

EVOLVING EMBODIED INTELLIGENCE: GRAPH NEURAL NETWORK-DRIVEN CO-DESIGN OF MORPHOLOGY AND CONTROL IN SOFT ROBOTICS

006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

013 The intelligent behavior of robots does not emerge solely from control systems,
 014 but from the tight coupling between body and brain—a principle known as em-
 015 bodied intelligence. Designing soft robots that leverage this interaction remains a
 016 significant challenge, particularly when morphology and control require simulta-
 017 neous optimization. A significant obstacle in this co-design process is that mor-
 018 phological evolution can disrupt learned control strategies, making it difficult to
 019 reuse or adapt existing knowledge. We address this by develop a Graph Neural
 020 Network-based approach for the co-design of morphology and controller. Each
 021 robot is represented as a graph, with a graph attention network (GAT) encoding
 022 node features and a pooled representation passed through a multilayer perceptron
 023 (MLP) head to produce actuator commands or value estimates. During evolution,
 024 inheritance follows a topology-consistent mapping: shared GAT layers are reused,
 025 MLP hidden layers are transferred intact, matched actuator outputs are copied, and
 026 unmatched ones are randomly initialized and fine-tuned. This morphology-aware
 027 policy class lets the controller adapt when the body mutates. On the benchmark,
 028 our GAT-based approach achieves higher final fitness and stronger adaptability
 029 to morphological variations compared to traditional MLP-only co-design meth-
 030 ods. These results indicate that graph-structured policies provide a more effective
 031 interface between evolving morphologies and control for embodied intelligence.

1 INTRODUCTION

032 Developing autonomous agents that operate reliably in complex, dynamic environments is the most
 033 important goal of artificial intelligence and artificial life. Soft robots, built from highly compliant
 034 materials such as polymers, elastomers, or silicone, provide distinct benefits for safe human interac-
 035 tion and adaptable locomotion in everyday environments Marchese (2015). From the perspective of
 036 embodied intelligence Pfeifer et al. (2007), their bodies are not passive geometry but integral parts
 037 of computation: morphology, materials, and control jointly shape behavior. This flexibility makes
 038 design difficult, leading to costly controller optimization to accurately predict soft-body dynamics
 039 and typically achieve reliable adaptation van Diepen & Shea (2022).

040 A growing line of work seeks to co-design morphology and control, echoing the biological co-
 041 evolution of body and brain Bhatia et al. (2021); Cheney et al. (2013); Corucci et al. (2018; 2016);
 042 Van Diepen & Shea (2019). However, two obstacles limit scalability to harder tasks: (i) substan-
 043 tial training cost as each new morphology typically starts control learning from scratch, and (ii)
 044 fragile controller inheritance across generations, since changes in sensor/actuator layouts break the
 045 fixed-input assumptions of conventional multi-layer perceptron (MLP) policies Bhatia et al. (2021).
 046 Evolutionary attempts at policy transfer Tanaka & Aranha (2022) and DRL-based Lamarckian in-
 047 heritance Harada & Iba (2024) help, but remain constrained by architecture mismatch and ad-hoc
 048 transfer rules.

049 We overcome these limitations with a morphology-aware policy representation, shown in Figure 1.
 050 Robots are modeled as graphs, where nodes correspond to functional components (e.g., sensors,
 051 actuators, voxels) and edges encode structural or kinematic relations. Controllers are implemented as
 052 Graph Attention Networks (GATs) trained with DRL: node embeddings are aggregated and passed

through a lightweight MLP head that generates actuator commands or value estimates. When morphology mutates, the graph reconfigures naturally, and policies transfer through embedding reuse, shared MLP weights, and topology-consistent mapping rather than fixed input indices. Coupling this inheritance with a Genetic Algorithm (GA) and GAT-based PPO yields a structure-aware co-design framework, enabling offspring to inherit and adapt parental policies efficiently. This reduces retraining cost and improves robustness to morphological variations in EvoGym tasks.

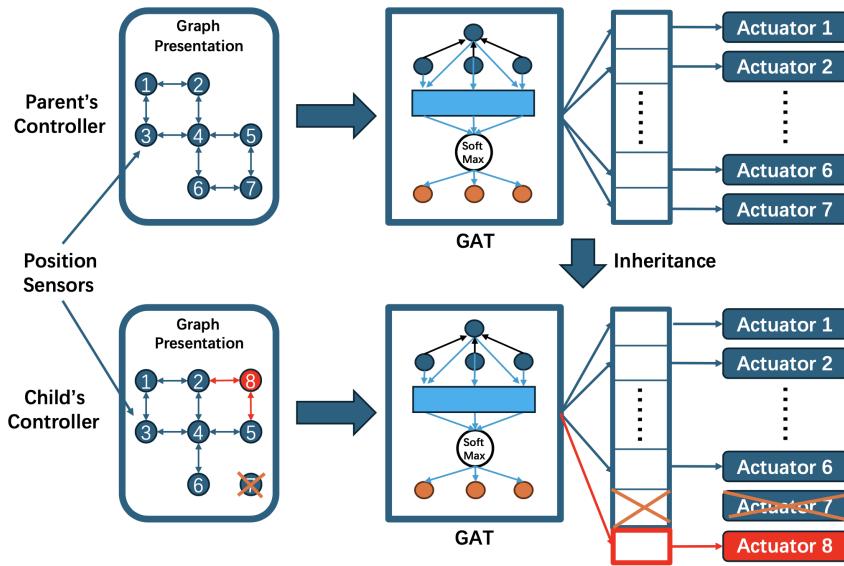


Figure 1: Overview of the proposed GAT-based policy framework with DRL inheritance. The parent controller (top) represents the robot as a graph, where nodes denote position sensors and edges capture spatial relationships. A GAT encodes node features, which are pooled into a fixed-length vector and passed through a lightweight MLP head to generate actuator control signals. During inheritance (bottom), the trained controller is transferred to the child. When morphology changes, connections to removed actuators are discarded, and new ones are initialized for added actuators.

