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Abstract

Advances in underwater imaging enable collection of extensive seafloor image
datasets necessary for monitoring important benthic ecosystems. The ability to
collect seafloor imagery has outpaced our capacity to analyze it, hindering mobi-
lization of this crucial environmental information. Machine learning approaches
provide opportunities to increase the efficiency with which seafloor imagery is ana-
lyzed, yet large and consistent datasets to support development of such approaches
are scarce. Here we present BenthicNet: a global compilation of seafloor imagery
designed to support the training and evaluation of large-scale image recognition
models. An initial set of over 11.4 million images was collected and curated to
represent a diversity of seafloor environments using a representative subset of 1.3
million images. These are accompanied by 3.1 million annotations translated to
the CATAMI scheme, which span 190 000 of the images. A large deep learning
model was trained on this compilation and preliminary results suggest it has utility
for automating large and small-scale image analysis tasks.

1 Introduction

Underwater imagery, including both still photographs and video, is among the most common forms
of data used to inform benthic habitat mapping. Benthic habitat maps describe both biotic and abiotic
elements of the seafloor [8, 47], useful for marine management goals such as monitoring species and
habitats of interest, informing policy decisions, and guiding sustainable ocean resource use [27, 3].
Seabed imagery has great utility for characterizing benthic environments for several reasons: it is
non-invasive and minimally destructive, it may be collected remotely, it may be analyzed for multiple
purposes (e.g. biology, geology), and it is more efficient to collect and store than physical samples
(e.g. grabs, cores, preserved specimen).

Benthic imagery is increasingly collected using automated and remote underwater vehicles (AU Vs,
ROVs), which have the potential to generate larger volumes of data than previous methods—faster
even than it can be analyzed [75, 24, 67]. The manual classification, annotation, and labelling of

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: The 3rd Workshop on
Imageomics: Discovering Biological Knowledge from Images Using Al



seabed imagery therefore acts as a bottleneck in the habitat mapping workflow [6] — a challenge
which automation with machine learning (ML) could address.

Successfully training large-scale deep learning models from scratch requires large volumes of data.
However, a deep neural network that has previously been trained on one task can be repurposed for
a new task through transfer learning, provided the new task uses similar input stimuli to that used
when training the original network. For vision models, transfer learning is typically performed by
reusing models pretrained on the ImageNet dataset [65], comprised of photographs of terrestrial
and anthropocentric objects. However, since this data does not represent subaqueous environments,
the shift in domain may limit the capacity for transfer learning to benthic habitats [58, 42]. This
motivates the need for a large-scale dataset of global seabed imagery.

Cumulatively, adequate volumes of benthic image data currently exist to support the development
of large ML models, but they are spread globally among various research groups, government
data portals, and open data repositories. Hence there is a need to compile and curate datasets
for the development of large-scale image recognition models. Moreover, unlike terrestrial and
anthropocentric images, there is no objective label for many seabed habitats, biological communities,
substrate types, or organisms. Numerous different classification schemes are used to label benthic
features [1, 51, 44], with small studies often coming up with their own bespoke classification scheme.
Because no single vocabulary is universally applied to describe these features, we currently lack large
sets of consistently labelled images that are necessary for training deep learning models for benthic
environments. We note an outstanding need to develop standardized protocols for the translation of
common marine image labelling schemes.

For benthic data, as is the case for most domains, unlabelled data is much easier to obtain at scale
than annotated data. Fortunately, self-supervised learning (SSL) techniques have been developed
which can harness unlabelled data for the initial pretraining stage of the neural network. In SSL, a
pretext task is constructed automatically from the input data itself [4, 13, 28, 14, 26, 15, 17, 11, 29],
enabling training of large-scale models on unlabelled imagery which can be more easily collected at
scale. After pretraining with SSL, models have already learnt to see and understand stimuli and can
be fine-tuned for specific downstream tasks without needing large volumes of annotated data.

