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Abstract

In multi-agent systems coordination is essential to enable autonomous agents to
carry out joint tasks. In stochastic environments, this is usually achieved by the
agents’ actions to approximate a certain desired joint distribution. In this work,
we consider coordination among two remote agents, controlled by two controllers
through separate rate-limited communication channels. The controllers cannot
communicate with each other, but they have access to correlated observations,
which can provide a certain level of coordination. Our goal is to explore the effect
of limited communication links on the coordination capabilities of the agents. The
studied problem can be considered as distributed compression for coordination,
with implications in multi-agent reinforcement learning and game theory.

1 Introduction

Recent advances in edge computing have witnessed the proliferation of agent-based systems such as
the Internet of Things, federated learning, and autonomous agents. Achieving high-level coordination
under communication constraints is essential for agents to accomplish real-world tasks from policy
making [9], to distributed learning [3], and generative modeling [12]. For example, automated cars at
high-speed need to make real-time decisions; drones at high altitudes need to operate jointly with
limited communications. On the one hand, communications among agents/edge devices are not
always possible due to practical constraints such as wireless environments, computational resources,
latency, and privacy. On the other hand, coordination is needed to support robust actions, such as rapid
eye-hand coordination for competitive games [6]. Therefore, understanding the fundamental limits of
coordination under rate-limited communication is essential. Moreover, limited communication allows
decision-making with low-latency, which is crucial for applications such as industrial automation.

In this paper, we consider the non-interactive remote coordination problem which is illustrated in Fig-
ure 1. Here, two non-interacting controllers, called Encoder A and Encoder B, observe two correlated
source sequences, Un and V n, respectively. The goal of the encoders is to help two decoders, Decoder
A and Decoder B, to generate coordinated actions, Xn and Y n, respectively, by communicating
with them over rate-limited channels. Input Un is compressed by Encoder A into nRA bits, which
Decoder A uses to generate its output Xn. Independently, Encoder B compresses V n into nRB bits,
used by Decoder B to output Y n. Moreover, each encoder-decoder pair has access to a common
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Figure 1: The system model. Encoder A (resp. B) and Decoder A (resp. B) have access to a common
randomness at a limited rate Rc,A (resp. Rc,B), and the goal of Encoders A and B is to help Decoders
A and B to generate outputs from a certain desired joint distribution, through communicating over
rate-limited channels.

Terminal A 𝑋𝑛

Terminal B 𝑌𝑛

𝑊 ∈ [2𝑛𝑅]

Figure 2: Wyner’s setup [11].

randomness at a limited rate (Rc,A and Rc,B , respectively), in the form of uniform random variables
(JA and JB). The goal is for the generated outputs Xn and Y n to approximately follow a given target
joint distribution q⊗n

X,Y , as formalized with a negligible total variation distance, in the limit of large n.
This formulation encompasses various machine learning problems. These include the generation
of coordinated policies among distributed agents in multi-agent reinforcement learning problems,
or neural based distributed compression of correlated images with the goal of realism, where
the realism will require the reconstructed images to follow the joint distribution of the original images.

The problem of generating a target joint distribution, in a distributed manner, from some common
randomness, has long been of interest [11, 8, 7]. In particular, several notions of common information
[11, 7] playing a fundamental role in such problems have been uncovered. Wyner [11] considered the
distributed generation task depicted in Figure 2. Two terminals have access to a common random
variable W, and independently generate two correlated outputs. Wyner [11] studied the case where the
target distribution is a product distribution q⊗n

X,Y , for some integer n. He characterized the necessary
and sufficient amount of entropy H(W ), of the common randomness, for qX,Y to be asymptotically
simulable, i.e. for there to exist generators achieving an arbitrarily small mismatch between q⊗n

