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Abstract

Large language models (LLMs) have demon-001
strated impressive performance on a number of002
natural language processing tasks, such as ques-003
tion answering and text summarization. How-004
ever, their performance on sequence labeling005
tasks, such as intent classification and slot fill-006
ing (IC-SF), which is a central component in007
personal assistant systems, lags significantly008
behind discriminative models. Furthermore,009
there is a lack of substantive research on ro-010
bustness of LLMs to various perturbations in011
the input prompts. The contributions of this012
paper are three-fold. First, we show that fine-013
tuning sufficiently large LLMs can produce IC-014
SF performance comparable to discriminative015
models. Next, we systematically analyze the016
performance deterioration of those fine-tuned017
models due to three distinct yet relevant types018
of input perturbations - oronyms, synonyms,019
and paraphrasing. Finally, we propose an ef-020
ficient mitigation approach, prompt perturba-021
tion consistency learning (PPCL), which works022
by regularizing the divergence between losses023
from clean and perturbed samples. Our ex-024
periments show that PPCL can recover on an025
average 59% and 69% of the performance drop026
for IC and SF tasks, respectively. Furthermore,027
PPCL beats data augmentation approach while028
using ten times fewer augmented data samples.029

1 Introduction030

Voice controlled smart personal assistants like031

Amazon Echo and Google Home have flourished032

in recent years, enabling goal-oriented conversa-033

tions and aiding tasks like setting reminders, check-034

ing weather, controlling smart devices, and online035

shopping. A core capability of those systems is to036

perform accurate and robust intent classification037

(IC) and slot filling (SF) (Tur and De Mori, 2011;038

Qin et al., 2021). The IC task involves identifying039

the speaker’s desired intent from a given utterance,040

while the slot filling (SF) involves recognizing the041

key arguments of the intent. For instance, given 042

a user query “wake me up at five am this week.", 043

the intent is ‘set alarm’, while the SF component 044

should identify the specific details, such as ‘five 045

am’ as time and ‘this week’ as date for the alarm 046

setting. 047

Pre-trained large language models (LLMs) hold 048

promise of greatly improving personal assistant sys- 049

tems, owing to their impressive conversational and 050

reasoning capabilities. In addition to generating 051

fluent conversations, LLMs have shown SOTA per- 052

formance on a variety of natural language process- 053

ing (NLP) tasks such as text classification, question 054

answering, text summarization (Brown et al., 2020; 055

Chowdhery et al., 2022; Qin et al., 2023). Further- 056

more, some LLMs have shown promising ability 057

to generate structured outputs such as code synthe- 058

sis (Nijkamp et al., 2023; Li et al., 2023) and API 059

calls (Patil et al., 2023). However, the performance 060

of LLMs on other structured prediction tasks such 061

as slot filling lags significantly behind supervised 062

baselines (Srinivasan and Vajjala, 2023). 063

Another important issue is that LLMs can be 064

highly sensitive to prompt variations (Webson and 065

Pavlick, 2022; Min et al., 2022; Ye and Durrett, 066

2022). For instance, varying the order of few-shot 067

examples, introducing minor typos or different ex- 068

pressions with the same semantic meaning can lead 069

to qualitatively different results (Jin et al., 2020; 070

Li et al., 2020; Huang et al., 2021; Zhuo et al., 071

2023). In conversational systems, such perturba- 072

tions might be caused by automatic speech recogni- 073

tion (ASR) errors, linguistic differences, and user- 074

specific expressions. Thus, adopting LLMs for 075

voice-based personal assistants requires a good un- 076

derstanding of their robustness to above types of 077

perturbations, and effective mitigation to have ro- 078

bust LLM-based IC-SF models. 079

In this paper we consider the following ques- 080

tions: (1) How can we close the performance gap 081

between LLMs and SOTA discriminative models 082
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LLM

Original Utterance: i need to get up at ten tomorrow 
Paraphrases: tomorrow i have to rise by ten 

Original Utterance: give me more light 
Oronym Perturbation: give mi moore light 

User Requests Model Reponses
Domain: alarm Intent: set alarm Slots: time: ten, date: tomorrow
Domain: calendar Intent: set calendar 
Slots: time: ten, date: tomorrow, event name: rise by

Domain: iot Intent: hue lightup Slots: 
Domain: email Intent: query contact  Slots: person: mi moore 

Original Utterance: decrease twenty percent 
Synonym Perturbation: minify twenty percent

Domain: audio Intent: volume down Slots: change amount:
twenty percent
Domain: audio Intent: volume down Slots:  

Figure 1: Illustration examples. LLMs are expected to generate structured hypotheses, i.e., domain, intent, and slots,
in their responses to given user requests. Model prediction (shown in red) changes for minor perturbance.

