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ABSTRACT

In this paper, we investigate a novel discriminative dimensionality reduction
method based on maximizing the minimum pairwise ratio of between-class to
within-class scatter. This objective function enhances class separability by pro-
viding critical, adaptive control over the variance within each class pair. The re-
sulting max-min fractional programming problem is non-convex and notoriously
challenging to solve. Our key contribution is a provably convergent, two-level
iterative algorithm, termed GDMM-QF (generalized Dinkelbach-minorization-
maximization for quadratic fractional programs), to find a high-quality solution.
The outer loop employs a generalized Dinkelbach-type procedure to transform the
fractional program into an equivalent sequence of subtractive-form max-min sub-
problems. For the inner loop, we develop an efficient minorization-maximization
(MM) algorithm that tackles the non-convex subproblem by iteratively solving a
simple quadratic program (QP), which we derive from the dual of a convex surro-
gate. The proposed GDMM-QF framework is computationally efficient, guaran-
teed to converge, and requires no hyperparameter tuning. Experiments on multiple
benchmark datasets confirm the superiority of our method in learning discrimina-
tive projections, consistently achieving lower classification error than state-of-the-
art alternatives.

1 INTRODUCTION

Modern data acquisition technologies have led to the proliferation of high-dimensional datasets,
where the number of measured features can be exceptionally large. This phenomenon, often termed
the “curse of dimensionality,” introduces significant challenges, including increased computational
overhead, a heightened risk of model overfitting due to spurious correlations, and a considerable
loss of data interpretability. To address these issues in the context of supervised classification,
dimensionality reduction has become an indispensable preprocessing step. Methodologies for di-
mensionality reduction are broadly categorized into two main paradigms: feature extraction, which
constructs a new, smaller set of features by projecting the data onto a lower-dimensional mani-
fold Nie et al. (2021b); Wang et al. (2024); Nie et al. (2023; 2021a); Chang et al. (2016); Nie et al.
(2017); Li et al. (2018a), and feature selection, which aims to identify and retain only the most in-
formative subset of the original features Gui et al. (2017); Li et al. (2017); Sheikhpour et al. (2017);
Hancer et al. (2020); Li et al. (2022); Shen et al. (2021); Li et al. (2018b); Luo et al. (2018). Both
approaches seek to produce a more compact and meaningful data representation, thereby enhancing
classification accuracy, preventing overfitting, and improving the comprehensibility of the resulting
model.

The core objective of discriminant analysis is to identify a linear projection that optimally separates
distinct classes within a dataset. This family of supervised methods has evolved significantly since
the seminal work of Fisher, with researchers developing a wide array of class separability metrics
over the decades Fisher (1936); Rao (1948); Bian & Tao (2011b); Zhang & Yeung (2010); Yu et al.
(2011); Su et al. (2015); Nie et al. (2021b); Wang et al. (2024). Among these, linear discriminant
analysis (LDA) remains the most prominent. Originally conceived by Fisher for binary classifica-
tion Fisher (1936) and later extended by Rao to handle multiple classes Rao (1948), LDA seeks
a subspace projection that maximizes the ratio of between-class variance to within-class variance.
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Despite its widespread use, classical LDA exhibits several critical limitations. It is susceptible to
performance degradation when sample sizes are small, which can yield unreliable covariance matrix
estimates and violate its underlying Gaussian assumptions Nie et al. (2020a;b). It is also known to
be sensitive to outliers Nie et al. (2021b). A particularly significant drawback arises in multi-class
scenarios where the target dimension is less than the number of classes minus one. In such cases,
the LDA objective, which effectively averages pairwise class separations, becomes biased by the
most distant class pair, causing less separated pairs to be projected even closer, potentially leading
to class overlap Hamsici & Martinez (2008). This phenomenon is known as the “worst-case class
separation” problem.

Several algorithms improve multiclass discrimination by adaptively weighting class distances, but
they often falter on the closest pair of classes. More recently, researchers have reframed the problem
in a worst-case light Omati et al. (2025); Song et al. (2017); Xu et al. (2010; 2012); Shao & Sang
(2014); Ding et al. (2014); Shao & Sang (2017); Li et al. (2015); Hu et al. (2014); Zhang & Yeung
(2010); Bian & Tao (2011a). For example, Bian et al. Bian & Tao (2011a) identify the pair of classes
with the smallest distance between their means—the “worst-case” pair that nearly overlaps—and in-
troduce a max–min distance analysis (MMDA) to enlarge that minimal gap in the reduced subspace.
Zhang et al. build upon the MMDA with worst-case LDA (WLDA) to further enhance separation
under challenging scenarios. Extensions in Su et al. (2015) and Omati et al. (2025) move MMDA
into heteroscedastic settings, using the Chernoff distance to maximize the smallest inter-class diver-
gence while controlling the intra-class variance. It is worth mentioning that Bian & Tao (2011b);
Su et al. (2015) pioneered the conversion of high-dimensional datasets into moderate-dimensional
representations by applying principal component analysis (PCA) as a preprocessing step in their pro-
posed algorithms. This approach enables the algorithms to operate effectively in substantially lower
dimensions while preserving most of the energy of the data, depending on the reduction coefficient.
For example, a dataset with 1024 dimensions can be reduced to fewer than 50 dimensions while
retaining 98% of the energy Bian & Tao (2011b); Su et al. (2015); Omati et al. (2025); Wang et al.
(2024).

While these advanced methods improve upon classical LDA, strategies that focus solely on maxi-
mizing the minimum distance between class centroids (whether Euclidean or Chernoff-based) are
incomplete. They fail to account for the internal dispersion, or within-class scatter, of each class.
Consequently, even if the means of two classes are pushed apart, the classes themselves may still
overlap if characterized by high variance. To address this interplay between separation and com-
pactness, the worst-case ratio analysis (WCRA) objective was proposed, which seeks to maximize
the minimum ratio of between-class to within-class scatter.

A notable attempt to solve this problem was made by Wang et al. Wang et al. (2024). Their approach
reformulates the non-convex fractional program by iteratively transforming it into a sequence of
quadratic subproblems. They then apply a semidefinite relaxation to arrive at a tractable semidefinite
program (SDP). However, this method has two key drawbacks: the relaxation is not guaranteed to
be tight, potentially leading to suboptimal solutions, and its performance depends on the tuning of
at least two hyperparameters.

Crucially, a fundamental limitation of the approach in Wang et al. (2024) is its reliance on a global
within-class scatter matrix in the denominator of the ratio. This non-pairwise normalization fails to
adapt to the specific compactness of the most challenging class pairs, limiting its effectiveness in
scenarios where class variances differ significantly.

In this paper, we introduce a novel and provably convergent iterative algorithm, termed GDMM-QF
(generalized Dinkelbach-minorization-maximization for quadratic fractional programs), for solving
the pairwise worst-case ratio analysis (PWCRA) problem. Our approach is designed to solve a more
adaptive version of the worst-case separation problem. Instead of normalizing by a global measure
of compactness, our objective function evaluates the separability of each class pair relative to its
own unique within-class scatter. The effectiveness of this formulation becomes more pronounced
when class variances differ significantly.