Our main contributions are:

- A co-design algorithm that integrates GAT-based policies with DRL to realize *morphology-aware* controller inheritance. An embedding-level transfer scheme that accelerates adaptation of offspring controllers by reusing graph features aligned to new morphologies.
- A graph representation that preserves policy competence under structural mutation, overcoming fixed-input MLP limitations in co-design.
- Empirical validation on benchmark platform showing higher final rewards, and improved robustness to morphology changes versus MLP-based baselines, with ablations isolating the effects of graph policies and inheritance.

Together, these results support the claim that graph-structured policies provide an effective interface between evolving bodies and brains: they operationalize embodied intelligence in co-design by coupling morphology and control through shared structure, and they offer a scalable path to soft-robot agents that learn more efficiently while generalizing across diverse, changing morphologies.

2 BACKGROUND

2.1 GENETIC ALGORITHM AND PROXIMAL POLICY OPTIMIZATION

Genetic Algorithms (GAs) Mitchell (1998) are population-based optimization methods inspired by natural selection, where candidate solutions evolve through selection, mutation, and crossover. They are effective for exploring large, non-convex design spaces and have been widely applied in evolutionary robotics. Reinforcement learning (RL) Sutton & Barto (1998) offers a complementary

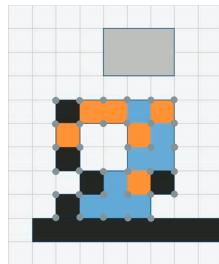
108 paradigm, training agents to maximize cumulative rewards through interaction with their environment.
 109 Among RL methods, Proximal Policy Optimization (PPO) Schulman et al. (2017) is especially
 110 popular in robotics for its simplicity, stability, and strong empirical performance. PPO follows
 111 an actor-critic scheme, alternating between trajectory collection with the current policy and updates
 112 using a clipped surrogate objective that avoids destabilizing policy shifts.
 113

114 2.2 GRAPH NEURAL NETWORKS AND GRAPH ATTENTION NETWORKS

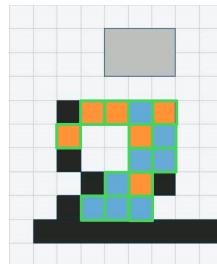
115 Graph Neural Networks (GNNs) Xu et al. (2019); Wu et al. (2021) generalize deep learning to
 116 graph-structured inputs by refining node features through iterative message passing with neighbors.
 117 This makes them well-suited for modular robots, which can be naturally modeled as graphs of
 118 connected components. In contrast to MLPs, GNNs can flexibly handle morphological variations
 119 without altering the underlying architecture. Graph Attention Networks (GATs) Velickovic et al.
 120 (2018) extend this framework by introducing attention over edges, enabling the model to learn which
 121 connections are most important for control.
 122

123 2.3 BENCHMARK PLATFORM

124 Several studies have explored soft robot co-design in simulation Cheney et al. (2013); Corucci et al.
 125 (2018; 2016); Van Diepen & Shea (2019), but progress has been limited. Controllers are often
 126 reduced to simple, repetitive actuation, and tasks typically involve only basic locomotion, making
 127 adaptation to complex environments difficult. Comparisons across methods are also hindered by
 128 reliance on custom evaluation setups Bhatia et al. (2021). To overcome these challenges, Bhatia et al.
 129 (2021) introduced Evogym, a standardized 2D simulation platform. Robots are constructed from
 130 four voxel types, including: rigid (black), soft (gray), horizontal actuators (light blue), and vertical
 131 actuators (orange), and equipped with sensors for position, velocity, rotation, and object interaction
 132 (see Figure 2a). Position sensors (grey dots in Figure 2a), always included, scale with morphology
 133 since they are tied to voxel vertices, while the other sensors are single-instance. Actuators (green-
 134 outlines colored voxels in Figure 2b) receive continuous control signals that govern the contraction
 135 or extension of their components. Further details can be found in Bhatia et al. (2021); Harada & Iba
 136 (2024).
 137



146 (a) structure with position sensors
 147



146 (b) structure with actuators
 147

$$\begin{bmatrix}
 0 & 0 & 0 & 2 & 3 \\
 2 & 0 & 4 & 4 & 4 \\
 1 & 3 & 2 & 0 & 1 \\
 1 & 1 & 1 & 3 & 4 \\
 0 & 3 & 0 & 2 & 0
 \end{bmatrix}$$

146 (c) GA-based robot's genome
 147

148 Figure 2: Illustration of a soft robot designed for the Thrower-v0 task in the Evogym framework.
 149

150 3 METHODOLOGY

151 **Co-Design with GAT Controllers** We present a co-design algorithm for soft robots in which
 152 morphology and control evolve together. Unlike approaches that retrain controllers from scratch, our
 153 method enables direct inheritance of policies learned through DRL, allowing offspring to build on
 154 the experience of their parents. This inheritance accelerates adaptation and promotes the emergence
 155 of robots capable of solving more complex tasks. The overall procedure is outlined in Algorithm 1,
 156 with mutation and selection following the evolutionary framework of Bhatia et al. (2021).
 157

158 **Graph-Based Controller Representation** Each robot is represented as a graph $G = (V, E)$, where
 159 nodes correspond to position sensors and edges capture spatial adjacency. Nodes are assigned feature
 160 vectors that combine global properties (e.g., orientation) with local information (e.g., coordinates,
 161 voxel type, and velocity).