on IC-SF tasks? (2) How does the performance of083

LLMs change due to minor changes in the origi-084

nal utterances? (3) Can we improve robustness of085

LLMs in the cases of realistic perturbations?086

To address the first question, we explore super-087

vised fine-tuning (SFT) for the IC-SF task, where088

the base LLM is asked to generate a target output089

based on an input query. We conduct extensive ex-090

periments on three publicly available NLU bench-091

mark datasets (ATIS, SNIPS, MASSIVE) and show092

that by combining prompt selection and SFT on093

moderately sized datasets, LLMs can learn to gen-094

erate structured IC-SF hypotheses with accuracy095

that is on par with SOTA discriminative method.096

Next, we analyze the robustness of the fine-tuned097

models to three different types of input perturba-098

tions that are relevant in the context of voice assis-099

tant systems – oronyms, synonyms, and paraphras-100

ing. We find that all three types of perturbations101

negatively impact the model performance, with the102

performance drop most significant for the SF task103

when the inputs are subject to oronym perturba-104

tions.105

Finally, we propose a novel framework that we106

call prompt perturbation consistency learning, or107

PPCL, to improve the robustness of LLMs against108

perturbations. Our framework (1) generates per-109

turbed counterparts given the original utterance by110

either replacing a small subset of tokens or para-111

phrasing the utterance while constraining the se-112

mantic similarity, (2) fine-tunes LLMs with an ad-113

ditional consistency regularization term in the ob-114

jective which explicitly encourages the model to115

generate consistent predictions for the original ut-116

terance and its perturbed counterpart. We conduct117

extensive experiments and demonstrate that PPCL118

can recover on an average 59% and 69% of the119

dropped performance for IC and SF tasks, respec-120

tively. Furthermore, our results indicate that PPCL121

outperforms simple data augmentation approach122

while using only 10% of augmented dataset. 123

2 Related Work 124

Intent Classification and Slot Filling Various 125

techniques have been explored for intent classi- 126

fication(Sarikaya et al., 2011; Chen et al., 2012; 127

Ravuri and Stolcke, 2015), with recent work focus- 128

ing on transformer-based models and transfer learn- 129

ing with pre-trained language models (Qin et al., 130

2021). Slot filling, on the other hand, is typically 131

approached using sequence labeling models, such 132

as conditional random fields (CRFs), bidirectional 133

LSTMs, and transformer-based architectures (Weld 134

et al., 2022a; Chen et al., 2019; Goo et al., 2018; 135

He and Garner, 2023). For a recent survey of joint 136

IC-SF methods, see (Weld et al., 2022b) 137

Data Augmentation In NLP tasks, data augmen- 138

tation methods have been explored to generate 139

new instances by manipulating a few words in 140

the original text (Feng et al., 2021; Chen et al., 141

2023). Some common techniques include word 142

replacement, random deletion, and word position 143

swap (Wei and Zou, 2019). Additionally, data aug- 144

mentation in NLP can involve creating entirely ar- 145

tificial examples using back-translation (Sennrich 146

et al., 2015) or generative models like variational 147

auto-encoders (Malandrakis et al., 2019; Yoo et al., 148

2019). Data augmentation has also become popular 149

for NER tasks and has been shown to be effective 150

strategy for boosting model performance (Dai and 151

Adel, 2020; Meng et al., 2021; Zhou et al., 2021). 152

Consistency Training Consistency training 153

methods aim to improve the robustness of models 154

by enforcing the stability of their predictions 155

under small perturbations, such as random noise, 156

adversarial noise, or data augmentation techniques, 157

applied to input examples or hidden states. Several 158

attempts have been made to implement consistency 159

training in NER tasks, utilizing both token-level 160
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and sequence-level approaches. Token-level161

