

# PAIRWISE WORST-CASE RATIO ANALYSIS FOR DISCRIMINATIVE DIMENSIONALITY REDUCTION VIA MINORIZATION-MAXIMIZATION

006 **Anonymous authors**

007 Paper under double-blind review

## ABSTRACT

013 In this paper, we investigate a novel discriminative dimensionality reduction  
 014 method based on maximizing the minimum pairwise ratio of between-class to  
 015 within-class scatter. This objective function enhances class separability by pro-  
 016 viding critical, adaptive control over the variance within each class pair. The re-  
 017 sulting max-min fractional programming problem is non-convex and notoriously  
 018 challenging to solve. Our key contribution is a provably convergent, two-level  
 019 iterative algorithm, termed GDMM-QF (generalized Dinkelbach-minorization-  
 020 maximization for quadratic fractional programs), to find a high-quality solution.  
 021 The outer loop employs a generalized Dinkelbach-type procedure to transform the  
 022 fractional program into an equivalent sequence of subtractive-form max-min sub-  
 023 problems. For the inner loop, we develop an efficient minorization-maximization  
 024 (MM) algorithm that tackles the non-convex subproblem by iteratively solving a  
 025 simple quadratic program (QP), which we derive from the dual of a convex surro-  
 026 gate. The proposed GDMM-QF framework is computationally efficient, guaran-  
 027 teed to converge, and requires no hyperparameter tuning. Experiments on multiple  
 028 benchmark datasets confirm the superiority of our method in learning discrimina-  
 029 tive projections, consistently achieving lower classification error than state-of-the-  
 030 art alternatives.

## 1 INTRODUCTION

031 Modern data acquisition technologies have led to the proliferation of high-dimensional datasets,  
 032 where the number of measured features can be exceptionally large. This phenomenon, often termed  
 033 the “curse of dimensionality,” introduces significant challenges, including increased computational  
 034 overhead, a heightened risk of model overfitting due to spurious correlations, and a considerable  
 035 loss of data interpretability. To address these issues in the context of supervised classification,  
 036 dimensionality reduction has become an indispensable preprocessing step. Methodologies for di-  
 037 mensionality reduction are broadly categorized into two main paradigms: feature extraction, which  
 038 constructs a new, smaller set of features by projecting the data onto a lower-dimensional mani-  
 039 fold Nie et al. (2021b); Wang et al. (2024); Nie et al. (2023; 2021a); Chang et al. (2016); Nie et al.  
 040 (2017); Li et al. (2018a), and feature selection, which aims to identify and retain only the most in-  
 041 formative subset of the original features Gui et al. (2017); Li et al. (2017); Sheikhpour et al. (2017);  
 042 Hancer et al. (2020); Li et al. (2022); Shen et al. (2021); Li et al. (2018b); Luo et al. (2018). Both  
 043 approaches seek to produce a more compact and meaningful data representation, thereby enhancing  
 044 classification accuracy, preventing overfitting, and improving the comprehensibility of the resulting  
 045 model.

047 The core objective of discriminant analysis is to identify a linear projection that optimally separates  
 048 distinct classes within a dataset. This family of supervised methods has evolved significantly since  
 049 the seminal work of Fisher, with researchers developing a wide array of class separability metrics  
 050 over the decades Fisher (1936); Rao (1948); Bian & Tao (2011b); Zhang & Yeung (2010); Yu et al.  
 051 (2011); Su et al. (2015); Nie et al. (2021b); Wang et al. (2024). Among these, linear discriminant  
 052 analysis (LDA) remains the most prominent. Originally conceived by Fisher for binary classifica-  
 053 tion Fisher (1936) and later extended by Rao to handle multiple classes Rao (1948), LDA seeks  
 a subspace projection that maximizes the ratio of between-class variance to within-class variance.

054 Despite its widespread use, classical LDA exhibits several critical limitations. It is susceptible to  
 055 performance degradation when sample sizes are small, which can yield unreliable covariance matrix  
 056 estimates and violate its underlying Gaussian assumptions Nie et al. (2020a;b). It is also known to  
 057 be sensitive to outliers Nie et al. (2021b). A particularly significant drawback arises in multi-class  
 058 scenarios where the target dimension is less than the number of classes minus one. In such cases,  
 059 the LDA objective, which effectively averages pairwise class separations, becomes biased by the  
 060 most distant class pair, causing less separated pairs to be projected even closer, potentially leading  
 061 to class overlap Hamsici & Martinez (2008). This phenomenon is known as the “worst-case class  
 062 separation” problem.

063 Several algorithms improve multiclass discrimination by adaptively weighting class distances, but  
 064 they often falter on the closest pair of classes. More recently, researchers have reframed the problem  
 065 in a worst-case light Omati et al. (2025); Song et al. (2017); Xu et al. (2010; 2012); Shao & Sang  
 066 (2014); Ding et al. (2014); Shao & Sang (2017); Li et al. (2015); Hu et al. (2014); Zhang & Yeung  
 067 (2010); Bian & Tao (2011a). For example, Bian et al. Bian & Tao (2011a) identify the pair of classes  
 068 with the smallest distance between their means—the “worst-case” pair that nearly overlaps—and in-  
 069 troduce a max–min distance analysis (MMDA) to enlarge that minimal gap in the reduced subspace.  
 070 Zhang et al. build upon the MMDA with worst-case LDA (WLDA) to further enhance separation  
 071 under challenging scenarios. Extensions in Su et al. (2015) and Omati et al. (2025) move MMDA  
 072 into heteroscedastic settings, using the Chernoff distance to maximize the smallest inter-class diver-  
 073 gence while controlling the intra-class variance. It is worth mentioning that Bian & Tao (2011b);  
 074 Su et al. (2015) pioneered the conversion of high-dimensional datasets into moderate-dimensional  
 075 representations by applying principal component analysis (PCA) as a preprocessing step in their pro-  
 076 posed algorithms. This approach enables the algorithms to operate effectively in substantially lower  
 077 dimensions while preserving most of the energy of the data, depending on the reduction coefficient.  
 078 For example, a dataset with 1024 dimensions can be reduced to fewer than 50 dimensions while  
 079 retaining 98% of the energy Bian & Tao (2011b); Su et al. (2015); Omati et al. (2025); Wang et al.  
 080 (2024).

081 While these advanced methods improve upon classical LDA, strategies that focus solely on maxi-  
 082 mizing the minimum distance between class centroids (whether Euclidean or Chernoff-based) are  
 083 incomplete. They fail to account for the internal dispersion, or within-class scatter, of each class.  
 084 Consequently, even if the means of two classes are pushed apart, the classes themselves may still  
 085 overlap if characterized by high variance. To address this interplay between separation and com-  
 086 pactness, the worst-case ratio analysis (WCRA) objective was proposed, which seeks to maximize  
 087 the minimum ratio of between-class to within-class scatter.

088 A notable attempt to solve this problem was made by Wang et al. Wang et al. (2024). Their approach  
 089 reformulates the non-convex fractional program by iteratively transforming it into a sequence of  
 090 quadratic subproblems. They then apply a semidefinite relaxation to arrive at a tractable semidefinite  
 091 program (SDP). However, this method has two key drawbacks: the relaxation is not guaranteed to  
 092 be tight, potentially leading to suboptimal solutions, and its performance depends on the tuning of  
 at least two hyperparameters.

093 Crucially, a fundamental limitation of the approach in Wang et al. (2024) is its reliance on a global  
 094 within-class scatter matrix in the denominator of the ratio. This non-pairwise normalization fails to  
 095 adapt to the specific compactness of the most challenging class pairs, limiting its effectiveness in  
 096 scenarios where class variances differ significantly.

097 In this paper, we introduce a novel and provably convergent iterative algorithm, termed GDMM-QF  
 098 (generalized Dinkelbach-minorization-maximization for quadratic fractional programs), for solving  
 099 the pairwise worst-case ratio analysis (PWCRA) problem. Our approach is designed to solve a more  
 100 adaptive version of the worst-case separation problem. Instead of normalizing by a global measure  
 101 of compactness, our objective function evaluates the separability of each class pair relative to its  
 102 own unique within-class scatter. The effectiveness of this formulation becomes more pronounced  
 103 when class variances differ significantly.

104 To solve the PWCRA problem, our GDMM-QF algorithm employs a nested iterative process. For  
 105 the outer loop, we adapt a generalized Dinkelbach-type procedure to transform the challenging max-  
 106 min fractional objective into an equivalent max-min subtractive problem. We provide a rigorous  
 107 proof that this outer iterative framework, which can be viewed as a specialized Newton’s method,

108 is guaranteed to converge to the global optimum of the ratio problem. The inner subproblem at  
 109 each Dinkelbach iteration, however, remains a non-convex max-min program. To solve this, we  
 110 employ the minorization-maximization (MM) principle for the inner loop. We construct a tight,  
 111 convex surrogate that lower-bounds the true objective, resulting in a semidefinite program (SDP) at  
 112 each inner step. Crucially, we show that this SDP can be solved even more rapidly by formulating  
 113 its dual, which takes the form of a simple quadratic program (QP). This dual-loop structure with  
 114 proven convergence at both levels makes GDMM-QF a robust and computationally efficient overall  
 115 algorithm that is also fully parameter-free.

116 The remainder of this paper is structured as follows. In Section 2, we formulate the PWCRA prob-  
 117 lem. Section 3 presents our proposed two-level optimization algorithm, which uses a generalized  
 118 Dinkelbach procedure for the outer loop and the MM approach to solve the inner loop’s subprob-  
 119 lem. We then evaluate its performance through extensive experiments in Section 4. Finally, Section  
 120 5 provides concluding remarks.

121

## 122 2 PROBLEM FORMULATION

123

124 Consider a dataset  $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n] \in \mathbb{R}^{d \times n}$  containing  $n$  samples distributed across  $C$  distinct  
 125 classes. The objective is to learn a linear transformation matrix  $\mathbf{T} \in \mathbb{R}^{d \times m}$  (where  $m \ll d$ ) that  
 126 projects the high-dimensional data into a lower-dimensional subspace. The transformation is de-  
 127 signed to simultaneously maximize between-class separation and minimize within-class dispersion.

128 To formalize this, we define class-pairwise scatter matrices. For any pair of classes  $(i, j)$ , the  
 129 between-class scatter  $\mathbf{S}_b^{ij}$  and within-class scatter  $\mathbf{S}_w^{ij}$  are given by:  
 130

$$131 \quad \mathbf{S}_b^{ij} = (\bar{\mathbf{x}}_i - \bar{\mathbf{x}}_j)(\bar{\mathbf{x}}_i - \bar{\mathbf{x}}_j)^T, \quad \mathbf{S}_w^{ij} = \sum_{h \in \{i, j\}} \sum_{\mathbf{x}_k \in \tau_h} (\mathbf{x}_k - \bar{\mathbf{x}}_h)(\mathbf{x}_k - \bar{\mathbf{x}}_h)^T, \quad (1)$$

133 where  $\tau_k$  denotes the set of samples belonging to the  $k$ -th class and  $\bar{\mathbf{x}}_k$  is the corresponding class  
 134 mean. Using these definitions, the PWCRA problem is formulated as the following optimization:

$$136 \quad \max_{\mathbf{T}^T \mathbf{T} = \mathbf{I}_m} \min_{1 \leq i < j \leq C} \frac{\text{tr}(\mathbf{T}^T \mathbf{S}_b^{ij} \mathbf{T})}{\text{tr}(\mathbf{T}^T \mathbf{S}_w^{ij} \mathbf{T})}. \quad (2)$$

139 The core of this formulation is the max-min objective, which guarantees pairwise class separability  
 140 by maximizing the minimum performance ratio across all class pairs. This directly addresses the  
 141 “worst-case” separation problem. Moreover, the use of pairwise scatter matrices allows the model to  
 142 adaptively handle the unique covariance structure inherent to each class pair, a significant advantage  
 143 over methods that rely on a single, global within-class scatter matrix. The orthogonality constraint  
 144  $\mathbf{T}^T \mathbf{T} = \mathbf{I}_m$  is imposed to ensure the projected features are uncorrelated and to provide a unique  
 145 basis for the solution subspace.