162 **Algorithm 1** Co-Design with GAT-based Controllers

163

164 **Require:** population size p , max generations n

165 1: **Init:** For $k = 1 \dots p$, sample morphology \mathcal{M}_k , build graph $G_k = (V_k, E_k)$, init actor $\pi_k(\cdot | x, G_k; \theta_k^{\text{act}})$ and critic $V_k(x, G_k; \theta_k^{\text{crit}})$

166 2: **for** $g = 1 \dots n$ **do**

167 3: **for** $k = 1 \dots p$ **do**

168 4: **if** \mathcal{M}_k is newborn **then**

169 5: Train $(\theta_k^{\text{act}}, \theta_k^{\text{crit}})$ with DRL (e.g., PPO) on environment \mathcal{E}_k

170 6: $f_k \leftarrow$ best episodic return of (G_k, π_k)

171 7: **else**

172 8: Retain fitness f_k from previous generation

173 9: **end if**

174 10: **end for**

175 11: **Selection:** keep top- m elites by f_k ; mark non-elites as dead

176 12: **for** each dead slot k **do**

177 13: Choose parent u from elites randomly

178 14: $\mathcal{M}_k \leftarrow \text{MUTATEMORPH}(\mathcal{M}_u)$

179 15: $G_k \leftarrow \text{BUILDGRAPH}(\mathcal{M}_k)$

180 16: $(\theta_k^{\text{act}}, \theta_k^{\text{crit}}) \leftarrow \text{MAPWEIGHTS}(\theta_u^{\text{act}}, \theta_u^{\text{crit}}, G_u, G_k)$ ▷ Co-design inheritance

181 17: mark \mathcal{M}_k as newborn

182 18: **end for**

183 19: **end for**

184 20: $\ell \leftarrow \arg \max_k f_k$

185 21: **return** $(\mathcal{M}_\ell, G_\ell, \pi_\ell(\cdot | x, G_\ell; \theta_\ell^{\text{act}}))$

186

187 Unlike MLPs, which flatten inputs into a fixed vector and rely on a centralized controller, GNNs

188 model robots as interconnected components, allowing actuators to act locally while obtaining global

189 sensor and actuator information from their neighboring nodes through message passing. This de-

190 centralized structure scales naturally, as morphological changes such as adding or removing actuators

191 can be incorporated without redesigning the policy. Within this family, GATs offer an additional ad-

192 vantage by learning attention weights that highlight the most relevant connections, improving gener-

193 alization across morphologies and adaptation to structural changes. Attention also helps the policy

194 identify how specific sensor–actuator interactions shape movement, enabling GAT-based controllers

195 to combine robustness to variation with the flexibility to support diverse locomotion and manipula-

196 tion strategies.

197 **Algorithm 2** MAPWEIGHTS for GAT-based Actor/Critic with Morphology Changes

198 **Require:** Parent weights $(\theta_u^{\text{act}}, \theta_u^{\text{crit}})$, parent graph $G_u = (V_u, E_u)$, child graph $G_k = (V_k, E_k)$

199 1: Compute node correspondence $\mathcal{C} : V_k \rightarrow V_u \cup \{\emptyset\}$ by spatial matching

200 2: **Actor:**

201 3: Copy all shared GAT message-passing layers (attention and linear kernels) from θ_u^{act} to θ_k^{act} ▷

202 hidden layers fully inherited

203 4: Copy hidden layers of the pooled MLP head in full

204 5: **For each actuator in the final output layer:**

205 6: **if** actuator matches a parent actuator **then** copy corresponding weights

206 7: **else if** new actuator **then** initialize weights randomly

207 8: **else if** actuator removed **then** discard weights

208 9: **Critic:**

209 10: Copy shared GAT layers from θ_u^{crit} to θ_k^{crit}

210 11: Copy global pooling and all hidden MLP layers in full

211 12: Keep final scalar output head identical (critic output dimension is invariant)

212 13: **Return** $(\theta_k^{\text{act}}, \theta_k^{\text{crit}})$

213

214 We investigate two strategies for constructing node features: **(i)** GA-GAT-PPO-Global-Transfer,

215 where node features are averaged and assigned uniformly to all nodes, and **(ii)** GA-GAT-PPO-

Local-Transfer, where each node is given its own feature vector. To capture spatial structure, edge

216 features are extended with relative offsets ($\Delta x, \Delta y$), enabling the controller to attend to both node
 217 attributes and their geometric relations. The resulting graph is processed by a GAT layer, which
 218 aggregates information through one attention-based message passing round, followed by averaging
 219 over nodes. The average representation is then fed into a lightweight MLP head: its hidden layers
 220 are shared across morphologies, while the output layer maps to actuator commands for the actor or
 221 a scalar value estimate for the critic.

222 **Inheritance of GAT Controllers** Robot morphologies evolve through mutations that can add, re-
 223 remove, or alter voxels, thereby changing the set of sensors and actuators. To transfer controllers
 224 across such changes, we introduce the MAPWEIGHTS procedure (Algorithm 2), which maps pa-
 225 rameters from parent to child according to the following rules:
 226

- 227 • Shared hidden layers: The GAT’s message-passing and attention layers are inherited in full
 228 across morphologies, and the hidden layers of the output MLP are also fully reused.
 229
- 230 • Actuator mapping: For the final actuator layer, weights connected to matched actuators are
 231 inherited from the parent, new actuators are initialized randomly, and removed actuators
 232 are discarded.

233 The critic network inherits parameters in the same way. Since its output is always a single scalar, the
 234 final prediction layer remains unchanged across morphologies, while global pooling and the shared
 235 MLP hidden layers maintain compatibility with varying node counts. Taken together, Algorithms 1
 236 and 2 define the GAT-based co-design cycle: robots are trained or evaluated, elites are selected,
 237 new morphologies are generated through mutation, and their controllers are initialized by mapping
 238 weights from parents to offspring. This process preserves learned representations across generations
 239 while adapting to structural changes, thereby speeding up co-design and enhancing performance.
 240

241

242 4 EXPERIMENTAL SETUP

243

244 We conducted experiments in the EvoGym environment Bhatia et al. (2021) across four represen-
 245 tative tasks, evaluating the following configurations: (i) our proposed method that combines a GA
 246 with a GAT-based PPO controller using inheritance under evolution, where global mean represen-
 247 tations are shared across all nodes; (ii) our proposed method under the same setting, but with GAT-
 248 based PPO controllers that employ individualized node features incorporating each node’s position
 249 and local state; (iii) a prior approach that applies inheritance to MLP-based PPO controllers under
 250 evolution Harada & Iba (2024); and (iv) a baseline genetic algorithm with PPO, where each new
 251 individual’s controller is trained from scratch Bhatia et al. (2021). In all four settings, offspring are
 252 produced exclusively through mutation-only evolution.