To solve the PWCRA problem, our GDMM-QF algorithm employs a nested iterative process. For
the outer loop, we adapt a generalized Dinkelbach-type procedure to transform the challenging max-
min fractional objective into an equivalent max-min subtractive problem. We provide a rigorous
proof that this outer iterative framework, which can be viewed as a specialized Newton’s method,
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is guaranteed to converge to the global optimum of the ratio problem. The inner subproblem at
each Dinkelbach iteration, however, remains a non-convex max-min program. To solve this, we
employ the minorization-maximization (MM) principle for the inner loop. We construct a tight,
convex surrogate that lower-bounds the true objective, resulting in a semidefinite program (SDP) at
each inner step. Crucially, we show that this SDP can be solved even more rapidly by formulating
its dual, which takes the form of a simple quadratic program (QP). This dual-loop structure with
proven convergence at both levels makes GDMM-QF a robust and computationally efficient overall
algorithm that is also fully parameter-free.

The remainder of this paper is structured as follows. In Section 2, we formulate the PWCRA prob-
lem. Section 3 presents our proposed two-level optimization algorithm, which uses a generalized
Dinkelbach procedure for the outer loop and the MM approach to solve the inner loop’s subprob-
lem. We then evaluate its performance through extensive experiments in Section 4. Finally, Section
5 provides concluding remarks.

2 PROBLEM FORMULATION

Consider a dataset X = [x1, . . . ,xn] ∈ R
d×n containing n samples distributed across C distinct

classes. The objective is to learn a linear transformation matrix T ∈ R
d×m (where m ≪ d) that

projects the high-dimensional data into a lower-dimensional subspace. The transformation is de-
signed to simultaneously maximize between-class separation and minimize within-class dispersion.

To formalize this, we define class-pairwise scatter matrices. For any pair of classes (i, j), the

between-class scatter S
ij
b and within-class scatter Sij

w are given by:

S
ij
b = (x̄i − x̄j)(x̄i − x̄j)

T , Sij
w =

∑

h∈{i,j}

∑

xk∈τh

(xk − x̄h)(xk − x̄h)
T , (1)

where τk denotes the set of samples belonging to the k-th class and x̄k is the corresponding class
mean. Using these definitions, the PWCRA problem is formulated as the following optimization:

max
TTT=Im

min
1≤i<j≤C

tr
(

TTS
ij
b T
)

tr
(

TTS
ij
wT
) . (2)

The core of this formulation is the max-min objective, which guarantees pairwise class separability
by maximizing the minimum performance ratio across all class pairs. This directly addresses the
”worst-case” separation problem. Moreover, the use of pairwise scatter matrices allows the model to
adaptively handle the unique covariance structure inherent to each class pair, a significant advantage
over methods that rely on a single, global within-class scatter matrix. The orthogonality constraint
TTT = Im is imposed to ensure the projected features are uncorrelated and to provide a unique
basis for the solution subspace.

The following sections detail our approach to solving the challenging non-convex problem in (2).

3 A TWO-LEVEL OPTIMIZATION ALGORITHM FOR PWCRA

The PWCRA optimization problem in (2) is a non-convex, max-min fractional program, which is
inherently difficult to solve directly. To this end, we propose a provably convergent, two-level iter-
ative algorithm. The outer level employs a generalized Dinkelbach-type procedure to transform the
fractional objective into a more manageable subtractive form. The inner level then solves the result-
ing non-convex max-min subproblem using a specialized algorithm derived from the Minorization-
Maximization (MM) framework.

3.1 OUTER LOOP: GENERALIZED DINKELBACH PROCEDURE FOR FRACTIONAL

PROGRAMMING

The PWCRA problem belongs to the class of general max-min ratio problems:

max
T∈X

min
1≤i<j≤C

fij(T)

gij(T)
, (3)

3
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where fij(T) = tr(TTS
ij
b T), gij(T) = tr(TTSij

wT) > 0, and the feasible set is the Stiefel

manifold X = {T ∈ R
d×m | TTT = Im}. To solve this max-min fractional program, we

generalize Dinkelbach’s algorithm Dinkelbach (1967). The theoretical foundation of this iterative
approach is captured in the following theorems.

Theorem 1. The global optimum of the general max-min ratio problem maxT∈X minij
fij(T)
gij(T) is

equivalent to finding the largest root λ∗ of the function h(λ) = maxT∈X minij{fij(T)−λgij(T)}.

Proof. See Appendix B.

Theorem 2. The iterative procedure outlined in Algorithm 1 is equivalent to Newton’s method
applied to find the root of the function h(λ).

Proof. See Appendix C.

A summary of the generalized Dinkelbach procedure is outlined in Algorithm 1, which can be found
in the Appendix G. Given the iterate Tk, we compute the current worst-case ratio λk. This λk is
then used to form a subtractive max-min subproblem (line 4), the solution of which becomes the
next iterate Tk+1.

The convergence properties of this algorithm are stated below, guaranteeing its desirable behavior.

Theorem 3. Algorithm 1 monotonically increases the objective value of the PWCRA problem at
each iteration and converges to the global optimal solution.

Proof. See Appendix D.

3.2 INNER LOOP: SOLVING THE MAX-MIN SUBPROBLEM VIA MM

Each outer loop iteration requires solving a problem of the form:

max
TTT=Im

min
1≤i<j≤C

tr
(

TT S̃CijT
)

, (4)

where S̃Cij , S
ij
b − λkS

ij
w . To facilitate the development of our proposed algorithm for solving the

problem in (4), we first introduce and prove a key lemma.

Lemma 1. Given that the matrices S̃Cij are positive semi-definite, the original non-convex semi-

orthogonality constraint, TTT = I, as stated in problem (4), can be substituted with the less strict
condition TTT 4 I. This relaxation is valid because the global maximizer of the resulting relaxed
problem will inherently satisfy the original equality constraint.

Proof. The proof is provided in Appendix E.

Leveraging Lemma 1, we can now reformulate the initial problem from (4) into the following relaxed
optimization problem:

max
TTT4Im

min
1≤i<j≤C

tr
(

TT S̃CijT
)

. (5)

A significant advantage of this reformulation is that the new constraint in (5) is convex. This is be-

cause the inequality TTT 4 Im is equivalent to the linear matrix inequality (LMI)

[

Im TT

T Id

]

< 0.