consistency involves regularizing the model to162

remain unaffected by Gaussian noise (Lowell et al.,163

2020) or word replacement, operating at the same164

granularity as NER (Dai and Adel, 2020; Liu et al.,165

2022). However, using such simplistic noise or166

augmentation methods may violate the assumption167

that the noised tokens should retain the same labels168

as the original tokens. Alternatively, a sequence-169

level consistency method employs high-quality170

augmentation, like back-translation, to enhance171

consistency across the entire sentence (Xie et al.,172

2020). Nonetheless, this approach overlooks the173

precise location of entities due to word alignment174

issues, leading to a sub-optimal design. More175

recently, ConNER has been proposed to foster176

consistent predictions between a span of tokens177

in the original sentence and their corresponding178

projection in a translated sentence (Zhou et al.,179

2022). Unfortunately, ConNER’s applicability is180

confined to cross-lingual NER tasks. Consistency181

training for fine-tuning LLMs on IC-SF tasks has182

not been thoroughly explored yet.183

3 Method184

3.1 Problem Formulation185

Our main objective is to utilize LLMs for the pur-186

pose of generating structured hypotheses. As illus-187

trated in Figure 1, LLMs are expected to generate188

correct, coherent, and structured responses, includ-189

ing domain, intent, and slot labels, based on user190

utterances. To fill the performance gap between191

LLMs and SOTA discriminative models, we apply192

instruction fine-tuning (Touvron et al., 2023).193

We decompose our task into five steps: (1)194

Prompts Construction: we design several prompt195

structures, outlined in Appendix Table 7, to be em-196

ployed during our instruction fine-tuning process.197

These prompts utilize the input utterances X and198

the target outputs Y , which encompass various la-199

bels such as Ydomain, Yintent, and Yslots; (2) Instruc-200

tion Fine-tuning: during instruction fine-tuning, we201

utilize both the input (X) and output (Y ) within the202

prompt structure, denoted as Prompt(X,Y ). This203

approach assists LLMs in learning the task of pre-204

dicting structured hypotheses, specifically focusing205

on tasks like IC-SF within our investigation; (3) Re-206

sponse Generation: subsequent to instruction fine-207

tuning, we employ prompts with only input data,208

referred to as Prompt(X), to elicit responses from209

the LLMs. These responses manifest as a generated210

text sequence, denoted as W = {w1, · · · , wn}; 211

(4) Obtaining Structured Hypotheses: the gener- 212

ated text sequence W is then transformed into 213

structured hypotheses, culminating in the final 214

outcomes denoted as {Ŷdomain, Ŷintent, Ŷslots}; (5) 215

Performance Evaluation: we evaluate the per- 216

formance by comparing the ground truth labels 217

{Ydomain, Yintent, Yslots} with the outputs from the 218

LLMs {Ŷdomain, Ŷintent, Ŷslots}. Various metrics 219

are employed for this evaluation, e.g., accuracy and 220

F1-score for IC and SF, respectively. 221

LLMs exhibit vulnerability to perturbations 222

(Zhuo et al., 2023; Zhu et al., 2023), leading to 223

the generation of incorrect responses, as demon- 224

strated in Figure 1. Introducing small perturba- 225

tions to the inputs X or expressing them differ- 226

ently while preserving the same meaning would 227

result in distinct inputs denoted as X ′. Neverthe- 228

less, given that X ′ maintains identical structured 229

hypotheses and target labels Y , our expectation is 230

that LLMs should be able to generate correct re- 231

sponses. In other words, LLMs are expected to 232

be robust against these perturbations and generate 233

consistent responses. 234

3.2 Prompts Construction 235

The standard prompts employed during instruction 236

fine-tuning process with LLMs typically involve 237

presenting both the input context and its corre- 238

sponding target output in a paired structure (Liu 239

et al., 2023). The LLMs are then trained to generate 240

the target output based on the input context. The 241

primary objective here is to fine-tune the models’ 242

parameters aiming to minimize prediction errors 243

and improve their ability to generate accurate and 244

contextually appropriate responses. 245

We construct several prompt formats for IC-SF 246

tasks as detailed in Appendix Table 7. The simple 247

prompt format involves presenting the utterance 248

and target outputs consecutively. Next, we design a 249

structured prompt format that for predicting struc- 250

tured hypotheses. As shown in Appendix Table 251

7, this format associates the intent with its corre- 252

sponding domain and aligns the slot labels with the 253

arguments of the request. 254

Furthermore, in the context of the sequence la- 255

beling task, i.e., SF, it is expected that LLMs gen- 256

erate slot labels for each individual token within 257

the given utterance. Effectively associating tokens 258

with their respective slot labels is crucial to en- 259

hance the models’ performance during instruction 260

fine-tuning. Therefore, we construct three different 261
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SF prompt formats with the intention of improving262

model proficiency in the SF task. The tag-only for-263

mat represents the simplest approach, but it is more264

challenging since the model is required to implic-265

itly track token indices as well (Raman et al., 2022).266

To simplify, we introduce sentinel-based formats.267

These sentinel markers enable us to avoid redun-268

dant inclusion of the original tokens in the target269

output. Instead, the sentinel tokens are employed270

to facilitate the learning of associations between271

tokens and their corresponding slot labels.272

Our constructed prompt formats offer several273

advantages: (1) The structured format efficiently274

arranges the input and output labels within a co-275

herent structure, facilitating the generation of struc-276

tured hypotheses; (2) The sentinel-based formats277

eliminate the need for redundant input repetition,278

simplifying the decoding process and preventing279

hallucinations; (3) These formats enable a more280

straightforward method for token tracking (includ-281

ing indices) and establishing connections between282

tokens and their corresponding slot labels.283

3.3 Perturbations284

A robust model aims to convert all utterances with285

or without meaning-preserving perturbations into286

correct hypotheses. To evaluate model robustness287

in IC-SF tasks, we employ different types of per-288

turbations: oronyms, synonyms, and paraphrases,289

covering both word-level and sentence-level pertur-290

bations aligned with real-world application scenar-291

ios. We show some examples of these perturbations292

in Appendix Table 8 and present more details of293

the generation process in Experiments section.294

Oronym perturbation involves making changes295

to a text by replacing words or phrases with those296

that are phonetically similar but carry a different297

meaning. Oronym perturbation is widely used for298

data augmentation in NLP tasks, especially for299

tasks that require robustness to speech recognition300

errors (ASR) or homophonic ambiguity (Cai et al.,301

2023). While the altered semantics of oronym-302

perturbed expressions may differ from the initial303

utterances, our expectation is that LLMs should304

exhibit robustness to these changes and produce305

responses aligned with user intent.306

Synonym perturbation replaces certain words or307

phrases with their synonyms while preserving the308

overall meaning of the text. It is commonly em-309

ployed in NLP as data augmentation to enhance310

data diversity by generating new variations of a311

given sentence while retaining semantic coherence312

(Alfonso-Hermelo et al., 2021). Synonym perturba- 313

tion tests robustness of LLMs in generating consis- 314

tent hypotheses when presented with semantically 315

similar utterances. 316

Paraphrasing perturbation entails rephrasing a 317

given text to create variations while preserving its 318

original meaning. This is highly consistent with 319

our daily communications that present the same 320

meaning in different ways. Hence, irrespective 321

of the chosen words or structures, LLMs should 322

consistently produce accurate hypotheses. 323

3.4 Data Augmentation 324

Data augmentation is widely used in fine-tuning 325

LLMs to improve their generalization capabilities. 326

There are two major benefits of data augmentation: 327

(1) It expands the dataset, which proves beneficial 328

for overcoming limited training data in diverse real- 329

world scenarios; (2) It diversifies the fine-tuning 330

dataset, equipping the model to better handle lin- 331

guistic variations and consequently enhancing its 332

performance in downstream tasks. 333

We apply a range of data augmentation tech- 334

niques, each designed to generate diverse data 335

through specific perturbations. To elaborate, we 336

utilize word replacement techniques involving 337

oronyms and synonyms as forms of data augmen- 338

tation. This approach improves LLM’s ability to 339

adapt to previously unseen data and comprehend 340

language variations, addressing the challenges as- 341

sociated with speech recognition and linguistic am- 342

biguity. We also paraphrase the training data, pro- 343

viding LLMs with more examples to learn different 344

ways of expressing the same content. 345

However, even though data augmentation is ad- 346

vantageous, it is essential not to introduce noise or 347

potentially misleading content. We establish spe- 348

cific constraints during the generation process and 349

implement various post-processing filters to rein- 350

force the preservation of the original utterances’ 351

integrity. 352

3.5 Prompt Perturbation Consistency 353

Learning (PPCL) 354

Despite the fact that data augmentation has been 355

demonstrated to be efficient to improve model ro- 356

bustness and generalizability (Chen et al., 2021), it 357

overlooks the similar semantic meaning shared be- 358

tween the original and augmented data. To address 359

this, we propose perturbation consistency learn- 360

ing framework to further utilize these augmented 361

data, particularly the perturbed counterparts of the 362
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        : tell me the weather this weak: tell me the weather this week