146 The following sections detail our approach to solving the challenging non-convex problem in (2).

147

## 148 3 A TWO-LEVEL OPTIMIZATION ALGORITHM FOR PWCRA

149

150 The PWCRA optimization problem in (2) is a non-convex, max-min fractional program, which is  
 151 inherently difficult to solve directly. To this end, we propose a provably convergent, two-level iter-  
 152 ative algorithm. The outer level employs a generalized Dinkelbach-type procedure to transform the  
 153 fractional objective into a more manageable subtractive form. The inner level then solves the result-  
 154 ing non-convex max-min subproblem using a specialized algorithm derived from the Minorization-  
 155 Maximization (MM) framework.

156

### 157 3.1 OUTER LOOP: GENERALIZED DINKELBACH PROCEDURE FOR FRACTIONAL 158 PROGRAMMING

159 The PWCRA problem belongs to the class of general max-min ratio problems:

$$161 \quad \max_{\mathbf{T} \in \mathcal{X}} \min_{1 \leq i < j \leq C} \frac{f_{ij}(\mathbf{T})}{g_{ij}(\mathbf{T})}, \quad (3)$$

162 where  $f_{ij}(\mathbf{T}) = \text{tr}(\mathbf{T}^T \mathbf{S}_b^{ij} \mathbf{T})$ ,  $g_{ij}(\mathbf{T}) = \text{tr}(\mathbf{T}^T \mathbf{S}_w^{ij} \mathbf{T}) > 0$ , and the feasible set is the Stiefel manifold  $\mathcal{X} = \{\mathbf{T} \in \mathbb{R}^{d \times m} \mid \mathbf{T}^T \mathbf{T} = \mathbf{I}_m\}$ . To solve this max-min fractional program, we  
163 generalize Dinkelbach’s algorithm Dinkelbach (1967). The theoretical foundation of this iterative  
164 approach is captured in the following theorems.  
165

166 **Theorem 1.** *The global optimum of the general max-min ratio problem  $\max_{\mathbf{T} \in \mathcal{X}} \min_{ij} \frac{f_{ij}(\mathbf{T})}{g_{ij}(\mathbf{T})}$  is  
167 equivalent to finding the largest root  $\lambda^*$  of the function  $h(\lambda) = \max_{\mathbf{T} \in \mathcal{X}} \min_{ij} \{f_{ij}(\mathbf{T}) - \lambda g_{ij}(\mathbf{T})\}$ .*  
168

170 *Proof.* See Appendix B. □

171 **Theorem 2.** *The iterative procedure outlined in Algorithm 1 is equivalent to Newton’s method  
172 applied to find the root of the function  $h(\lambda)$ .*  
173

174 *Proof.* See Appendix C. □

177 A summary of the generalized Dinkelbach procedure is outlined in Algorithm 1, which can be found  
178 in the Appendix G. Given the iterate  $\mathbf{T}^k$ , we compute the current worst-case ratio  $\lambda_k$ . This  $\lambda_k$  is  
179 then used to form a subtractive max-min subproblem (line 4), the solution of which becomes the  
180 next iterate  $\mathbf{T}^{k+1}$ .

181 The convergence properties of this algorithm are stated below, guaranteeing its desirable behavior.

182 **Theorem 3.** *Algorithm 1 monotonically increases the objective value of the PWCRA problem at  
183 each iteration and converges to the global optimal solution.*  
184

185 *Proof.* See Appendix D. □

### 187 3.2 INNER LOOP: SOLVING THE MAX-MIN SUBPROBLEM VIA MM

189 Each outer loop iteration requires solving a problem of the form:

$$191 \max_{\mathbf{T}^T \mathbf{T} = \mathbf{I}_m} \min_{1 \leq i < j \leq C} \text{tr} \left( \mathbf{T}^T \tilde{\mathbf{S}}_{Cij} \mathbf{T} \right), \quad (4)$$

193 where  $\tilde{\mathbf{S}}_{Cij} \triangleq \mathbf{S}_b^{ij} - \lambda_k \mathbf{S}_w^{ij}$ . To facilitate the development of our proposed algorithm for solving the  
194 problem in (4), we first introduce and prove a key lemma.

195 **Lemma 1.** *Given that the matrices  $\tilde{\mathbf{S}}_{Cij}$  are positive semi-definite, the original non-convex semi-  
196 orthogonality constraint,  $\mathbf{T}^T \mathbf{T} = \mathbf{I}$ , as stated in problem (4), can be substituted with the less strict  
197 condition  $\mathbf{T}^T \mathbf{T} \preceq \mathbf{I}$ . This relaxation is valid because the global maximizer of the resulting relaxed  
198 problem will inherently satisfy the original equality constraint.*  
199

200 *Proof.* The proof is provided in Appendix E. □

202 Leveraging Lemma 1, we can now reformulate the initial problem from (4) into the following relaxed  
203 optimization problem:  
204

$$205 \max_{\mathbf{T}^T \mathbf{T} \preceq \mathbf{I}_m} \min_{1 \leq i < j \leq C} \text{tr} \left( \mathbf{T}^T \tilde{\mathbf{S}}_{Cij} \mathbf{T} \right). \quad (5)$$

207 A significant advantage of this reformulation is that the new constraint in (5) is convex. This is be-  
208 cause the inequality  $\mathbf{T}^T \mathbf{T} \preceq \mathbf{I}_m$  is equivalent to the linear matrix inequality (LMI)  $\begin{bmatrix} \mathbf{I}_m & \mathbf{T}^T \\ \mathbf{T} & \mathbf{I}_d \end{bmatrix} \succeq 0$ .  
209

210 However, the optimization in (5) is a challenging non-convex problem due to its max-min structure,  
211 where each term  $h_{ij}(\mathbf{T}) = \text{tr}(\mathbf{T}^T \tilde{\mathbf{S}}_{Cij} \mathbf{T})$  is convex in  $\mathbf{T}$  (note that the potential indefiniteness of  
212 the matrices  $\tilde{\mathbf{S}}_{ij}$  is not a concern, as each term can be convexified by shifting  $\tilde{\mathbf{S}}_{ij}$  with a suitable  
213 scalar matrix  $\alpha \mathbf{I}$ —for example, using  $\alpha \geq \max_{i,j} \lambda_{\max}(-\tilde{\mathbf{S}}_{ij})$ )—an operation that does not alter  
214 the optimizer due to the constraint  $\mathbf{T}^T \mathbf{T} = \mathbf{I}_m$ ). To address (5), we employ the minorization-  
215 maximization for max-min (MM4MM) approach Saini et al. (2024), an overview of which is de-  
tailed in Appendix A.

At each iteration  $t$ , we construct a tractable surrogate function by minorizing each of the convex quadratic terms,  $h_{ij}(\mathbf{T})$ . We replace each term with its first-order Taylor expansion around the current estimate  $\mathbf{T}^t$ . This tangent hyperplane serves as a tight lower bound:

$$\begin{aligned} h_{ij}(\mathbf{T}) &= \text{tr} \left( \mathbf{T}^T \tilde{\mathbf{S}}_{Cij} \mathbf{T} \right) \geq \text{tr} \left( (\mathbf{T}^t)^T \tilde{\mathbf{S}}_{Cij} \mathbf{T}^t \right) + 2 \text{tr} \left( (\mathbf{T}^t)^T \tilde{\mathbf{S}}_{Cij} (\mathbf{T} - \mathbf{T}^t) \right) \\ &= 2 \text{tr} \left( (\mathbf{T}^t)^T \tilde{\mathbf{S}}_{Cij} \mathbf{T} \right) - \text{tr} \left( (\mathbf{T}^t)^T \tilde{\mathbf{S}}_{Cij} \mathbf{T}^t \right) \triangleq \tilde{h}_{ij}(\mathbf{T}). \end{aligned} \quad (6)$$

Substituting these linear lower bounds  $\tilde{h}_{ij}(\mathbf{T})$  back into the original problem (5) yields the surrogate problem for the MM update. This problem involves maximizing the minimum of these linear functions:

$$\max_{\mathbf{T}^T \mathbf{T} \leq \mathbf{I}_m} \min_{1 \leq i < j \leq C} 2 \text{tr} \left( \mathbf{A}_{ij}^T \mathbf{T} \right) + c_{ij}, \quad (7)$$

where

$$\mathbf{A}_{ij}^T \triangleq (\mathbf{T}^t)^T \tilde{\mathbf{S}}_{Cij}, \quad (8)$$

$$c_{ij} = -\text{tr} \left( (\mathbf{T}^t)^T \tilde{\mathbf{S}}_{Cij} \mathbf{T}^t \right), \quad (9)$$

which are constants within the current iteration. Although this surrogate problem (7) is convex and can be solved as an SDP, we can devise a more efficient solution method.

To develop this more efficient solver, we begin by reformulating the inner minimization over the discrete indices  $(i, j)$ . This is accomplished by introducing a set of continuous auxiliary variables,  $\{z_{ij}\}$ , which are constrained to the probability simplex ( $\sum z_{ij} = 1, z_{ij} \geq 0$ ). This transformation recasts the original problem into the equivalent max-min formulation shown in (10):

$$\max_{\mathbf{T}^T \mathbf{T} \leq \mathbf{I}_m} \min_{\{z_{ij}\}} 2 \text{tr} \left( \mathbf{A}(\mathbf{z})^T \mathbf{T} \right) + \sum_{1 \leq i < j \leq C} z_{ij} c_{ij} \quad \text{s.t.} \quad z_{ij} \geq 0, \quad \sum_{1 \leq i < j \leq C} z_{ij} = 1, \quad (10)$$

where the matrix  $\mathbf{A}$  is now defined as the convex combination  $\mathbf{A}(\mathbf{z}) \triangleq \sum_{1 \leq i < j \leq C} z_{ij} \mathbf{A}_{ij}$ .

Let the objective function in (10) be  $L(\mathbf{T}, \mathbf{z})$ . This function is affine (and thus concave) with respect to the maximization variable  $\mathbf{T}$  and affine (and thus convex) with respect to the minimization variable  $\mathbf{z}$ . Given that the optimization domains for both  $\mathbf{T}$  and  $\mathbf{z}$  are compact and convex, the conditions of Sion's minimax theorem Sion (1958) are met. This allows interchanging the operators, leading to the following equivalent formulation:

$$\min_{\{z_{ij}\}} \max_{\mathbf{T}^T \mathbf{T} \leq \mathbf{I}_m} 2 \text{tr} \left( \mathbf{A}(\mathbf{z})^T \mathbf{T} \right) + \sum_{1 \leq i < j \leq C} z_{ij} c_{ij} \quad \text{s.t.} \quad z_{ij} \geq 0, \quad \sum_{1 \leq i < j \leq C} z_{ij} = 1. \quad (11)$$

This dual formulation is highly advantageous, as the inner maximization problem in (11) now admits a closed-form analytical solution. Focusing on the trace term in the objective, the Von Neumann inequality Marshall (1979) states that  $\text{tr} (\mathbf{A}^T \mathbf{T}) \leq \sum_{k=1}^m \sigma_k(\mathbf{A})$ , where  $\sigma_k(\cdot)$  denotes the  $k$ -th singular value. This upper bound is attained when  $\mathbf{T}$  is set to  $\mathbf{T}^* = \mathbf{A} (\mathbf{A}^T \mathbf{A})^{-\frac{1}{2}}$ . Critically, this optimal  $\mathbf{T}^*$  inherently fulfills the strict semi-orthogonality constraint  $(\mathbf{T}^*)^T \mathbf{T}^* = \mathbf{I}$ . By substituting this analytical solution for  $\mathbf{T}^*$  into the dual problem (11), we eliminate the variable  $\mathbf{T}$  and arrive at the following optimization problem solely over  $\mathbf{z}$ :

$$\min_{\{z_{ij}\}} 2 \sum_{i=1}^m \sigma_i(\mathbf{A}(\mathbf{z})) + \sum_{1 \leq i < j \leq C} z_{ij} c_{ij} \quad \text{s.t.} \quad z_{ij} \geq 0, \quad \sum_{1 \leq i < j \leq C} z_{ij} = 1, \quad (12)$$

where the dependency of  $\mathbf{A}$  on  $\mathbf{z}$  is made explicit. The first term in this objective is exactly twice the nuclear norm of  $\mathbf{A}(\mathbf{z})$ , denoted  $\|\mathbf{A}(\mathbf{z})\|_*$ . Since the nuclear norm is a convex function, and  $\mathbf{A}(\mathbf{z})$  is a linear function of  $\mathbf{z}$ , problem (12) is convex. While it can be reformulated and solved as an SDP Recht et al. (2010), it offers a computational advantage over (7) due to having fewer variables and constraints.