253

The four tasks are briefly summarized below, with full descriptions available in Bhatia et al. (2021).

254

- 255 • **Pusher-v1**: The robot is required to push or drag a box placed behind it in the forward
 256 direction. This is a medium-difficulty task, and 700 robots are trained.
 257
- 258 • **Thrower-v0**: The robot must throw a box that is initially positioned on top of it. This is
 259 also of medium difficulty, with 500 robots trained.
 260
- 261 • **Carrier-v1**: The robot’s objective is to transport a box to a table and place it on top. This
 262 is a hard task, with 500 robots trained.
 263
- 264 • **Catcher-v0**: The robot attempts to catch a fast-moving, rotating box. This is considered a
 265 hard task, and 500 robots are trained.
 266

267

To ensure a fair comparison, the hyperparameters for GA and PPO, as well as the survival rate
 268 and the probability of mutation, are adopted from Harada & Iba (2024). The number of robots
 269 trained per task, which also defines the number of generations, follows the experimental protocol
 outlined in Bhatia et al. (2021). For PPO, we rely on the publicly available implementation provided
 in Kostrikov (2018).

270 5 RESULT AND DISCUSSION

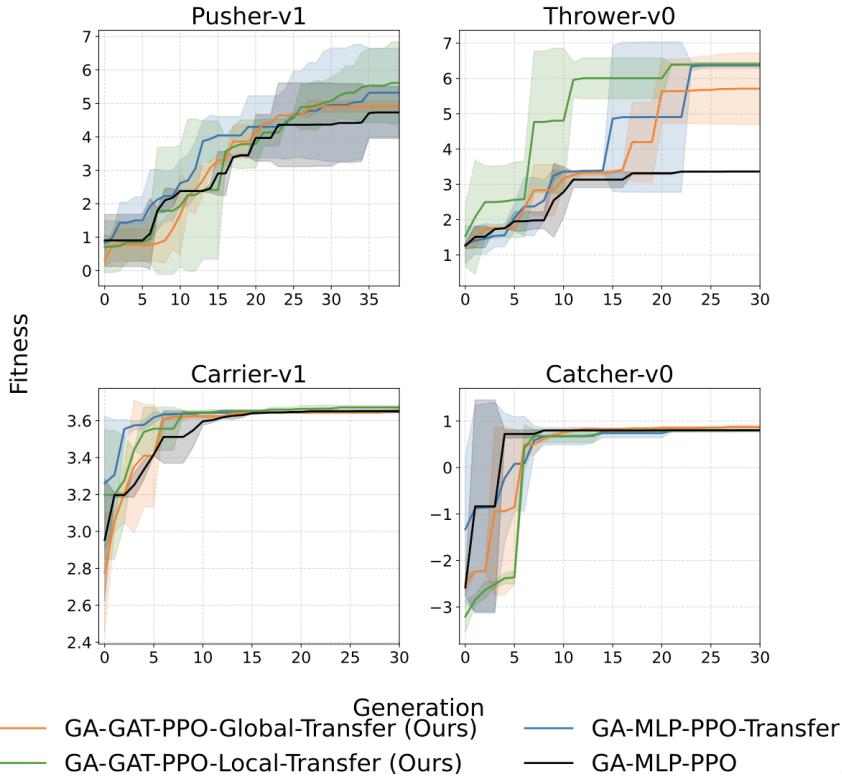


Figure 3: Impact of inheritance on evolution. We examine the influence of inheritance on evolutionary progress by tracking the fitness of the top-performing robot across generations. Each curve shows the mean performance over three independent runs, with shaded regions representing the standard deviation. Our GAT-based inheritance methods achieve higher peak fitness than baselines, with reduced variance across runs. GA-GAT-PPO-Local-Transfer, which provides individualized node representations, outperforms on Pusher-v1, Thrower-v0, and Carrier-v1, where localized coordination is critical. In contrast, GA-GAT-PPO-Global-Transfer, which employs a shared mean representation, performs best on Catcher-v0, a task that requires broader system-level coordination.

5.1 OVERALL RESULT ANALYSIS

Figure 3 presents the best fitness achieved across four representative tasks, illustrating how inheritance shapes evolutionary progress. Each curve reports the highest fitness per generation, averaged over three trials, with shaded bands indicating standard deviation. Our GAT-based approaches (GA-GAT-PPO-Global-Transfer and GA-GAT-PPO-Local-Transfer) consistently match or surpass the performance of MLP-based baselines. By exploiting attention to capture structural dependencies, they enable more effective policy transfer under morphological changes, resulting in stronger generalization and lower variance across runs.

In Pusher-v1 and Thrower-v0, both GAT-based variants reach higher peak fitness than GA-MLP-PPO, with the local feature design even outperforming GA-MLP-PPO-Transfer. In Thrower-v0, convergence is also faster in the early generations, showing that attention-guided inheritance accelerates learning by transferring useful traits more effectively. By comparison, MLP-only methods display higher variance, underscoring the stability advantage of our approach. In Carrier-v1 and Catcher-v0, the gains are most visible in robustness: both GAT variants rapidly attain near-optimal performance with consistently low variance, demonstrating that attention mechanisms improve not only performance but also reliability in evolutionary outcomes.