X,Y

and the joint distribution of Xn and Y n, for large enough n. The aforementioned entropy threshold
exhibited by Wyner [11] is known as the Wyner common information between of X and Y, which
is a function of qX,Y . Furthermore, in multi-modal learning, data from different modalities are
embedded into a shared representation space using methods such as contrastive learning. [10]
revisits the Platonic representation hypothesis, which suggests that data from different modalities all
converge to a “true” distribution through training. This encoding process resembles the Gács- Körner
(GK) common information [7], where Encoder A and Encoder B each compute a deterministic
function of their input, to agree on a common random variable. Berg et. al. [2] went further, by
considering two generators having distinct but correlated inputs Un and V n, instead of a common
random input W, as depicted in Figure 3. They designed non-trivial coding schemes by combining
results on the Wyner common information and the GK common information. The problem studied by
Berg et. al. [2] is the special case of our problem, in which RA = RB = ∞, Rc,A = Rc,B = 0.
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Terminal A𝑈𝑛 𝑋𝑛

Terminal B𝑉𝑛 𝑌𝑛

Figure 3: Setup of Berg et. al. [2]. The inputs Un and V n follow a joint distribution of the form
p⊗n
U,V .

In this paper, for the remote scenario in Fig. 1, we identify sufficient conditions on the rate tuple
(RA, Rc,A, RB , Rc,B) and the distribution qU,V of inputs, in order for a given target distribution
qX,Y to be asymptotically simulable. In particular, these are sufficient conditions to allow for enough
correlation to carry over from the sources to the remote outputs. These correspond to a scheme
we propose, which relies on a special channel simulation protocol, enabling a generalization of the
scheme in [2].

In Section 2, we provide a formal description of the problem. In Section 3, we present our main
result, then compare to two simpler kinds of schemes, for certain families of distributions qU,V and
qX,Y . We show that our scheme leverages the correlation between the sources more efficiently. As a
byproduct, this analysis exhibits the role that common randomness can play for rate efficiency. The
main components of our derivation are provided in Section 4, and the remainder is deferred to the
Appendix.

2 Problem formulation

2.1 Notation

Calligraphic letters such as X denote sets, except in pUJ , which denotes the uniform distribution over
alphabet J . Random variables are denoted using upper case letters such as X, and their realizations
using lower case letters such as x. For a distribution P, the expression PX denotes the marginal
of variable X, while P (x) denotes the probability of the event X=x. Similarly, PX|Y=y denotes a
distribution over X , and PX|Y=y(x) a real number. We denote by [a] the set {1, ..., ⌊a⌋}, and by xn

the finite sequence (x1, ..., xn). The total variation distance (TVD) between distributions p and q on
a space (X ,B) is defined by

∥p− q∥TV := sup
B∈B

|p(B)− q(B)|.

2.2 Definitions

Let U ,V,X ,Y be four finite alphabets, qU,V a distribution on U × V, and qX,Y a distribution on
X ×Y. As shown in Figure 1, we consider two encoder-decoder pairs, with no communication across
pairs, and with each pair having access to a rate-limited uniformly distributed common randomness.
Each encoder can send a rate-limited message to the corresponding decoder. Private randomness is
unconstrained.

Definition 2.1. Given a couple (R,Rc) ∈ R2
≥0, an input alphabet Z, and an output alphabet O,

an (n,R,Rc) code for (Z,O) is an encoder-decoder pair (F (n), G(n)), consisting of a privately
randomized mapping F

(n)
M |Zn,J from Zn × [2⌊nRc⌋] to [2⌊nR⌋], and a privately randomized mapping

G
(n)
On|J,M from [2⌊nRc⌋]× [2⌊nR⌋] to On. The distribution induced by the latter code is given by

P
(n)
Zn,J,M,On := p⊗n

Z · pU[2⌊nRc⌋] · F
(n)
M |Zn,J ·G(n)

On|J,M .

Given a quadruplet (RA, Rc,A, RB , Rc,B) ∈ R4
≥0, an (n,RA, Rc,A, RB , Rc,B) code is a quadru-

plet (F (A,n), G(A,n), F (B,n), G(B,n)) such that (F (A,n), G(A,n)) (resp. (F (B,n), G(B,n))) is an
(n,RA, Rc,A) (resp. (n,RB , Rc,B)) code for (U ,X ) (resp. (V,Y)). The distribution induced by the
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latter code is given by

P
(n)
Un,V n,JA,JB ,MA,MB ,Xn,Y n := p⊗n

U,V · pU
[2⌊nRc,A⌋]

· pU
[2⌊nRc,B⌋]

·F (A,n)
MA|Un,JA

· F (B,n)
MB |V n,JB

·G(A,n)
Xn|JA,MA

·G(B,n)
Y n|JB ,MB

.