Once the optimal  $\mathbf{z}^*$  is found by solving (12), the corresponding update for  $\mathbf{T}$  is computed as:

$$\mathbf{T}^{(t+1)} = \mathbf{A}(\mathbf{z}^*) (\mathbf{A}^T(\mathbf{z}^*) \mathbf{A}(\mathbf{z}^*))^{-\frac{1}{2}}. \quad (13)$$

270 This  $\mathbf{T}^{(t+1)}$  becomes the input for the subsequent iteration, and the process repeats until convergence  
 271 as outlined in Algorithm 2 (see Appendix G).

272 The primary computational bottleneck within each iteration of this approach is solving the convex  
 273 optimization problem (12). As noted previously, this problem can be reformulated and solved as  
 274 a SDP. However, standard interior-point methods for SDPs have a high computational complexity,  
 275 scaling polynomially with the matrix dimensions. For this problem, the cost is approximately  
 276  $\mathcal{O}((d+m)^{4.5})$  per iteration, which can be prohibitive for large-scale datasets. This high cost motivates  
 277 the development of a more efficient method for solving the subproblem (12). To reduce this  
 278 computational burden, we now introduce an alternative approach based on the MM principle, applied  
 279 directly to the challenging nuclear norm term in (12). This strategy replaces the expensive  
 280 SDP with a sequence of much simpler QPs.

281 We begin by rewriting problem (12) to explicitly show the nuclear norm and the linear term in  
 282 summation form:

$$283 \min_{\{z_{ij}\}} 2\|\mathbf{A}(\mathbf{z})\|_* + \sum_{1 \leq i < j \leq C} z_{ij} c_{ij} \text{ s.t. } z_{ij} \geq 0, \quad \sum_{1 \leq i < j \leq C} z_{ij} = 1. \quad (14)$$

284 The core idea is to replace the non-smooth nuclear norm  $\|\mathbf{A}(\mathbf{z})\|_*$  with a smooth, quadratic upper  
 285 bound at each iteration. To this end, we employ a variational form of the nuclear norm, which  
 286 expresses it as a joint minimization problem:

$$287 \|\mathbf{X}\|_* = \frac{1}{2} \min_{\Phi \succ 0} \text{tr}(\mathbf{X}^T \mathbf{X} \Phi) + \text{tr}(\Phi^{-1}). \quad (15)$$

288 Using (15), we can reformulate problem (14) into an equivalent joint minimization problem over  
 289 both  $\mathbf{z}$  and an auxiliary positive definite matrix  $\Phi$ :

$$290 \min_{\{z_{ij}\}, \Phi \succ 0} \text{tr}(\mathbf{A}(\mathbf{z})^T \mathbf{A}(\mathbf{z}) \Phi) + \text{tr}(\Phi^{-1}) + \sum_{1 \leq i < j \leq C} z_{ij} c_{ij} \text{ s.t. } z_{ij} \geq 0, \quad \sum_{1 \leq i < j \leq C} z_{ij} = 1. \quad (16)$$

291 Problem (16) can be tackled using an alternating minimization method. In this scheme, for a given  
 292  $\mathbf{z}$  at iterate  $t$ , denoted  $\mathbf{z}^t$ , we first minimize (16) with respect to  $\Phi$ . The problem has a closed-form  
 293 solution for the optimal  $\Phi$ , given by  $\Phi^* = (\mathbf{A}(\mathbf{z}^k)^T \mathbf{A}(\mathbf{z}^k))^{-\frac{1}{2}}$ . Substituting  $\Phi$  back into the  
 294 objective yields the following minimization problem over  $\mathbf{z}$ :

$$295 \min_{\{z_{ij}\}} \text{tr}(\mathbf{A}(\mathbf{z})^T \mathbf{A}(\mathbf{z}) \Phi^k) + \sum_{1 \leq i < j \leq C} z_{ij} c_{ij} \quad \text{s.t. } z_{ij} \geq 0, \quad \sum_{1 \leq i < j \leq C} z_{ij} = 1. \quad (17)$$

296 This problem can be transformed into a standard QP of the form:

$$297 \min_{\{z_{ij}\}} \mathbf{z}^T \mathbf{Q} \mathbf{z} + \sum_{1 \leq i < j \leq C} z_{ij} c_{ij} \quad \text{s.t. } z_{ij} \geq 0, \quad \sum_{1 \leq i < j \leq C} z_{ij} = 1, \quad (18)$$

298 where the matrix  $\mathbf{Q}$  is constructed as follows:

$$299 \mathbf{Q} = \mathbf{S}^T (\mathbf{I} \otimes \Phi^t) \mathbf{S}. \quad (19)$$

300 Here, the symbol  $\otimes$  represents the Kronecker product and  $\mathbf{S}$  is formed by stacking the vectorized  
 301 matrices  $\mathbf{A}_{ij}$ . Specifically,  $\mathbf{S} = [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_K]$  with  $K = C(C-1)/2$ , and each column  $\mathbf{v}_k =$   
 302  $(\mathbf{A}_{ij})$  corresponds to a unique pair  $(i, j)$  via the index mapping  $k = \frac{(i-1)(2C-i)}{2} + j - i$ . The detailed  
 303 derivation of  $\mathbf{Q}$  is available in Appendix F.

304 This QP formulation (18) is computationally advantageous. It can be solved with standard solvers,  
 305 and the combined cost of updating  $\Phi^t$  and solving the QP is approximately  $\mathcal{O}(C^6 + d^3)$ , which is  
 306 substantially lower than the  $\mathcal{O}((d+m)^{4.5})$  complexity of the original SDP approach in (12). While  
 307 this QP needs to be resolved iteratively for updated  $\Phi^t$  matrices, the process converges rapidly,  
 308 typically in under 10 iterations Omati et al. (2025). The full procedure for using this alternating  
 309 minimization to find the optimal  $\mathbf{z}^*$  is detailed in Algorithm 3 (see Appendix G).

## 310 4 NUMERICAL RESULTS

### 311 4.1 DATASETS

312 We evaluate the performance of the our proposed algorithm on four real-world datasets from the  
 313 UCI repository. These datasets are briefly described below:

The **COIL-20 dataset** contains 1,440 grayscale images of 20 different objects, with 72 images per object taken at pose intervals of 5 degrees. Each image is  $32 \times 32$  pixels, resulting in 1,024-dimensional feature vectors. This dataset presents challenges in object recognition under varying viewpoints and is commonly used for evaluating dimensionality reduction techniques in computer vision applications. The **Diamond dataset** comprises 599 instances with four main features: carat weight, depth, table size, and clarity. The labels represent the quality of the cut, categorized into four classes: Fair, Good, Ideal, and Premium. This dataset tests the algorithm’s ability to handle regression-like data with continuous features and ordinal class relationships. The **Yale Face Database** consists of grayscale face images of 15 individuals, with 11 images per person captured under different lighting conditions and facial expressions. Each image is  $32 \times 32$  pixels (1,024 dimensions after vectorization). This dataset is particularly challenging due to significant variations in illumination and expression while maintaining the same identity, making it ideal for testing discriminative dimensionality reduction methods. The **Iris dataset** consists of 150 instances, each represented by four features: sepal length, sepal width, petal length, and petal width. The label categorizes each instance into one of three classes: Iris-setosa, Iris-versicolor, or Iris-virginica, with 50 samples per class. We use the Iris dataset solely for visualization purposes. This choice is a direct consequence of our evaluation protocol, adapted from Su et al. (2015); Omati et al. (2025), which considers comparing methods at their individual optimal projection dimensions. For high-dimensional datasets, these optimal dimensions vary widely between algorithms. Consequently, for the purpose of 2D visualization, projecting them all to a fixed 2D space would be unfair. In contrast, the Iris dataset’s inherent low dimensionality makes a 2D projection a suitable and fair ground for visually comparing the class separability achieved by all methods.

#### 4.2 EXPERIMENTAL PROTOCOL AND COMPARED METHODS

To refer to our approach in the experimental results, we name our proposed method GDMM-QF (PWCRA), reflecting its design to solve the PWCRA problem—a max-min quadratic-fractional program—using a generalized Dinkelbach and minorization-maximization framework.

For comparison, we included several widely used discriminant analysis methods: linear discriminant analysis (LDA) Fisher (1936); Rao (1948), max-min Distance analysis (MMDA) Bian & Tao (2011b), weighted heteroscedastic max-min distance analysis (WHMMDA) Su et al. (2018; 2015),  $\ell_{1,2}$  LDA Nie et al. (2021b), MM4MM (QP-MMDA) Omati et al. (2025), and max-min ratio analysis (MMRA) Wang et al. (2024).

We randomly split each high-dimensional dataset in half—50% of the samples for training and the remaining 50% for testing. As a preprocessing step, following the protocol of Omati et al. (2025); Wang et al. (2024); Su et al. (2015), we apply PCA to project all feature vectors down to 50 dimensions, thereby retaining over 98% of the total variance. We repeat this entire process 20 times with independent random splits and report the mean accuracy and its standard deviation.

A key aspect of our evaluation is how the target dimensionality is selected. Because each method—including ours and the baselines—reaches its peak accuracy at a distinct target dimensionality, as mentioned before, we follow the evaluation protocol from Su et al. (2015); Omati et al. (2025) and report results at each method’s respective optimal dimensionality. To find this optimal value, the original dimensionality  $d$  was reduced to various potential values from 1 to  $d - 1$  for each method. The only exception was for LDA, where the maximum dimensionality of the selected subspace was constrained to  $C - 1$  to achieve its best performance and allow for a fair comparison.

Classification in the reduced subspaces was performed using three classifiers: the nearest neighbor classifier (1-NN), the nearest mean classifier (NM), and the quadratic discriminant analysis (QDA). The quadratic classifier utilized the following decision rule:

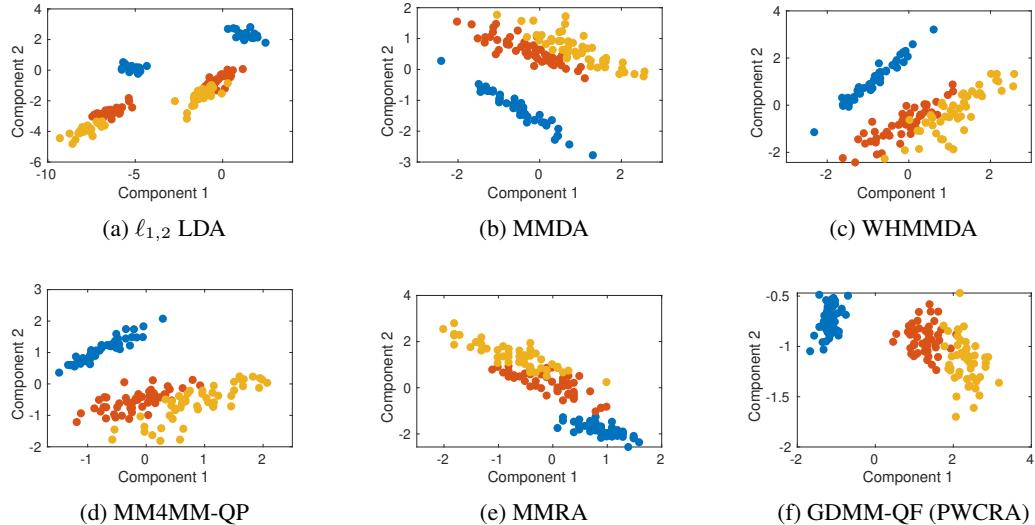
$$\mathbf{x} \in \arg \min_{i=1, \dots, C} \left\{ (\mathbf{x} - \bar{\mathbf{x}}_i)^T \Sigma_i^{-1} (\mathbf{x} - \bar{\mathbf{x}}_i) + \log |\Sigma_i| \right\},$$

where  $\bar{\mathbf{x}}_i$  represents the mean vector of class  $i$ , and  $\Sigma_i$  is the covariance matrix of class  $i$ . This choice of classifiers ensured that the methods could be evaluated on their ability to create both linearly and non-linearly separable subspaces, providing a thorough assessment of performance.