However, the optimization in (5) is a challenging non-convex problem due to its max-min structure,

where each term hij(T) = tr(TT S̃CijT) is convex in T (note that the potential indefiniteness of

the matrices S̃ij is not a concern, as each term can be convexified by shifting S̃ij with a suitable

scalar matrix αI—for example, using α ≥ maxi,j λmax(−S̃ij)—an operation that does not alter

the optimizer due to the constraint TTT = Im). To address (5), we employ the minorization-
maximization for max-min (MM4MM) approach Saini et al. (2024), an overview of which is de-
tailed in Appendix A.
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At each iteration t, we construct a tractable surrogate function by minorizing each of the convex
quadratic terms, hij(T). We replace each term with its first-order Taylor expansion around the
current estimate Tt. This tangent hyperplane serves as a tight lower bound:

hij(T) = tr
(

TT S̃CijT
)

≥ tr
(

(

Tt
)T

S̃CijT
t
)

+ 2 tr
(

(

Tt
)T

S̃Cij

(

T−Tt
)

)

= 2 tr
(

(

Tt
)T

S̃CijT
)

− tr
(

(

Tt
)T

S̃CijT
t
)

, h̃ij(T). (6)

Substituting these linear lower bounds h̃ij(T) back into the original problem (5) yields the surro-
gate problem for the MM update. This problem involves maximizing the minimum of these linear
functions:

max
TTT4Im

min
1≤i<j≤C

2 tr
(

AT
ijT
)

+ cij , (7)

where

AT
ij ,

(

Tt
)T

S̃Cij , (8)

cij = − tr
(

(

Tt
)T

S̃CijT
t
)

, (9)

which are constants within the current iteration. Although this surrogate problem (7) is convex and
can be solved as an SDP, we can devise a more efficient solution method.

To develop this more efficient solver, we begin by reformulating the inner minimization over the
discrete indices (i, j). This is accomplished by introducing a set of continuous auxiliary variables,
{zij}, which are constrained to the probability simplex (

∑

zij = 1, zij ≥ 0). This transformation
recasts the original problem into the equivalent max-min formulation shown in (10):

max
TTT4Im

min
{zij}

2 tr
(

A(z)TT
)

+
∑

1≤i<j≤C

zijcij s.t. zij ≥ 0,
∑

1≤i<j≤C

zij = 1, (10)

where the matrix A is now defined as the convex combination A(z) ,
∑

1≤i<j≤C zijAij .

Let the objective function in (10) be L(T, z). This function is affine (and thus concave) with re-
spect to the maximization variable T and affine (and thus convex) with respect to the minimization
variable z. Given that the optimization domains for both T and z are compact and convex, the con-
ditions of Sion’s minimax theorem Sion (1958) are met. This allows interchanging the operators,
leading to the following equivalent formulation:

min
{zij}

max
TTT4Im

2 tr
(

A(z)TT
)

+
∑

1≤i<j≤C

zijcij s.t. zij ≥ 0,
∑

1≤i<j≤C

zij = 1. (11)

This dual formulation is highly advantageous, as the inner maximization problem in (11) now admits
a closed-form analytical solution. Focusing on the trace term in the objective, the Von Neumann
inequality Marshall (1979) states that tr

(

ATT
)

≤
∑m

k=1 σk(A), where σk(·) denotes the k-th

singular value. This upper bound is attained when T is set to T∗ = A
(

ATA
)− 1

2 . Critically, this

optimal T∗ inherently fulfills the strict semi-orthogonality constraint (T∗)
T
T∗ = I. By substituting

this analytical solution for T∗ into the dual problem (11), we eliminate the variable T and arrive at
the following optimization problem solely over z:

min
{zij}

2
m
∑

i=1

σi(A(z)) +
∑

1≤i<j≤C

zijcij s.t. zij ≥ 0,
∑

1≤i<j≤C

zij = 1, (12)

where the dependency of A on z is made explicit. The first term in this objective is exactly twice the
nuclear norm of A(z), denoted ‖A(z)‖∗. Since the nuclear norm is a convex function, and A(z) is
a linear function of z, problem (12) is convex. While it can be reformulated and solved as an SDP
Recht et al. (2010), it offers a computational advantage over (7) due to having fewer variables and
constraints.

Once the optimal z∗ is found by solving (12), the corresponding update for T is computed as:

T(t+1) = A (z∗)
(

AT (z∗)A (z∗)
)− 1

2 . (13)
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This T(t+1) becomes the input for the subsequent iteration, and the process repeats until convergence
as outlined in Algorithm 2 (see Appendix G).

The primary computational bottleneck within each iteration of this approach is solving the convex
optimization problem (12). As noted previously, this problem can be reformulated and solved as
a SDP. However, standard interior-point methods for SDPs have a high computational complex-
ity, scaling polynomially with the matrix dimensions. For this problem, the cost is approximately
O((d + m)4.5) per iteration, which can be prohibitive for large-scale datasets. This high cost mo-
tivates the development of a more efficient method for solving the subproblem (12). To reduce this
computational burden, we now introduce an alternative approach based on the MM principle, ap-
plied directly to the challenging nuclear norm term in (12). This strategy replaces the expensive
SDP with a sequence of much simpler QPs.

We begin by rewriting problem (12) to explicitly show the nuclear norm and the linear term in
summation form:

min
{zij}

2‖A(z)‖∗ +
∑

1≤i<j≤C

zijcijs.t. zij ≥ 0,
∑

1≤i<j≤C

zij = 1. (14)

The core idea is to replace the non-smooth nuclear norm ‖A(z)‖∗ with a smooth, quadratic upper
bound at each iteration. To this end, we employ a variational form of the nuclear norm, which
expresses it as a joint minimization problem:

‖X‖∗ =
1

2
min
Φ≻0

tr(XTXΦ) + tr(Φ−1). (15)

Using (15), we can reformulate problem (14) into an equivalent joint minimization problem over
both z and an auxiliary positive definite matrix Φ:

min
{zij},Φ≻0

tr
(

A(z)TA(z)Φ
)

+ tr(Φ−1) +
∑

1≤i<j≤C

zijcijs.t. zij ≥ 0,
∑

1≤i<j≤C

zij = 1.

(16)
Problem (16) can be tackled using an alternating minimization method. In this scheme, for a given
z at iterate t, denoted zt, we first minimize (16) with respect to Φ. The problem has a closed-form

solution for the optimal Φ, given by Φ∗ = (A(zk)TA(zk))−
1
2 . Substituting Φ back into the

objective yields the following minimization problem over z:

min
{zij}

tr
(

A(z)TA(z)Φk
)

+
∑

1≤i<j≤C

zijcij s.t. zij ≥ 0,
∑

1≤i<j≤C

zij = 1. (17)

This problem can be transformed into a standard QP of the form:

min
{zij}

zTQz+
∑

1≤i<j≤C

zijcij s.t. zij ≥ 0,
∑

1≤i<j≤C

zij = 1, (18)

where the matrix Q is constructed as follows:

Q = ST(I⊗Φt)S. (19)

Here, the symbol ⊗ represents the Kronecker product and S is formed by stacking the vectorized
matrices Aij . Specifically, S = [v1,v2, . . . ,vK ] with K = C(C − 1)/2, and each column vk =
~(Aij) corresponds to a unique pair (i, j) via the index mapping k = (i−1)(2C−i)

2 +j−i/ The detailed
derivation of Q is available in Appendix F.

