Under review as submission to TMLR

Program Semantic Inequivalence Game with Large Lan-
guage Models

Anonymous authors
Paper under double-blind review

Abstract

Large Language Models (LLMs) can achieve strong performance on everyday coding tasks,
but they can fail on complex tasks that require non-trivial reasoning about program seman-
tics. Finding training examples to teach LLMs to solve these tasks can be challenging.

In this work, we explore a method to synthetically generate code reasoning training data
based on a semantic inequivalence game (SInQ): a generator agent creates program
variants that are semantically distinct, derived from a dataset of real-world programming
tasks, while an evaluator agent has to identify input examples for which they behave differ-
ently. The agents train each other semi-adversarially, improving their ability to understand
the underlying logic of code.

We evaluated our approach on multiple code generation and understanding benchmarks,
including cross-language vulnerability detection (Lu et al., |2021), where our method
improves vulnerability detection in C/C++ code despite being trained exclusively on Python
code, and the challenging Python builtin identifier swap benchmark (Miceli Barone
et al.l [2023)), showing that whereas modern LLMs still struggle with this benchmark, our
approach yields substantial improvements.

We release the code needed to replicate the experiments, as well as the generated synthetic
data, which can be used to fine-tune LLMs.

1 Introduction

Assistants based on Large Language Models (LLMs) are widely used by programmers for coding tasks.
While they perform well on common tasks, they still struggle with non-trivial reasoning about program
semantics (Miceli Barone et al.| 2023} [Maveli et al., 2025)). This limitation can lead to subtle bugs or prevent
the detection of preexisting vulnerabilities and adversarial backdoors (Dinh et al.| 2023} [Dou et al.l [2024),
ultimately compromising the safety and security of generated code (Wang et al., |2024; Mohsin et al. 2024).

LLMs’ code generation and understanding capabilities are typically improved by fine-tuning on a mixture
of human-annotated and synthetically generated data. For example, the Llama-3 recipe (Llamad3l 2024)
provides a prototypical approach. However, human annotation is expensive and fails to cover many non-trivial
scenarios. Typical synthetic generation approaches rely on LLMs to generate coding problem statements
along with corresponding solutions and unit tests, then validate solutions by executing them against the
tests. While this allows for large-scale dataset creation, it may still provide limited coverage of problem
types and introduce noise, as unit tests do not always align well with problem statements, particularly in
edge cases.

Self-play involves training Al agents by pitting them against each other in adversarial games, incentivizing
them to discover and defend against unusual scenarios. This approach has enabled Al systems to achieve
human-level or even superhuman performance in games such as Go (Silver et al., 2016}, |2017b)), Chess (Silver,
et al., [2017a), Dota 2 (OpenAl et al., 2019)), StarCraft II (Arulkumaran et al.,|2019), and even social games
involving dialogue, such as Diplomacy (FAIR] 2022)). However, self-play methods typically require external
engines to enforce game rules and compute scores, making them challenging to apply to open-ended tasks

Under review as submission to TMLR

Generator Source program Evaluator
“Alice” “Bob”
def foo (x):

\/_-

Variant program

Diverging input Diverging input

S iz) =4

Figure 1: Semantic inequivalence game: Alice receives a source program P and generates a variant program
Q@ and a diverging input. Bob receives P and () and generates another diverging input.

like coding. Recreational competitive coding environments such as CROBOTEEl are overly domain-specific
and impose strict performance limits, making them unsuitable for training agents in general code reasoning.
We are aware of only one work, |Zhao et al.|(2025]), concurrent to our own, which uses self-play to train LLMs
for arbitrary code generation, while [Dong & Ma, (2025) use a similar approach for theorem proving.

In this work, we introduce a game based on program semantic inequivalence designed to train agents in code
reasoning across arbitrary domains. By design, this game has no theoretical performance cap. We use it to
train LLMs through self-play, demonstrating significant performance improvements on challenging tasks.

2 Proposed method

Our approach involves two LLM agents engaging in a game where the generator agent, "Alice," creates
challenging code understanding problems for the evaluator agent, "Bob," to solve. Alice’s goal is to deceive
Bob into making mistakes, requiring her to generate difficult instances. However, Alice must also provide
solutions, meaning the instances cannot be unsolvable or excessively difficult. We train Alice to become
more effective at misleading Bob and Bob to become better at resisting deception, encouraging both agents
to develop a deeper understanding of program semantics.

Our approach is based on the semantic equivalence of programs, or more specifically, semantic in-
equivalence. This allows for precise verification of solutions, unlike problems based on natural language
specifications or unit tests, which offer only partial coverage. Moreover, it is fundamentally linked to com-
putability theory through reductions to Rice’s theorem and the Halting problem.

In practical applications, reasoning about program equivalence and inequivalence is valuable for identifying
bugs and security vulnerabilities introduced during code refactoring.

Thttps://github.com/tpoindex/crobots

https://github.com/tpoindex/crobots

Under review as submission to TMLR

2.1 The semantic inequivalence game

Two programs P and () are semantically equivalent if, for any given input z, either they both halt producing
the same output y or neither halts. Determining semantic equivalence is a fundamental problem in program
verification and compiler design, but automatic proving equivalence between arbitrary programs is compli-
cated since popular programming languages, such as Java and Python, are defined through natural language
specifications or reference implementations rather than formal semantics. Even when formal semantics exist
for a subset of a language, automatically generating fully machine-checkable equivalence proofs for non-trivial
code is quite challenging even for expert human programmers. We sidestep this issue by defining a program
understanding game that focuses solely on inequivalent programs.

We define the Semantic Inequivalence Game as the following one-shot interaction between two players:
the generator, "Alice," and the evaluator, "Bob":

1. Alice receives a program P and generates another program (), which has to be inequivalent to P,
along with a diverging input « such that P(x) # Q(x).

2. The diverging input is verified by executing both programs on it. If P(x) = Q(z), Alice loses.

3. Bob receives P and @ and attempts to produce a diverging input & (which may or may not be the
same as x). If Bob correctly identifies a diverging input, he wins and Alice loses; otherwise, Bob
loses and Alice wins.

Alice’s objective is to generate challenging instances for Bob, while Bob’s goal is to solve them. In this game,
correctness can be verified simply by executing the programs on the provided diverging inputs, eliminating
the need for generating and verifying formal proofs.

Both agents are trained iteratively through repeated play. The source programs P provided to Alice are
sampled from a dataset, such as a collection of short, self-contained programming exercises spanning a
variety of tasks (e.g., MBPP (Austin et al., |2021))). This ensures that the game stays grounded to real-
world coding problems. If Alice were allowed to generate both P and @, she might develop an incentive to
produce unusual, obfuscated code that might not contribute to Bob’s general reasoning skills.