All experiments were conducted in MATLAB R2022b on a dual-socket Intel Xeon E5-2695 v3 workstation equipped with  $2 \times 14$  cores (56 threads total), operating at a base frequency of 2.3 GHz (up to 3.3 GHz turbo) and featuring 70 MiB of L3 cache.

378  
379  
380 Table 1: Results for COIL-20, Diamond and Yale  
381  
382

| COIL-20 Dataset                     |                                |                                  |                                |
|-------------------------------------|--------------------------------|----------------------------------|--------------------------------|
| Method                              | Classifier                     |                                  |                                |
|                                     | 1-NN                           | NM                               | QDA                            |
| LDA Fisher (1936); Rao (1948)       | 0.0046 (16, Std:0.0036)        | 0.0340 (16, Std:0.0070)          | 0.0130 (11, Std:0.0062)        |
| MMDA Bian & Tao (2011b)             | 0.0119 (16, Std:0.0054)        | 0.0360 (36, Std:0.0062)          | 0.0128 (16, Std:0.0054)        |
| WHMMDA Su et al. (2018; 2015)       | 0.0167 (16, Std:0.0053)        | 0.0388 (46, Std:0.0086)          | 0.0191 (31, Std:0.0074)        |
| $\ell_{1,2}$ LDA Nie et al. (2021b) | 0.0059 (38, Std:0.0021)        | 0.0360 (46, Std:0.0084)          | 0.0071 (11, Std:0.0037)        |
| MM4MM (QP-MMDA) Omati et al. (2025) | 0.0134 (16, Std:0.0058)        | 0.0383 (46, Std:0.0087)          | 0.0158 (16, Std:0.0052)        |
| MMRA Wang et al. (2024)             | 0.0051 (41, Std:0.0031)        | 0.0358 (41, Std:0.0072)          | 0.0243 (6, Std:0.0096)         |
| GDMM-QF (PWCRA)                     | <b>0.0026</b> (26, Std:0.0014) | <b>0.0312</b> (36, Std:0.0055)   | <b>0.0109</b> (16, Std:0.0031) |
| Diamond Dataset                     |                                |                                  |                                |
| Method                              | Classifier                     |                                  |                                |
|                                     | 1-NN                           | NM                               | QDA                            |
| LDA Fisher (1936); Rao (1948)       | 0.0484 (2, Std:0.0162)         | 0.0835 (3, Std:0.0405)           | 0.0318 (3, Std:0.0217)         |
| MMDA Bian & Tao (2011b)             | 0.0484 (2, Std:0.0170)         | 0.0852 (3, Std:0.0194)           | 0.0351 (3, Std:0.0161)         |
| WHMMDA Su et al. (2018; 2015)       | 0.1387 (3, Std:0.0463)         | 0.1654 (3, Std:0.0469)           | 0.1236 (3, Std:0.0509)         |
| $\ell_{1,2}$ LDA Nie et al. (2021b) | 0.0416 (2, Std = 0.0231)       | 0.0916 (2, Std = 0.0174)         | 0.0516 (1, Std = 0.0130)       |
| MM4MM (QP-MMDA) Omati et al. (2025) | 0.1220 (3, Std:0.0607)         | 0.1403 (3, Std:0.0611)           | 0.0919 (3, Std:0.0562)         |
| MMRA Wang et al. (2024)             | 0.0485 (3, Std:0.0293)         | 0.0769 (3, Std:0.0453)           | 0.0300 (3, Std:0.0173)         |
| GDMM-QF (PWCRA)                     | <b>0.0257</b> (3, Std:0.0099)  | <b>0.0740</b> (3, Std:0.0208)    | <b>0.0262</b> (3, Std:0.0108)  |
| Yale Dataset                        |                                |                                  |                                |
| Method                              | Classifier                     |                                  |                                |
|                                     | 1-NN                           | NM                               | QDA                            |
| LDA Fisher (1936); Rao (1948)       | 0.0680 (11, Std:0.0329)        | 0.0773 (11, Std:0.0295)          | 0.3973 (11, Std:0.0910)        |
| MMDA Bian & Tao (2011b)             | 0.0747 (11, Std:0.0355)        | 0.0693 (16, Std:0.0262)          | 0.3673 (11, Std:0.0664)        |
| WHMMDA Su et al. (2018; 2015)       | 0.1987 (46, Std:0.0528)        | 0.0627 (46, Std:0.0203)          | 0.7020 (6, Std:0.0675)         |
| $\ell_{1,2}$ LDA Nie et al. (2021b) | 0.0987 (41, Std = 0.0170)      | <b>0.0167</b> (41, Std = 0.0105) | 0.3387 (6, Std = 0.0164)       |
| MM4MM (QP-MMDA) Omati et al. (2025) | 0.2293 (46, Std:0.0513)        | 0.0920 (46, Std:0.0387)          | 0.7553 (6, Std:0.0592)         |
| MMRA Wang et al. (2024)             | 0.9011 (46, Std:0.06)          | 0.8452 (46, Std:0.0301)          | 0.7839 (46, Std:0.101)         |
| GDMM-QF (PWCRA)                     | <b>0.0287</b> (11, Std:0.0117) | 0.0240 (11, Std:0.0165)          | <b>0.2573</b> (11, Std:0.0424) |

405  
406  
407  
408  
409  
410  
411  
412  
413  
414  
415  
416  
417  
418  
419  
420  
421  
422  
423  
424  
425  
426  
427  
428  
429  
430  
431  
Figure 1: A comparison of results from six different methods.

## 4.3 RESULTS AND ANALYSIS

429 In this section, we analyze the performance of our proposed method, GDMM-QF (PWCRA), against  
430 the baseline algorithms. The evaluation is based on classification error rates from Table 1 and a  
431 visual analysis of class separability from Figure 1. Additionally, we have provided a computational  
analysis; the detailed results are accessible in Appendix H.

432 We begin by examining the classification performance on the **COIL-20 dataset**. As shown in Ta-  
 433 ble 1, our GDMM-QF (PWCRA) method achieves the lowest mean error rates across all three clas-  
 434 sifiers. With the 1-NN classifier, it obtains an error of **0.0026**, which is substantially better than the  
 435 next best methods, LDA (0.0046) and MMRA (0.0051). This trend continues for the NM and QDA  
 436 classifiers, where our approach also secures the top position. Furthermore, the standard deviation  
 437 for our method is consistently among the lowest, indicating more stable and reliable performance  
 438 over the 20 independent trials.

439 Next, we turn to the **Diamond dataset**. Here again, GDMM-QF (PWCRA) demonstrates its su-  
 440 periority by a significant margin. It achieves the lowest error rates for 1-NN (0.0257), NM (0.0740),  
 441 and QDA (0.0262). Its performance is particularly noteworthy when compared to methods like WH-  
 442 MMDA and MM4MM (QP-MMDA), which appears to fail entirely. The error rate of our method  
 443 with the 1-NN classifier is nearly half that of its closest competitors, LDA,  $\ell_{1,2}$  LDA, and MMDA,  
 444 underscoring its effectiveness on this type of data.

445 The analysis continues with the **Yale Face Dataset**, a highly challenging task due to variations in  
 446 lighting and facial expression. GDMM-QF (PWCRA) once again delivers a standout performance.  
 447 It achieves the lowest error rate with the 1-NN classifier at **0.0287**, more than halving the error of  
 448 the next best method, LDA (0.0680). It also secures the best result with the QDA classifier. While  
 449  $\ell_{1,2}$  LDA obtains the top score for the NM classifier, our method’s result is highly competitive  
 450 and a close second. In contrast, several competing methods, including MMRA, WHMMDA, and  
 451 MM4MM (QP-MMDA), perform very poorly, with error rates often exceeding 70%. This highlights  
 452 the robustness of our algorithm in handling complex, real-world variations where other methods fail.

453 Overall, across the nine experimental settings (three datasets and three classifiers), the proposed  
 454 GDMM-QF (PWCRA) method ranks first in eight of them. This consistent, top-tier performance  
 455 provides strong quantitative evidence of its superior ability to find highly discriminative low-  
 456 dimensional subspaces.

457 To provide a qualitative perspective, we now analyze the 2D projections of the Iris dataset shown in  
 458 Figure 1. These plots visualize how well each method separates the three classes. The projections  
 459 generated by the competitors—LDA (Fig. 1a), MMDA (Fig. 1b), WHMMDA (Fig. 1c), MM4MM-  
 460 QP (Fig. 1d), and MMRA (Fig. 1e)—show limited success. While they separate one class (blue  
 461 points), the other two classes (green and red points) remain significantly **overlapped**. In several  
 462 cases, such as with MMDA and MMRA, the projected points for these two classes also exhibit **high**  
 463 **internal variance**, meaning the points of the same class are widely scattered. This high intra-class  
 464 scatter and inter-class overlap create a decision boundary that is ambiguous and complex, which  
 465 is a major disadvantage as it directly leads to higher misclassification rates. In stark contrast, the  
 466 projection from our **GDMM-QF (PWCRA)** method (Fig. 1f) demonstrates a markedly superior  
 467 outcome. It produces three well-separated and compact clusters with clear margins between them.  
 468 Our method not only pushes the class clusters apart but also minimizes the internal variance within  
 469 each class. This leads to a low-dimensional space where classes are linearly separable with high  
 470 confidence, explaining the superior quantitative results observed in our experiments.

471 In summary, the step-by-step analysis of both the quantitative error rates and the qualitative visual-  
 472 izations confirms the exceptional performance of the proposed GDMM-QF (PWCRA) algorithm. It  
 473 consistently outperforms established methods in finding subspaces that yield better class separability  
 474 and lower classification error.

475

## 476 5 CONCLUSION

477

478 In this work, we presented a solution to the problem of worst-case class separation in discriminative  
 479 dimensionality reduction. We investigated an objective based on maximizing the minimum pairwise  
 480 ratio of between-class to within-class scatter, leading to the development of GDMM-QF, a robust  
 481 two-level optimization algorithm. By combining a generalized Dinkelbach procedure with a custom  
 482 minorization-maximization (MM) solver, GDMM-QF efficiently solves the underlying non-convex  
 483 problem without requiring hyperparameter tuning. Our investigation established that the algorithm is  
 484 provably convergent and computationally efficient. Finally, our experimental validation on several  
 485 benchmark datasets substantiated the effectiveness of this approach, demonstrating its consistent  
 486 ability to outperform leading state-of-the-art methods in classification accuracy.

486 REFERENCES  
487

488 Wei Bian and Dacheng Tao. Max-min distance analysis by using sequential SDP relaxation for  
489 dimension reduction. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 33(5):  
490 1037–1050, 2011a. doi: 10.1109/TPAMI.2010.189.