The whole-image labels that typify benthic habitat image datasets may differ from other forms of
marine image labelling that focus on locating specific objects, semantic labelling, bounding boxes,
and masking. These forms of labelling are well suited to applications focusing on single taxa, pelagic
biota, and object detection or tracking, and efforts to establish extensive image datasets for those
applications are also underway. FathomNet [7, 36], contains over 100 000 images and over 200 000
localization labels with bounding boxes focused generally on marine biota, while Orenstein et al. [54]
present a dataset of 3.4 million plankton images that have been labelled and used to train deep learning
models. Hong et al. [30] have established the TrashCan dataset, containing over 7 000 images of
marine debris with corresponding bounding box and segmentation masks. Other comparable image
datasets include WildFish for classifying fish species [84], the OUC-vision large-scale underwater
image database for underwater salient object detection [34], and the Brackish dataset [57] for detecting
fish, crabs and starfish in brackish waters. Multiple datasets have been established to support the
automated annotation of coral imagery including Moorea Labeled Corals [5], the Gulf of Eilat dataset
[61], and notably, CoralNet [6, 12]. In addition to serving as a data repository where users can upload
and share underwater image data and point labels, CoralNet provides a web interface to facilitate
labelling and development of image recognition models. Several other comparable data portals and
software packages enable the labelling and centralization of marine image data in this way (e.g.
FathomNet, [36]; SQUIDLE+; BIIGLE, [39]; VIAME).

Here we describe BenthicNet: a global compilation of seafloor images that is designed to support
development of automated image processing tools for benthic habitat data. With this compilation,
we strive to obtain thematic diversity by (i) compiling benthic habitat images from locations around
the world, and (ii) representing habitats from a broad range of marine environments. The compiled
dataset is assessed for these qualities. Additionally, we aim to achieve diversity of non-thematic
image characteristics (e.g. image quality, lighting, perspective) by obtaining data from a range of
acquisition platforms and camera configurations. Diversity in the data is important for ensuring as
much benthic imagery as possible is within the domain of our dataset. The dataset is presented in
three parts: a diverse collection of over 11 million seafloor images from around the world, provided
without labels (BenthicNet-11M); a rarefied subset of 1.3 million images, selected to maintain



diversity in the imagery while reducing redundancy and volume (BenthicNet-1M); and a collection
of 188 688 labelled images bearing 3.1 million annotations (BenthicNet-Labelled). We provide a
large SSL model pretrained on BenthicNet-1M, and demonstrate its application using examples from
BenthicNet-Labelled. The compilation and SSL model are made openly available to foster further
development and assessment of benthic image automation tools.

2 Data curation

In order to achieve a diverse collection of benthic habitat images for training deep learning models,
data spanning a range of environments and geographies was obtained from a variety of sources. These
initially included project partners and research contacts, which were leveraged to establish additional
data partnerships with individuals, academic and not-for-profit research groups, and government
organizations. The largest data volumes were obtained from several academic, government, and
third-party public data repositories. The acquisition of labelled data was prioritized in all cases, but
extensive high quality unlabelled data collections were also included where feasible.

2.1 Data compilation and quality control

The formats and varieties of data were diverse, including collections of images with spreadsheet
metadata, images with metadata contained in file names, GIS files containing images from which
metadata was extracted, lists of URL image links, and raw video with text file annotations. Datasets
not formatted as a single folder of images or list of URL links with CSV metadata were re-formatted.
Metadata contained in image file names was parsed and used to construct a metadata CSV file
where necessary. Image data within GIS files was extracted using ArcGIS Pro and the ArcPy Python
package, along with other metadata contained within the files. Geographic coordinates were converted
to decimal degrees using the WGS 84 datum. Video files were subsampled by extracting still frames
according to their metadata using FFmpeg. After formatting, all datasets were subjected to quality
control checks for missing entries, duplicates, label consistency, image quality, and matches between
images and metadata. Quality control of image labels was performed by sampling the metadata
and comparing labels to corresponding images for each dataset. Datasets where notable label
inconsistencies were detected were rejected. Data columns were renamed to match a standardized
format for the BenthicNet dataset. Acquisition methodology for each source is described in detail in
Appx. B. Statistics for the various data sources are summarized in Table 1. Additional detail on the
individual datasets is provided with the BenthicNet metadata [50].