To approximate non-termination detection, we impose a randomized time limit that significantly exceeds the
typical runtime of source programs. This prevents Alice from exploiting a fixed time limit, for example, by
generating a program () that loops for a predetermined duration before returning the same output as PE|

Example 1. E| 1. Alice receives program P:

def fib(n):
if n <= 0:
return 0
elif n == 1:
return 1
return fib(n — 1) + fib(n — 2)

and returns program Q:

def fib(n):
if n == 0:
return 0
elif n == 1:
return 1
return fib(n — 1) + fib(n — 2)

2The time limit is randomized to discourage Alice from gaming the system by crafting artificial delays, which could lead to
uninteresting cases.
3This example is artificial, please refer to section for an analysis of a real example from the MBPP dataset.

Under review as submission to TMLR

together with diverging input x:

P _1}

2. Both programs are Tun in a sandbor with input x, which results in P returning 0 while Q recurs until it
triggers either the recursion limit of the Python interpreter or the randomized time limit, proving that x is
indeed a diverging input.

3. Bob receives both P and @) a generates a possibly different diverging input &, e.qg.:
//n " . _2}

P and Q are evaluated on input T, proving that this is also a diverging input, therefore, Bob wins this round.

Unlike games such as Go or Chess, where perfect play is theoretically possible, the semantic inequivalence
game has no strict performance cap: given an infinite time limit, Bob’s task is undecidable (see Appendix [A).
This implies that in principle the agents can learn arbitrarily complex coding logic while remaining grounded
in a dataset of practical, real-world programming problems.

The semantic inequivalence game is entirely adversarial and essentially a zero-sum game, provided that Alice
generates only valid outputs. In some cases, modifying the game to be positive-sum may be beneficial, both
to facilitate integration with supervised fine-tuning (SFT) and to prevent degenerate strategies (e.g., Alice
generating excessively difficult cryptographic puzzles). We discuss these considerations further in Appendix

Bl

2.2 Implementation with Supervised Fine-tuning and Difficulty Targeting

The semantic inequivalence game, as defined above, is well-suited for reinforcement learning, however, re-
inforcement learning was not available on the OpenAI API at the time of our experiments, therefore, we
devised the following rejection sampling fine-tuning implementation, with explicit difficulty supervision.

When we present the program pair (P, Q) to Bob, we can sample N evaluation responses and define the
difficulty of the pair based on the number of correct assessments:

Ncorrcct
d(P,Q,Bob) =101 — ————
(.. o) = 10 (1~ Nt

For example, if Bob can solve the pair (P, Q) 40% of the time, the difficulty of this instance is 6.

During generation, we ask Alice to generate a program with a specific target difficulty dg, usually set to the
maximum value of 10 (though in some cases, we may set it to a lower value, making the game positive-sum;

see Appendix .
Let:

I = Template ajice (P, dy)
O = Alice(I)
(CoT, Q,x) = Extractor gjice(O)

If Alice’s output is invalid, we discard it. Otherwise, we evaluate it with Bob to estimate its actual difficulty.
We then create a new SF'T training example for Alice by substituting the estimated difficulty with the target
difficulty in the input. That is, we treat the actual generated program’s difficulty as if it were the target
difficulty:

TrainingExample apice := (Template ajice (P, d(P, Q, Bob)), O)

We can generate one or more training examples for Alice from the P programs in the source program set,
then batch-train Alice, for instance, using OpenAl’s fine-tuning API with the chat LLM format. Here, the
input is encoded as the "user" message and the output as the "assistant" message, with the same "system'
message used during generation. The loss is minimized only on the "assistant" message.

Under review as submission to TMLR

We can continue to extend this dataset across multiple generations of Alice, as long as Bob remains un-
changed. Once we update Bob (using rejection sampling SFT on its own successful input-output pairs),
we need to recompute all the difficulty estimates for the programs in Alice’s dataset, as Bob is presumably
stronger. We have found it beneficial to train Alice for many epochs before training a new Bob. Initially,
Alice tends to generate examples that are too easy for Bob (especially when both Alice and Bob are based
on the same LLM). Ideally, we would continue training Alice until convergence before each new Bob training
run.

Since Alice’s initial examples are often very easy for Bob (with difficulty zero for most), using all of them as
training examples would overwhelm Alice’s training set with unhelpful instances. This could be detrimental,
as we would minimize the loss on tokens of programs that we don’t want Alice to generate. To address this,
we bias the training set by selecting all hard examples, defined as d(P, Q, Bob) > 5, i.e., the examples that
fool Bob at least 50% of the time, plus a fraction of the remaining examples (20% of the number of hard
examples), sampled without replacement by going through difficulty bins in a round-robin fashion.

We also explicitly train Alice to predict instance difficulty by including training examples in the following
format:

TrainingExampleq; ;s := (Template ajice(P, "Any"), O,
Templateg;sy,,, Templateqiry,., (d(P,Q, Bob))))

where the target difficulty in the first "user" message is replaced by the string "Any", and the first "assistant"
message contains Alice’s self-generated output instance. The second "user" message provides an instruction
to predict the difficulty of the instance, and the second "assistant" message contains the actual difficulty. We
minimize the loss only on the second "assistant" message. This part of the dataset is also biased towards hard
examples, but we set the number of easy examples at 50%, as we are not minimizing the loss on the tokens
of easy instances but only on their difficulty prediction. Therefore, including these examples is unlikely to
be detrimental.

Refer to Appendix [C] for all the templates used to interact with the LLM.

3 Experiments

3.1 Training

We run our main set of experiments using OpenAl gpt-40-mini-2024-07-18 as the base LLM for both
Alice and Bob. In order to train our agents, we use the training portion of MBPP as our source set of
programs, using only the code field from each source example.

Both Alice and Bob are instructed to produce output in markdown format, using markdown sections to
distinguish their CoT traces from the final outputs, which are embedded in Python code blocks. We sample
from the models with a temperature of 1.0 and top_ p = 0.7, generating N = 10 samples per query. We use
the Mistune markdown parserﬂ followed by the Python ast parser/unparser. This step extracts, syntactically
validates, and normalizes the output&ﬂ We then semantically check the diverging inputs against the pairs
of source and generated programs by executing them within a test harness, using a randomized time limit,
uniformly sampled between 2.5 and 5.5 seconds, to discourage Alice from generating instances that rely on
race conditions.

We train the models via SF'T with difficulty targeting (always set to 10) and difficulty prediction, as described
in Section [2.2] using the default hyperparameters of the OpenAl fine-tuning platform.