: O O O O date O: O O O O date date

LLM

Figure 2: Perturbation consistency learning architecture.
xc and xp denote the clean and perturbed utterances,
respectively. ŷc and ŷp here denote the slot labels gener-
ated by LLM. ŷjc and ŷjp represent the output probability
distributions of current interest tokens, i.e., ‘date’ and
‘O’. JS here denotes Jensen–Shannon divergence.

original utterances in our study. The key idea is363

to integrate a term into the training objective that364

explicitly encourages the generation of similar pre-365

dictions (and consequently, comparable responses)366

for both the original utterance and its perturbed367

counterpart. Through the incorporation of this ad-368

ditional constraint, our goal is to strengthen the369

model’s ability to maintain consistency between the370

original and perturbed utterances, resulting in im-371

proved robustness and more reliable performance372

across real-world applications.373

Our objective is to align the model’s responses374

when presented with two semantically equivalent375

utterances. To achieve this, we add an extra com-376

ponent into the training objective: the Jensen-377

Shannon (JS) divergence of output probabilities378

between a clean utterance and its perturbed coun-379

terpart. This term is integrated with the standard380

cross-entropy loss utilized in the auto-regression381

phase of the fine-tuning process.382

Figure 2 shows the architecture of PPCL. During383

the fine-tuning process, we simultaneously input384

the clean utterance denoted as xc and its perturbed385

counterpart labeled as xp to the LLMs. In response386

to these inputs, the LLMs generate correspond-387

ing outputs pjc and pjp, respectively, the probabil-388

ity distributions over vocabulary of the j-th out-389

put token for xc and xp, where pjc, p
j
p ∈ R|V| and390

V denotes the vocabulary size. Subsequently, we391

apply Softmax to pjc and pjp and get their respec-392

tive probability distributions ŷjc and ŷjp, formally:393

ŷjc = Softmax(pjc) and ŷjp = Softmax(pjp). We394

then apply JS divergence to quantify the similarity395

between ŷjc and ŷjp. JS is a symmetric variation of396

Kullback–Leibler divergence (KL), defined as:397

JS(P ||Q) =
1

2
(KL(P ||M) + KL(Q||M)), (1)398

where M = 1
2(P +Q). JS smooths out the asym- 399

metry of KL and offers a more balanced perspec- 400

tive on similarity. We obtain the JS of the two 401

probability distributions of j-th output, denoted as: 402

JS(ŷjc || ŷjp). We use the average JS across all out- 403

put probability distributions associated with xc and 404

xp as our final perturbation consistency learning 405

loss, formally: 406

LJS =
1

L

L∑
j=1

JS(ŷjc || ŷjp), (2) 407

where L denotes the response length. 408

Utilizing Eq. 2 with oronym and synonym per- 409

turbations is straightforward, as these perturbations 410

merely substitute tokens or phrases with their re- 411

spective oronyms and synonyms while maintaining 412

the utterance length. However, paraphrasing pertur- 413

bations lead to varying lengths between the clean 414

utterance and its modified counterpart. Instead of 415

computing the JS for each token-pair in the output, 416

we employ the averaged probability distribution to 417

calculate the perturbation consistency learning loss 418

for paraphrasing perturbations, formally: 419

LJS = JS(ŷc || ŷp), (3) 420

3.6 Training Objective 421

Our training objective integrates the supervised 422

cross-entropy losses for both clean and perturbed 423

utterances (i.e., LC and LP ) with the perturbation 424

consistency learning loss LJS, formally: 425

LC = CE(ŷc, y), (4) 426

427
LP = CE(ŷp, y), (5) 428

429
L = λ1LC + λ2LP + λ3LJS, (6) 430

where λ1, λ2, and λ3 are weight coefficients. 431

In order to optimize the above objective, it is es- 432

sential to have both the clean utterance and its corre- 433

sponding perturbed counterpart. We generate these 434

paired perturbed utterances using our proposed per- 435

turbation generation methods. Furthermore, to 436

ensure the presence of semantically comparable 437

pairs, we implement specific post-processing filter- 438

ing procedures. These filters serve to verify that the 439

generated perturbed utterances genuinely maintain 440

semantic equivalence with their clean counterparts. 441

442

4 Experiments 443

4.1 Experimental Settings 444
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Datasets We evaluate model performance on445

three NLU benchmark datasets, i.e., ATIS (Price,446

1990), SNIPS (Coucke et al., 2018), MASSIVE447

(FitzGerald et al., 2022). More details of these448

datasets and their statistics are shown in the Ap-449

pendix.450

Baselines We compare the performance of PPCL451

with the following baselines: supervised fine-452

tuning with discriminative models like JointBERT453

and JointBERT+CRF, zero-shot and few-shot learn-454

ing with GPT variants, instruction fine-tuning with455

LLaMA. For additional information about these456

baselines and their specific experimental setups,457

please refer to the Appendix.458

4.2 Evaluation Metrics459

For the IC task, we use prediction accuracy on a460

held-out test set and for SF task we use F1-score as461

the evaluation metrics.462

Instead of using absolute difference in perfor-463

mance between models trained with clean and per-464

turbed data, we use a relative measurement. We465

introduce Performance Drop Rate (PDR), which466

quantifies the relative performance decline follow-467

ing a perturbation, formally:468

PDR(D,D′, fθ) = 1−
∑

(x,y)∈D′ M[fθ(x), y]∑
(x,y)∈D M[fθ(x), y]

.