491 Wei Bian and Dacheng Tao. Max-min distance analysis by using sequential SDP relaxation for  
492 dimension reduction. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 33(5):  
493 1037–1050, 2011b. doi: 10.1109/TPAMI.2010.189.

494 Xiaojun Chang, Feiping Nie, Sen Wang, Yi Yang, Xiaofang Zhou, and Chengqi Zhang. Compound  
495 rank-  $k$  projections for bilinear analysis. *IEEE Transactions on Neural Networks and Learning  
496 Systems*, 27(7):1502–1513, 2016. doi: 10.1109/TNNLS.2015.2441735.

497 Jie Ding, Guoqi Li, Changyun Wen, and Chin Seng Chua. Min-max discriminant analysis based on  
498 gradient method for feature extraction. In *2014 13th International Conference on Control Automat-  
499 ion Robotics & Vision (ICARCV)*, pp. 129–134, 2014. doi: 10.1109/ICARCV.2014.7064292.

500 Werner Dinkelbach. On nonlinear fractional programming. *Management science*, 13(7):492–498,  
501 1967.

502 Ronald A Fisher. The use of multiple measurements in taxonomic problems. *Annals of eugenics*, 7  
503 (2):179–188, 1936.

504 Jie Gui, Zhenan Sun, Shuiwang Ji, Dacheng Tao, and Tieniu Tan. Feature selection based on struc-  
505 tured sparsity: A comprehensive study. *IEEE Transactions on Neural Networks and Learning  
506 Systems*, 28(7):1490–1507, 2017. doi: 10.1109/TNNLS.2016.2551724.

507 Onur C. Hamsici and Aleix M. Martinez. Bayes optimality in linear discriminant analysis. *IEEE  
508 Transactions on Pattern Analysis and Machine Intelligence*, 30(4):647–657, 2008. doi: 10.1109/  
509 TPAMI.2007.70717.

510 Emrah Hancer, Bing Xue, and Mengjie Zhang. A survey on feature selection approaches for clus-  
511 tering. *Artificial Intelligence Review*, 53(6):4519–4545, 2020. ISSN 1573-7462. doi: 10.1007/  
512 s10462-019-09800-w. URL <https://doi.org/10.1007/s10462-019-09800-w>.

513 Jiani Hu, Weihong Deng, Jun Guo, and Yajing Xu. Max-k-min distance analysis for dimension  
514 reduction. In *2014 22nd International Conference on Pattern Recognition*, pp. 726–731, 2014.  
515 doi: 10.1109/ICPR.2014.135.

516 Hui Li, Chunhua Shen, Anton van den Hengel, and Qinfeng Shi. Worst case linear discriminant  
517 analysis as scalable semidefinite feasibility problems. *IEEE Transactions on Image Processing*,  
518 24(8):2382–2392, 2015. doi: 10.1109/TIP.2015.2401511.

519 Jundong Li, Kewei Cheng, Suhang Wang, Fred Morstatter, Robert P. Trevino, Jiliang Tang, and  
520 Huan Liu. Feature selection: A data perspective. *ACM Comput. Surv.*, 50(6), December 2017.  
521 ISSN 0360-0300. doi: 10.1145/3136625. URL <https://doi.org/10.1145/3136625>.

522 Xiaoping Li, Yadi Wang, and Rubén Ruiz. A survey on sparse learning models for feature selection.  
523 *IEEE Transactions on Cybernetics*, 52(3):1642–1660, 2022. doi: 10.1109/TCYB.2020.2982445.

524 Zhihui Li, Feiping Nie, Xiaojun Chang, Liqiang Nie, Huaxiang Zhang, and Yi Yang. Rank-  
525 constrained spectral clustering with flexible embedding. *IEEE Transactions on Neural Networks  
526 and Learning Systems*, 29(12):6073–6082, 2018a. doi: 10.1109/TNNLS.2018.2817538.

527 Zhihui Li, Feiping Nie, Xiaojun Chang, Yi Yang, Chengqi Zhang, and Nicu Sebe. Dynamic affinity  
528 graph construction for spectral clustering using multiple features. *IEEE Transactions on Neu-  
529 ral Networks and Learning Systems*, 29(12):6323–6332, 2018b. doi: 10.1109/TNNLS.2018.  
530 2829867.

531 Minnan Luo, Feiping Nie, Xiaojun Chang, Yi Yang, Alexander G. Hauptmann, and Qinghua Zheng.  
532 Adaptive unsupervised feature selection with structure regularization. *IEEE Transactions on Neu-  
533 ral Networks and Learning Systems*, 29(4):944–956, 2018. doi: 10.1109/TNNLS.2017.2650978.

540 AW Marshall. Inequalities: Theory of majorization and its applications, 1979.  
 541

542 Feiping Nie, Wei Zhu, and Xuelong Li. Unsupervised large graph embedding. In *Proceedings of the*  
 543 *Thirty-First AAAI Conference on Artificial Intelligence*, AAAI'17, pp. 2422–2428. AAAI Press,  
 544 2017.

545 Feiping Nie, Zheng Wang, Rong Wang, and Xuelong Li. Submanifold-preserving discriminant  
 546 analysis with an auto-optimized graph. *IEEE Transactions on Cybernetics*, 50(8):3682–3695,  
 547 2020a. doi: 10.1109/TCYB.2019.2910751.

548 Feiping Nie, Zheng Wang, Rong Wang, Zhen Wang, and Xuelong Li. Adaptive local linear discrim-  
 549 inant analysis. *ACM Trans. Knowl. Discov. Data*, 14(1), February 2020b. ISSN 1556-4681. doi:  
 550 10.1145/3369870. URL <https://doi.org/10.1145/3369870>.

551 Feiping Nie, Xia Dong, and Xuelong Li. Unsupervised and semisupervised projection with graph  
 552 optimization. *IEEE Transactions on Neural Networks and Learning Systems*, 32(4):1547–1559,  
 553 2021a. doi: 10.1109/TNNLS.2020.2984958.

554 Feiping Nie, Zheng Wang, Rong Wang, Zhen Wang, and Xuelong Li. Towards robust discriminative  
 555 projections learning via non-greedy  $\ell_{2,1}$ -norm minmax. *IEEE Trans. Pattern Anal. Mach. Intell.*,  
 556 43(6):2086–2100, 2021b.

557 Feiping Nie, Xia Dong, Zhanxuan Hu, Rong Wang, and Xuelong Li. Discriminative projected  
 558 clustering via unsupervised lda. *IEEE Transactions on Neural Networks and Learning Systems*,  
 559 34(11):9466–9480, 2023. doi: 10.1109/TNNLS.2022.3202719.

560 Mohammad Mahdi Omati, Prabhu babu, Petre Stoica, and Arash Amini. A max-min approach to the  
 561 worst-case class separation problem. *Transactions on Machine Learning Research*, 2025. ISSN  
 562 2835-8856. URL <https://openreview.net/forum?id=EEmwBd4tfZ>.

563 C Radhakrishna Rao. The utilization of multiple measurements in problems of biological classifica-  
 564 tion. *Journal of the Royal Statistical Society. Series B (Methodological)*, 10(2):159–203, 1948.

565 Benjamin Recht, Maryam Fazel, and Pablo A Parrilo. Guaranteed minimum-rank solutions of linear  
 566 matrix equations via nuclear norm minimization. *SIAM review*, 52(3):471–501, 2010.

567 Astha Saini, Petre Stoica, Prabhu Babu, and Aakash Arora. Min-max framework for majorization-  
 568 minimization algorithms in signal processing applications: An overview. *Foundations and*  
 569 *Trends® in Signal Processing*, 18(4):310–389, 2024.

570 Guowan Shao and Nong Sang. Max–min distance analysis by making a uniform distribution of class  
 571 centers for dimensionality reduction. *Neurocomputing*, 143:208–221, 2014.

572 Guowan Shao and Nong Sang. Regularized max-min linear discriminant analysis. *Pattern recogni-  
 573 tion*, 66:353–363, 2017.

574 Razieh Sheikhpour, Mehdi Agha Sarram, Sajjad Gharaghani, and Mohammad Ali Zare Chahooki.  
 575 A survey on semi-supervised feature selection methods. *Pattern Recognition*, 64:  
 576 141–158, 2017. ISSN 0031-3203. doi: <https://doi.org/10.1016/j.patcog.2016.11.003>. URL  
 577 <https://www.sciencedirect.com/science/article/pii/S0031320316303545>.

578 Heng Tao Shen, Yonghua Zhu, Wei Zheng, and Xiaofeng Zhu. Half-quadratic minimization for  
 579 unsupervised feature selection on incomplete data. *IEEE Transactions on Neural Networks and*  
 580 *Learning Systems*, 32(7):3122–3135, 2021. doi: 10.1109/TNNLS.2020.3009632.

581 Maurice Sion. On general minimax theorems. *Pacific Journal of Mathematics*, 8(1):171 – 176,  
 582 1958.

583 Shiji Song, Yanshang Gong, Yuli Zhang, Gao Huang, and Guang-Bin Huang. Dimension reduc-  
 584 tion by minimum error minimax probability machine. *IEEE Transactions on Systems, Man, and*  
 585 *Cybernetics: Systems*, 47(1):58–69, 2017. doi: 10.1109/TSMC.2016.2563395.

586 Bing Su, Xiaoqing Ding, Changsong Liu, and Ying Wu. Heteroscedastic max–min distance analysis  
 587 for dimensionality reduction. *IEEE Transactions on Image Processing*, 27(8):4052–4065, 2018.  
 588 doi: 10.1109/TIP.2018.2836312.

594

Bing Su et al. Heteroscedastic max-min distance analysis. In *Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR)*, pp. 4539–4547, 2015. doi: 10.1109/CVPR.2015.7299084.

595

596

597 Ying Sun, Prabhu Babu, and Daniel P. Palomar. Majorization-minimization algorithms in signal  
 598 processing, communications, and machine learning. *IEEE Transactions on Signal Processing*, 65  
 599 (3):794–816, 2017. doi: 10.1109/TSP.2016.2601299.

600

601

602

603

604

605

Zheng Wang et al. Worst-case discriminative feature learning via max-min ratio analysis. *IEEE Trans. Pattern Anal. Mach. Intell.*, 46(1):641–658, 2024. doi: 10.1109/TPAMI.2023.3323453.

606

607

608

Bo Xu, Kaizhu Huang, and Cheng-Lin Liu. Dimensionality reduction by minimal distance maximization. In *2010 20th International Conference on Pattern Recognition*, pp. 569–572, 2010. doi: 10.1109/ICPR.2010.144.

609

610

611

Bo Xu, Kaizhu Huang, and Cheng-Lin Liu. Maxi-min discriminant analysis via online learning. *Neural networks*, 34:56–64, 2012.

Yaoliang Yu, Jiayan Jiang, and Liming Zhang. Distance metric learning by minimal distance maximization. *Pattern Recognition*, 44(3):639–649, 2011. ISSN 0031-3203. doi: <https://doi.org/10.1016/j.patcog.2010.09.019>. URL <https://www.sciencedirect.com/science/article/pii/S0031320310004590>.