We perform 7 batched training rounds for Alice, followed by a single training round for Bob. This was due
to time and financial constraints; ideally, we would perform training rounds for Alice until convergence of
the average instance difficulty before performing one training round for Bob. We report the difficulty curves

4https://mistune.lepture.com/en/latest/
5Parsing and then unparsing the Python code with ast removes comments or unusual indentation styles, preventing trivial
non-semantic attacks.

https://mistune.lepture.com/en/latest/

Under review as submission to TMLR

Mean and Sd. difficulties for Each Alice's round (Bob's generation 1) Difficulty == 10 for Each Alice's round (Bob's generation 1)

—e— Mean difficulty —e— Difficulty == 10
64 Standard Deviation 0.05 4

0.04 4

Difficulty
Frequency
°
°
@

"
o
°
5

Round 1 Round 2 Round 3 Round 4 Round 5 Round 6 Round 7 Round 1 Round 2 Round 3 Round 4 Round 5 Round 6 Round 7
Alice's training round Round

Figure 2: Instance difficulty with respect to an untrained Bob, plotted against the number of Alice’s training
rounds. Left: mean and standard deviation. Right: fraction of instances with maximum difficulty.

in Figure 3.1} Each of Alice’s training runs starts from the baseline gpt-4o-mini-2024-07-18 checkpoint
rather than the previous fine-tuned checkpoint, but we accumulate instances to be used as training examples
between rounds. Since Bob does not change between Alice’s training rounds, the difficulty estimate of each
instance remains valid. However, if we were to perform additional training rounds for Alice after training Bob,
we would have to either discard the training set or re-estimate the difficulty of each instance by evaluating
it with the new Bob.

We consider the fine-tuned Bob to be our final model, which we use for evaluation.

3.2 Intrinsic Evaluation

Our goal is to improve our model’s performance on code understanding tasks. In this section, we report how
much better our evaluator model, Bob, performs on the semantic inequivalence game after its first and only
training round. We use the final trained generator model Alice (from round 7) to generate the challenge
instances. These instances are created using source programs from either the training portion of the MBPP
dataset, as done during training, or from the test portion of MBPP, which neither Alice nor Bob have seen
before. The results are reported in Table [T}

Source programs | Untrained | Trained
MBPP Train 75.99% 86.98%
MBPP Test 88.37% 91.67%

Table 1: Percentages of semantic inequivalence game instances solved by Bob, without or with training.

We observe that while the performance of the untrained Bob (baseline gpt-40-mini-2024-07-18) is already
high, this is expected because we did not train Alice to convergence. However, performing a single training
round for Bob substantially improves its ability to play the game.

This demonstrates that our training protocol is effective in teaching LLMs to reason about the inputs that
cause different variants of a program to behave differently.

3.3 Qualitative analysis

We manually analysed the some of Alice’s outputs in order to understand what kind of manipulation it
introduces. A typical pattern that we find is the introduction of subtle bugs in conditional branches that
deal with edge cases. For instance, starting from the following program from MBPP:

Under review as submission to TMLR

from sys import maxsize

def max_sub_array_sum(a,size):

max_so_far = —maxsize — 1
max__ending__here = 0

start = 0

end = 0

s =0

for i in range(0,size):

max__ending here += a[i]
if max_ so_far < max_ending here:

max_so_far = max_ending_ here
start = s
end = i

if max_ending here < 0:
max_ending here = 0
s = i+41
return (end — start + 1)

Alice generates:
from sys import maxsize

def max_sub_array sum_y(a, size):

max_so far = —maxsize — 1
max_ ending__here = 0

start = 0

end =

s =0

for i in range(0, size):
max_ ending_here += a[i]
if max_so_far < max_ending here:

max_so_far = max_ending_here
start = s
end = i
if max_ending_ here < 0:
s =1+ 1
return end — start 4+ 1

These programs look superficially the same, they only difference is that the generated variant lacks the

max_ending_here = O statement in the if max_ending_here < 0: branch inside the loop, which causes it
to mishandle negative values in the array a.

This sort of bugs often occur in programs that have security vulnerabilities, therefore we believe that by
being trained on such examples, Bob can learn to reason on the semantics of vulnerabilities. This could
explain the improvements we observe on vulnerability datasets (Section [3.4.2).

3.4 Extrinsic Evaluation

Being proficient at playing the semantic inequivalence game may be directly useful in certain circumstances,
such as determining whether a code refactoring has introduced subtle bugs. However, ultimately, we aim for

this game to teach LLMs skills that generalize to a variety of tasks. Therefore, we evaluate our approach
across a range of code-related tasks using standard benchmarks.

Under review as submission to TMLR

While we include code generation tasks, our primary focus is on code understanding. Therefore, we use
the trained evaluator Bob, denoted as sing-gpt-4o-mini, as our main checkpoint. This model is primarily
compared to the baseline gpt-4o-mini model.

3.4.1 Python Builtin Identifier Swap

The Python builtin identifier swap is a very challenging code understanding benchmark introduced by
Miceli Barone et al.| (2023). In its classification version, each example consists of two variants of a Python
snippet, with an instruction asking the model to determine which variant is more likely to be correct. The
challenge is that the snippets are prepended with a statement that reassigns two builtin Python functions
used in the code, e.g.

print, len = len, print

One of the two snippets is a Python function extracted from a GitHub repository, while the other is the
same function with all instances of the two builtin identifiers (e.g., len and print) swapped. Because of
the reassignment of the two identifiers, the modified snippet is correct but highly out-of-distribution, while
the original snippet is in-distribution but incorrect. Miceli Barone et al.| (2023) found that this confused all
the state-of-the-art LLMs available at the time, to the point that they even performed worse as their size
increased, a case of inverse scaling (McKenzie et al.| [2023]).

We evaluate gpt-4o-mini, which had not been released at the time of the original study, and our own
sinq-gpt-4o-mini (trained Bob) on this benchmark. We use either the original prompt template or a
variant that instructs the models to perform chain-of-thought reasoning before answering. We report our
results in Table 2l

gpt-4o-mini | sing-gpt-4o-mini | gpt-4o-mini CoT | sing-gpt-40-mini CoT
Accuracy 1.65% 5.35% 1.90% 2.30%

Table 2: Python builtin identifier swap results for the baseline gpt-4o-mini (untrained Bob) and our model
sing-gpt-4o-mini (trained Bob), with or without chain-of-thought.

We observe that, despite gpt-40-mini-2024-07-18 being released over a year after this benchmark was
published, it still performs very poorly. In fact, it performs worse than both the original GPT-4 (1.85%
accuracy) and GPT-3.5 (3.35% accuracy)ﬂ indicating that this benchmark remains challenging. Our ap-
proach yields a substantial improvement (+3.7%) over the baseline without using CoT. Surprisingly, the
improvement when using CoT is smaller (+0.4%).