Definition 2.2. For a given target distribution qX,Y , a tuple (RA, Rc,A, RB , Rc,B) ∈ R4
≥0 is said to

be achievable if there exists a sequence of (n,RA, Rc,A, RB , Rc,B) codes with induced distributions
{P (n)}n such that

∥P (n)
Xn,Y n − q⊗n

X,Y ∥TV −→
n→∞

0. (1)

3 Main results

3.1 Achievable region

Theorem 3.1. All tuples in the interior of the following region S are achievable.
(RA, Rc,A, RB , Rc,B) : ∃ pU,V,K,W,LA,LB ,X,Y ∈ D,

RA ≥ Ip(U,W ;LA)
RA +Rc,A ≥ Ip(U,W,X;LA)

RB ≥ Ip(V,W ;LB)
RA +Rc,B ≥ Ip(V,W, Y ;LB)

 ,

with D defined as 
pU,V,K,W,LA,LB ,X,Y : pX,Y ≡ qX,Y , pU,V ≡ qU,V ,

W −K − (U, V ), H(K|U) = H(K|V ) = 0
X − LA − (U,W )− (V,W )− LB − Y

Hp(K) ≥ Ip(X,Y ;K,W )

 .

The corresponding scheme is depicted in Figure 4, and is closely related to the one in [2]. Encoder A
first extracts the GK common part Kn of Un and V n, then deterministically maps Kn to a string
wn(Kn). Instead of sampling Xn from

∏n
t=1 pX|U=ut,W=wt(Kn) locally, the channel is simulated in

a distributed manner, between Encoder A and Decoder A. The two other terminals proceed similarly,
using the same map wn(·), and simulate channel

∏n
t=1 pY |V=vt,W=wt(Kn).

3.2 Corollaries and comparison to other schemes

The merits of using channel simulation, and leveraging common randomness, can be seen when
comparing to certain other classes of schemes.

3.2.1 Schemes based on scalar relations between Un and Xn and between V n and Y n

Consider distributions qU,V and qX,Y such that there exists a coupling p of the latter, satisfying
X − U − V − Y. This is a special case of the relation X − (U,W ) − (V,W ) − V of D. Then, it
is natural to consider schemes such that the output Xn of Decoder A approximately satisfies the
following scalar relation to the input Un of Encoder A:

Xn ∼
n∏

t=1

pX|U=ut
.

That is, channel simulation schemes. We claim that our scheme performs at least as well as any
such scheme. Of course, sampling such a Xn locally at Encoder A would incur a communication
cost of H(X), and sending Un would incur a cost of H(U). Our scheme specializes to the case
X − U − V − Y as follows. Consider the subset D(a) of D defined as

{p ∈ D | W is independent of (X,Y, U, V, LA, LB)}. (2)

Note that every p ∈ D(a) satisfies the Markov chain relation X − LA − U − V − LB − Y. The set
D(a) corresponds to a subset of the achievable region S.
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Corollary 3.2. All tuples in the interior of the following region S(a) are achievable.
(RA, Rc,A, RB , Rc,B) : ∃ pU,V,K,W,LA,LB ,X,Y ∈ D(a),

RA ≥ Ip(U ;LA)
RA +Rc,A ≥ Ip(U,X;LA)

RB ≥ Ip(V ;LB)
RA +Rc,B ≥ Ip(V, Y ;LB)


The channel simulated in our scheme is

∏
pX|U,W ≡

∏
pX|U . Note that the inequalities involving

RA and Rc,A are exactly the ones in the standard channel simulation result [4, Theorem II.1] for
channel pX|U : our scheme reduces to a pure channel simulation scheme.