2.2 Data management

In total, 11408 887 images were collected from the sources described above (see §2.1). Of all
the images acquired, 188 688 included labels corresponding to visible benthic elements. Labels
enable training and validation for supervised modelling tasks, such as localized species or substrate
identifications [33, 59], or bottom type classification [18]. There are several ways though that
unlabelled data may still be utilized using unsupervised [78], semi-supervised [2, 55, 74, 79], and
self-supervised [31, 4, 13, 28, 83, 26, 29] approaches. To facilitate a range of potential applications,
we consider the dataset in two ways hereafter: the full set of images without their labels (BenthicNet-
11M) and the set of labelled images (BenthicNet-Labelled).

2.2.1 Labelled data

Label translation. In order to increase the utility of the compiled data, and to facilitate validation
of models trained on it, image labels from all datasets were translated to the CATAMI classification
scheme (v1.4) [1], which spans both substrate and biota categories. Biota labels were additionally
mapped to the World Registry of Marine Species (WoRMS) taxonomy [77].

Images were originally labelled according to a range of different established and bespoke schemes, but
a large number of these (e.g. from SQUIDLE+) were readily available as CATAMI labels. CATAMI
is a flexible framework that offers several advantages to accommodate translation and integration of
a broad range of other labelled data. First, CATAMI supports labels for multiple classes of benthic
features, including “branches” for both biota and physical elements such as substrate, bedforms, and
relief. This enables the translation of a range of labelled datasets that were initially collected for a



Table 1: Summary of BenthicNet data sources including the number of images in BenthicNet-11M (Full
collection), BenthicNet-1M (Subsampled), and BenthicNet-L (Labelled). Further details on the individual
datasets are provided within the BenthicNet metadata.

# Samples

Source Region # Datasets  # Sites  Full collection =~ Subsampled Labelled
Online Repository/Collection

AADC Antarctic 2 86 2056 2024 203
Catlin Seaview Global 22 861 1082452 283674 11346
FathomNet W. USA 8 3381 68908 58196 0
MGDS Global 6 32 15023 6154 0
NOAA (via OneStop) USA 18 526 73019 40714 4543
NRCan Canada 78 1804 23855 18851 3595
PANGAEA Global 1191 1196 764924 236968 40204
SQUIDLE+ Global 691 14187 9166472 608576 85387
USAP-DC Antarctic 5 27 4144 2886 0
USGS USA 5 38 104 155 7035 0
Individual Contributions

4D Oceans E. Canada 2 274 3008 2715 3000
DFO (BIO) E. Canada 6 381 7773 5981 7762
DFO (IOS) W. Canada 7 9 16247 1993 10106
EAC E. Canada 1 7 1220 1015 886
Hakai Institute W. Canada 2 45 4735 3609 1697
HAL Jamaica 1 1 505 505 0
LaboGeo/UFES E. Brazil 1 359 359 287 359
MUN Arctic 4 135 10691 6403 10687
NGU Norway 4 580 50290 50275 0
NOAA (NEFSC) N.E. USA 1 2 2240 2065 2240
SEAM E. Canada 3 284 6811 5170 6673
Total Global 2058 24215 11408 887 1345096 188688

variety of different purposes. Second, labels within these branches are hierarchical. This means that
objects may be labelled at different or even multiple levels of detail depending on the quality of the
data, the confidence of the analyst, or the requirements of a particular application. This is critical for
the translation of the multi-source data compiled here, which were initially analyzed at a range of
thematic (e.g. taxonomic) resolutions for different purposes. Finally, CATAMI implements labels that
are designed to be visually recognizable from image data. At a coarse level, these may distinguish
broad groups or phyla of biota, but at finer levels, where identifying individual genera or species may
become difficult using image data alone, morphological labels may be applied. These describe the
size, shape, colour, and growth form of an organism, which may be recognizable even though the
taxonomy is ambiguous.