This benchmark is quite different from the synthetic data used to train our model in the semantic inequiv-
alence game. The main similarity is that both tasks involve reasoning about the semantics of unusual
snippets of Python code. The substantial improvements we observe indicate that our approach teaches the
model generalizable code reasoning skills.

We report additional results on this benchmark with state-of-the-art reasoning models in Appendix

3.4.2 Vulnerability Detection

Security vulnerabilities in code often arise from counterintuitive behaviours, where the intuitive understand-
ing that programmers, whether human or LLM, have of the code’s semantics differs from its actual semantics
in edge cases that evade pre-deployment testing. Our semantic inequivalence game incentivises the gener-
ator Alice to find edge cases that fool the evaluator Bob, who is then incentivised to become more robust
by improving his reasoning about code semantics. Ideally, these capabilities should generalize to security
vulnerability detection.

We evaluate our approach by testing it on two vulnerability detection benchmarks.

6Raw results for |[Miceli Barone et al| (2023) are available on the GitHub repository associated with the
paper: https://github.com/Avmb/inverse_scaling_prize_code_identifier_swap/blob/main/eval_chat_llms/eval_chat_
1lms_results. json.

https://github.com/Avmb/inverse_scaling_prize_code_identifier_swap/blob/main/eval_chat_llms/eval_chat_llms_results.json
https://github.com/Avmb/inverse_scaling_prize_code_identifier_swap/blob/main/eval_chat_llms/eval_chat_llms_results.json

Under review as submission to TMLR

PySecDB (Sun et al., 2023)) is a dataset of commits, represented as diff patches, for Python programs,
classified as either containing or not containing a security fix. We present these patches to the LLMs,
instructing the models to classify them. We do not provide the rest of the repository as a reference, making
this a challenging task. Since some of these commits are quite long, we discard those that exceed the
maximum context length of 128,000 tokens for gpt-4o-mini.

CodeXGLUE Defect Detection (Lu et al) 2021) is a dataset of code snippets in C/C++ classified
according to whether they contain known security vulnerabilities. This is a particularly challenging dataset
for our approach, as we fine-tuned our model only with Python code.

We run our experiments using standard greedy classification (temperature = 0.0, no CoT), majority voting
of 9 (temperature = 1.0, N = 9, no CoT), and CoT mode (temperature = 0.6, N = 1). The results are
reported in Table

Test set mini sinqg | mini Maj | sinq Maj | mini CoT | sinq CoT
PySecDB 82.43% | 82.51% | 82.48% 82.81% 73.55% 73.00%
CodeXGLUE | 55.23% | 55.60% | 55.12% 56.04% 47.69% 47.22%

Table 3: Vulnerability detection results for gpt-4o-mini (untrained Bob) and our model sing-gpt-4o-mini
(trained Bob), with or without majority voting of 9 or chain-of-thought.

Our approach yields small but consistent improvements across two datasets, with different tasks and pro-
gramming languages. These results suggest that our model has acquired additional capabilities in reasoning
about security vulnerabilities, despite not having been specifically trained for this task.

3.4.3 Code Generation

We run a standard code generation experiment using the EvalPlus harness (Liu et al.l |2023; [2024]), which
evaluates LLMs on the test portions of MBPP and HumanEval (Chen et al., 2021)), as well as on augmented
versions of these datasets, MBPP+ and HumanEval+, which contain additional unit tests per instance. The
results are reported in Table [4]

Test set gpt-4o-mini | sing-gpt-4o-mini
MBPP 82.8% 84.9%
MBPP+ 69.6% 70.4%
HumanEval 87.2% 87.2%
HumanEval+ 82.9% 82.3%

Table 4: Pass@]1 rates on the EvalPlus suite, for the baseline gpt-4o-mini (untrained Bob) and our model
sing-gpt-4o-mini (trained Bob).

We observe that our approach substantially improves code generation Pass@1 accuracy on both the original
MBPP test set (+2.1%) and the more challenging MBPP+ version (+0.8%). It maintains the same level of
accuracy on HumanEval and loses a slight amount of accuracy on the more difficult HumanEval+ (-0.4%).

While our model has been trained on data from the test portion of MBPP, it has not been specifically trained
to solve the MBPP task. It has never seen the natural language instructions. In fact, our model is based
on the evaluator Bob, which has not been fine-tuned for code generation, yet it still manages to improve or
mostly maintain its generation performance.

For tasks oriented towards code generation, it may be beneficial to train a separate model combining the
final training datasets of both Alice and Bob. We leave these experiments for future research.

Under review as submission to TMLR

4 Conclusions

We presented a method to enhance the code understanding capabilities of Large Language Models by training
them in a self-play setting using the semantic inequivalence game.

We motivated the design of this approach with theoretical arguments, demonstrating that it can cover broad
domains of real-world programming by being grounded in a dataset of examples, while simultaneously
having no theoretical performance cap. This allows, in principle, for unbounded performance improve-
ments, constrained only by the available computing resources and the learning capacity of the underlying
LLMs.

We evaluated our method on a variety of code reasoning tasks, including the challenging Python builtin
identifier swap benchmark and two security vulnerability detection benchmarks. These evaluations show
that our approach learns skills that generalize across tasks and programming languages.

We believe that our method makes a significant contribution to techniques for training LLMs on complex
reasoning tasks.

5 Limitations and Future Work
Our method has the following limitations, primarily due to our limited budget:

o We fine-tuned only gpt-4o-mini, which, while performant, is not a state-of-the-art model. Given
more resources, it would be beneficial to repeat the experiments on several more powerful models,
including inference-time scaling reasoning models.

e We used only supervised fine-tuning on the OpenAl platform, which likely relies on LoRA-style
adaptors instead of full-parameter tuning. It would be valuable to explore reinforcement learning
and full-parameter tuning as alternatives.

e We were unable to train our generator agent ’'Alice’ to convergence, which likely limited the im-
provement of our final evaluator agent 'Bob,” who was trained for only a single round. It would
be beneficial to perform multiple training rounds for Bob, with Alice being trained to convergence
between each round for Bob. This could help the models learn powerful code reasoning skills, similar
to how AlphaZero learns strong reasoning abilities in Go or Chess through many rounds of self-play.

Reproducibility Statement

We will release all the code necessary to reproduce our experiments, along with the synthetic training data
we generated, upon publication. Exact replication, limited by sampling randomness, should be possible
with a modest budget (approximately $250), as long as gpt-40-mini-2024-07-18 remains available on the
OpenAl platform.