3.2.2 Schemes with a vector encoding of Un and V n into a common Wn

Consider distributions qU,V and qX,Y such that there exists a coupling pU,V,X,Y,W satisfying relation
X−W −U−V −W −Y, and hence X−W −Y. This is a special case of the relation X−(U,W )−
(V,W )− V of D. Consider schemes involving a vector operation Un 7→ Wn, and the sampling of
Xn approximately from

∏n
t=1 pX|W=wt

. Assume that the vector operation is not randomized, so as
not to impede Encoder B and Decoder B from using the same realization of Wn, as Enocder A and
Decoder A. Assume that the set of possible realizations of Wn is limited to some relatively small
codebook. Then, it may seem efficient to compute Wn at Encoder A, and send the corresponding
index to Decoder A, which samples Xn using memoryless channel

∏
pX|W . The converse to the soft

covering lemma [4, Appendix 4] implies that, for a given channel pX|W , in order to satisfy (1), the
codebook of wn strings must have a rate of at least min Ip(X,Y ;W ). The minimum is over all pW
such that

∑
w pW (w)pX|W=wpY |W=w ≡ qX,Y . When restricted to distributions p ∈ D satisfying

Markov chain relation X−W −Y, our scheme specializes to a distributed channel simulation scheme
for

∏
pX|W - and a similar scheme for

∏
pY |W -, which may be more efficient, as discussed in the

remainder of this section. Consider the subset D(d) of D defined as

{p ∈ D | X−LA−W−LB−Y

and (X,LA, LB , Y )−W−K−(U, V )}. (3)

The set D(d) corresponds to a subset of the achievable region S.
Corollary 3.3. All tuples in the interior of the following region S(d) are achievable.

(RA, Rc,A, RB , Rc,B) : ∃ pU,V,K,W,LA,LB ,X,Y ∈ D(d),
RA ≥ Ip(W ;LA)

RA +Rc,A ≥ Ip(W,X;LA)
RB ≥ Ip(W ;LB)

RA +Rc,B ≥ Ip(W,Y ;LB)


The channel simulated in our scheme is

∏
pX|U,W ≡

∏
pX|W . Note that the inequalities involving

RA and Rc,A are exactly the ones in the standard channel simulation result for channel pX|W . If
Rc,A is large enough, then a rate RA = I(W ;X) is sufficient -which is less or equal to I(W ;LA)
by the data processing inequality. This can be achieved by applying our scheme to a modified version
of p, obtained by replacing LA with L̃A = X. Hence, when common randomness is available at a
sufficient rate in each encoder-decoder pair, the rate required for our channel simulation scheme is
lower (I(W ;X) ≤ I(X,Y ;W )) than the rate required for the aforementioned scheme, in which the
same string Wn is conveyed to both decoders.

4 Main components of the proof of Theorem 3.1

The problem studied in [2] is the special case where RA = RB = ∞ and Rc,A = Rc,B = 0, where
the notation RA = RB = ∞ refers to any rates for which zero-error compression is possible, i.e.
RA > log(|U|), RB > log(|V|). Then, Encoder A and Decoder A behave as a single terminal, which
we shall call Terminal A, and Terminal B is defined similarly. Using the notation in the present paper,
we can reformulate [2, Theorem 2] as follows.
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Figure 4: Coding scheme.

Theorem 4.1. Consider any p ∈ D. Then, tuple (∞, 0,∞, 0) is achieved by the following scheme.

• Terminal A passes its input Un through channel
∏

pK|U (which is a deterministic mapping),
resulting in Kn.

• It then passes Kn through a well-chosen deterministic mapping wn(·).

• Terminal B proceeds in the same manner, using the same mapping wn(·), resulting in the
same realizations of Kn and wn(Kn) as obtained at Terminal A.

• Terminal A samples Xn from
∏n

t=1 pX|U=Ut,W=wt(Kn).

• Terminal B samples Y n from
∏n

t=1 pY |V=Vt,W=wt(Kn).

In order to prove Theorem 3.1, we use the same scheme, but replace the last two steps with a channel
simulation protocol: given Un and wn(Kn) at Encoder A, the latter sends a message at rate RA allow-
ing the decoder to produce Xn distributed approximately according to

∏n
t=1 pX|U=Ut,W=wt(Kn).

Encoder B and Decoder B proceed similarly. One can find a channel simulation protocol of adequate
communication and common randomness rates, provided that (Un, wn(Kn)) is a typical sequence,
as formalized in the following result. Regarding notation, we denote the empirical distribution, which
we also call type, of a string zn ∈ Zn as tZ(zn), and the set of all types as

T (n)(Z) :=
{
{tz}z∈Z

∣∣ ∃zn ∈ Zn, tZ(z
n) = {tz}z∈Z

}
.