(7)469

M here is the indicator function and fθ denotes the470

models. D and D′ indicates the clean and perturbed471

test sets, respectively. We want to clarify that the472

clean and perturbed test sets are in a one-to-one473

correspondence, thus |D| == |D′|. In other words,474

each example in the clean test set has a correspond-475

ing example in the perturbed test set. This ensures476

a fair and direct comparison between the model’s477

performance on clean and perturbed samples.478

4.3 Perturbed Evaluation Sets479

We generate perturbed evaluation sets for each480

benchmark dataset. For IC-SF tasks we compile481

a list of key stop words based on the domain, in-482

tent, and slot label sets, and do not substitute them.483

To ensure that clean and perturbed samples are se-484

mantically similar, we filter out perturbations with485

BERTScore (Zhang et al., 2019) with the original486

sample. We use a 0.85 threshold.487

With perturbations of samples, generating appro-488

priate target labels is crucial for evaluation. For489

intent labels, we align them with those of the orig-490

inal utterances. For slot labels, the procedure is491

Table 1: Comparison of model performance on three
datasets. The best performance of SOTA discriminative
models and LLMs is highlighted in bold.1

Datasets Model1 Intent Acc Slot F1
JointBERT 89.44 80.43
JointBERT+CRF 88.67 80.58
GPT3.5-ZS 60.39 -

MASSIVE GPT3.5-FS 67.18 31.76
GPT2+SFT 84.13 66.72
LLaMA-7b+SFT 88.01 80.45
LLaMA-13b+SFT 88.87 80.7
LLaMA-30b+SFT 89.05 80.74
JointBERT 97.53 95.83
JointBERT+CRF 96.75 95.58

ATIS GPT3.5-ZS 87.45 -
GPT3.5-FS 93.17 73.51
GPT2+SFT 97.31 83.92
LLaMA-7b+SFT 98.21 94.26
JointBERT 98.57 96.67
JointBERT+CRF 98.28 96.07

SNIPS GPT3.5-ZS 95.14 -
GPT3.5-FS 94.42 49.12
GPT2+SFT 97.14 88.23
LLaMA-7b+SFT 98.14 94.51

more complex. For perturbations that maintain the 492

length and word order, such as oronyms and syn- 493

onyms, we directly adopt the original slot labels as 494

their corresponding counterparts. For paraphrased 495

variations that may deviate in length and word or- 496

der from the original utterance, we automatically 497

generate new slot labels. The new slot labels are 498

derived from the semantic annotations present in 499

the original utterance. This strategy ensures that 500

the perturbed versions retain their intended mean- 501

ing while accommodating any structural changes 502

arising from the paraphrasing process. 503

5 Results and Discussion 504

5.1 Performance Gap between LLMs and 505

discriminative models 506

First, we show the model performance compari- 507

son of different baselines on three datasets in Ta- 508

ble 1. These results demonstrate that LLMs, i.e., 509

GPT2 and LLaMA, which have been instruction 510

fine-tuned with our proposed sentinel-based struc- 511

tured format, achieve comparable intent classifica- 512

tion performance to SOTA discriminative models 513

like JointBERT across all three datasets. However, 514

applying zero-shot and few-shot learning settings 515

the performance of LLMs is notably worse, espe- 516

cially for the SF tasks. 517

The lower performance of LLMs on the SF task 518

could be attributed to the mismatch between the 519

nature of the semantic labeling task and the design 520

of text generation models. The latter are not in- 521

herently optimized for SF tasks, which might lead 522
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Table 2: Comparison of model performance with dif-
ferent prompt formats: Simple and Structured prompt
formats with tag-only, extractive sentinel-based with tag,
and sentinel-based with tag slots formats, respectively.

Datasets Prompt Formats Intent
Acc

Slot
F1

Simple + Tag 98.43 86.04
ATIS Simple + Extractive Sentinel 97.76 93.12

Simple + Sentinel Tag 98.21 94.26
Simple + Tag 97.85 89.11

SNIPS Simple + Extractive Sentinel 98.71 92.88
Simple + Sentinel Tag 98.14 94.51
Simple + Tag 88.68 72.91
Simple + Extractive Sentinel 88.33 73.42
Simple + Sentinel Tag 87.51 75.36