Author Contributions

Omitted to preserve anonymity. To be included in the camera-ready version of the paper.

Acknowledgments

Omitted to preserve anonymity. To be included in the camera-ready version of the paper.

Broader Impact Statement

Our proposed method involves training LLMs on synthetically generated data based on existing open-source
programming code datasets. We also evaluate our method on open-source datasets. No human experiments

10

Under review as submission to TMLR

were conducted, and therefore, the risk that our experiments have caused harm to individuals or infringed
upon anyone’s intellectual property rights is negligible.

Our work aims to enhance LLMs’ ability to reason about programming code. There is a potential risk
that such capabilities could be used for unethical activities, such as hacking computer systems. However,
these capabilities can also be used to strengthen computing systems by detecting security vulnerabilities in
codebases. We believe that the net societal impact of our research will be positive.

References

Andrew W. Appel and Maia Ginsburg. Modern Compiler Implementation in C. Press Syndicate of the
University of Cambridge, 1998. ISBN 052158390X.

Kai Arulkumaran, Antoine Cully, and Julian Togelius. Alphastar: an evolutionary computation perspective.
In Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO ’19, pp.
314-315, New York, NY, USA, 2019. Association for Computing Machinery. ISBN 9781450367486. doi:
10.1145/3319619.3321894. URL https://doi.org/10.1145/3319619.3321894.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large language
models, 2021. URL https://arxiv.org/abs/2108.07732.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger,
Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder,
Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe Tillet, Fe-
lipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-
Voss, William Hebgen Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir
Balaji, Shantanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam,
Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie
Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech
Zaremba. Evaluating large language models trained on code, 2021.

DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong
Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu,
Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang
Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao,
Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo,
Jiashi Li, Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni,
Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang,
Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua
Zhang, Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J.
Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang,
Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng Ye, Tao
Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang, Wenjun
Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang Chen,
Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng
Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song,
Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu,
Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying
He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqgiang Guo, Yuan Ou, Yuduan
Wang, Yue Gong, Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang
Zhou, Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying
Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie,

11

https://doi.org/10.1145/3319619.3321894
https://arxiv.org/abs/2108.07732

Under review as submission to TMLR

Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu,
Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen
Zhang. Deepseek-rl: Incentivizing reasoning capability in llms via reinforcement learning, 2025. URL
https://arxiv.org/abs/2501.12948|

Tuan Dinh, Jinman Zhao, Samson Tan, Renato Negrinho, Leonard Lausen, Sheng Zha, and George Karypis.
Large language models of code fail at completing code with potential bugs. In Proceedings of the 37th
International Conference on Neural Information Processing Systems, NIPS ’23, Red Hook, NY, USA,
2023. Curran Associates Inc.

Kefan Dong and Tengyu Ma. STP: self-play LLM theorem provers with iterative conjecturing and proving.
CoRR, abs/2502.00212, 2025. doi: 10.48550/ARXIV.2502.00212. URL https://doi.org/10.48550/
arXiv.2502.00212

Shihan Dou, Haoxiang Jia, Shenxi Wu, Huiyuan Zheng, Weikang Zhou, Muling Wu, Mingxu Chai, Jessica
Fan, Caishuang Huang, Yunbo Tao, Yan Liu, Enyu Zhou, Ming Zhang, Yuhao Zhou, Yueming Wu, Rui
Zheng, Ming Wen, Rongxiang Weng, Jingang Wang, Xunliang Cai, Tao Gui, Xipeng Qiu, Qi Zhang, and
Xuanjing Huang. What’s wrong with your code generated by large language models? an extensive study,
2024. URL https://arxiv.org/abs/2407.06153.

FAIR. Human-level play in the game of <i>diplomacy</i> by combining language models with strate-
gic reasoning. Science, 378(6624):1067-1074, 2022. doi: 10.1126/science.ade9097. URL https://wuw.
science.org/doi/abs/10.1126/science.ade9097.

Leonid A. Levin. The tale of one-way functions, 2003. URL https://arxiv.org/abs/cs/0012023.

Jiawei Liu, Chungiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by chatGPT
really correct? rigorous evaluation of large language models for code generation. In Thirty-seventh Con-
ference on Neural Information Processing Systems, 2023. URL https://openreview.net/forum?id=
1qvx610Cu?.

Jiawei Liu, Songrun Xie, Junhao Wang, Yuxiang Wei, Yifeng Ding, and Lingming Zhang. Evaluating
language models for efficient code generation. In First Conference on Language Modeling, 2024. URL
https://openreview.net/forum?id=IBCBMeAhmC.

Llama3. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco, Colin B. Clement,
Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong Zhou, Linjun Shou, Long Zhou, Michele Tu-
fano, Ming Gong, Ming Zhou, Nan Duan, Neel Sundaresan, Shao Kun Deng, Shengyu Fu, and Shujie
Liu. Codexglue: A machine learning benchmark dataset for code understanding and generation. CoRR,
abs/2102.04664, 2021.

Nickil Maveli, Antonio Vergari, and Shay B. Cohen. What can large language models capture about code
functional equivalence?, 2025. URL https://arxiv.org/abs/2408.11081l

Tan R. McKenzie, Alexander Lyzhov, Michael Pieler, Alicia Parrish, Aaron Mueller, Ameya Prabhu, Euan
McLean, Aaron Kirtland, Alexis Ross, Alisa Liu, Andrew Gritsevskiy, Daniel Wurgaft, Derik Kauffman,
Gabriel Recchia, Jiacheng Liu, Joe Cavanagh, Max Weiss, Sicong Huang, The Floating Droid, Tom Tseng,
Tomasz Korbak, Xudong Shen, Yuhui Zhang, Zhengping Zhou, Najoung Kim, Samuel R. Bowman, and
Ethan Perez. Inverse scaling: When bigger isn’t better, 2023.

Antonio Valerio Miceli Barone, Fazl Barez, Shay B. Cohen, and Ioannis Konstas. The larger they
are, the harder they fail: Language models do not recognize identifier swaps in python. In Find-
ings of the Association for Computational Linguistics: ACL 2023, pp. 272-292, Toronto, Canada,
July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-acl.19. URL
https://aclanthology.org/2023.findings-acl.19.