We translated all image labels to the CATAMI (e.g. Table 2). All unique labels were extracted for each
labelled image dataset in turn. Each unique label was translated to its closest CATAMI equivalent(s),
maintaining the hierarchical level of the original data as closely as possible. In some cases, additional
information within the metadata such as comments or auxiliary labels were used to complete the
translation. Some annotations were provided in schemes that extend versions of CATAMI, such as the
Australian Morphospecies Catalogue, which provides more precise morphological detail for the shape
of sponges. Where this was done systematically and with more than 10 samples, we extended our
scheme to match this increased level of morphological detail. Some annotations included man-made
objects, such as trash or cables, which fell outside the scope of the CATAMI scheme, but may have
value toward monitoring the anthropogenic impact on benthic habitats. Thus we also added an
additional Anthropogenic branch to the hierarchy to cater to these annotations. We also include fields
for CATAMI modifiers that indicate additional information such as whether organisms are bleached
or dead, or their colours.

Some datasets provided taxonomic labels of biota at a high level of detail (genus or species level). To
retain this information, taxonomic biota labels were additionally assigned an AphialD from the World
Registry of Marine Species (WoRMS). Where detailed taxonomic labels could not be determined,



Table 2: Examples of original image labels translated to hierarchical labels according to CATAMI v1.4 and
WoRMS. Some original labels indicated both substrate and biota, while others indicated only one of these. For
biota, some original labels provided more morphological detail and others more taxonomic; as much detail was
retained as possible in both the CATAMI Biota and WoRMS taxonomic translations, respectively.

CATAMI WoRMS
Original Substrate Biota AphialD Taxonomy
Substrate . Worms .
Mud and tube worms L Unconsolidated (soft) L Polychaetes 483 Annelida

L, Sand / mud (<Imm)
L, Mud / silt (<64um)

L, Tube worms L Polychaeta

Cnidaria
Hard Coral: L, Corals Cnidaria
Non hermatypic: - L Stony corals 1363 L Hexacorallia
Free living (Fungia etc) L Solitary L Scleractinia

L Free living
Cnidaria

Cnidaria L Hexacorallia

Pocillopora sp. - L Corals 206938 L Scleractinia
L Stony corals L Pocilloporidae

L Pocillopora

remaining biota annotations (e.g. morphological descriptions from CATAMI) were also mapped onto
the WoRMS taxonomy at the highest level of specificity possible (typically phylum, class, or order).

In total, there were 188 688 labelled images, 3091 158 individual CATAMI labels, and 1 131 391
WoRMS taxonomic labels for the BenthicNet-Labelled compilation. The counts for each individual
label are provided with the dataset hosted on the Canadian Federated Research Data Repository
(FRDR) [50].

Partitioning. To enable consistent validation and benchmarking between models using the Ben-
thicNet dataset compilation, we provide train and test partitions of the labelled data. Test data were
selected according to a partially spatial and class-label stratified procedure in order to ensure repre-
sentation of a broad range of labels, and to reduce the degree of similarity between test and training
partitions caused by spatial autocorrelation [37, 48]. The challenge in partitioning the dataset stems
from the multi-label nature and imbalanced proportions of labels in BenthicNet. Firstly, imbalance
necessitates careful assignment of rarer labels in the dataset. Additionally, a single image may have
any combination of labels across multiple branches of the CATAMI hierarchy. If an image is assigned
to test or training partitions due to a particular label, we must consider how the assignment affects
other labels on the same image, some of which may be rarer.

Our partitioning process was as follows. We selected the target number of annotations per label to
place in the test set as the smaller of 15% of the number of samples for the most frequently occurring
label and 35% of the samples for the median label. We added images to train or test partitions one at
a time, selecting the next label to add based on the following factors, in order of priority.

1. Ensure at least two samples for each label can be placed in the train partition.

2. Ensure at least 50% of the samples for each label can be placed in the train partition without
using samples within 50 m of a test sample.

3. Ensure at least 15% of the samples for each label can be placed in the test partition without
using samples within 50 m of a train sample.