612

613

614

615

Yu Zhang and Dit-Yan Yeung. Worst-case linear discriminant analysis. In J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta (eds.), *Advances in Neural Information Processing Systems*, volume 23. Curran Associates, Inc., 2010. URL [https://proceedings.neurips.cc/paper\\_files/paper/2010/file/4e4b5fbbbb602b6d35bea846](https://proceedings.neurips.cc/paper_files/paper/2010/file/4e4b5fbbbb602b6d35bea846)

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 APPENDICES  
649650 A THE MINORIZATION-MAXIMIZATION (MM) PRINCIPLE  
651652 A.1 THE GENERAL MM FRAMEWORK  
653

654 The minorization-maximization (MM) algorithm is an iterative optimization technique for solving  
655 constrained maximization problems of the form:

$$656 \max_{\mathbf{T} \in \chi} f(\mathbf{T}), \quad (20)$$

659 where  $f(\mathbf{T})$  is the objective function,  $\mathbf{T}$  is the optimization variable, and  $\chi$  represents the feasible  
660 set. The core principle of the MM algorithm involves iteratively solving a sequence of simpler  
661 optimization problems. Specifically, at each iteration  $t$ , a surrogate function  $g(\mathbf{T} \mid \mathbf{T}^t)$ , termed a  
662 minorizer of  $f(\mathbf{T})$ , is constructed. This surrogate must satisfy two fundamental conditions:

$$663 g(\mathbf{T} \mid \mathbf{T}^t) \leq f(\mathbf{T}), \quad \forall \mathbf{T} \in \chi, \quad (21)$$

$$664 g(\mathbf{T}^t \mid \mathbf{T}^t) = f(\mathbf{T}^t). \quad (22)$$

666 The first condition (21) ensures that the surrogate function provides a global **lower bound** for the  
667 original objective function. The second condition (22) guarantees that the surrogate is tangent to (or  
668 “touches”) the objective function at the current iterate  $\mathbf{T}^t$ .

669 The subsequent iterate,  $\mathbf{T}^{t+1}$ , is then obtained by **maximizing** this surrogate function over the fea-  
670 sible set:

$$671 \mathbf{T}^{t+1} \in \arg \max_{\mathbf{T} \in \chi} g(\mathbf{T} \mid \mathbf{T}^t). \quad (23)$$

673 This iterative process, encompassing the construction and maximization of the surrogate, is repeated  
674 until a convergence criterion is met, typically when the relative change in the objective function value  
675 falls below a predefined tolerance  $\epsilon$ .

676 A key property of the MM algorithm is the guaranteed monotonic improvement of the objective  
677 function value at each step. This **ascent property** is readily established through the following se-  
678 quence of inequalities:

$$679 f(\mathbf{T}^{t+1}) \geq g(\mathbf{T}^{t+1} \mid \mathbf{T}^t) \geq g(\mathbf{T}^t \mid \mathbf{T}^t) = f(\mathbf{T}^t). \quad (24)$$

681 The first inequality holds due to the surrogate condition in (21), the second follows from the max-  
682 imization step in (23), and the final equality is a direct consequence of the tangency condition in  
683 (22). This guarantees that the sequence of objective values  $\{f(\mathbf{T}^t)\}$  is non-decreasing.

684 A.2 AN MM FRAMEWORK FOR MAX-MIN PROBLEMS (MM4MM)  
685

686 The MM principle can be effectively extended to address max-min optimization problems, which  
687 are structured as:

$$688 \max_{\mathbf{T} \in \chi} \left\{ f(\mathbf{T}) \triangleq \min_{i=1, \dots, K} f_i(\mathbf{T}) \right\}, \quad (25)$$

691 where the overall objective  $f(\mathbf{T})$  is defined by the pointwise minimum of a set of functions  
692  $\{f_i(\mathbf{T})\}_{i=1}^K$ . To solve this problem using an MM approach, we construct a composite surrogate  
693 function for  $f(\mathbf{T})$ .

694 Let  $g_i(\mathbf{T} \mid \mathbf{T}^t)$  be a valid minorizer for each individual function  $f_i(\mathbf{T})$ , satisfying the standard MM  
695 conditions:

$$696 g_i(\mathbf{T} \mid \mathbf{T}^t) \leq f_i(\mathbf{T}), \quad (26)$$

$$698 g_i(\mathbf{T}^t \mid \mathbf{T}^t) = f_i(\mathbf{T}^t). \quad (27)$$

699 A natural choice for the overall surrogate function  $g(\mathbf{T} \mid \mathbf{T}^t)$  is the pointwise minimum of the  
700 individual surrogates:

$$701 g(\mathbf{T} \mid \mathbf{T}^t) \triangleq \min_{i=1, \dots, K} g_i(\mathbf{T} \mid \mathbf{T}^t). \quad (28)$$

702 It can be verified that this construction yields a valid minorizer for the max-min objective  $f(\mathbf{T})$ . The  
 703 lower-bound property is established as follows:  
 704

$$705 \quad g(\mathbf{T} \mid \mathbf{T}^t) = \min_i g_i(\mathbf{T} \mid \mathbf{T}^t) \leq \min_i f_i(\mathbf{T}) = f(\mathbf{T}), \quad (29)$$

706 and the tangency condition is similarly met:  
 707

$$708 \quad g(\mathbf{T}^t \mid \mathbf{T}^t) = \min_i g_i(\mathbf{T}^t \mid \mathbf{T}^t) = \min_i f_i(\mathbf{T}^t) = f(\mathbf{T}^t). \quad (30)$$

710 By applying the standard MM update rule with the surrogate defined in (28), the resulting sequence  
 711 of iterates  $\{\mathbf{X}^t\}$  is guaranteed to monotonically increase the max-min objective function and  
 712 converge to a stationary point. For a more detailed exposition of the MM approach and its applications,  
 713 including techniques for constructing surrogate functions, we refer the reader to Sun et al. (2017);  
 714 Saini et al. (2024).

## 716 B PROOF OF THEOREM 1

718 *Proof.* Supposing  $\mathbf{T}^*$  and  $\lambda^*$  are the optimal solution and corresponding objective function value of  
 719 problem (2), then the following holds:

$$721 \quad \min_{1 \leq i < j \leq C} \frac{f_{ij}(\mathbf{T}^*)}{g_{ij}(\mathbf{T}^*)} = \lambda^*.$$

723 Moreover, for any feasible solution  $\mathbf{T} \in \mathcal{X}$ , since  $g_{ij}(\mathbf{T}) > 0$ , we have:  
 724

$$725 \quad \min_{1 \leq i < j \leq C} \frac{f_{ij}(\mathbf{T})}{g_{ij}(\mathbf{T})} \leq \lambda^* \implies \min_{1 \leq i < j \leq C} (f_{ij}(\mathbf{T}) - \lambda^* g_{ij}(\mathbf{T})) \leq 0.$$

727 So we can determine that:  
 728

$$729 \quad h(\lambda^*) = \max_{\mathbf{T} \in \mathcal{X}} \min_{1 \leq i < j \leq C} (f_{ij}(\mathbf{T}) - \lambda^* g_{ij}(\mathbf{T})) \leq 0.$$

731 On the other hand, for the optimal solution  $\mathbf{T}^*$ :

$$733 \quad \min_{1 \leq i < j \leq C} \frac{f_{ij}(\mathbf{T}^*)}{g_{ij}(\mathbf{T}^*)} = \lambda^* \implies \min_{1 \leq i < j \leq C} (f_{ij}(\mathbf{T}^*) - \lambda^* g_{ij}(\mathbf{T}^*)) = 0.$$

735 Thus, we can obtain  $h(\lambda^*) = 0$ . That is, the optimal function value  $\lambda^*$  of the problem in (2) is the  
 736 root of the function  $h(\lambda)$  defined in Theorem 1. This completes the proof of Theorem 1.  $\square$   
 737

## 738 C PROOF OF THEOREM 2

740 *Proof.* Algorithm 1 can be interpreted as an application of Newton's method to find the root of the  
 741 function  $h(\lambda) = \max_{\mathbf{T} \in \mathcal{X}} \min_{ij} (f_{ij}(\mathbf{T}) - \lambda g_{ij}(\mathbf{T}))$ . The first-order Taylor expansion of  $h(\lambda)$   
 742 around the current estimate  $\lambda_k$  is given by:  
 743

$$744 \quad h(\lambda) \approx h(\lambda_k) + h'(\lambda_k)(\lambda - \lambda_k).$$

746 The derivative of  $h(\lambda)$  with respect to  $\lambda$  is  $h'(\lambda) = -g_{ab}(\mathbf{T}^{k+1})$ , where  $\mathbf{T}^{k+1}$  is the argument  
 747 that maximizes the inner expression for a given  $\lambda$ , and  $(a, b)$  is the index pair corresponding to the  
 748 minimum value for that  $\mathbf{T}^{k+1}$ . Newton's method finds the root by setting this linear approximation  
 749 to zero:  
 750

$$751 \quad 0 = h(\lambda_k) - g_{ab}(\mathbf{T}^{k+1})(\lambda - \lambda_k).$$

752 Solving for  $\lambda$  yields the update rule for the next iterate, which we denote  $\lambda_{k+1}$ :

$$753 \quad \lambda_{k+1} = \lambda_k + \frac{h(\lambda_k)}{g_{ab}(\mathbf{T}^{k+1})} = \lambda_k + \frac{f_{ab}(\mathbf{T}^{k+1}) - \lambda_k g_{ab}(\mathbf{T}^{k+1})}{g_{ab}(\mathbf{T}^{k+1})} = \frac{f_{ab}(\mathbf{T}^{k+1})}{g_{ab}(\mathbf{T}^{k+1})}.$$

755 This formulation is precisely the update rule presented in Step 2 of Algorithm 1. Thus, the algorithm  
 756 implements Newton's method to solve  $h(\lambda) = 0$ .  $\square$

756 **D PROOF OF THEOREM 3**  
757

758 **Proof. Monotonic Convergence:** In the  $k$ -th iteration of Algorithm 1, let  $\lambda_k = \frac{f_{ab}(\mathbf{T}^k)}{g_{ab}(\mathbf{T}^k)} =$   
759  $\min_{ij} \frac{f_{ij}(\mathbf{T}^k)}{g_{ij}(\mathbf{T}^k)}$ . This implies that  $f_{ij}(\mathbf{T}^k) - \lambda_k g_{ij}(\mathbf{T}^k) \geq 0$  for all pairs  $(i, j)$ , and consequently,  
760  $\min_{ij} (f_{ij}(\mathbf{T}^k) - \lambda_k g_{ij}(\mathbf{T}^k)) = 0$ . The subproblem solved in Step 3 yields  $\mathbf{T}^{k+1}$ , which defines  
761 the value of  $h(\lambda_k)$ :

762 
$$h(\lambda_k) = f_{cd}(\mathbf{T}^{k+1}) - \lambda_k g_{cd}(\mathbf{T}^{k+1}) = \max_{\mathbf{T} \in \mathcal{X}} \min_{ij} (f_{ij}(\mathbf{T}) - \lambda_k g_{ij}(\mathbf{T})),$$
  
763

764 where  $(c, d)$  is the index pair corresponding to the minimum value for the solution  $\mathbf{T}^{k+1}$ . Since  $\mathbf{T}^k$   
765 is a feasible candidate for this maximization, we must have:

766 
$$h(\lambda_k) \geq \min_{ij} (f_{ij}(\mathbf{T}^k) - \lambda_k g_{ij}(\mathbf{T}^k)) = 0.$$
  
767

768 The inequality  $f_{cd}(\mathbf{T}^{k+1}) - \lambda_k g_{cd}(\mathbf{T}^{k+1}) \geq 0$  directly leads to  $\frac{f_{cd}(\mathbf{T}^{k+1})}{g_{cd}(\mathbf{T}^{k+1})} \geq \lambda_k$ . As the next iterate  
769 is defined as  $\lambda_{k+1} = \min_{ij} \frac{f_{ij}(\mathbf{T}^{k+1})}{g_{ij}(\mathbf{T}^{k+1})}$ , and since  $\lambda_{k+1}$  is the minimum of all such ratios, we know  
770 that  $\frac{f_{cd}(\mathbf{T}^{k+1})}{g_{cd}(\mathbf{T}^{k+1})} \geq \lambda_{k+1}$ . Combining these, we have established that  $\lambda_{k+1} \geq \lambda_k$ . This proves that the  
771 objective value is non-decreasing in each iteration of Algorithm 1.