12

https://arxiv.org/abs/2501.12948
https://doi.org/10.48550/arXiv.2502.00212
https://doi.org/10.48550/arXiv.2502.00212
https://arxiv.org/abs/2407.06153
https://www.science.org/doi/abs/10.1126/science.ade9097
https://www.science.org/doi/abs/10.1126/science.ade9097
https://arxiv.org/abs/cs/0012023
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=1qvx610Cu7
https://openreview.net/forum?id=IBCBMeAhmC
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2408.11081
https://aclanthology.org/2023.findings-acl.19

Under review as submission to TMLR

Ahmad Mohsin, Helge Janicke, Adrian Wood, Igbal H. Sarker, Leandros Maglaras, and Naeem Janjua. Can
we trust large language models generated code? a framework for in-context learning, security patterns,
and code evaluations across diverse llms, 2024. URL https://arxiv.org/abs/2406.12513

National Institute of Standards and Technology (NIST) and Morris J. Dworkin. Sha-3 standard:
Permutation-based hash and extendable-output functions, 2015-08-04 00:08:00 2015. URL https:
//tsapps.nist.gov/publication/get_pdf.cfm?pub_id=919061,

OpenAl, :, Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemystaw Debiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, Rafal Jézefowicz, Scott Gray, Cather-
ine Olsson, Jakub Pachocki, Michael Petrov, Henrique P. d. O. Pinto, Jonathan Raiman, Tim Salimans,
Jeremy Schlatter, Jonas Schneider, Szymon Sidor, Ilya Sutskever, Jie Tang, Filip Wolski, and Susan Zhang.
Dota 2 with large scale deep reinforcement learning, 2019. URL https://arxiv.org/abs/1912.06680.

H. G. Rice. Classes of recursively enumerable sets and their decision problems. Trans. Amer. Math. Soc.,
74:358-366, 1953.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian
Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of go
with deep neural networks and tree search. Nature, 529(7587):484-489, 2016.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez, Marc
Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen Simonyan, and
Demis Hassabis. Mastering chess and shogi by self-play with a general reinforcement learning algorithm,
2017a. URL https://arxiv.org/abs/1712.01815,

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez, Thomas
Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan Hui, Laurent
Sifre, George van den Driessche, Thore Graepel, and Demis Hassabis. Mastering the game of go without
human knowledge. Nature, 550:354—, October 2017b. URL http://dx.doi.org/10.1038/nature24270.

Shiyu Sun, Shu Wang, Xinda Wang, Yunlong Xing, Elisa Zhang, and Kun Sun. Exploring security commits
in python, 2023. URL https://arxiv.org/abs/2307.11853,

Jiexin Wang, Xitong Luo, Liuwen Cao, Hongkui He, Hailin Huang, Jiayuan Xie, Adam Jatowt, and Yi Cai.
Is your ai-generated code really safe? evaluating large language models on secure code generation with
codeseceval, 2024. URL https://arxiv.org/abs/2407.02395,

Andrew Zhao, Yiran Wu, Yang Yue, Tong Wu, Quentin Xu, Yang Yue, Matthieu Lin, Shenzhi Wang,
Qingyun Wu, Zilong Zheng, and Gao Huang. Absolute zero: Reinforced self-play reasoning with zero
data, 2025. URL https://arxiv.org/abs/2505.03335.

A Non-decidability of semantic inequivalence

In a semantic equivalence game where the task of the evaluator ("Bob") is to determine whether two programs
P and @ are equivalent, there is clear undecidablity due to a trivial consequence of Rice’s theorem (Rice,
1953). Since a perfect Bob cannot exist, this results in a "full-employment theorem" (Appel & Ginsburg,
1998) for Alice: in principle, she can always find new ways to fool Bob. This iterative process leads to
increasingly stronger Bobs, who in turn train progressively stronger Alices.

However, in the semantic inequivalence game (section, the programs P and @ given to Bob are guaranteed
to be not equivalent, and Bob’s task is to find a diverging input Z such that P(#) # Q(Z), which is guaranteed
to exist. It may be asked whether this constraint on the programs makes the problem any logically easier.
We show here that this is not the case.

13

https://arxiv.org/abs/2406.12513
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=919061
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=919061
https://arxiv.org/abs/1912.06680
https://arxiv.org/abs/1712.01815
http://dx.doi.org/10.1038/nature24270
https://arxiv.org/abs/2307.11853
https://arxiv.org/abs/2407.02395
https://arxiv.org/abs/2505.03335

Under review as submission to TMLR

Definitions

Given an arbitrary, but fixed, admissible numbering (programming language) of partial computable
functions, we define a program P as an index in such numbering.

With a slight overload of notation, we denote P(z) as the result of evaluating on input x the partial
computable function defined by program P. Without loss of generality, we consider the inputs of our
programs to be the natural numbers and the outputs to be natural numbers plus the special value | that
denotes non-termination.

The mapping between programs and functions is surjective but not injective: each function can be defined
by infinitely many programs. We define two programs P and @ equivalent if they define the same function,
conversely we define them inequivalent if they define different functions, that is, if there exist at least one
diverging input & such that P(2) # Q(%).

Given a program A and a natural number n, the halting problem, denoted by the predicate Halt(A,n),
consists of determining whether A(n) # L, which is notoriously undecidable in the general case.

Theorem A.1. There is no perfect evaluator program Bob such that, for any inequivalent programs P and
Q it computes a diverging input for P and Q.

Proof. If programs P and) have a diverging input for which they both halt producing distinct output

values: P(Z) =y, € N, Q(&) = yq € N and y, # y,, then Bob can compute & by dovetailing. The interesting
case is when for each diverging input only one between P and) halts. We show that such diverging inputs
cannot be computed in the general case by a reduction to the halting problem.

Given a program A and a natural number n, it is possible to algorithmically construct two programs P} ,,
and () ,, defined as follows:

Listing 1: Definition of P}, and Q7 ,

def P_A n_ star(x):
if x = 0:
A(n)
return 1
else:
while True:
pass

def Q_A n_star(x):
if x — 0:
return 1

else:
P_A_n_star(x—1)

By construction, if A halts on input n, then P} , and Q7 ,, diverge only on input 1:
Am)# L = Py, ()= LAQy,1)=1,

otherwise if A does not halt on n, then P} and Q% diverge only on input 0:
Am) =L > Pj,(0)= LAQY,(0) = 1.

They are always equivalent on any other input. Therefore:

Listing 2: Halting decider
def Halt(A, n):

def P_A_n_star(x): ... # defined as in Listing 1
def Q_A_n_star(x): ... # defined as in Listing 1
return Bob_star(P_A n_star, Q A n_star) = 1

14

Under review as submission to TMLR

Since a general program that decides the halting problem cannot exist, then a perfect evaluator for the

*
semantic inequivalence problem Bob cannot exist. O

It can be noted that the proof of Theorem applies in the general case but deviates from the constraints
of the semantic inequivalence game in two important aspects:

1. The proof involves distinguishing between the halting behaviour of programs under arbitrary run-
time, while in the game programs are checked against the diverging inputs produced by Alice and
Bob under a time limit, after which they are assumed to return a special "TIMEOUT" value.