MASSIVE Structured + Tag 88.73 75.72
Structured + Extractive Sentinel 87.82 75.13
Structured + Sentinel 88.01 80.45

to sub-optimal results in some cases. However523

they can still achieve comparable results for the524

sequence labeling task, such as SF, after supervised525

fine-tuning with appropriate instructions or struc-526

tured formats. This is demonstrated by LLaMA-527

30b achieving and average SF accuracy (89.84%)528

within 1.3% of JointBERT performance (91.03%),529

and even superseding it for MASSIVE dataset.530

5.2 Prompt Formats531

We compare the model performance using differ-532

ent prompt formats in Table 2. The sentinel-based533

structured prompt format achieves the best perfor-534

mance, particularly for the SF tasks. This outcome535

aligns with our initial hypothesis that the structured536

format is highly effective in organizing both the in-537

put and output labels, leading to improved learning538

ability for the models. In addition, sentinel-based539

slot formatting significantly improves performance,540

especially in the SF task.541

5.3 Performance drop due to Prompt542

Perturbations543

Table 3 illustrates examples of clean and perturbed544

utterances and their difference in model predictions545

even though the BertScores between the clean and546

perturbed samples are higher than 0.85. We show547

the relative performance drops resulting from the548

following three perturbations: oronyms, synonyms,549

and paraphrases, on MASSIVE dataset in Table 5.550

The results of ATIS and SNIPS are shown in Ap-551

pendix. Results show that discriminative models,552

ICL approaches, and LLMs with instruction fine-553

tuning are vulnerable to these perturbations with554

large performance drops, most notably, in SF tasks555

with oronym perturbations.556

These findings highlight the vulnerabilities of557

both discriminative and generative models when558

exposed to perturbed data, emphasizing the need to 559

improve model robustness for real-world applica- 560

tions. Identifying and mitigating the impact of per- 561

turbations, especially in tasks involving sequence 562

labeling like SF, are critical to improving the per- 563

formance and generalizability of these models. 564

5.4 PPCL Mitigation Results 565

We share results from two mitigation approaches 566

for improving robustness of LLMs against prompt 567

perturbations: data augmentation and PPCL. We 568

show results with different augmentation sizes and 569

different combinations of loss functions on MAS- 570

SIVE dataset are in Table 4. All these are done 571

on LLaMA-7b model. Both approaches recover 572

significant performance drop. The ones where mul- 573

tiple perturbed samples are added for each clean 574

sample the training data size increases by 50k or 575

more. For example, data augmentation with one 576

perturbed sample per clean sample, along with per- 577

turbation loss, shown as LC + LP recovers per- 578

formance drops up to 45% on IC and 51% on SF 579

tasks, respectively for Oronym perturbation. When 580

augmented with 5 perturbed samples per clean sam- 581

ple, it performs better. However, PPCL, with only 1 582

perturbed sample per clean, which include perturba- 583

tion loss and JS loss, outperforms multiple sample 584

augmentation in all cases, except for SF in para- 585

phrase perturbation. For paraphrase perturbation, 586

PPCL recovers 60% of SF-PDR compared to 74% 587

by multi-sample augmentation, but at one-tenth the 588

augmentation size. On an average, PPCL is able 589

to recover 59% in IC and 69% in SF performance 590

drops. In comparison, multi-sample augmentation 591

is able to recover 58% in IC and 59% in SF. PPCL 592

achieves the recoveries with one-tenth the augmen- 593

tation size. PPCL comparisons with augmentation 594

on ATIS and SNIPS datasets as shown in Appendix, 595

indicating the generalizability and effectiveness of 596

our approach across different domains and datasets. 597

5.5 Ablation Studies 598

In our training objective, there are three different 599

terms in Eq. 6, and to better understand their contri- 600

butions towards improving the robustness of LLMs 601

against perturbations, we conducted an ablation 602

study as shown in Table 4. 603

Experimental results make it clear that the mod- 604

els achieve the best performance when all three 605

loss terms (Lc, Lp, Ljs) in the training objective 606

are utilized. This indicates that each of these terms 607

plays a significant role in enhancing the robustness 608
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Table 3: Some examples of clean and perturbed utterances, with BertScore > 0.85. Red lines are a result of
perturbation. Blue lines are post PPCL mitigation.

Perturbations Utterances Pred_Domain Pred_Intent Pred_Slots
Clean create an alarm for today at ten am alarm alarm_set [today: date , ten am: time]
Paraphrase set a reminder for today at ten am calendar calendar_set [today: date , ten am: time]
Paraphrase set a reminder for today at ten am alarm alarm_set [today: date , ten am: time]
Clean give me more lite iot iot_hue_lightup []
Oronym give mi moore lite email email_querycontact [mi moore: person]
Oronym give mi moore lite iot iot_hue_lightup []

Table 4: Mitigation results of data augmentation and PPCL on MASSIVE dataset. We show results with different
augmentation sizes and different loss functions. For multi-sample augmentation the training size increase by ∼ 50k,
for single sample it is similar to the original size.

Perturb Mitigation Augmentation Loss IC-PDR Recovery SF-PDR Recovery
Baseline - Lc 16.67 - 40.75 -
JS Loss +3k Lc + Ljs 15.74 5% 32.80 19%

Oronyms Perturb Loss +3k Lc + Lp 8.95 46% 18.44 55%
Perturb Loss +50k Lc + Lp 9.02 45% 19.73 51%
PPCL (JS + Perturb Loss) +3k Lc + Lp + Ljs 8.74 47% 15.41 62%
Baseline - Lc 13.94 - 9.72 -
JS Loss +5k Lc + Ljs 12.11 13% 7.83 19%

Synonyms Perturb Loss +5k Lc + Lp 5.59 60% 5.13 47%
Perturb Loss +50k Lc + Lp 4.01 71% 4.49 53%
PPCL (JS + Perturb Loss) +5k Lc + Lp + Ljs 3.74 73% 1.44 85%
Baseline - Lc 8.62 - 16.14 -
JS Loss +6k Lc + Ljs 7.79 9% 15.10 6%

Paraphrases Perturb Loss +6k Lc + Lp 5.92 31% 8.89 45%
Perturb Loss +50k Lc + Lp 3.69 57% 4.24 74%
PPCL (JS + Perturb Loss) +6k Lc + Lp + Ljs 3.69 57% 6.36 60%

Table 5: Comparison of model performance drops as a
result of prompt perturbations, on MASSIVE dataset.
The smaller PDR values imply higher model robustness.