772 **Global Optimality:** Suppose the algorithm converges at iteration  $k$ , which means  $\lambda_k = \lambda_{k+1}$ .  
773 Such convergence is guaranteed since the sequence  $\{\lambda_k\}$  is monotonically non-decreasing (as  
774 shown above) and bounded above: for any  $\mathbf{T} \in \mathcal{S}$  and pair  $(i, j)$ , the ratio  $\frac{f_{ij}(\mathbf{T})}{g_{ij}(\mathbf{T})} \leq \frac{\lambda_{\max}(\tilde{\mathbf{S}}_C^{ij})}{\lambda_{\min}(\tilde{\mathbf{S}}_W^{ij})}$   
775 by the Rayleigh-Ritz theorem and the constraint  $\mathbf{T}^T \mathbf{T} = \mathbf{I}_m$ , thus  $f(\mathbf{T})$  is bounded by  $M :=$   
776  $\max_{ij} \frac{\lambda_{\max}(\tilde{\mathbf{S}}_C^{ij})}{\lambda_{\min}(\tilde{\mathbf{S}}_W^{ij})}$ ; therefore, by the monotone convergence theorem, the sequence converges to some  
777 limit  $\lambda^*$ . From the update rule, this implies  $\lambda_k = \min_{ij} \frac{f_{ij}(\mathbf{T}^{k+1})}{g_{ij}(\mathbf{T}^{k+1})}$ . Let  $(c, d)$  be the index pair  
778 for which this minimum is achieved for  $\mathbf{T}^{k+1}$ . Then  $\lambda_k = \frac{f_{cd}(\mathbf{T}^{k+1})}{g_{cd}(\mathbf{T}^{k+1})}$ , which can be rearranged  
779 to  $f_{cd}(\mathbf{T}^{k+1}) - \lambda_k g_{cd}(\mathbf{T}^{k+1}) = 0$ . This is equivalent to stating that  $h(\lambda_k) = 0$ . By Theorem 1,  
780 a solution  $\lambda^*$  is optimal if and only if  $h(\lambda^*) = 0$ . Since the converged solution  $\lambda_k$  satisfies this  
781 condition, it is the globally optimal solution. We can formalize this by contradiction: assume con-  
782 vergence occurs but  $h(\lambda_k) > 0$ . This would imply  $f_{cd}(\mathbf{T}^{k+1}) - \lambda_k g_{cd}(\mathbf{T}^{k+1}) > 0$ , leading to  
783  $\lambda_{k+1} = \min_{ij} \frac{f_{ij}(\mathbf{T}^{k+1})}{g_{ij}(\mathbf{T}^{k+1})} > \lambda_k$ , which contradicts the convergence assumption  $\lambda_k = \lambda_{k+1}$ . Thus,  
784 the algorithm must converge to the global optimum.  $\square$   
785

786 **E THE PROOF OF LEMMA 1**  
787

788 **Proof.** Consider the trace term  $\text{tr}(\mathbf{T}^T \tilde{\mathbf{S}}_{Cij} \mathbf{T})$  for any pair  $(i, j)$ . Using the cyclic property of the  
789 trace, we can write:

790 
$$\text{tr}(\mathbf{T}^T \tilde{\mathbf{S}}_{Cij} \mathbf{T}) = \text{tr}(\tilde{\mathbf{S}}_{Cij} \mathbf{T} \mathbf{T}^T). \quad (31)$$

791 Furthermore, for any orthogonal matrix  $\mathbf{Q}$  (where  $\mathbf{Q} \mathbf{Q}^T = \mathbf{I}$ ), we can insert it into the expression  
792 without changing its value:

793 
$$\text{tr}(\tilde{\mathbf{S}}_{Cij} \mathbf{T} \mathbf{T}^T) = \text{tr}(\tilde{\mathbf{S}}_{Cij} \mathbf{T} \mathbf{Q} \mathbf{Q}^T \mathbf{T}^T). \quad (32)$$

794 Let  $\mathbf{T}$  be any matrix that satisfies the relaxed constraint  $\mathbf{T}^T \mathbf{T} \preceq \mathbf{I}$ . We can always choose a specific  
795 orthogonal matrix  $\mathbf{Q}$  such that it diagonalizes  $\mathbf{T}^T \mathbf{T}$ , a result from the singular value decomposition.  
796 This gives  $\mathbf{Q}^T \mathbf{T}^T \mathbf{T} \mathbf{Q} = \Lambda$ , where  $\Lambda$  is a diagonal matrix of the eigenvalues of  $\mathbf{T}^T \mathbf{T}$ . The constraint  
797  $\mathbf{T}^T \mathbf{T} \preceq \mathbf{I}$  ensures that these eigenvalues satisfy  $\Lambda_{kk} \leq 1$  for all  $k$ .

798 Since the matrices  $\mathbf{T}^T \mathbf{T}$  and  $\mathbf{T} \mathbf{T}^T$  share the same non-zero eigenvalues, it follows that the eigen-  
799 decomposition of  $\mathbf{T} \mathbf{T}^T$  is given by:

800 
$$\mathbf{T} \mathbf{T}^T = \mathbf{V} \Lambda \mathbf{V}^T, \quad (33)$$

810 where  $\mathbf{V}$  contains the principal eigenvectors of  $\mathbf{T}\mathbf{T}^T$  and satisfies  $\mathbf{V}^T\mathbf{V} = \mathbf{I}$ . Using (33), we can  
 811 expand the trace term:

$$812 \text{tr} \left( \mathbf{T}^T \tilde{\mathbf{S}}_{Cij} \mathbf{T} \right) = \text{tr} \left( \tilde{\mathbf{S}}_{Cij} \mathbf{V} \Lambda \mathbf{V}^T \right) = \text{tr} \left( (\mathbf{V}^T \tilde{\mathbf{S}}_{Cij} \mathbf{V}) \Lambda \right) \quad (34)$$

$$813 = \sum_{k=1}^m \left( \mathbf{V}^T \tilde{\mathbf{S}}_{Cij} \mathbf{V} \right)_{kk} \Lambda_{kk} \quad (35)$$

$$814 \leq \sum_{k=1}^m \left( \mathbf{V}^T \tilde{\mathbf{S}}_{Cij} \mathbf{V} \right)_{kk}, \quad (36)$$

815 where the inequality in (36) holds because  $(\mathbf{V}^T \tilde{\mathbf{S}}_{Cij} \mathbf{V})_{kk} \geq 0$  and  $\Lambda_{kk} \leq 1$ .

816 The inequality shows that the objective function takes its maximum value when  $\Lambda_{kk} = 1$  for all  
 817  $k$ , which corresponds to  $\Lambda = \mathbf{I}$ . This indicates that the global maximizer of the problem under  
 818 the relaxed constraint  $\mathbf{T}^T \mathbf{T} \preceq \mathbf{I}$  must inherently satisfy the original, stricter constraint  $\mathbf{T}^T \mathbf{T} = \mathbf{I}$ .  
 819 Therefore, the relaxation does not alter the solution, completing the proof of Lemma 1.  $\square$

## 820 F PROOF OF (19)

821 *Proof.* Our objective is to find an explicit expression for the matrix  $\mathbf{Q}$  in the equality  $\text{tr} (\mathbf{A}^T \mathbf{A} \Phi^t) =$   
 822  $\mathbf{z}^T \mathbf{Q} \mathbf{z}$ . We begin by re-indexing the terms. Let  $\tilde{\mathbf{A}}_k = \mathbf{A}_{ij}$  and  $\tilde{z}_k = z_{ij}$ , where the index  $k$   
 823 corresponds to the pair  $(i, j)$  for  $1 \leq i < j \leq C$  via the mapping  $k = \frac{(i-1)(2C-i)}{2} + j - i$ . The total  
 824 number of such indices is  $K = \frac{C(C-1)}{2}$ . The matrix  $\mathbf{A}$  can then be written as  $\mathbf{A} = \sum_{k=1}^K \tilde{z}_k \tilde{\mathbf{A}}_k$ .

825 First, we expand the term  $\mathbf{A}^T \mathbf{A}$ :

$$826 \mathbf{A}^T \mathbf{A} = \left( \sum_{k=1}^K \tilde{z}_k \tilde{\mathbf{A}}_k \right)^T \left( \sum_{l=1}^K \tilde{z}_l \tilde{\mathbf{A}}_l \right) = \sum_{k=1}^K \sum_{l=1}^K \tilde{z}_k \tilde{z}_l \tilde{\mathbf{A}}_k^T \tilde{\mathbf{A}}_l.$$

827 Taking the trace after right-multiplying by  $\Phi^t$  yields:

$$828 \text{tr} (\mathbf{A}^T \mathbf{A} \Phi^t) = \sum_{k=1}^K \sum_{l=1}^K \tilde{z}_k \tilde{z}_l \text{tr} \left( \tilde{\mathbf{A}}_k^T \tilde{\mathbf{A}}_l \Phi^t \right). \quad (37)$$

829 The quadratic form  $\mathbf{z}^T \mathbf{Q} \mathbf{z}$  can be expanded as:

$$830 \mathbf{z}^T \mathbf{Q} \mathbf{z} = \sum_{k=1}^K \sum_{l=1}^K \tilde{z}_k Q_{k,l} \tilde{z}_l. \quad (38)$$

831 By equating the coefficients of  $\tilde{z}_k \tilde{z}_l$  in (37) and (38), we identify the entries of  $\mathbf{Q}$  as:

$$832 Q_{k,l} = \text{tr} \left( \tilde{\mathbf{A}}_k^T \tilde{\mathbf{A}}_l \Phi^t \right).$$

833 To express  $\mathbf{Q}$  in a compact matrix form, we use a property of the Kronecker product  $\otimes$ . Let  $\mathbf{v}_k =$   
 834  $\text{vec}(\tilde{\mathbf{A}}_k)$ . The trace term can be written as:

$$835 \text{tr} \left( \tilde{\mathbf{A}}_k^T \tilde{\mathbf{A}}_l \Phi^t \right) = \mathbf{v}_k^T (\mathbf{I} \otimes \Phi^t) \mathbf{v}_l,$$

836 Substituting this into the sum gives:

$$837 \text{tr} (\mathbf{A}^T \mathbf{A} \Phi^t) = \sum_{k=1}^K \sum_{l=1}^K \tilde{z}_k (\mathbf{v}_k^T (\mathbf{I} \otimes \Phi^t) \mathbf{v}_l) \tilde{z}_l.$$

838 Let us construct a matrix  $\mathbf{S}$  by stacking the vectors  $\mathbf{v}_k$  as its columns:  $\mathbf{S} = [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_K]$ . The  
 839 expression above can then be rewritten as a matrix-vector product:

$$840 \text{tr} (\mathbf{A}^T \mathbf{A} \Phi^t) = \mathbf{z}^T \mathbf{S}^T (\mathbf{I} \otimes \Phi^t) \mathbf{S} \mathbf{z}. \quad (39)$$

841 Comparing (39) with  $\mathbf{z}^T \mathbf{Q} \mathbf{z}$ , we deduce the final form of  $\mathbf{Q}$ :

$$842 \mathbf{Q} = \mathbf{S}^T (\mathbf{I} \otimes \Phi^t) \mathbf{S},$$

843 where  $\mathbf{S} = [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_K]$  and  $\mathbf{v}_k = \text{vec}(\mathbf{A}_{ij})$  with  $k = \frac{(i-1)(2C-i)}{2} + j - i$ . The proof is  
 844 complete.  $\square$

864

**Algorithm 1** Outer Loop: Generalized Dinkelbach Algorithm for PWCRA

865

1: **Initialize:** Feasible  $\mathbf{T}^0$ , set  $k = 0$ , tolerance  $\epsilon$ .

866

2: **while** not converged **do**

867

3: Compute worst-case ratio:  $\lambda_k = \min_{1 \leq i < j \leq C} \frac{\text{tr}((\mathbf{T}^k)^T \mathbf{S}_b^{ij} \mathbf{T}^k)}{\text{tr}((\mathbf{T}^k)^T \mathbf{S}_w^{ij} \mathbf{T}^k)}$ .