2. In the proof we allow both Bob’s input programs P and @ to take a special form that depends on
the program A whose halting behaviour is under consideration, while in the game the program P is
sampled from a dataset and Alice only controls program Q.

It may be asked whether these constraints make Bob’s task substantially easier, allowing for a perfect Bob
to exist, which would imply a performance cap. We show that this is not the case.

In order to address the first point, we note that while the halting problem under a time limit is decidable if
we only require the halting detector program to eventually halt, it is still undecidable if the halting detector
program has to halt itself within the same time limit of the program it checkaﬂ Therefore, by constraining
Bob’s resource usage, allowing Alice to always have more resources than Bob, and gradually increasing the
time limit of the programs, it is possible for Alice to always generate harder and harder instances. Once
Bob stops learning, the resource limits can be increased, enabling further learning, in principle forever. In
practice, Alice and Bob are implemented as agents based on LLMs operating in chain-of-thought mode,
thus resource limits can be enforced by controlling the number of reasoning tokens, or in the long term by
controlling the parameter count, layer count, or expert count of the base LLMsﬂ

As for the second point, we show that for any non-trivial program P, Alice can generate a program Qp, 4.
which checks whether program A halts on input n, where by "non-trivial" we mean that there exist at least
two distinct inputs g and z; such that P halts on both, returning two distinct values, respectively 4o and

Y1:

Listing 3: Definition of Qp 4.,
def Q P A n bar(x):
if (x =x0) or (x =1x_1):
if Halt(A, n): # defined as in Listing 2
return y 0
else:
return y 1
else:
return P(x)

This is a self-referential construction, where Bob is tasked to analyse a program that invokes Bob itself,

thus Bob has to analyse its own behaviour. If Bob was indeed the perfect Bob, then P and Qp 4., would
return different values only on input xg if A halts on n, or only on z; if it does not, thus solving the halting
problem. Note that this construction is still a valid output for Alice even when Bob is not perfect, since
Qp,a,n will still differ from P on z¢ or 1 (possibly on both if the inner call to Bob does not halt), which
means that in principle Alice can generate hard examples for Bob from arbitrary source programs, as long as
they meet minimal "non-triviality" conditions. In practice, we want the generated programs to run quickly
on the CPU without invoking LLMs, so this self-referential construction is unwieldy, but it serves as a proof
of concept which shows that arbitrarily complex logic can be added by Alice in the programs it generates,
even starting from minimally complex source programs.

7This is provable with an argument about program length.
8 Assuming that LLMs always become better at learning when increasing their resource limits.

15

Under review as submission to TMLR

B Setting a target difficulty

In the implementation of the semantic inequivalence game which we use in our experiment, we instruct the
generator "Alice" to create challenge instances for the evaluator "Bob" with a specific target difficulty, defined
as 10 times the probability that Bob fails to solve the instance when invoked in sampling mode. Setting the
target difficulty always at the maximum value of 10 makes the game equivalent to its original formulation
in section [2.I} which, if Alice never produces invalid instances, is a zero-sum game.

It may be asked whether this maximally adversarial setting is always ideal. Consider the following Python
program that Alice may potentially generate:

Listing 4: Cryptographically hard @ generated for a given P
import hashlib

def Q(x):
try:
e = str(x).encode("utf—8")
h = hashlib.sha3_256(e). hexdigest ()

if h =— "af9ac3dacb56b02fleal0l17e7657a9bb7el1778274e31509f134f023e41a5953866":
return "Bananas'
except:
pass

return P(x)

For inputs x that have the specific SHA-3-256 value defined in the code, @ returns the string 'Bananas’,
otherwise it behaves as P, therefore, as long as P does not happen to also return "Bananas" for all these
specific inputs, they are diverging inputs.

Alice can easily generate this instance by first choosing a diverging input # (in this example, the string
"correct horse battery staple'), then hashing it and hardcoding its hash value into @, but, in order to solve
this instance Bob has to successfully execute a preimage attack on SHA-3-256, which is considered a strong
cryptographic function (National Institute of Standards and Technology (NIST) & Dworkin| [2015). While
this attack is theoretically possible by brute-force search, in practice it would require a runtime longer than
the age of the universe, unless perhaps Bob is a cryptanalysis genius and manages to find a serious flaw
in SHA-3-256, and even in this case, if the one-way function conjecture happens to be true then it is
possible to construct asymptotically strong cryptographic hash functions (Levin, 2003]), making Bob’s task
effectively hopeless.

The construction used is our specific example would require Alice to run code in order to compute the hash of
its chosen diverging input, which current LLMs are typically not allowed to do in their default configuration
and not in our experiments (although some common "LLM agent" setups do allow it), but Alice could still
manage to create cryptographic puzzles which are too hard for any practical Bob to solve.

If Alice is instructed to always generate maximally difficult instances, it has an incentive to generate cryp-
tographic puzzles, but since Bob only learns from the instances it can actually solve, this would effectively
cause the learning process to stall. In Appendix [A] we have proven that learning can continue forever in the
limit of infinite computing resources, but in reality computing resources are finite, and cryptographic puzzles
could stop the learning process as soon as Alice discovers the trick. Even if it never resorts to cryptographic
puzzles, Alice could just learn faster than Bob, eventually overwhelming Bob with instances that it cannot
solve and thus stopping the learning process.

Fortunately, we can avoid this problem completely by setting the target difficult to a value lower than the
maximum, e.g. 7, corresponding to the current Bob solving the instances with 30% probability. This changes
the nature of the game from zero-sum to positive-sum, where Alice acts as a teacher that challenges Bob
with instances which are hard, but not too hard for its current level. As Bob improves, the difficulty of
a given distribution of instances decreases, which in turns causes Alice to learn to recalibrate its difficulty

16

Under review as submission to TMLR

estimation and gradually generate more challenging instances, enabling the training process to continue
learning interesting coding logic for as long as the capacity of the underlying LLMs is not exceeded.

In our experiments, due to our limited resources, we could not train Alice to the point that it could seriously
challenge Bob, thus we always set the target difficulty to 10, but as a training recipe, we do recommend
reducing the target difficulty if at some point Bob starts to fall behind.

C Prompt templates

System prompt for Alice

You are an expert computer scientist. Your task is to take a Python 3.10 program and
write a similar program which is not semantically equivalent, which means that there must
exist at least a diverging input example such that the original program and your program
either produce different outputs or exceptions, or one halts and the other one does not
halt. In addition to a program, you need to produce a diverging input example. Start

by carefully analyzing the original program and think of how an example would propagate
through it from the input to the return value, considering how to modify the program

in order to elicit a different behavior. Make sure that the return values or exceptions
raised by your program are picklable.