This QP formulation (18) is computationally advantageous. It can be solved with standard solvers,
and the combined cost of updating Φt and solving the QP is approximately O(C6 + d3), which is
substantially lower than the O((d+m)4.5) complexity of the original SDP approach in (12). While

this QP needs to be resolved iteratively for updated Φt matrices, the process converges rapidly,
typically in under 10 iterations Omati et al. (2025). The full procedure for using this alternating
minimization to find the optimal z∗ is detailed in Algorithm 3 (see Appendix G).

4 NUMERICAL RESULTS

4.1 DATASETS

We evaluate the performance of the our proposed algorithm on four real-world datasets from the
UCI repository. These datasets are briefly described below:
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The COIL-20 dataset contains 1,440 grayscale images of 20 different objects, with 72 images
per object taken at pose intervals of 5 degrees. Each image is 32×32 pixels, resulting in 1,024-
dimensional feature vectors. This dataset presents challenges in object recognition under varying
viewpoints and is commonly used for evaluating dimensionality reduction techniques in computer
vision applications. The Diamond dataset comprises 599 instances with four main features: carat
weight, depth, table size, and clarity. The labels represent the quality of the cut, categorized into
four classes: Fair, Good, Ideal, and Premium. This dataset tests the algorithm’s ability to han-
dle regression-like data with continuous features and ordinal class relationships. The Yale Face
Database consists of grayscale face images of 15 individuals, with 11 images per person captured
under different lighting conditions and facial expressions. Each image is 32×32 pixels (1,024 di-
mensions after vectorization). This dataset is particularly challenging due to significant variations
in illumination and expression while maintaining the same identity, making it ideal for testing dis-
criminative dimensionality reduction methods. The Iris dataset consists of 150 instances, each
represented by four features: sepal length, sepal width, petal length, and petal width. The label
categorizes each instance into one of three classes: Iris-setosa, Iris-versicolor, or Iris-virginica, with
50 samples per class. We use the Iris dataset solely for visualization purposes. This choice is a
direct consequence of our evaluation protocol, adapted from Su et al. (2015); Omati et al. (2025),
which considers comparing methods at their individual optimal projection dimensions. For high-
dimensional datasets, these optimal dimensions vary widely between algorithms. Consequently, for
the purpose of 2D visualization, projecting them all to a fixed 2D space would be unfair. In contrast,
the Iris dataset’s inherent low dimensionality makes a 2D projection a suitable and fair ground for
visually comparing the class separability achieved by all methods.

4.2 EXPERIMENTAL PROTOCOL AND COMPARED METHODS

To refer to our approach in the experimental results, we name our proposed method GDMM-QF
(PWCRA), reflecting its design to solve the PWCRA problem—a max-min quadratic-fractional pro-
gram—using a generalized Dinkelbach and minorization-maximization framework.

For comparison, we included several widely used discriminant analysis methods: linear discrimi-
nant analysis (LDA) Fisher (1936); Rao (1948), max-min Distance analysis (MMDA) Bian & Tao
(2011b), weighted heteroscedastic max-min distance analysis (WHMMDA) Su et al. (2018; 2015),
ℓ1,2 LDA Nie et al. (2021b), MM4MM (QP-MMDA) Omati et al. (2025), and max-min ratio analy-
sis (MMRA) Wang et al. (2024).

We randomly split each high-dimensional dataset in half—50% of the samples for training and the
remaining 50% for testing. As a preprocessing step, following the protocol of Omati et al. (2025);
Wang et al. (2024); Su et al. (2015), we apply PCA to project all feature vectors down to 50 dimen-
sions, thereby retaining over 98% of the total variance. We repeat this entire process 20 times with
independent random splits and report the mean accuracy and its standard deviation.

A key aspect of our evaluation is how the target dimensionality is selected. Because each method—
including ours and the baselines—reaches its peak accuracy at a distinct target dimensionality, as
mentioned before, we follow the evaluation protocol from Su et al. (2015); Omati et al. (2025) and
report results at each method’s respective optimal dimensionality. To find this optimal value, the
original dimensionality d was reduced to various potential values from 1 to d − 1 for each method.
The only exception was for LDA, where the maximum dimensionality of the selected subspace was
constrained to C − 1 to achieve its best performance and allow for a fair comparison.

Classification in the reduced subspaces was performed using three classifiers: the nearest neighbor
classifier (1-NN), the nearest mean classifier (NM), and the quadratic discriminant analysis (QDA).
The quadratic classifier utilized the following decision rule:

x ∈ arg min
i=1,...,C

{

(x− x̄i)
T Σ−1

i (x− x̄i) + log|Σi|
}

,

where x̄i represents the mean vector of class i, and Σi is the covariance matrix of class i. This choice
of classifiers ensured that the methods could be evaluated on their ability to create both linearly and
non-linearly separable subspaces, providing a thorough assessment of performance.

All experiments were conducted in MATLAB R2022b on a dual-socket Intel Xeon E5-2695 v3
workstation equipped with 2 × 14 cores (56 threads total), operating at a base frequency of 2.3 GHz
(up to 3.3 GHz turbo) and featuring 70 MiB of L3 cache.
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Table 1: Results for COIL-20, Diamond and Yale

COIL-20 Dataset

Method
Classifier

1-NN NM QDA

LDA Fisher (1936); Rao (1948) 0.0046 (16, Std:0.0036) 0.0340 (16, Std:0.0070) 0.0130 (11, Std:0.0062)
MMDA Bian & Tao (2011b) 0.0119 (16, Std:0.0054) 0.0360 (36, Std:0.0062) 0.0128 (16, Std:0.0054)
WHMMDA Su et al. (2018; 2015) 0.0167 (16, Std:0.0053) 0.0388 (46, Std:0.0086) 0.0191 (31, Std:0.0074)
ℓ1,2 LDA Nie et al. (2021b) 0.0059 (38, Std:0.0021) 0.0360 (46, Std:0.0084) 0.0071 (11, Std:0.0037)
MM4MM (QP-MMDA) Omati et al. (2025) 0.0134 (16, Std:0.0058) 0.0383 (46, Std:0.0087) 0.0158 (16, Std:0.0052)
MMRA Wang et al. (2024) 0.0051 (41, Std:0.0031) 0.0358 (41, Std:0.0072) 0.0243 (6, Std:0.0096)
GDMM-QF (PWCRA) 0.0026 (26, Std:0.0014) 0.0312 (36, Std:0.0055) 0.0109 (16, Std:0.0031)