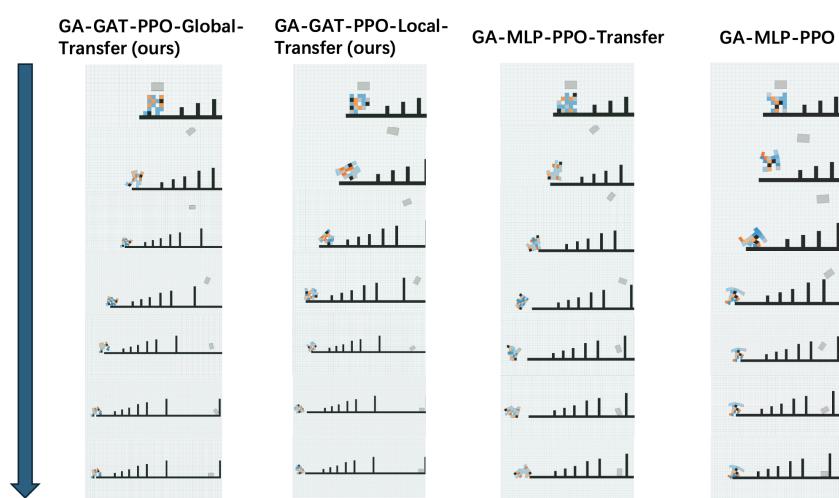
324 A task-level analysis further illustrates the complementary strengths of local versus global attention.
 325 Tasks requiring fine-grained, component-level coordination—such as Pusher-v1 (pushing or
 326 dragging a box), Thrower-v0 (sequentially launching a box), and Carrier-v1 (manipulating and
 327 transporting an object)—favor GA-GAT-PPO-Local-Transfer, which provides individualized node
 328 representations. Conversely, Catcher-v0, which demands rapid, system-wide synchronization to in-
 329 tercept a rotating object, benefits more from GA-GAT-PPO-Global-Transfer, where a shared global
 330 representation aligns behaviors across the body. These results suggest that local attention excels
 331 in tasks dominated by detailed part-level interactions, while global attention is more effective for
 332 behaviors requiring whole-body coordination.

333 Taken together, these results highlight the strengths of attention-based inheritance, including greater
 334 robustness, adaptability across different task requirements, and lower variability during training.
 335 More broadly, they suggest that inheritance guided by attention provides a scalable and prin-
 336 cipled foundation for evolutionary robotics, with potential extensions to more complex morphologies,
 337 multi-agent settings, and hybrid strategies that integrate both local and global reasoning. We at-
 338 tribute the superior performance of our approach compared with MLP baselines to two key factors:
 339 first, inheritance reduces the training burden by accelerating the acquisition of complex behaviors;
 340 second, it preserves morphological flexibility, allowing body structures to evolve freely without be-
 341 ing restricted by the control policy.

343 5.2 CONTROLLER EVOLUTION ANALYSIS

344
 345 Figure 4 compares the performance of four approaches on the Thrower-v0 task in EvoGym, where
 346 the main goal of the task is that the robot must catch a falling box and throw it as far as possible.
 347 Our proposed methods, GA-GAT-PPO-Global-Transfer (fitness score: 6.079) and GA-GAT-PPO-
 348 Local-Transfer (fitness score: 6.258), achieve substantially higher performance than the baselines.
 349 Both GAT-based variants develop stable and coordinated motion strategies that allow for consistent
 350 and effective throws toward the target. Among them, the local transfer method produces the most
 351 accurate throws, reliably reaching the target, while the global transfer method also succeeds but
 352 sometimes causes the box to rebound slightly after landing.

353 Under the same seed, the baseline methods GA-MLP-PPO-Transfer (fitness score: 3.268) and GA-
 354 MLP-PPO (fitness score: 3.353) struggle to produce consistent throwing strategies. Their best-
 355 performing robots often execute a high jump but quickly lose momentum, causing the box to fall
 356 short. By contrast, our GAT-based co-designed robots display motion patterns that resemble human-
 357 like throwing mechanics, making use of two actuators instead of the single actuator typically used
 358 in the baseline designs. This results in stronger propulsion and more effective throws, underscoring
 359 the benefits of attention-driven inheritance for complex manipulation tasks.



376 Figure 4: Visual comparison of four approaches applied to the Thrower-v0 task.
 377

378
379

5.3 MORPHOLOGY EVOLUTION ANALYSIS

380
381
382
383
384
385
386
387
388

A key limitation of MLP-based PPO in co-evolving morphology and control is the fragility of inheritance under major structural changes. Since MLPs require fixed input and output dimensions, adding or removing voxels alters the parameter space and control mapping, often making inherited weights ineffective Harada & Iba (2024). GAT-based controllers overcome this by modeling the body as a graph, using message passing that adapts to new node configurations and attention to emphasize the most relevant connections. The pooled features are then processed by a lightweight MLP head to produce actuator commands or value estimates. This design combines parameter sharing, local reasoning, and adaptive attention, enabling robust performance even under significant morphological variation.

389
390
391
392
393
394
395

Figure 5 shows that, across all methods, the evolved robots tend to converge toward broadly similar morphologies, regardless of whether controllers are based on MLPs or GATs or whether inheritance is applied. While the exact voxel layouts vary, the designs consistently develop task-specific functional patterns, such as grasp-like forms in Carrier and extended appendages in Thrower. This outcome indicates that task requirements strongly shape the space of feasible morphologies, whereas the controller architecture mainly influences learning speed and adaptability rather than the overall class of final designs.

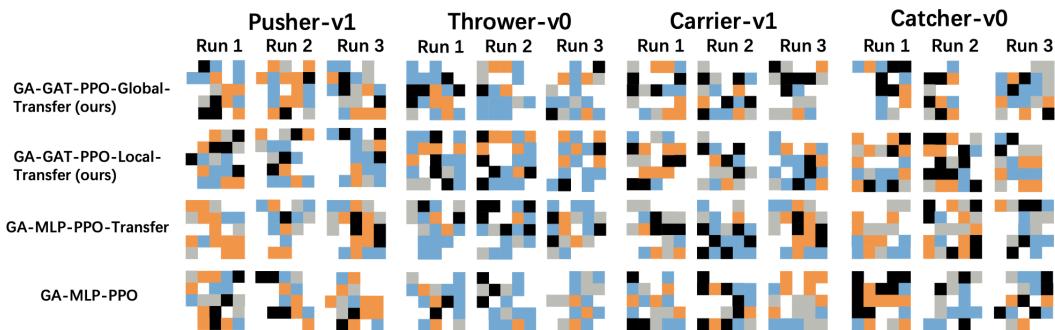


Figure 5: Comparison of evolved morphologies. For each method and trial, we illustrate the robot structures that achieved the highest fitness.

