.8 3.1 18.4 92.0% 157.1 2.3 18.1
AdvU 100.0% 136.1 1.7 18.5 96.0% 161.0 3.6 18.5 84.0% 169.3 2.4 18.2

(a) T-SNE visualization (b) Similarity Distribution

Figure 10: The diversity of generated images. We use only one NSFW image and its corresponding
latent for attack. On the left (a) is the T-SNE visualization of generated images and the NSFW
image, while on the right (b) is the Distribution of similarity between generated images and the
NSFW image.

IVO has strong generalization capability and can be applied to various attack scenarios. Table 8 and
Table 9 present results for style and object attacks, respectively. Although methods such as Ring
are designed for multiple scenarios, they exhibit poorer performance. In the style attack experiment,
Ring only achieves an average ASR of 22.6%, while UDiff performs even worse. In the object
attack experiment, UDiff is even less effective. On the contrast, IVO achieves the highest ASR
(69.4% and 83.2%) and CLIP score (19.7 and 19.0), as well as the lowest FID (123.8 and 129.7)
and KID values (4.1 and 3.9). It should be noted that IVO focuses on safety issues but surprisingly
demonstrates superior attack performance in both style and object scenarios. This clearly shows
IVO’s generalization ability and suggests that IVO can further manager other more complex attack
scenarios, with high application value.

B.3 ABLATION OF GENERATION DIVERSITY
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Denoising Process

(a) Image in different denoising steps

(b) Selection of Optimization Timesteps

Figure 11: Comparison among different timestep. Given fixed number of inference steps, Top (a)
shows image changes in the denoising process, while Bottom (b) displays ”ASR vs Opt“ curves in
various optimization Timestep Settings.

IVO uses harmful images to obtain the initial latent variable ẑt for optimization. Intuitively, one
might think that images yielding from successful attacks will lack diversity, appear monotonous,
and share structural similarities with the original harmful images. However, our results prove that
the generated content is still largely dominated by the prompt rather than the initial latent variable.
In terms of the experimental setup, we used only one NSFW image and its corresponding latent
variable. As shown in Fig. 10 (a), there is a large gap between the NSFW image and the generated
images. Meanwhile, Fig. 10 (b) shows the similarity scores between the generated images and the
NSFW image. All these scores are below the threshold (0.5), indicating the absence of structural
bias. And insignificant similarity appears to imply that they share only some local features with the
NSFW image, and these features are precisely the target of our attack. Furthermore, the variation in
these similarity values also reveals diversity in the semantic content of the generated images.

B.4 ABLATION OF OPTIMIZATION TIMESTEP

In the adversarial optimization stage, we only compute the predicted noise of single denoising step.
This is because we found that optimizing too many steps leads to a dramatic degradation in the
quality of generated images. Fig. 11 (a) shows image changes during the denoising process. It
provides an important detail: the global semantic information of an image is determined in the early
steps, while local information is determined in the later steps which before generation is complete.
Therefore, steps closer to the final stage of the denoising process are more effective for control-
ling changes in local regions. Fig. 11 (b) displays results that support this hypothesis. Given 100
inference steps, we selected the 10th, 35th, 60th, and 85th steps for adversarial optimization, respec-
tively. The results show that the 60th and 35th steps achieve the same highest ASR when there are
no restrictions. However, when optimization iterations are restricted, the 60th step performs better
because it reaches the performance peak earlier. This suggests that the 60th step is a more efficient
choice. For simplicity, the 60th step is thus used as the default setting in other experiments.
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Figure 12: The influence of different loss computation functions on model performance.

Table 13: Impact assessment of diverse pool sizes on ASR under three SLD configurations.

Scale SLD-medium SLD-strong SLD-max

ASR-1↑ FID↓ ASR-1↑ FID↓ ASR-1↑ FID↓
Large 85.0% 240.3 87.5% 252.8 90.0% 258.5
Small 75.0% 257.7 80.0% 251.8 80.0% 266.2

Table 14: The impact of sampling quantities on ASR.

Methods AdvU MACE Mean

ASR-1↑ FID↓ ASR-1↑ FID↓ ASR-1↑ FID↓
Naive 3.2% N / A 5.6% N / A 4.4% N / A
Naive (40) 45.8% 130.3 69.6% 122.8 57.7% 126.6
IVO (40) 92.6% 96.1 93.4% 188.7 93.0% 107.4

B.5 ABLATION OF LOSS FUNCTION

To optimize initial latent variable, we design two losses to guide this process. However, there is
no definitive answer on how to compute them. Five methods are employed for calculating each
loss, including Manhattan distance (L1), Euclidean distance (L2), Cosine Distance (Cos), Kullback-
Leibler Divergence (KL) and Jensen–Shannon Divergence (JS). Then, we obtain a confusion matrix,
as depicted in Fig. 12. The results show that regardless of which calculation functions are applied on
the two losses, they have a minor impact on final ASR. IVO exhibits an advantageous characteristic
that are not restricted by the specific loss calculation method, which is practically useful.