Diamond Dataset

Method
Classifier

1-NN NM QDA

LDA Fisher (1936); Rao (1948) 0.0484 (2, Std:0.0162) 0.0835 (3, Std:0.0405) 0.0318 (3, Std:0.0217)
MMDA Bian & Tao (2011b) 0.0484 (2, Std:0.0170) 0.0852 (3, Std:0.0194) 0.0351 (3, Std:0.0161)
WHMMDA Su et al. (2018; 2015) 0.1387 (3, Std:0.0463) 0.1654 (3, Std:0.0469) 0.1236 (3, Std:0.0509)
ℓ1,2 LDA Nie et al. (2021b) 0.0416 (2, Std = 0.0231) 0.0916 (2, Std = 0.0174) 0.0516 (1, Std = 0.0130)
MM4MM (QP-MMDA) Omati et al. (2025) 0.1220 (3, Std:0.0607) 0.1403 (3, Std:0.0611) 0.0919 (3, Std:0.0562)
MMRA Wang et al. (2024) 0.0485 (3, Std:0.0293) 0.0769 (3, Std:0.0453) 0.0300 (3, Std:0.0173)
GDMM-QF (PWCRA) 0.0257 (3, Std:0.0099) 0.0740 (3, Std:0.0208) 0.0262 (3, Std:0.0108)

Yale Dataset

Method
Classifier

1-NN NM QDA

LDA Fisher (1936); Rao (1948) 0.0680 (11, Std:0.0329) 0.0773 (11, Std:0.0295) 0.3973 (11, Std:0.0910)
MMDA Bian & Tao (2011b) 0.0747 (11, Std:0.0355) 0.0693 (16, Std:0.0262) 0.3673 (11, Std:0.0664)
WHMMDA Su et al. (2018; 2015) 0.1987 (46, Std:0.0528) 0.0627 (46, Std:0.0203) 0.7020 (6, Std:0.0675)
ℓ1,2 LDA Nie et al. (2021b) 0.0987 (41, Std = 0.0170) 0.0167 (41, Std = 0.0105) 0.3387 (6, Std = 0.0164)
MM4MM (QP-MMDA) Omati et al. (2025) 0.2293 (46, Std:0.0513) 0.0920 (46, Std:0.0387) 0.7553 (6, Std:0.0592)
MMRA Wang et al. (2024) 0.9011 (46, Std:0.06) 0.8452 (46, Std:0.0301) 0.7839 (46, Std:0.101)
GDMM-QF (PWCRA) 0.0287 (11, Std:0.0117) 0.0240 (11, Std:0.0165) 0.2573 (11, Std:0.0424)
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Figure 1: A comparison of results from six different methods.

4.3 RESULTS AND ANALYSIS

In this section, we analyze the performance of our proposed method, GDMM-QF (PWCRA), against
the baseline algorithms. The evaluation is based on classification error rates from Table 1 and a
visual analysis of class separability from Figure 1. Additionally, we have provided a computational
analysis; the detailed results are accessible in Appendix H.
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We begin by examining the classification performance on the COIL-20 dataset. As shown in Ta-
ble 1, our GDMM-QF (PWCRA) method achieves the lowest mean error rates across all three clas-
sifiers. With the 1-NN classifier, it obtains an error of 0.0026, which is substantially better than the
next best methods, LDA (0.0046) and MMRA (0.0051). This trend continues for the NM and QDA
classifiers, where our approach also secures the top position. Furthermore, the standard deviation
for our method is consistently among the lowest, indicating more stable and reliable performance
over the 20 independent trials.

Next, we turn to the Diamond dataset. Here again, GDMM-QF (PWCRA) demonstrates its supe-
riority by a significant margin. It achieves the lowest error rates for 1-NN (0.0257), NM (0.0740),
and QDA (0.0262). Its performance is particularly noteworthy when compared to methods like WH-
MMDA and MM4MM (QP-MMDA), which appears to fail entirely. The error rate of our method
with the 1-NN classifier is nearly half that of its closest competitors, LDA, ℓ1,2 LDA, and MMDA,
underscoring its effectiveness on this type of data.

The analysis continues with the Yale Face Dataset, a highly challenging task due to variations in
lighting and facial expression. GDMM-QF (PWCRA) once again delivers a standout performance.
It achieves the lowest error rate with the 1-NN classifier at 0.0287, more than halving the error of
the next best method, LDA (0.0680). It also secures the best result with the QDA classifier. While
ℓ1,2 LDA obtains the top score for the NM classifier, our method’s result is highly competitive
and a close second. In contrast, several competing methods, including MMRA, WHMMDA, and
MM4MM (QP-MMDA), perform very poorly, with error rates often exceeding 70%. This highlights
the robustness of our algorithm in handling complex, real-world variations where other methods fail.

Overall, across the nine experimental settings (three datasets and three classifiers), the proposed
GDMM-QF (PWCRA) method ranks first in eight of them. This consistent, top-tier performance
provides strong quantitative evidence of its superior ability to find highly discriminative low-
dimensional subspaces.

To provide a qualitative perspective, we now analyze the 2D projections of the Iris dataset shown in
Figure 1. These plots visualize how well each method separates the three classes. The projections
generated by the competitors—LDA (Fig. 1a), MMDA (Fig. 1b), WHMMDA (Fig. 1c), MM4MM-
QP (Fig. 1d), and MMRA (Fig. 1e)—show limited success. While they separate one class (blue
points), the other two classes (green and red points) remain significantly overlapped. In several
cases, such as with MMDA and MMRA, the projected points for these two classes also exhibit high
internal variance, meaning the points of the same class are widely scattered. This high intra-class
scatter and inter-class overlap create a decision boundary that is ambiguous and complex, which
is a major disadvantage as it directly leads to higher misclassification rates. In stark contrast, the
projection from our GDMM-QF (PWCRA) method (Fig. 1f) demonstrates a markedly superior
outcome. It produces three well-separated and compact clusters with clear margins between them.
Our method not only pushes the class clusters apart but also minimizes the internal variance within
each class. This leads to a low-dimensional space where classes are linearly separable with high
confidence, explaining the superior quantitative results observed in our experiments.

In summary, the step-by-step analysis of both the quantitative error rates and the qualitative visual-
izations confirms the exceptional performance of the proposed GDMM-QF (PWCRA) algorithm. It
consistently outperforms established methods in finding subspaces that yield better class separability
and lower classification error.