409
410

6 RELATED WORKS

412

6.1 CO-DESIGN OF MORPHOLOGY AND CONTROL

413

Joint optimization of body and controller dates back to Sims' virtual creatures, where articulated morphologies and MLP controllers co-evolved under task-driven fitness Sims (1994). Subsequent studies extended co-design to rigid robots Ha (2019); Pathak et al. (2019); Wang et al. (2019); Zhao et al. (2020), but limited degrees of freedom motivate soft-robot co-design with compliant materials Lee et al. (2017); Rus & Tolley (2015). In standardized evaluations on Evolution Gym (Evo-Gym) Bhatia et al. (2021), structure optimizers (GA, CPPN-NEAT, Bayesian) paired with PPO indicate GA as a strong morphology searcher, while PPO outperforms CPPN-based controllers across most tasks Saito et al. (2022). CPPN/HyperNEAT encodings generate spatially regular morphologies (and sometimes controllers) Stanley (2007); Stanley & Miikkulainen (2002); Tanaka & Aranha (2022); Cheney et al. (2013), but purely evolutionary controller optimization typically lags gradient-based RL. A recurring challenge across co-design pipelines is *controller reuse*: as morphology mutates, sensor/actuator layouts change, making fixed-shape MLP policies brittle and forcing expensive retraining.

427

6.2 MORPHOLOGY-AWARE TRANSFER AND GRAPH-STRUCTURED POLICIES

428

429
430
431

Transfer RL formalizes reuse of knowledge across tasks or embodiments, targeting jump-start and asymptotic gains even when state-action spaces differ Sutton & Barto (1998); Taylor & Stone (2005); Lazaric (2012). In soft-robot co-design, Lamarckian approaches transfer DRL controllers

432 across generations in EvoGym Harada & Iba (2024), but fixed-architecture MLPs remain brittle
 433 under I/O topology shifts. Graph-structured policies provide a part-relation inductive bias and can
 434 generalize over structural variation: NerveNet learns policies on graphs of body parts Wang et al.
 435 (2018), and graph-network models support inference/control with object-relation structure Sanchez-
 436 Gonzalez et al. (2018). Kurin et al. (“My Body Is a Cage”) report, in incompatible MuJoCo control,
 437 that explicit morphological graphs do not always help over fully connected attention and introduce
 438 a Transformer controller that outperforms Graph Neural Network (GNN) baselines by sidestepping
 439 multi-hop message passing Kurin et al. (2021). Our setting differs in two key respects: (i) voxel-
 440 ized *soft* robots in EvoGym where morphology changes alter both sensors and actuators, and (ii) a
 441 *Lamarckian, topology-consistent* inheritance mechanism that maps actuator heads via graph corre-
 442 spondences. We show that attention-based GNN controllers with per-actuator heads, combined with
 443 structure-aware weight mapping and brief PPO adaptation, yield robust inheritance under morpho-
 444 logical mutation on standardized EvoGym tasks.
 445

446 7 CONCLUSION

447 In this paper, we propose a co-design algorithm that integrates GAT-based policies with DRL to
 448 enable morphology-aware controller inheritance. In standard PPO frameworks, the actor is typically
 449 modeled with an MLP, which assumes a fixed morphology and must be reinitialized or adapted with
 450 ad-hoc rules when structures change. Our approach overcomes this limitation by modeling each
 451 robot as a graph, allowing the controller to naturally handle variations in sensor count and connec-
 452 tivity. Shared attention layers and global pooling promote generalization across morphologies, while
 453 inheritance ensures that offspring retain and adapt parental knowledge after structural modifications.
 454 This design leads to stronger performance than MLP-only baselines.
 455

456 Although GAT controllers often achieve higher final performance than MLP baselines, they do not
 457 always converge as quickly. Their greater architectural complexity requires learning both control
 458 policies and relational information through attention and message passing, which can slow early
 459 optimization. In addition, inheritance under morphological changes may introduce mismatches, as
 460 newly added nodes or edges are initialized without prior knowledge, causing temporary instability.
 461 By contrast, MLP controllers operate on fixed-length inputs and readily capture simple correlations,
 462 leading to faster early gains but weaker long-term generalization.

463 Looking ahead, several strategies could improve the efficiency and adaptability of GAT-based con-
 464 trollers. Training stability might be enhanced through attention regularization or curricula that intro-
 465 duce morphological changes gradually. Promising extensions include lightweight GAT variants that
 466 lower computational cost, as well as unified graph representations that model both sensors and actua-
 467 tors to capture perception-action coordination. Hybrid approaches that combine a lightweight MLP
 468 for rapid adaptation with a GAT for structural reasoning, or transfer methods such as knowledge
 469 distillation from simpler controllers, may further reconcile fast convergence with long-term general-
 470 ization. Collectively, these directions could unite the quick learning of MLP-based controllers with
 471 the robustness and flexibility of GATs, enabling more efficient and scalable co-design algorithms.
 472

473 REFERENCES

- 474 Jagdeep Singh Bhatia, Holly Jackson, Yunsheng Tian, Jie Xu, and Wojciech Matusik. Evolution
 475 gym: A large-scale benchmark for evolving soft robots. In Marc’Aurelio Ranzato, Alina Beygelzimer,
 476 Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan (eds.), *Advances in Neural Infor-
 477 mation Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021,
 478 NeurIPS 2021, December 6-14, 2021, virtual*, pp. 2201–2214, 2021. URL <https://proceedings.neurips.cc/paper/2021/hash/118921efba23fc329e6560b27861f0c2-Abstract.html>.
 481
- 482 Nick Cheney, Robert MacCurdy, Jeff Clune, and Hod Lipson. Unshackling evolution: evolving soft
 483 robots with multiple materials and a powerful generative encoding. In Christian Blum and Enrique
 484 Alba (eds.), *Genetic and Evolutionary Computation Conference, GECCO ’13, Amsterdam, The
 485 Netherlands, July 6-10, 2013*, pp. 167–174. ACM, 2013. doi: 10.1145/2463372.2463404. URL
<https://doi.org/10.1145/2463372.2463404>.