868

4: Solve the max-min subproblem for the next iterate:

869

$$\mathbf{T}^{k+1} = \arg \max_{\mathbf{T}^T \mathbf{T} = \mathbf{I}_m} \min_{1 \leq i < j \leq C} \left\{ \text{tr}(\mathbf{T}^T (\mathbf{S}_b^{ij} - \lambda_k \mathbf{S}_w^{ij}) \mathbf{T}) \right\}.$$

870

5: Check for convergence (e.g., if  $|\lambda_k - \lambda_{k-1}| < \epsilon$ ).

871

6: Increment  $k \leftarrow k + 1$ .

872

7: **end while**

873

8: **Output:** Optimal transformation  $\mathbf{T}^* = \mathbf{T}^k$ .

874

875

**Algorithm 2** Inner Loop: Solving the Max-Min Subproblem via MM (SDP Approach)

876

1: **Input:** Initial estimate  $\mathbf{T}^0$ , matrices  $\{\tilde{\mathbf{S}}_{Cij}\}$ , and convergence threshold  $\epsilon$ .

877

2: **Initialize:** Set  $t = 0$ .

878

3: **repeat**

879

4: Compute coefficients  $\{\mathbf{A}_{ij}, c_{ij}\}$  using  $\mathbf{T}^t$  via (8) and (9).

880

5: Solve for the optimal weights  $\mathbf{z}^*$  by solving the convex problem (12).

881

6: Compute the updated projection matrix  $\mathbf{T}^{t+1}$  using  $\mathbf{z}^*$  via (13).

882

7: Increment  $t \leftarrow t + 1$ .

883

8: **until** a stopping criterion is met (e.g.,  $\frac{\|\mathbf{T}^t - \mathbf{T}^{t-1}\|_F}{\|\mathbf{T}^{t-1}\|_F} \leq \epsilon$ )

884

9: **Output:** Optimal projection matrix  $\mathbf{T}^* = \mathbf{T}^t$ .

885

886

887

888

889

890

891

**G ALGORITHMS**

892

The algorithms below detail our nested optimization strategy. **Algorithm 1** describes the outer loop, which applies a generalized Dinkelbach method Dinkelbach (1967) to transform the original fractional problem into a sequence of simpler subproblems. **Algorithm 2** shows how to solve this subproblem using a minorization-maximization (MM) approach that results in a semidefinite program. Finally, **Algorithm 3** presents our proposed and much faster inner-loop solver, which solves the dual of the SDP via an efficient Quadratic Program.

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918  
 919  
 920  
 921  
 922  
 923  
 924  
 925  
 926  
 927  
 928  
 929  
 930  
 931  
 932  
 933  
 934  
 935  
 936  
 937  
 938

---

939 **Algorithm 3** Inner Loop: Solving the Max-Min Subproblem via MM (QP Approach)

---

940 1: **Input:** Initial weights  $\mathbf{z}^0$ , problem data  $\{c_{ij}, \mathbf{A}_{ij}\}$ , convergence tolerance  $\epsilon > 0$ .  
 941 2: **Initialize:** Set iteration counter  $t = 0$ .  
 942 3: **repeat**  
 943 4:     **Update Auxiliary Matrix:** Compute  $\Phi^t$  based on the current  $\mathbf{z}^t$ :  
 944     
$$\Phi^t = (\mathbf{A}(\mathbf{z}^t)^T \mathbf{A}(\mathbf{z}^t))^{-\frac{1}{2}}$$
  
 945 5:     **Solve QP Subproblem:** Update the weights by solving the quadratic program from (18) to  
 946     find  $\mathbf{z}^{t+1}$ .  
 947 6:     Increment iteration counter:  $t \leftarrow t + 1$ .  
 948 7: **until** the relative change in  $\mathbf{z}$  is below the tolerance:  $\frac{\|\mathbf{z}^t - \mathbf{z}^{t-1}\|}{\|\mathbf{z}^{t-1}\|} \leq \epsilon$   
 949 8: **Output:** The converged weight vector  $\mathbf{z}^* = \mathbf{z}^t$ .

---

952  
 953  
 954  
 955  
 956  
 957  
 958  
 959  
 960  
 961  
 962  
 963  
 964  
 965  
 966  
 967  
 968  
 969  
 970  
 971

972 **H ADDITIONAL RESULTS**  
973974  
975 Table 2: Mean Runtime per Iteration (in seconds) on COIL-20, Diamond, and Yale Datasets.  
976

| COIL-20 Dataset                     |                      |                      |                      |                      |
|-------------------------------------|----------------------|----------------------|----------------------|----------------------|
| Method                              | Dimension            |                      |                      |                      |
|                                     | 1                    | 12                   | 25                   | 49                   |
| LDA Fisher (1936); Rao (1948)       | 1.4123 $\pm$ 0.1141  | 0.4725 $\pm$ 0.0684  | N/A                  | N/A                  |
| MMDA Bian & Tao (2011b)             | 53.1535 $\pm$ 2.7430 | 52.9179 $\pm$ 6.9516 | 47.1447 $\pm$ 5.4055 | 40.5701 $\pm$ 5.1543 |
| WHMMDA Su et al. (2018; 2015)       | 27.5446 $\pm$ 1.0775 | 30.3072 $\pm$ 1.3726 | 26.6994 $\pm$ 1.3850 | 26.4311 $\pm$ 2.4698 |
| $\ell_{1,2}$ LDA Nie et al. (2021b) | 0.0513 $\pm$ 0.0098  | 0.0220 $\pm$ 0.0053  | 0.0192 $\pm$ 0.0085  | 0.0240 $\pm$ 0.0051  |
| MMRA Wang et al. (2024)             | 2.5164 $\pm$ 0.1602  | 2.3128 $\pm$ 0.1279  | 1.9990 $\pm$ 0.1019  | 2.1361 $\pm$ 0.0860  |
| GDMM-QF (PWCRA)                     | 1.6976 $\pm$ 0.1274  | 1.5403 $\pm$ 0.1116  | 1.4302 $\pm$ 0.0693  | 1.4247 $\pm$ 0.0950  |

| Diamond Dataset                     |                     |                     |                     |                     |
|-------------------------------------|---------------------|---------------------|---------------------|---------------------|
| Method                              | Dimension           |                     |                     |                     |
|                                     | 1                   | 2                   | 3                   | 4                   |
| LDA Fisher (1936); Rao (1948)       | 1.2912 $\pm$ 0.0266 | 0.1276 $\pm$ 0.0332 | 0.1214 $\pm$ 0.0324 | N/A                 |
| MMDA Bian & Tao (2011b)             | 5.0111 $\pm$ 0.1612 | 2.1866 $\pm$ 0.1501 | 2.2577 $\pm$ 0.1497 | 1.8733 $\pm$ 0.0876 |
| WHMMDA Su et al. (2018; 2015)       | 2.0015 $\pm$ 0.1024 | 2.0556 $\pm$ 0.1505 | 1.9926 $\pm$ 0.1488 | 1.9105 $\pm$ 0.1284 |
| $\ell_{1,2}$ LDA Nie et al. (2021b) | 0.0476 $\pm$ 0.0056 | 0.0543 $\pm$ 0.0024 | 0.0080 $\pm$ 0.0020 | 0.0046 $\pm$ 0.0012 |
| MMRA Wang et al. (2024)             | 1.0732 $\pm$ 0.0173 | 0.8298 $\pm$ 0.0548 | 0.8398 $\pm$ 0.0494 | 0.8560 $\pm$ 0.0779 |
| GDMM-QF (PWCRA)                     | 1.5270 $\pm$ 0.1014 | 1.1372 $\pm$ 0.0871 | 0.8989 $\pm$ 0.0660 | 0.9744 $\pm$ 0.0626 |

| Yale Dataset                        |                      |                      |                      |                      |
|-------------------------------------|----------------------|----------------------|----------------------|----------------------|
| Method                              | Dimension            |                      |                      |                      |
|                                     | 1                    | 12                   | 25                   | 49                   |
| LDA Fisher (1936); Rao (1948)       | 1.3692 $\pm$ 0.0867  | 0.4698 $\pm$ 0.1052  | N/A                  | N/A                  |
| MMDA Bian & Tao (2011b)             | 33.8620 $\pm$ 0.9662 | 29.8367 $\pm$ 1.1881 | 32.7184 $\pm$ 1.8557 | 31.3374 $\pm$ 2.5932 |
| WHMMDA Su et al. (2018; 2015)       | 22.1406 $\pm$ 0.8274 | 21.4248 $\pm$ 0.8639 | 21.6595 $\pm$ 1.5921 | 22.1489 $\pm$ 2.4855 |
| $\ell_{1,2}$ LDA Nie et al. (2021b) | 0.0476 $\pm$ 0.0140  | 0.0190 $\pm$ 0.0043  | 0.0105 $\pm$ 0.0022  | 0.0119 $\pm$ 0.0023  |
| MMRA Wang et al. (2024)             | 2.1801 $\pm$ 0.0703  | 1.9019 $\pm$ 0.1211  | 1.6293 $\pm$ 0.1157  | 1.9257 $\pm$ 0.1131  |
| GDMM-QF (PWCRA)                     | 1.5407 $\pm$ 0.0692  | 1.0347 $\pm$ 0.0580  | 1.1194 $\pm$ 0.0323  | 1.1408 $\pm$ 0.0577  |

1002 In this part, we strive to provide additional results by examining the computational efficiency of the  
1003 competing methods, with runtimes per iteration detailed in Table 2. As observed in the accuracy  
1004 results (Table 1), each method achieves its optimal performance at a different projection dimension  
1005 ( $d$ ), and there is no clear pattern linking a specific dimension to peak accuracy across all algorithms.  
1006 Therefore, comparing runtimes only at each method’s individual optimal dimension would not be  
1007 a fair or direct comparison. To address this, in Table 2, we evaluate the efficiency of all methods  
1008 across the same set of dimensions to provide a more equitable analysis.

1009 The computational results in Table 2 highlight the efficiency of our proposed GDMM-QF (PWCRA)  
1010 method across diverse datasets.

1011 On the COIL-20 dataset, our method is exceptionally efficient, with mean runtimes per iteration  
1012 consistently under 1.70 seconds across all tested dimensions (1.6976s at  $d = 1$ , 1.5403s at  $d = 12$ ,  
1013 1.4302s at  $d = 25$ , and 1.4247s at  $d = 49$ ). This is notably faster than MMRA, whose runtimes  
1014 range from 1.9990s to 2.5164s, and it represents a dramatic speed-up compared to the computa-  
1015 tionally demanding MMDA (ranging from 40.5701s to 53.1535s) and WHMMDA (ranging from  
1016 26.4311s to 30.3072s) algorithms.

1017 For the low-dimensional Diamond dataset, our method’s efficiency remains highly competitive, with  
1018 runtimes ranging from 0.8989s to 1.5270s. Here, its speed is comparable to MMRA (ranging from  
1019 0.8298s to 1.0732s) and is again significantly faster than the MMDA and WHMMDA algorithms.

1020 This strong performance continues on the Yale dataset. GDMM-QF (PWCRA) exhibits runtimes  
1021 between 1.0347s and 1.5407s. This is consistently faster than MMRA (ranging from 1.6293s to  
1022 2.1801s) and orders of magnitude more efficient than WHMMDA (approx. 21.42s – 22.15s) and  
1023 MMDA (approx. 29.84s – 33.86s).

1024 Across all three datasets, while a method like  $\ell_{1,2}$  LDA is computationally faster due to its formula-  
1025 tion, this speed comes at the cost of significantly lower classification accuracy, as seen in Table 1. In

1026 contrast, our GDMM-QF (PWCRA) method strikes an excellent balance, delivering state-of-the-art  
1027 accuracy with a very reasonable and competitive computational cost, which makes it highly practical  
1028 for real-world applications.

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079