We use similar notation for joint types. We use the notion of typical sets defined in [5], and the
notation T (n)

ε (pZ), instead of the similar notation in [5].
Proposition 4.2. Let Z,L,O be three finite alphabets, and pZ,L,O be a distribution on their product,
satisfying Markov chain Z − L−O. For any ε > 0, there exists a real δ > 0 and an integer N ≥ 1
such that, for any integer n ≥ N, there exists a (n, Ip(Z;L) + ε, Ip(Z,O;L)− Ip(Z;L) + ε) code
for (Z,O), such that for any zn ∈ T (n)

δ (pZ),∥∥∥P (n)
On|Zn=zn −

∏n
t=1 pO|Z=zt

∥∥∥
TV

≤ ε. (4)

Proposition 4.2 is a generalization of the standard channel simulation result in [4], which only pertains
to the problem of identifying the rates for which it is possible to achieve a vanishing average of (4)
over Zn ∼ p⊗n

Z . Proposition 4.2 is a corollary of the proofs from [1], where the problem of interest
is identifying the rates for which it is possible to achieve a vanishing average of (4) under all possible
distributions for Zn, with a single encoder-decoder pair. The rate region appearing in Proposition
4.2 is optimal for the corresponding channel simulation task. Due to space limitations, we defer the
remainder of the proof to the Appendix.

5 Conclusions

We have considered a non-interactive remote coordination problem, where two non-interacting
controllers observe correlated sources, and can each communicate with a decoder, with the aim of
helping the two decoders to generate coordinated actions. We have uncovered sufficient conditions
on the compression rates, common randomness rates, and the distribution of inputs, in order for a
given target output distribution to be asymptotically simulable. In particular, these are sufficient
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conditions to allow for enough correlation to carry over from the sources to the remote outputs.
These correspond to a scheme we propose, which relies on a special channel simulation protocol, to
generalize prior work. We compared to two simpler kinds of schemes, and showed that our scheme
leverages the correlation between the sources more efficiently. Thereby, we exhibited the role that
common randomness between a controller and its decoder can play for rate efficiency. While we
have focused on the theoretical aspects of non-interactive remote coordination in this paper, we
believe the tools developed here can find applications in various machine learning problems. These
include the generation of coordinated policies among distributed agents in multi-agent reinforcement
learning problems, or neural based distributed compression of correlated images with the goal of
realism, where the realism will require the reconstructed images to follow the joint distribution of the
original images. It is relevant to mention that, in rare cases, the latter kind of applications, which may
prioritize realism over fidelity to the original images, may lead to negative societal impacts, such as
false identity recognition.
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A Continuation of the proof of Theorem 3.1

After stating basic lemmas on the TVD in Section A.1, we prove a technical lemma in Section A.2.
Then, we prove Proposition 4.2 in Section A.3, and Theorem 3.1 in Section A.4.

A.1 Lemmas regarding the total variation distance

Lemma A.1. [4, Lemma V.1] Let Π and Γ be two distributions on an alphabet W ×L. Then

∥ΠW − ΓW ∥TV ≤ ∥ΠW,L − ΓW,L∥TV .

Lemma A.2. [4, Lemma V.2] Let Π and Γ be two distributions on an alphabet W ×L. Then when
using the same channel ΠL|W we have

∥ΠWΠL|W − ΓWΠL|W ∥TV = ∥ΠW − ΓW ∥TV .

A.2 On joint typicality in Theorem 4.1

Lemma A.3. In the scheme which yields Theorem 4.1, for any δ ∈ (0, 1), the deterministic mappings
{wn(·)}n≥1 can be chosen such that the probability of the event

(Un, V n,Kn, wn(Kn)) /∈ T (n)
δ (pU,V,K,W ) (5)

vanishes as n goes to infinity.