Perturb Model IC-PDR SF-PDR
JointBERT 21.53 47.47
JointBERT+CRF 20.45 47.41
GPT3.5-ZS 1.15 -

Oronyms GPT3.5-FS 30.55 35.05
GPT2+SFT 20.83 58.40
LLaMA-7b+SFT 16.67 40.75
JointBERT 13.42 7.49
JointBERT+CRF 13.21 7.31
GPT3.5-ZS 6.95 -

Synonyms GPT3.5-FS 16.71 8.3
GPT2+SFT 17.14 10.74
LLaMA-7b+SFT 13.94 9.72
JointBERT 7.09 13.45
JointBERT+CRF 8.82 15.19
GPT3.5-ZS 9.09 -

Paraphrases GPT3.5-FS 9.88 16.2
GPT2+SFT 7.13 17.63
LLaMA-7b+SFT 8.62 16.14

of the models. PPCL outperforms multi-sample609

augmentation with a fraction of augmentation vol-610

ume in 5 out of 6 tasks in Massive data.611

5.6 Failure and Saved Examples612

We provide two case studies in Table 3 to illustrate613

some failure due to the perturbations and the recov-614

eries after applying PPCL. In these two examples,615

we observe that oronym substitution and paraphras-616

ing lead the model to generate incorrect responses. 617

These incorrect responses (red lines) are charac- 618

terized as failure cases, as they do not accurately 619

capture the user’s intents or the relevant informa- 620

tion in the utterances. However, after re-training 621

the model with PPCL, we see improvement. The 622

model is now able to generate the correct responses, 623

which are demonstrated in blue lines. 624

6 Conclusion 625

We study, evaluate, and improve the robustness of 626

LLMs in generating structured hypotheses, such 627

as IC-SF tasks. We first propose a sentinel-based 628

structured prompt format for instruction fine-tuning 629

LLMs resulting in comparable performance to 630

SOTA discriminative models. Next, we evaluate 631

robustness of LLMs under various prompt pertur- 632

bations, i.e., synonyms, oronyms, and paraphrases. 633

Our results indicate that LLMs are vulnerable to 634

these perturbations, with an average performance 635

drop rate of 13.07% in IC accuracy and 22.20% 636

in SF F1-score. We then propose two mitigation 637

strategies, i.e., perturbation consistency learning 638

and data augmentation, aiming to improve model 639

robustness. These methods are able to recover up 640

to 59% performance drop in IC task and 69% in 641

SF task, making the resulting LLMs more robust 642

to prompt perturbations. 643
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Limitations644

PPCL was developed based on observations on pub-645

licly available small datasets like Massive, ATIS,646

SNIPS. The improvement in performance might647

not be as pronounced in real world datasets whose648

distributions and noise structure might not mimic649

the public datasets. Improvement in robustness by650

implementing PPCL was evaluated on IC-SF tasks.651

We expect PPCL to work in other tasks as well, but652

we have not demonstrated it. We plan to do so in653

future work.654
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A Appendix 915

A.1 Datasets 916

We show the data statistics of the three datasets in 917

Table 6 and present more details here. 918

• ATIS: ATIS dataset has been widely used to 919

develop and evaluate natural language under- 920

standing systems, including intent detection, 921

slot-filling, and dialogue act classification. 922

The dataset consists of a collection of human- 923

computer dialogues, where users interact with 924

a simulated airline information system to ob- 925

tain various travel-related information, such as 926

flight schedules, ticket availability, and airport 927

information. These dialogues were collected 928

from real users interacting with the ATIS sys- 929

tem at that time. 930

• SNIPS: SNIPS dataset is designed to sup- 931

port the development and evaluation of voice- 932

controlled systems for home automation tasks. 933

It consists of a large collection of spoken lan- 934

guage interactions, where users interact with 935

a voice assistant to perform various tasks com- 936

monly found in a home setting, such as setting 937

alarms, playing music, checking the weather, 938

and controlling smart home devices. 939

• MASSIVE: MASSIVE dataset is an open 940

source multilingual NLU dataset from Ama- 941

zon Alexa NLU systems consisting of 1 mil- 942

lion labeled utterances spanning 51 language. 943

For our experiments, we only use the en-US 944

domain utterances. 945

A.2 Baselines 946

• JointBERT and JointBERT+CRF: JointBERT 947

was propose in (Chen et al., 2019) as a 948

joint IC-SF model based on BERT. Joint- 949

BERT+CRF investigates the efficacy of 950

adding Conditional Random Field (CRF) for 951

modeling slot label dependencies on top of 952

the joint BERT model. We use English un- 953

cased BERT-Base model which has 12 layers, 954

768 hidden states, and 12 heads. For fine- 955

tuning, all hyper-parameters are tuned on the 956

development set. The maximum length is 50. 957

The batch size is 32. Adam is used for opti- 958

mization with an initial learning rate of 5e-5. 959

The dropout probability is 0.1. The maximum 960

number of epochs is set as 10. 961
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Table 6: Dataset statistics

Datasets Train Dev Test Intent Labels Slot Labels
ATIS 4478 500 893 18 127
SNIPS 13084 700 700 7 72
MASSIVE 11514 2033 2974 60 56