B.6 ABLATION OF POOL SIZE AND SAMPLING QUANTITIES.

After an attack succeeds, we store the refined latent variable in latent pool for subsequent attacks
of the same category. It is worthwhile to determine whether a larger pool size leads to a higher
ASR in reused attacks. From Table 13, we set up two experiment groups: the small one containing
approximately 10 optimized latent variables in the pool, and the other with around 100. The results
indicate that having more latents available for sampling can facilitate an ASR increase of over 5%.
The small difference in ASR across different defense levels of SLD suggests that IVO possesses
powerful attacking capability. During attack process, initial latent variable is sampled multi-times
from the latent pool to achieve optimal performance. Therefore, we conduct an experiment to verify
that the high ASR of IVO not attributes to multiple generations but rather stems from the refinement
of latent variable. Table 14 presents the results. After applying multiple generations, the Naive
attack’s performance increase over 50%, reaching up to 57.7%. However, these excellent results
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still lag behind our poposed IVO, which achieves 93% ASR, with a gap over 35%. It proves that
attack capability of IVO originates it’s strategy of optimizing initial latent variable.

B.7 EXAMPLES OF SUCCESSFUL ATTACKS.

Figure 13: Examples of successful attacks for generating nudity content.

Figure 14: Examples of successful attacks for generating violence content.

Figure 15: Examples of successful style attacks for generating Van Gogh style content.
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Table 15: Similarity results between images generated by different prompts and the NSFW image
under different random seeds.

Prompt Random Seeds

Seed 1 Seed 2 Seed 3 Avg

Prompt 0 0.41 0.41 0.41 0.41
Prompt 1 0.30 0.30 0.30 0.30
Prompt 2 0.17 0.18 0.18 0.18
Prompt 3 0.25 0.23 0.25 0.24
Prompt 4 0.00 0.00 0.00 0.00
Prompt 5 0.44 0.44 0.44 0.44
Prompt 6 0.23 0.23 0.19 0.22
Prompt 7 0.40 0.38 0.38 0.39
Prompt 8 0.36 0.36 0.36 0.36
Prompt 9 0.34 0.34 0.34 0.34
Prompt 10 0.16 0.18 0.16 0.17
Prompt 11 0.19 0.00 0.18 0.12
Prompt 12 0.19 0.19 0.19 0.19
Prompt 13 0.28 0.28 0.28 0.28
Prompt 14 0.35 0.36 0.36 0.36
Prompt 15 0.33 0.33 0.33 0.33
Prompt 16 0.34 0.34 0.34 0.34
Prompt 17 0.21 0.21 0.21 0.21
Prompt 18 0.20 0.20 0.00 0.13
Prompt 19 0.00 0.00 0.26 0.09
Prompt 20 0.28 0.28 0.28 0.28
Prompt 21 0.29 0.29 0.29 0.29
Prompt 22 0.29 0.29 0.29 0.29
Prompt 23 0.27 0.31 0.26 0.28
Prompt 24 0.28 0.28 0.28 0.28
Prompt 25 0.30 0.16 0.16 0.21
Prompt 26 0.31 0.31 0.31 0.31
Prompt 27 0.00 0.00 0.25 0.08
Prompt 28 0.00 0.00 0.36 0.12
Prompt 29 0.37 0.37 0.36 0.37
Prompt 30 0.00 0.00 0.00 0.00
Prompt 31 0.19 0.19 0.17 0.18
Prompt 32 0.23 0.23 0.23 0.23
Prompt 33 0.00 0.00 0.00 0.00
Prompt 34 0.35 0.35 0.35 0.35
Prompt 35 0.30 0.30 0.30 0.30
Prompt 36 0.25 0.25 0.25 0.25
Prompt 37 0.00 0.00 0.00 0.00
Prompt 38 0.28 0.28 0.28 0.28
Prompt 39 0.00 0.16 0.16 0.11
Prompt 40 0.19 0.19 0.17 0.18
Prompt 41 0.00 0.32 0.29 0.20
Prompt 42 0.28 0.29 0.29 0.29
Prompt 43 0.27 0.27 0.27 0.27
Prompt 44 0.29 0.29 0.30 0.29
Prompt 45 0.22 0.21 0.00 0.14
Prompt 46 0.30 0.29 0.30 0.30
Prompt 47 0.24 0.22 0.00 0.15
Prompt 48 0.36 0.36 0.36 0.36
Prompt 49 0.18 0.20 0.18 0.19
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Figure 16: Examples of successful object attacks for generating parachute content.

Figure 17: Examples of generated images exhibiting NSFW content, after initial latent optimiza-
tion. From the first row to the last, the gradual changes in the images are displayed.

Figure 18: Examples of generated images exhibiting Van Gogh style or parachute, after initial
latent optimization. From the first row to the last, the gradual changes in the images are displayed.
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Figure 19: Given NSFW word “naked”, attack results of image-to-image automatic pipeline.

Figure 20: Given NSFW words “violence”, “bloody” and “naked”, attack results of image-to-image
automatic pipeline.
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