Proof: The proof of Theorem 4.1, i.e. that of [2, Theorem 2], consists in showing the following. Let
P (n,wn(·)) denote the distribution induced by the scheme described in Theorem 4.1, with a choice of
mapping wn(·). Then,

EC(n)

[
∥P (n,C(n))

Xn,Y n − q⊗n
X,Y ∥TV

]
−→
n→∞

0. (6)

where C(n) is a family {Wn
kn}kn∈Kn of mutually independent variables, with the variable of index

kn being distributed according to
∏n

t=1 pW |K=kt
. The latter proof is concluded by choosing any

realization if C(n) achieving a TVD below average. See the end of [2, Section III-C] and [2,
Equation 45]. Therefore, to guarantee the existence of a realization of C(n) which also satisfies (5),
it only remains to show that the probability that (Un, V n,Kn,Wn

Kn) is not δ-typical vanishes as n
goes to infinity. Fix δ ∈ (0, 1), and δ′ < δ. Then, we have

PC(n),Un,V n,Kn

(
(Un, V n,Kn,Wn

Kn) /∈ T (n)
δ (p)

)
≤ p⊗n

U,V,K

(
(Un, V n,Kn) /∈ T (n)

δ′ (p)
)
+ sup

(un,vn,kn)∈T (n)

δ′( n∏
t=1

pW |U=ut,V=vt,K=kt

)(
(un, vn, kn,Wn

kn) /∈ T (n)
δ (p)

)
.

The first probability in the right hand side vanishes as n goes to infinity, by definition of the typical set.
We show that the second probability is upper bounded uniformly over T (n)

δ′ , by a term which vanishes
as n goes to infinity. Fix (u0, v0, k0, w0) ∈ U × V ×K ×W, such that pZ,L,O(u0, v0, k0, w0) > 0.
The probability according to

∏n
t=1 pW |U=ut,V=vt,K=kt

of the following event∣∣∣#{
i ∈ [n]|(ui, vi, ki,Wi) = (u0, v0, k0, w0)

}
/n

−pZ,L,O(z0, l0, o0)
∣∣∣ ≤ δpZ,L,O(z0, l0, o0) (7)

is upper bounded, in [5, Appendix 2A], by a term of the form ϕ(aun,vn,kn). Map ϕ : N≥0 → [0,∞)
is a deterministic function which vanishes at infinity, and aun,vn,kn is the number of occurrences of
(u0, v0, k0) in (un, vn, kn). We know that typicality entails aun,vn,kn ≥ (1−δ′)npU,V,K(u0, v0, k0),

for every (un, vn, kn) in T (n)
δ′ (pU,V,K) [5], and we have assumed pZ,L,O(u0, v0, k0) > 0. Therefore,

the probability of the event in (7) tends to 0 as n goes to infinity, uniformly over all (un, vn, kn) in
T (n)
δ′ (pU,V,K). A union bound over all (u0, v0, k0, w0) ∈ U × V ×K ×W concludes the proof.

9



A.3 Proof of Proposition 4.2

We use the following result, from the main proof in [1] - precisely the end of Section III.C therein. It
pertains to the existence of a good channel simulation scheme tailored to a given joint type. To prove
Proposition 4.2, we then use this only for typical types.
Proposition A.4. For every ε>0, there exists a positive integer Nε, such that for all n≥Nε, there
exists a family {(F (n,τ), G(n,τ))}τ∈T (n)(Z×L×O) of codes, with that of index τ being a (n, Iτ (Z;L)+

ε, Iτ (Z,O;L)−Iτ (Z;L)+ε) code for (Z,O), such that the following holds. Consider the following
code for (Z,O), where common randomness is assumed to be available at rate Rc satisfying

∀τ∈T (n)(Z×L×O), Rc ≥ Iτ (Z,O;L)−Iτ (Z;L)+ε := Rc,τ .

• From its input zn, the encoder samples (L̃n, Õn) ∼
∏n

t=1 pL,O|Z=zt , and sends the joint
type τ := tZ×L×O(z

n, L̃n, Õn). There shall be no further use of L̃n, Õn.

• Using F (n,τ) and the integer corresponding to the first ⌊nRc,τ⌋ bits of the common random-
ness’ binary representation, it then encodes zn and sends the resulting message.

• The decoder (which has received τ ) uses G(n,τ), the received message, and the integer
corresponding to the first ⌊nRc,τ⌋ bits of the common randomness’ binary representation,
to output a string On.