The original program and your program will be used in a test to evaluate the skill of an
expert computer scientist who will have to produce a diverging example (not necessarily
the same as yours), so make sure that the difference you introduce are not very easy

to understand. You will be given a difficulty level from O (easiest) to 10 (hardest) to
target. E.g. difficulty level O means that an expert computer scientist in the bottom
decile or above should be able to find a diverging example, difficulty level 9 means that
only an expert computer scientist in the top decile should be able to find a diverging
example, and difficulty level 10 means that only the top 1\/ or less of expert computer
scientists should be able to find a diverging example.

Think step by step before writing your program. Use the following Markdown format, making
sure that the following sections are delimited by level 1 headings, since they will have
to be automatically parsed:

Analysis

step by step analysis. This section can include sub-headings and code blocks

Generated program

your program inside a Python code block. Do not change the name or signature of the entry
point function

Diverging input example

your diverging input example as a Python dictionary inside a Python code block

For instance, if the entry point function takes two parameters a and b and your diverging
example is a="foo" and b=42, write:

¢ ¢ ‘python

{
llall: llfooll’
"bU: 42

}

[SNaNe

do not write the expected outputs

17

Under review as submission to TMLR

User message for Alice As a Python f-string:

f'"""Difficulty level: {difficulty_level}
Entry point function: {function_name}

¢ ¢ ‘python
{code}

ccennn

During inference difficulty_level is the target difficulty (always 10), during SFT training, for Alice’s main
examples it is the measured difficulty approximated to the nearest integer, for Alice’s difficulty prediction
examples it is the string "Any".

Second user message for Alice Used only for the difficulty prediction training examples.

Predict the difficulty level of the instance. Just write "Difficulty level: D" where D is
your prediction, do not write anything else.

Second assistant message for Alice Used only for the difficulty prediction training examples. As a
Python f-string:

f"""Difficulty level: {difficulty_levell}"""

where difficulty_level is the measured difficulty

System prompt for Bob

You are an expert computer scientist. Your task is to take two Python 3.10 programs and
determine whether or not they are semantically equivalent. Two programs are semantically
equivalent if there exists no diverging input examples such that the original program
and your program either produce different outputs or exceptions, or one halts and the
other one does not halt. If you determine that the two programs are not semantically
equivalent, you also need to produce a diverging input example. Start by carefully
analyzing the two programs and think of how an example would propagate through them from
the input to the return value, considering whether it could elicit a different behaviors.
Think step by step before writing your program. Use the following Markdown format, making
sure that the following sections are delimited by level 1 headings, since they will have
to be automatically parsed:

Analysis

step by step analysis. This section can include sub-headings and code blocks

Equivalent?

Yes or No

Diverging input example

your diverging input example as a Python dictionary inside a Python code block, or
nothing if the two programs are equivalent.

For instance, if the entry point function takes two parameters a and b and your diverging
example is a="foo" and b=42, write:

¢ ‘python

{
llall: llfooll’
"b": 42

b

[N N1

do not write the expected outputs

18

Under review as submission to TMLR

Note that we ask Bob to determine whether the two programs are equivalent, even though they never are.
This is not strictly necessary, but it potentially makes the task slightly more difficult for Bob, which is
beneficial since Bob tends to be much stronger than Alice.

User message for Bob As a Python f-string:
f"""Entry point function: {function_name}

Program 1:
¢ ¢ ‘python
{code_P}

[N N1

Program 2:
¢ ¢ ‘python
{code_Q}

ccennn

The evaluation prompts will be included in the code released upon publication.

D Additional Python builtin identifier swap results
Main results Same as Table 2] presented as a bar chart in Figure [3]

Results on Reasoning Models Large Reasoning Models (LRMs) are LLMs which have been specifically
trained to solve reasoning tasks, primarily in the domains of math and coding, using Chain-of-Thought
reasoning. These models, such as OpenAl o1 and 03 and DeepSeek-r1 (DeepSeek-Al et al., [2025) typically
generate a large amount of reasoning tokens during inference, hence they are said to perform inference-time
scaling by trading off speed and cost for quality. In practice, they are very strong but also very expensive.

Our approach could be broadly considered a type of LRM, since it is trained to solve reasoning problems
using CoT, though in practice we use a much smaller base LLM and we do not invest nearly as many
resources neither during training time nor during inference time.

We evaluate the OpenAl LRMs 01-2024-12-17 and 03-mini-2025-01-31 and DeepSeek LRMs r1 and its
distilled version based on Meta Llama-3.3-70B-Instruct on the Python builtin identifier swap benchmark.
Due to the high cost and low speed of inference, for all these models except 03-mini-2025-01-31 we only
evaluate 10% of the test set. For the OpenAl models we evaluate both on the default prompt and the
CoT-style prompt suggested for DeepSeek-rl. We report the results in Figure [

The LRMs are much stronger than gpt-4o-mini and our approach, with the full DeepSeek-r1 reaching 94.0%
accuracy, which is expected given their training and inference costs.

Given sufficient resources, it would be beneficial as a future experiment to use one of these models as the
base model for our approach. We expect that our approach would be complementary to the synthetic data
generation techniques used to train these models, resulting in further improvements.

19

Under review as submission to TMLR

Classification accuracy of LLMs (non-reasoning)

100 - EEm Correct
90 - BEm Incorrect
80 - B Invalid
70 4
60 -
30 -
40 -
30 -
20 -
10 -

Figure 3: Python builtin identifier swap results for the baseline gpt-4o-mini (untrained Bob) and our model
sing-gpt-4o-mini (trained Bob), with or without chain-of-thought.

20

Under review as submission to TMLR

Classification accuracy of reasoning LLMs

100 1

90
80 1
70 1
60
50 ~
40 -
30 -
20 -
10 A
G_
Q’O-

\f\ 0 W
-'ar ra.-({\' < O{QQ Cl
W 0 ¢
({\\“ D\'
0
Model

Figure 4: Python builtin identifier swap results for LRMs.

21

I Correct
I Incorrect
H Invalid

	Introduction
	Proposed method
	The semantic inequivalence game
	Implementation with Supervised Fine-tuning and Difficulty Targeting

	Experiments
	Training
	Intrinsic Evaluation
	Qualitative analysis
	Extrinsic Evaluation
	Python Builtin Identifier Swap
	Vulnerability Detection
	Code Generation

	Conclusions
	Limitations and Future Work
	Non-decidability of semantic inequivalence
	Setting a target difficulty
	Prompt templates
	Additional Python builtin identifier swap results