5 CONCLUSION

In this work, we presented a solution to the problem of worst-case class separation in discriminative
dimensionality reduction. We investigated an objective based on maximizing the minimum pairwise
ratio of between-class to within-class scatter, leading to the development of GDMM-QF, a robust
two-level optimization algorithm. By combining a generalized Dinkelbach procedure with a custom
minorization-maximization (MM) solver, GDMM-QF efficiently solves the underlying non-convex
problem without requiring hyperparameter tuning. Our investigation established that the algorithm is
provably convergent and computationally efficient. Finally, our experimental validation on several
benchmark datasets substantiated the effectiveness of this approach, demonstrating its consistent
ability to outperform leading state-of-the-art methods in classification accuracy.
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APPENDICES

A THE MINORIZATION-MAXIMIZATION (MM) PRINCIPLE

A.1 THE GENERAL MM FRAMEWORK

The minorization-maximization (MM) algorithm is an iterative optimization technique for solving
constrained maximization problems of the form:

max
T∈χ

f(T), (20)

where f(T) is the objective function, T is the optimization variable, and χ represents the feasible
set. The core principle of the MM algorithm involves iteratively solving a sequence of simpler
optimization problems. Specifically, at each iteration t, a surrogate function g(T | Tt), termed a
minorizer of f(T), is constructed. This surrogate must satisfy two fundamental conditions:

g(T | Tt) ≤ f(T), ∀T ∈ χ, (21)

g(Tt | Tt) = f(Tt). (22)

The first condition (21) ensures that the surrogate function provides a global lower bound for the
original objective function. The second condition (22) guarantees that the surrogate is tangent to (or
“touches”) the objective function at the current iterate Tt.

The subsequent iterate, Tt+1, is then obtained by maximizing this surrogate function over the fea-
sible set:

Tt+1 ∈ argmax
T∈χ

g
(

T | Tt
)

. (23)

This iterative process, encompassing the construction and maximization of the surrogate, is repeated
until a convergence criterion is met, typically when the relative change in the objective function value
falls below a predefined tolerance ǫ.

A key property of the MM algorithm is the guaranteed monotonic improvement of the objective
function value at each step. This ascent property is readily established through the following se-
quence of inequalities:

f(Tt+1) ≥ g(Tt+1 | Tt) ≥ g(Tt | Tt) = f(Tt). (24)

The first inequality holds due to the surrogate condition in (21), the second follows from the max-
imization step in (23), and the final equality is a direct consequence of the tangency condition in
(22). This guarantees that the sequence of objective values {f(Tt)} is non-decreasing.

A.2 AN MM FRAMEWORK FOR MAX-MIN PROBLEMS (MM4MM)

The MM principle can be effectively extended to address max-min optimization problems, which
are structured as:

max
T∈X

{

f(T) , min
i=1,...,K

fi(T)

}

, (25)

where the overall objective f(T) is defined by the pointwise minimum of a set of functions
{fi(T)}Ki=1. To solve this problem using an MM approach, we construct a composite surrogate
function for f(T).

Let gi(T | T
t) be a valid minorizer for each individual function fi(T), satisfying the standard MM

conditions:

gi(T | T
t) ≤ fi(T), (26)

gi(T
t | Tt) = fi(T

t). (27)

A natural choice for the overall surrogate function g(T | Tt) is the pointwise minimum of the
individual surrogates:

g
(

T | Tt
)

, min
i=1,...,K

gi
(

T | Tt
)

. (28)
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It can be verified that this construction yields a valid minorizer for the max-min objective f(T). The
lower-bound property is established as follows:

g(T | Tt) = min
i

gi(T | T
t) ≤ min

i
fi(T) = f(T), (29)

and the tangency condition is similarly met:

g(Tt | Tt) = min
i

gi(T
t | Tt) = min

i
fi(T

t) = f(Tt). (30)

By applying the standard MM update rule with the surrogate defined in (28), the resulting sequence
of iterates {Xt} is guaranteed to monotonically increase the max-min objective function and con-
verge to a stationary point. For a more detailed exposition of the MM approach and its applications,
including techniques for constructing surrogate functions, we refer the reader to Sun et al. (2017);
Saini et al. (2024).

B PROOF OF THEOREM 1

Proof. Supposing T∗ and λ∗ are the optimal solution and corresponding objective function value of
problem (2), then the following holds:

min
1≤i<j≤C

fij(T
∗)

gij(T∗)
= λ∗.

Moreover, for any feasible solution T ∈ X , since gij(T) > 0, we have:

min
1≤i<j≤C

fij(T)

gij(T)
≤ λ∗ =⇒ min

1≤i<j≤C
(fij(T)− λ∗gij(T)) ≤ 0.

So we can determine that:

h(λ∗) = max
T∈X

min
1≤i<j≤C

(fij(T)− λ∗gij(T)) ≤ 0.

On the other hand, for the optimal solution T∗:

min
1≤i<j≤C

fij(T
∗)

gij(T∗)
= λ∗ =⇒ min

1≤i<j≤C
(fij(T

∗)− λ∗gij(T
∗)) = 0.

Thus, we can obtain h(λ∗) = 0. That is, the optimal function value λ∗ of the problem in (2) is the
root of the function h(λ) defined in Theorem 1. This completes the proof of Theorem 1.

C PROOF OF THEOREM 2

Proof. Algorithm 1 can be interpreted as an application of Newton’s method to find the root of the
function h(λ) = maxT∈X minij(fij(T) − λgij(T)). The first-order Taylor expansion of h(λ)
around the current estimate λk is given by:

h(λ) ≈ h(λk) + h′(λk)(λ− λk).

The derivative of h(λ) with respect to λ is h′(λ) = −gab(T
k+1), where Tk+1 is the argument

that maximizes the inner expression for a given λ, and (a, b) is the index pair corresponding to the
minimum value for that Tk+1. Newton’s method finds the root by setting this linear approximation
to zero:

0 = h(λk)− gab(T
k+1)(λ− λk).

Solving for λ yields the update rule for the next iterate, which we denote λk+1:

λk+1 = λk +
h(λk)

gab(Tk+1)
= λk +

fab(T
k+1)− λkgab(T

k+1)

gab(Tk+1)
=

fab(T
k+1)

gab(Tk+1)
.

This formulation is precisely the update rule presented in Step 2 of Algorithm 1. Thus, the algorithm
implements Newton’s method to solve h(λ) = 0.
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D PROOF OF THEOREM 3

Proof. Monotonic Convergence: In the k-th iteration of Algorithm 1, let λk = fab(T
k)

gab(Tk)
=

minij
fij(T

k)
gij(Tk)

. This implies that fij(T
k) − λkgij(T

k) ≥ 0 for all pairs (i, j), and consequently,

minij(fij(T
k) − λkgij(T

k)) = 0. The subproblem solved in Step 3 yields Tk+1, which defines
the value of h(λk):

h(λk) = fcd(T
k+1)− λkgcd(T

k+1) = max
T∈X

min
ij

(fij(T)− λkgij(T)),

where (c, d) is the index pair corresponding to the minimum value for the solution Tk+1. Since Tk

is a feasible candidate for this maximization, we must have:

h(λk) ≥ min
ij

(fij(T
k)− λkgij(T

k)) = 0.

The inequality fcd(T
k+1)−λkgcd(T

k+1) ≥ 0 directly leads to
fcd(T

k+1)
gcd(Tk+1)

≥ λk. As the next iterate

is defined as λk+1 = minij
fij(T

k+1)
gij(Tk+1)

, and since λk+1 is the minimum of all such ratios, we know

that
fcd(T

k+1)
gcd(Tk+1)

≥ λk+1. Combining these, we have established that λk+1 ≥ λk. This proves that the

objective value is non-decreasing in each iteration of Algorithm 1.