• Zero/Few-shot Learning: In our experiments,962

we utilize the OpenAI API and GPT3.5 for963

conducting zero-shot and few-shot learning964

tasks. We use 10 examples in the few-shot965

learning. Different prompts are designed to966

evaluate the model’s ability to generalize and967

perform tasks it hasn’t been explicitly trained968

on, showcasing its capacity for zero-shot and969

few-shot learning scenarios.970

• LLMs: We evaluate several popular LLMs, in-971

cluding GPT-2 and LLaMA. GPT-2 is a large-972

scale unsupervised language model designed973

to generate human-like text based on the con-974

text given to it. We use the smallerst version975

of GPT-2 with 124M parameters. The LLaMA976

model is a collection of foundation language977

models ranging from 7B to 65B parameters978

proposed by Meta. We use the 7b, 13b, and979

30b versions during our experiments.980

• Supervised Fine-tuning: We first apply super-981

vised fine-tuning with LLMs for IC-SF tasks.982

The maximum length is set as 256. The batch983

size is 32. Adam is also use for optimiza-984

tion with an initial learning rate of 3e-4 with985

100 steps warm-up. We fine-tune the model 5986

ecpochs.987

• Perturbation Consistency Learning: We fur-988

ther fine-tune the models for another 2 epochs989

with out perturbation consistency learning ob-990

jective. We use Adam as optimizer with an991

initial learning rate of 3e-4.992

A.3 More Results993

We show some other results in the following tables.994

995
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Table 7: Illustration of prompt and SF formats for IC-SF tasks

Utterance (u): wake me up at five am this week Domain (d): alarm Intent (i): alarm_set
Slots (s): [Other Other Other Other time time date date] Arguments (a): [time : five am, date : this week]
Prompt Format Samples
Simple Prompt Utterance: u Domain: d Intent: i Slots: s Arguments: a
Structured Prompt Utterance: u Intent in Domain: i in d Slots with Arguments: s with a
SF Formats Sample Inputs & Slots

Input: wake me up at five am this weekTag Only Slots: Other Other Other Other time time date date
Input: <0>wake <1>me <2>up <3>at <4>five <5>am <6>this <7>weekSentinel + Tag Slots: <0>Other <1>Other <2>Other <3>Other <4>time <5>time <6>date <7>date
Input: <0>wake <1>me <2>up <3>at <4>five <5>am <6>this <7>weekExtractive Sentinel + Tag Slots: <4>time <5>time <6>date <7>date

Table 8: Examples of different types of perturbations

Original Utterances Oronyms Perturbations
review all alarms review aul alarms

when is the event going to start wynn is the event going to start
Original Utterances Synonyms Perturbations
email to new contact email to novel contact
pink is all we need pink is all we ask

Original Utterances Paraphrasing Perturbations
tell me the weather this week whats the weather forecast for this week

how old is mariah carey what is the age of mariah carey

Table 9: Comparison of model performance drops
against perturbations on ATIS dataset.

Perturb Model IC-PDR ↓ SF-PDR ↓
JointBERT 1.79 18.76
JointBERT+CRF 1.46 20.74
GPT3.5-ZS 1.81 -

Oronyms GPT3.5-FS 1.37 33.98
GPT2 2.33 27.21
LLaMA-7b 1.95 18.63
JointBERT 6.07 3.68
JointBERT+CRF 8.26 3.96
GPT3.5-ZS 7.22 -

Synonyms GPT3.5-FS 1.66 5.70
GPT2 4.89 11.91
LLaMA-7b 6.97 5.70
JointBERT 6.76 13.79
JointBERT+CRF 8.71 13.78
GPT3.5-ZS 6.71 -

Paraphrases GPT3.5-FS 3.41 9.66
GPT2 2.09 51.85
LLaMA-7b 7.89 13.97

Table 10: Comparison of model performance drops
against perturbations on SNIPS dataset.

Perturb Model IC-PDR ↓ SF-PDR ↓
JointBERT 2.58 18.45
JointBERT+CRF 3.53 17.98
GPT3.5-ZS 1.21 -

Oronyms GPT3.5-FS 3.44 17.53
GPT2 2.65 28.04
LLaMA-7b 1.42 19.67
JointBERT 3.50 9.33
JointBERT+CRF 3.50 8.63
GPT3.5-ZS 11.51 -

Synonyms GPT3.5-FS 14.71 9.92
GPT2 8.76 16.99
LLaMA-7b 4.77 11.85
JointBERT 5.52 39.39
JointBERT+CRF 6.57 38.70
GPT3.5-ZS 12.42 -

Paraphrases GPT3.5-FS 14.05 33.29
GPT2 7.69 45.64
LLaMA-7b 8.36 41.06

Table 11: Ablation studies on the different terms in
training objective L of ATIS dataset.

Perturb Losses IC-PDR ↓ SF-PDR ↓
LC 1.95 18.63

Oronyms LC + LP 0.18 (90%) +0.33 (101%)
LC + LP + LJS +0.01(100%) +0.71(103%)
LC 6.97 5.70

Synonyms LC + LP 3.55 (49%) 2.32 (59%)
LC + LP + LJS 2.11(70%) 0.33(94%)
LC 7.89 13.97

Paraphrases LC + LP 4.63 (41%) 4.02 (71%)
LC + LP + LJS 4.63(41%) 3.19(77%)
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Table 12: Ablation studies on the different terms in
training objective L of SNIPS dataset.

Perturb Losses IC-PDR ↓ SF-PDR ↓
LC 1.42 19.67

Oronyms LC + LP 0.23 (84%) 2.62 (86%)
LC + LP + LJS 0.0(100%) 1.58(92%)
LC 4.77 11.85

Synonyms LC + LP 1.70 (64%) 3.89 (67%)
LC + LP + LJS +0.31(118%) 1.31(89%)
LC 8.36 41.06

Paraphrases LC + LP 5.52 (34%) 28.97 (29%)
LC + LP + LJS 4.63(44%) 28.45(30%)
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