- 486 Francesco Corucci, Nick Cheney, Hod Lipson, Cecilia Laschi, and Josh Bongard. Evolving swim-
 487 ming soft-bodied creatures. In *ALIFE XV, the fifteenth international conference on the synthesis*
 488 *and simulation of living systems, late breaking proceedings*, volume 6, 2016.
- 489
- 490 Francesco Corucci, Nick Cheney, Francesco Giorgio-Serchi, Josh Bongard, and Cecilia Laschi.
 491 Evolving soft locomotion in aquatic and terrestrial environments: effects of material properties
 492 and environmental transitions. *Soft robotics*, 5(4):475–495, 2018.
- 493 David Ha. Reinforcement learning for improving agent design. *Artif. Life*, 25(4):352–365, 2019.
 494 doi: 10.1162/ARTL_A_00301. URL https://doi.org/10.1162/artl_a_00301.
- 495 Kazuaki Harada and Hitoshi Iba. Lamarckian co-design of soft robots via transfer learning. In
 496 Xiaodong Li and Julia Handl (eds.), *Proceedings of the Genetic and Evolutionary Computation*
 497 *Conference, GECCO 2024, Melbourne, VIC, Australia, July 14-18, 2024*. ACM, 2024. doi: 10.
 498 1145/3638529.3654180. URL <https://doi.org/10.1145/3638529.3654180>.
- 499
- 500 Ilya Kostrikov. Pytorch implementations of reinforcement learning algorithms. <https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail>, 2018.
- 501
- 502 Vitaly Kurin, Maximilian Igl, Tim Rocktäschel, Wendelin Boehmer, and Shimon Whiteson. My
 503 body is a cage: the role of morphology in graph-based incompatible control. In *9th International*
 504 *Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021*.
 505 OpenReview.net, 2021. URL <https://openreview.net/forum?id=N3zUDGN51O>.
- 506
- 507 Alessandro Lazaric. Transfer in reinforcement learning: A framework and a survey. In Marco A.
 508 Wiering and Martijn van Otterlo (eds.), *Reinforcement Learning*, volume 12 of *Adaptation, Learn-
 509 ing, and Optimization*, pp. 143–173. Springer, 2012. doi: 10.1007/978-3-642-27645-3_5. URL
 510 https://doi.org/10.1007/978-3-642-27645-3_5.
- 511 Chiwon Lee, Myungjoon Kim, Yoon Jae Kim, Nhayoung Hong, Seungwan Ryu, H Jin Kim, and
 512 Sungwan Kim. Soft robot review. *International Journal of Control, Automation and Systems*, 15
 513 (1):3–15, 2017.
- 514 Andrew D. Marchese. *Design, fabrication, and control of soft robots with fluidic elastomer actu-
 515 ators*. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2015. URL
 516 <https://hdl.handle.net/1721.1/97807>.
- 517 Melanie Mitchell. *An introduction to genetic algorithms*. MIT Press, 1998. ISBN 978-0-262-63185-
 518 3.
- 519
- 520 Deepak Pathak, Christopher Lu, Trevor Darrell, Phillip Isola, and Alexei A. Efros. Learning to
 521 control self-assembling morphologies: A study of generalization via modularity. In Hanna M.
 522 Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman
 523 Garnett (eds.), *Advances in Neural Information Processing Systems 32: Annual Conference on*
 524 *Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver,*
 525 *BC, Canada*, pp. 2292–2302, 2019. URL <https://proceedings.neurips.cc/paper/2019/hash/c26820b8a4c1b3c2aa868d6d57e14a79-Abstract.html>.
- 526
- 527 Rolf Pfeifer, Max Lungarella, and Fumiya Iida. Self-organization, embodiment, and biologically
 528 inspired robotics. *science*, 318(5853):1088–1093, 2007.
- 529
- 530 Daniela Rus and Michael T Tolley. Design, fabrication and control of soft robots. *Nature*, 521
 531 (7553):467–475, 2015.
- 532
- 533 Takumi Saito, Haruki Nishimura, and Mizuki Oka. Comparative studies of evolutionary methods
 534 and RL for learning behavior of virtual creatures. In Hisao Ishibuchi, Chee-Keong Kwoh, Ah-
 535 Hwee Tan, Dipti Srinivasan, Chunyan Miao, Anupam Trivedi, and Keeley A. Crockett (eds.),
 536 *IEEE Symposium Series on Computational Intelligence, SSCI 2022, Singapore, December 4-7,*
 537 2022, pp. 1059–1065. IEEE, 2022. doi: 10.1109/SSCI51031.2022.10022282. URL <https://doi.org/10.1109/SSCI51031.2022.10022282>.
- 538
- 539 Alvaro Sanchez-Gonzalez, Nicolas Heess, Jost Tobias Springenberg, Josh Merel, Martin Riedmiller,
 540 Raia Hadsell, and Peter Battaglia. Graph networks as learnable physics engines for inference and
 541 control. In *International conference on machine learning*, pp. 4470–4479. PMLR, 2018.