Global Optimality: Suppose the algorithm converges at iteration k, which means λk = λk+1.
Such convergence is guaranteed since the sequence {λk} is monotonically non-decreasing (as

shown above) and bounded above: for any T ∈ S and pair (i, j), the ratio
fij(T)
gij(T) ≤

λmax(S̃
ij

C
)

λmin(S̃
ij

W
)

by the Rayleigh-Ritz theorem and the constraint TTT = Im, thus f(T) is bounded by M :=

maxij
λmax(S̃

ij

C
)

λmin(S̃
ij

W
)
; therefore, by the monotone convergence theorem, the sequence converges to some

limit λ∗. From the update rule, this implies λk = minij
fij(T

k+1)
gij(Tk+1)

. Let (c, d) be the index pair

for which this minimum is achieved for Tk+1. Then λk = fcd(T
k+1)

gcd(Tk+1)
, which can be rearranged

to fcd(T
k+1) − λkgcd(T

k+1) = 0. This is equivalent to stating that h(λk) = 0. By Theorem 1,
a solution λ∗ is optimal if and only if h(λ∗) = 0. Since the converged solution λk satisfies this
condition, it is the globally optimal solution. We can formalize this by contradiction: assume con-
vergence occurs but h(λk) > 0. This would imply fcd(T

k+1) − λkgcd(T
k+1) > 0, leading to

λk+1 = minij
fij(T

k+1)
gij(Tk+1)

> λk, which contradicts the convergence assumption λk = λk+1. Thus,

the algorithm must converge to the global optimum.

E THE PROOF OF LEMMA 1

Proof. Consider the trace term tr
(

TT S̃CijT
)

for any pair (i, j). Using the cyclic property of the

trace, we can write:

tr
(

TT S̃CijT
)

= tr
(

S̃CijTTT
)

. (31)

Furthermore, for any orthogonal matrix Q (where QQT = I), we can insert it into the expression
without changing its value:

tr
(

S̃CijTTT
)

= tr
(

S̃CijTQQTTT
)

. (32)

Let T be any matrix that satisfies the relaxed constraint TTT 4 I. We can always choose a specific
orthogonal matrix Q such that it diagonalizes TTT, a result from the singular value decomposition.
This gives QTTTTQ = Λ, where Λ is a diagonal matrix of the eigenvalues of TTT. The constraint
TTT 4 I ensures that these eigenvalues satisfy Λkk ≤ 1 for all k.

Since the matrices TTT and TTT share the same non-zero eigenvalues, it follows that the eigen-
decomposition of TTT is given by:

TTT = VΛVT , (33)
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where V contains the principal eigenvectors of TTT and satisfies VTV = I. Using (33), we can
expand the trace term:

tr
(

TT S̃CijT
)

= tr
(

S̃CijVΛVT
)

= tr
(

(VT S̃CijV)Λ
)

(34)

=
m
∑

k=1

(

VT S̃CijV
)

kk
Λkk (35)

≤
m
∑

k=1

(

VT S̃CijV
)

kk
, (36)

where the inequality in (36) holds because (VT S̃CijV)kk ≥ 0 and Λkk ≤ 1.

The inequality shows that the objective function takes its maximum value when Λkk = 1 for all
k, which corresponds to Λ = I. This indicates that the global maximizer of the problem under
the relaxed constraint TTT 4 I must inherently satisfy the original, stricter constraint TTT = I.
Therefore, the relaxation does not alter the solution, completing the proof of Lemma 1.

F PROOF OF (19)

Proof. Our objective is to find an explicit expression for the matrix Q in the equality tr
(

ATAΦt
)

=

zTQz. We begin by re-indexing the terms. Let Ãk = Aij and z̃k = zij , where the index k

corresponds to the pair (i, j) for 1 ≤ i < j ≤ C via the mapping k = (i−1)(2C−i)
2 + j− i. The total

number of such indices is K = C(C−1)
2 . The matrix A can then be written as A =

∑K

k=1 z̃kÃk.

First, we expand the term ATA:

ATA =

(

K
∑

k=1

z̃kÃk

)T(
K
∑

l=1

z̃lÃl

)

=
K
∑

k=1

K
∑

l=1

z̃kz̃lÃ
T
k Ãl.

Taking the trace after right-multiplying by Φt yields:

tr
(

ATAΦt
)

=
K
∑

k=1

K
∑

l=1

z̃kz̃l tr
(

ÃT
k ÃlΦ

t
)

. (37)

The quadratic form zTQz can be expanded as:

zTQz =

K
∑

k=1

K
∑

l=1

z̃kQk,lz̃l. (38)

By equating the coefficients of z̃kz̃l in (37) and (38), we identify the entries of Q as:

Qk,l = tr
(

ÃT
k ÃlΦ

t
)

.

To express Q in a compact matrix form, we use a property of the Kronecker product ⊗. Let vk =
vec(Ãk). The trace term can be written as:

tr
(

ÃT
k ÃlΦ

t
)

= v
T
k

(

I⊗Φt
)

vl,

Substituting this into the sum gives:

tr
(

ATAΦt
)

=
K
∑

k=1

K
∑

l=1

z̃k
(

v
T
k

(

I⊗Φt
)

vl

)

z̃l.

Let us construct a matrix S by stacking the vectors vk as its columns: S = [v1,v2, . . . ,vK ]. The
expression above can then be rewritten as a matrix-vector product:

tr
(

ATAΦt
)

= zTST
(

I⊗Φt
)

Sz. (39)

Comparing (39) with zTQz, we deduce the final form of Q:

Q = ST
(

I⊗Φt
)

S,

where S = [v1,v2, . . . ,vK ] and vk = vec(Aij) with k =
(i− 1)(2C − i)

2
+ j − i. The proof is

complete.
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Algorithm 1 Outer Loop: Generalized Dinkelbach Algorithm for PWCRA

1: Initialize: Feasible T0, set k = 0, tolerance ǫ.
2: while not converged do

3: Compute worst-case ratio: λk = min1≤i<j≤C
tr((Tk)TS

ij

b
T

k)
tr((Tk)TS

ij
wTk)

.

4: Solve the max-min subproblem for the next iterate:

Tk+1 = arg max
TTT=Im

min
1≤i<j≤C

{

tr(TT (Sij
b − λkS

ij
w )T)

}

.

5: Check for convergence (e.g., if |λk − λk−1| < ǫ).
6: Increment k ← k + 1.
7: end while
8: Output: Optimal transformation T∗ = Tk.

Algorithm 2 Inner Loop: Solving the Max-Min Subproblem via MM (SDP Approach)

1: Input: Initial estimate T0, matrices {S̃Cij}, and convergence threshold ǫ.
2: Initialize: Set t = 0.
3: repeat
4: Compute coefficients {Aij , cij} using Tt via (8) and (9).
5: Solve for the optimal weights z∗ by solving the convex problem (12).
6: Compute the updated projection matrix Tt+1 using z∗ via (13).
7: Increment t← t+ 1.