4. Ensure no more than 35% of the samples for each label would be placed in the test partition.

5. Prioritize the CATAMI label with the fewest remaining unallocated images.

After determining the next label to add to a partition, we selected an image bearing that annotation to
add to the partition as follows:

1. Of unallocated images bearing the label, if any are within 50 m of an image already in the
target partition, randomly select an image from the closest 10% of those images.

2. Otherwise, randomly select an image bearing the label which is not within 50 m of an image
already allocated to the other partition. Images violating this were used if needed to satisfy
minimum populations described above (50% in train, 15% in test).
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Figure I: Distribution of BenthicNet-1M images projected to Equal Earth.

In practice, our partitions grow spatially outwards from initial seed locations, with new locations
seeded to represent new label classes. Any remaining samples were allocated to the test partition if
within 50 m of an image already in test, and to train otherwise. Effectively, test data was selected to
prioritize representation of CATAMI labels, and then to minimize spatial overlap with the training data,
as much as possible. This algorithm was run in parallel on 37 subsets of the data, each corresponding
to a different ecological marine unit [66] (EMU; see Appx. D). 142767 images (75.66%) were
assigned to the training partition and 45 921 (24.34%) to test. The code for obtaining training and
test partitions of the labelled data is provided at the BenthicNet code repository.

2.2.2 Unlabelled data

All images in BenthicNet may be used for applications which do not require labels, thus for the
“unlabelled” slice of the data we considered all 11408 887 images. We refer to the full collection as
BenthicNet-11M. These images were not distributed uniformly in space; some datasets had a low
sampling intensity, e.g. a few images per recording site taken by divers; while others were densely
sampled, e.g. AUV video. To reduce the redundancy of the densely sampled data (thereby also
reducing data volume and imbalance) the data was subsampled spatially, as described in Appx. C.
We refer to the subsampled dataset as BenthicNet-1M.

3 Data Records

All BenthicNet data, metadata, and models described here are available from the Canadian Federated
Research Data Repository (FRDR) [50]. These include (i) a CSV file with an entry for each image in
the subsampled compilation, BenthicNet-1M, conforming to the convention presented in Table 5; (ii)
a single CSV file with an entry for each label of each image of the labelled compilation, BenthicNet-
Labelled, conforming to the format presented in Table 3; (iii) a tarred directory containing each
image in BenthicNet-1M and BenthicNet-Labelled, resized and compressed to JPEG format; (iv) a
version of the entire image compilation tarred at the individual subdataset level; and (v) the ResNet-50
model weights resulting from SSL pretraining on BenthicNet-1M as described in §4. We additionally
include CSV files listing the counts of each individual CATAMI label present, and a list of WoRMS
taxonomical labels present. The metadata and models are available for use without restriction under
the Creative Commons Attribution 4.0 License (CC-BY-4.0). Most images are available under
CC-BY-4.0, except where the original licenses of subdatasets indicate limitations to derivative or
commercial uses. Individual licenses for all subdatasets are retained and available along with the
metadata within the repository.

3.1 Data formats

All unlabelled image metadata were standardized to a common format (Table 5). The datetime
field was completed to the highest level of precision possible. Times were converted to UTC where
timezones were indicated, and assumed to be UTC otherwise; it is not possible to guarantee all times
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Table 3: Format for compiled BenthicNet-Labelled image metadata. Coverage is the fraction of images that
have at least one such metadata entry.