Then, for any n ≥ Nε, and every zn satisfying p⊗n
Z (zn) > 0, the above scheme results in a

conditional distribution P
(n)
On|Zn=zn such that∥∥∥P (n)

On|Zn=zn −
n∏

t=1

pO|Z=zt

∥∥∥
TV

≤ ε. (8)

We proceed to proving Proposition 4.2. Let pZ,L,O be as in the latter. Fix some ε>0, and let
Nε, Rc, {P (n)}n≥1 be the corresponding objects from Proposition A.4. We use the scheme of
the latter whenever (zn, L̃n, Õn) ∈ T (n)

δ (pZ,L,O), for some small enough δ > 0 to be specified
later. Otherwise, the encoder sends an error message, and the decoder produces a default output.
The remainder of this section is dedicated to analyzing this scheme. From Proposition A.4, the
definition of T (n)

δ (pZ,L,O) [5], and the continuity of mutual information, there exists a choice of δ
such that for any n ≥ Nε, our scheme defines a (n, Ip(Z;L) + 2ε, Ip(Z,O;L) − Ip(Z;L) + 2ε)

code for (Z,O). Let P̃ (n)

Zn,J,M,On,L̃n,Õn
denote the distribution induced by this code, and let R̃c :=

Ip(Z,O;L)− Ip(Z;L) + 2ε. For any j ∈ [2nRc ], let j⌊nR̃c⌋ denote the sequence of first ⌊nR̃c⌋ bits

of j. For any n ≥ Nε, any j̃ ∈ [2nR̃c ], and any (zn, l̃n, õn) ∈ T (n)
δ (pZ,L,O), we have

P̃
(n)

M,On|Zn=zn,L̃n=l̃n,Õn=õn,J=j̃

≡ P
(n)

M,On|Zn=zn,L̃n=l̃n,Õn=õn,J⌊nR̃c⌋=j̃
, (9)

and P̃ (n)(Zn=zn, L̃n=l̃n, Õn=õn, J=j̃)

= P (n)(Zn=zn, L̃n=l̃n, Õn=õn, J⌊nR̃c⌋=j̃). (10)

Indeed, under both P̃ (n) and P (n), the common randomness J is independent from (Zn, L̃n, Õn).
Thus, conditioned on a realization of the latter, for any k ≤ Rc, the distribution of the first k bits of J
is independent of Rc. From (9), (10), Proposition A.4, and the triangle inequality for the TVD, for
any n ≥ Nε and any zn ∈ Zn such that p⊗n

Z (zn) > 0, we have∥∥∥P̃ (n)
On|Zn=zn −

∏n
t=1 pO|Z=zt

∥∥∥
TV

≤∥∥∥P (n)
On|Zn=zn−

∏n
t=1 pO|Z=zt

∥∥∥
TV

+
∥∥∥P̃ (n)

On|Zn=zn−P
(n)
On|Zn=zn

∥∥∥
TV

≤ ε+
(∏n

t=1 p
⊗n
L,O|Z=zt

)(
(zn, L̃n, Õn) /∈ T (n)

δ (pZ,L,O)
)
. (11)

For any given δ > 0, the probability in the right hand side of (11) is upper bounded uniformly over
all zn in T (n)

δ/2 (pZ), by a term which vanishes as n goes to infinity. This is shown, albeit with different
notation, in the proof of Lemma A.3. Since this analysis is valid for any ε, then Proposition 4.2 is
proved.
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A.4 Proof of Theorem 3.1

A.4.1 Scheme and relation to Theorem 4.1

Fix (RA, Rc,A, RB , Rc,B) in the interior of S. Then, there exists some ε∗ > 0 such that for
any ε < ε∗, we have (RA − ε,Rc,A − ε,RB − ε,Rc,B − ε) ∈ S. Consider p ∈ D cor-
responding to the latter tuple. Since p satisfies (U,W ) − LA − X, Proposition 4.2 applies.
Let δA, NA, {(F (A,n,1), G(A,n,1))}n≥1 be the objects from the latter, corresponding to ε. Note
that for any n ≥ NA, (F