8: until a stopping criterion is met (e.g.,
‖Tt−T

t−1‖F

‖Tt−1‖F
≤ ǫ)

9: Output: Optimal projection matrix T∗ = Tt.

G ALGORITHMS

The algorithms below detail our nested optimization strategy. Algorithm 1 describes the outer
loop, which applies a generalized Dinkelbach method Dinkelbach (1967) to transform the original
fractional problem into a sequence of simpler subproblems. Algorithm 2 shows how to solve this
subproblem using a minorization-maximization (MM) approach that results in a semidefinite pro-
gram. Finally, Algorithm 3 presents our proposed and much faster inner-loop solver, which solves
the dual of the SDP via an efficient Quadratic Program.
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Algorithm 3 Inner Loop: Solving the Max-Min Subproblem via MM (QP Approach)

1: Input: Initial weights z0, problem data {cij ,Aij}, convergence tolerance ǫ > 0.
2: Initialize: Set iteration counter t = 0.
3: repeat
4: Update Auxiliary Matrix: Compute Φt based on the current zt:

Φt =
(

A(zt)TA(zt)
)− 1

2

5: Solve QP Subproblem: Update the weights by solving the quadratic program from (18) to
find zt+1.

6: Increment iteration counter: t← t+ 1.

7: until the relative change in z is below the tolerance:
‖zt−z

t−1‖
‖zt−1‖ ≤ ǫ

8: Output: The converged weight vector z∗ = zt.
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H ADDITIONAL RESULTS

Table 2: Mean Runtime per Iteration (in seconds) on COIL-20, Diamond, and Yale Datasets.

COIL-20 Dataset

Method
Dimension

1 12 25 49

LDA Fisher (1936); Rao (1948) 1.4123± 0.1141 0.4725± 0.0684 N/A N/A
MMDA Bian & Tao (2011b) 53.1535± 2.7430 52.9179± 6.9516 47.1447± 5.4055 40.5701± 5.1543
WHMMDA Su et al. (2018; 2015) 27.5446± 1.0775 30.3072± 1.3726 26.6994± 1.3850 26.4311± 2.4698
ℓ1,2 LDA Nie et al. (2021b) 0.0513± 0.0098 0.0220± 0.0053 0.0192± 0.0085 0.0240± 0.0051
MMRA Wang et al. (2024) 2.5164± 0.1602 2.3128± 0.1279 1.9990± 0.1019 2.1361± 0.0860
GDMM-QF (PWCRA) 1.6976± 0.1274 1.5403± 0.1116 1.4302± 0.0693 1.4247± 0.0950

Diamond Dataset

Method
Dimension

1 2 3 4

LDA Fisher (1936); Rao (1948) 1.2912± 0.0266 0.1276± 0.0332 0.1214± 0.0324 N/A
MMDA Bian & Tao (2011b) 5.0111± 0.1612 2.1866± 0.1501 2.2577± 0.1497 1.8733± 0.0876
WHMMDA Su et al. (2018; 2015) 2.0015± 0.1024 2.0556± 0.1505 1.9926± 0.1488 1.9105± 0.1284
ℓ1,2 LDA Nie et al. (2021b) 0.0476± 0.0056 0.0543± 0.0024 0.0080± 0.0020 0.0046± 0.0012
MMRA Wang et al. (2024) 1.0732± 0.0173 0.8298± 0.0548 0.8398± 0.0494 0.8560± 0.0779
GDMM-QF (PWCRA) 1.5270± 0.1014 1.1372± 0.0871 0.8989± 0.0660 0.9744± 0.0626

Yale Dataset

Method
Dimension

1 12 25 49

LDA Fisher (1936); Rao (1948) 1.3692± 0.0867 0.4698± 0.1052 N/A N/A
MMDA Bian & Tao (2011b) 33.8620± 0.9662 29.8367± 1.1881 32.7184± 1.8557 31.3374± 2.5932
WHMMDA Su et al. (2018; 2015) 22.1406± 0.8274 21.4248± 0.8639 21.6595± 1.5921 22.1489± 2.4855
ℓ1,2 LDA Nie et al. (2021b) 0.0476± 0.0140 0.0190± 0.0043 0.0105± 0.0022 0.0119± 0.0023
MMRA Wang et al. (2024) 2.1801± 0.0703 1.9019± 0.1211 1.6293± 0.1157 1.9257± 0.1131
GDMM-QF (PWCRA) 1.5407± 0.0692 1.0347± 0.0580 1.1194± 0.0323 1.1408± 0.0577

In this part, we strive to provide additional results by examining the computational efficiency of the
competing methods, with runtimes per iteration detailed in Table 2. As observed in the accuracy
results (Table 1), each method achieves its optimal performance at a different projection dimension
(d), and there is no clear pattern linking a specific dimension to peak accuracy across all algorithms.
Therefore, comparing runtimes only at each method’s individual optimal dimension would not be
a fair or direct comparison. To address this, in Table 2, we evaluate the efficiency of all methods
across the same set of dimensions to provide a more equitable analysis.

The computational results in Table 2 highlight the efficiency of our proposed GDMM-QF (PWCRA)
method across diverse datasets.

On the COIL-20 dataset, our method is exceptionally efficient, with mean runtimes per iteration
consistently under 1.70 seconds across all tested dimensions (1.6976s at d = 1, 1.5403s at d = 12,
1.4302s at d = 25, and 1.4247s at d = 49). This is notably faster than MMRA, whose runtimes
range from 1.9990s to 2.5164s, and it represents a dramatic speed-up compared to the computa-
tionally demanding MMDA (ranging from 40.5701s to 53.1535s) and WHMMDA (ranging from
26.4311s to 30.3072s) algorithms.

For the low-dimensional Diamond dataset, our method’s efficiency remains highly competitive, with
runtimes ranging from 0.8989s to 1.5270s. Here, its speed is comparable to MMRA (ranging from
0.8298s to 1.0732s) and is again significantly faster than the MMDA and WHMMDA algorithms.

This strong performance continues on the Yale dataset. GDMM-QF (PWCRA) exhibits runtimes
between 1.0347s and 1.5407s. This is consistently faster than MMRA (ranging from 1.6293s to
2.1801s) and orders of magnitude more efficient than WHMMDA (approx. 21.42s – 22.15s) and
MMDA (approx. 29.84s – 33.86s).

Across all three datasets, while a method like ℓ1,2 LDA is computationally faster due to its formula-
tion, this speed comes at the cost of significantly lower classification accuracy, as seen in Table 1. In
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contrast, our GDMM-QF (PWCRA) method strikes an excellent balance, delivering state-of-the-art
accuracy with a very reasonable and competitive computational cost, which makes it highly practical
for real-world applications.
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