- 540 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 541 optimization algorithms. *CoRR*, abs/1707.06347, 2017. URL <http://arxiv.org/abs/1707.06347>.
- 543
- 544 Karl Sims. Evolving virtual creatures. In Dino Schweitzer, Andrew S. Glassner, and Mike Keeler
 545 (eds.), *Proceedings of the 21th Annual Conference on Computer Graphics and Interactive Tech-
 546 niques, SIGGRAPH 1994, Orlando, FL, USA, July 24-29, 1994*, pp. 15–22. ACM, 1994. doi:
 547 10.1145/192161.192167. URL <https://doi.org/10.1145/192161.192167>.
- 548 Kenneth O. Stanley. Compositional pattern producing networks: A novel abstraction of develop-
 549 ment. *Genet. Program. Evolvable Mach.*, 8(2):131–162, 2007. doi: 10.1007/S10710-007-9028-8.
 550 URL <https://doi.org/10.1007/s10710-007-9028-8>.
- 551
- 552 Kenneth O Stanley and Risto Miikkulainen. Evolving neural networks through augmenting topolo-
 553 gies. *Evolutionary computation*, 10(2):99–127, 2002.
- 554
- 555 Richard S. Sutton and Andrew G. Barto. *Reinforcement learning - an introduction*. Adaptive
 556 computation and machine learning. MIT Press, 1998. ISBN 978-0-262-19398-6. URL
 557 <http://www.incompleteideas.net/book/first/the-book.html>.
- 558
- 559 Fabio Tanaka and Claus Aranha. Co-evolving morphology and control of soft robots using a sin-
 560 gle genome. In Hisao Ishibuchi, Chee-Keong Kwoh, Ah-Hwee Tan, Dipti Srinivasan, Chunyan
 561 Miao, Anupam Trivedi, and Keeley A. Crockett (eds.), *IEEE Symposium Series on Computational
 562 Intelligence, SSCI 2022, Singapore, December 4-7, 2022*, pp. 1235–1242. IEEE, 2022. doi:
 563 10.1109/SSCI51031.2022.10022230. URL <https://doi.org/10.1109/SSCI51031.2022.10022230>.
- 564
- 565 Matthew E. Taylor and Peter Stone. Behavior transfer for value-function-based reinforcement learn-
 566 ing. In Frank Dignum, Virginia Dignum, Sven Koenig, Sarit Kraus, Munindar P. Singh, and
 567 Michael J. Wooldridge (eds.), *4th International Joint Conference on Autonomous Agents and Mul-
 568 tiagent Systems (AAMAS 2005), July 25-29, 2005, Utrecht, The Netherlands*, pp. 53–59. ACM,
 569 2005. doi: 10.1145/1082473.1082482. URL <https://doi.org/10.1145/1082473.1082482>.
- 570
- 571 Merel Van Diepen and Kristina Shea. A spatial grammar method for the computational design
 572 synthesis of virtual soft locomotion robots. *Journal of Mechanical Design*, 141(10):101402, 2019.
- 573
- 574 Merel van Diepen and Kristina Shea. Co-design of the morphology and actuation of soft robots for
 575 locomotion. *Journal of Mechanical Design*, 144(8):083305, 2022.
- 576
- 577 Petar Velićković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
 578 Bengio. Graph attention networks. In *6th International Conference on Learning Representations,
 579 ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings*.
 580 OpenReview.net, 2018. URL <https://openreview.net/forum?id=rJXMpikCZ>.
- 581
- 582 Tingwu Wang, Renjie Liao, Jimmy Ba, and Sanja Fidler. Nervenet: Learning structured policy with
 583 graph neural networks. In *International conference on learning representations*, 2018.
- 584
- 585 Tingwu Wang, Yuhao Zhou, Sanja Fidler, and Jimmy Ba. Neural graph evolution: Towards ef-
 586 ficient automatic robot design. In *7th International Conference on Learning Representations,
 587 ICLR 2019, New Orleans, LA, USA, May 6-9, 2019*. OpenReview.net, 2019. URL <https://openreview.net/forum?id=BkgWHnR5tm>.
- 588
- 589 Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. A
 590 comprehensive survey on graph neural networks. *IEEE Trans. Neural Networks Learn. Syst.*, 32
 591 (1):4–24, 2021. doi: 10.1109/TNNLS.2020.2978386. URL <https://doi.org/10.1109/TNNLS.2020.2978386>.
- 592
- 593 Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
 594 networks? In *7th International Conference on Learning Representations, ICLR 2019, New Or-
 595 leans, LA, USA, May 6-9, 2019*. OpenReview.net, 2019. URL <https://openreview.net/forum?id=ryGs6iA5Km>.

594 Allan Zhao, Jie Xu, Mina Konakovic-Lukovic, Josephine Hughes, Andrew Spielberg, Daniela Rus,
595 and Wojciech Matusik. Robogrammar: graph grammar for terrain-optimized robot design. *ACM*
596 *Trans. Graph.*, 39(6):188:1–188:16, 2020. doi: 10.1145/3414685.3417831. URL <https://doi.org/10.1145/3414685.3417831>.

598

599

600 **REPRODUCIBILITY STATEMENT**

601

602 We have made several efforts to ensure the reproducibility of our work. The complete implementa-
603 tion of our proposed algorithm is available in an anonymous repository at <https://anonymous.4open.science/r/GNN-transfer-Soft-Robots-2026-ICLR-1233>. Section 4 pro-
604 vides detailed descriptions of the EvoGym tasks, implementation details, and hyperparameter set-
605 tings, while Section 3 presents the algorithmic procedures in pseudocode. These resources collec-
606 tively allow all reported results to be independently verified and extended.

607

608

609 **USE OF GENERATIVE AI**

610

611 We used a GPT-based assistant (ChatGPT) exclusively for language editing (e.g., grammar, clarity,
612 and concision) on draft text. The assistant did not generate research ideas, methods, analyses, results,
613 figures, or data. All scientific content and conclusions are the authors' own. AI-suggested edits
614 were reviewed and revised by the authors, who accept full responsibility for the manuscript. No
615 confidential or sensitive data were provided to the tool.

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647