(A,n,1), G(A,n,1)) is a (n,RA, Rc,A) code for (U × W,X ). Define
δB , NB , {(F (B,n,1), G(B,n,1))}n≥1 similarly. We apply Theorem 4.1, with the minor improvement
of Lemma A.3, for δ = min(δA, δB). Let P (n,2)

Un,V n,Kn,Wn,Xn,Y n denote the distribution induced by
the corresponding scheme. Then, there exists N1 ∈ N such that for any n ≥ N1, we have

∥P (n,2)
Xn,Y n − q⊗n

X,Y ∥TV ≤ ε. (12)

Let N2 := max(N1, NA, NB). For any n ≥ N2, consider the following (n,RA, Rc,A, RB , Rc,B)

code, with induced distribution denoted P (n,1).

• Using its input Un, Encoder A samples (Kn,Wn) using P
(n,2)
Kn,Wn|Un .

• If (Un,Wn) ∈ T (n)
δA

(pU,W ), then Encoder A chooses a message using F (A,n,1), then
Decoder A uses the message and G(A,n,1) to produce an output string Xn.

• Otherwise, Encoder A sends an error message, and Decoder A outputs a default string.
• Encoder B and Decoder B follow similar steps.

From (4), for any n ≥ N2, for all (un, wn) ∈ T (n)
δA

(pU,W ), we have∥∥∥P (n,1)
Xn|Un=un,Wn=wn −

∏n
t=1 pX|U=ut,W=wt

∥∥∥
TV

≤ ε,

i.e. ∥∥∥P (n,1)
Xn|Un=un,Wn=wn − P

(n,2)
Xn|Un=un,Wn=wn

∥∥∥
TV

≤ ε. (13)

Then, since P
(n,1)
Un,Wn ≡ P

(n,2)
Un,Wn , we have∥∥∥P (n,1)

Un,Xn − P
(n,2)
Un,Xn

∥∥∥
TV

≤
∥∥∥P (n,1)

Un,Wn,Xn − P
(n,2)
Un,Wn,Xn

∥∥∥
TV

(14)

≤ ε+ P
(n,2)
Un,Wn

(
(Un,Wn) /∈ T (n)

δA
(pU,W )

)
(15)

≤ 2ε, (16)

where (14) follows from Lemma A.1; (15) follows form (13) and the triangle inequality for the
TVD; and (16) holds for large enough n, and follows from (5) and the fact that δ ≤ δA. The same
inequality holds for variables (V n, Y n), for large enough n.

A.4.2 Proof conclusion

Hence, since P (n,1) and P (n,2) satisfy Markov chain Xn − Un − V n − Y n, then we have∥∥∥P (n,1)
Un,V n,Xn,Y n − P

(n,2)
Un,V n,Xn,Y n

∥∥∥
TV

=
∥∥∥P (n,1)

Un,Xn · P (n,1)
V n,Y n|Un − P

(n,2)
V n,Y n · P (n,2)

Un,Xn|V n

∥∥∥
TV

=
∥∥∥P (n,1)

Un,Xn · P (n,1)
V n,Y n|Un − P

(n,2)
Un,Xn · P (n,1)

V n,Y n|Un

+P
(n,1)
V n,Y n · P (n,2)

Un,Xn|V n − P
(n,2)
V n,Y n · P (n,2)

Un,Xn|V n

∥∥∥
TV

≤ 2ε+ 2ε, (17)
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where (17) follows from the triangle inequality for the TVD, Lemma A.2, and (16). This yields, for
large enough n,

∥P (n,1)
Xn,Y n − q⊗n

X,Y ∥TV

≤
∥∥P (n,1)

Xn,Y n − P
(n,2)
Xn,Y n

∥∥
TV

+ ∥P (n,2)
Xn,Y n − q⊗n

X,Y ∥TV (18)

≤
∥∥P (n,1)

Un,V n,Xn,Y n − P
(n,2)
Un,V n,Xn,Y n

∥∥
TV

+ ε ≤ 5ε, (19)

where (18) follows from the triangle inequality for the TVD; and (19) follows from Lemma
A.1, (12), and (17). Since this construction and analysis are valid for any ε ∈ (0, ε∗), then
(RA, Rc,A, RB , Rc,B) is achievable, which concludes the proof of Theorem 3.1.
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