Column Contents Data-type  Units Coverage
url URL address for this image String 100.00%
source Data provider/repository String 100.00%
dataset Name of dataset String 100.00%
site Image location name String 100.00%
image Image filename String 100.00%
latitude Latitude (WGS 84) Float Decimal degree 100.00%
longitude Longitude (WGS 84) Float Decimal degree 100.00%
datetime Acquisition date and time (UTC) String YYYY-MM-DD HH:mm:ss ~ 100.00%
partition Train/test split allocation String 100.00%
annotation_column  Relative x location of labelled pixel Float Fraction of image width 53.11%
annotation_row Relative y location of labelled pixel Float Fraction of image height 53.11%
original_label Original image label String 82.10%
catami_biota CATAMI biota label String 75.59%
catami_substrate CATAMI substrate label String 70.30%
catami_bedforms CATAMI bedform label String 6.87%
catami_relief CATAMI relief label String 2.46%
catami_qualifiers CATAMI label qualifier String 10.82%
colour_qualifier Label colour qualifier String 6.52%
bleached Whether biota is bleached Float Values O or 1 13.44%
dead Whether biota is deceased Float Values O or 1 25.76%
aphia_id WoRMS taxon AphialD label Integer 60.73%
gebco_bathymetry ~ Depth interpolated from GEBC0O2022  Float Metres 100.00%
emu Nearest ecological marine unit Integer 99.98%

are in UTC. Missing datetime and coordinate information was imputed where reasonably possible,
e.g., by assigning the geographic mean centre of the acquisition site where coordinates were missing
for some images. Labelled images were additionally assigned metadata describing the original and
translated CATAMI labels, and WoRMS AphialDs (Table 3). Metadata indicating the pixel location
of image labels were retained where provided.

4 Technical Validation

The subsampled BenthicNet dataset contains images from locations around the world (Fig. 1). Several
regions are densely sampled: the Australian coast, Iberian Peninsula, Norwegian and Greenland Seas,
North-Eastern and Western Canadian and U.S. continental shelves, and some Antarctic coast. Others
are under-sampled, such as the Indian Ocean and the South Atlantic including the eastern coast of
South America and west coast of Africa. Images collected in the open oceans are more dispersed
than those at the continental shelves.

4.1 Environmental heterogeneity

Images in the compiled datasets were acquired between 1965-2021 from depths ranging from < 1 m to
over 5500 m (Fig. 2). We analyzed the representativeness of image samples across the broader global
oceans by comparing the sampled frequency to the area of each ocean basin (Fig. 3), demonstrating
a similar distribution. We extended this analysis in more detail by considering the distribution
of ecological marine units (EMUs) captured by the dataset (see Appx. D). The nearest EMU to
each image is provided as a metadata field for both the BenthicNet-1M and BenthicNet-Labelled
datasets; depths from the GEBCO2022 grid are also provided for each image (assigned using bilinear
interpolation; Tables 3 and 5).

4.2 Model training

We ran experiments to explore the utility of pretraining with SSL on the unlabelled BenthicNet-
1M dataset for automating downstream benthic image labelling tasks. We identified two labelling
tasks from within our data. BenthicNet-Substrate-d2. We considered all images in BenthicNet-
Labelled with a whole-frame CATAMI substrate label to at least depth 2. We used the depth-2 labels,
comprised of 5 classes “Sand/mud”, “Pebble/gravel”, “Cobbles”, “Boulders”, and “Rock”. This
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Figure 2: Distribution of BenthicNet-1M images according to (a) log-scale depth data retrieved from the
GEBCO02022 grid [23] and (b) year of acquisition.

a Global b BenthicNet
0.6
150
0.4 0.4
z o
5 03 8 §o3 Lo4 ©
€ 100 ~ £ c
o 3 o 2
aQ S aQ —~
o ® o =
& 02 Z & 02 S,
o =
L 50 Fo.2
0.1 0.1

0.0

e 2 g
S § o
< o E

North Pacific
South China
South Pacific
Southern
North Atlantic
North Pacific
South Atlantic
South China
South Pacific
Southern

Mediterranean
North Atlantic
South Atlantic

Mediterranean

Figure 3: Distribution of BenthicNet-1M images according to global ocean/sea basins [66]. (a) Proportion
and area of ocean basins. (b) Proportion of BenthicNet image samples from each ocean basin.

subset, “BenthicNet-Substrate-d2”, comprised of 43 430 training and 13 719 test images. This size
was made possible by our large scale data collation and label mapping pipeline, but we anticipate
that a pretrained model may be used on small datasets using a bespoke labelling scheme for the area.
We thus also considered a classification task using the original labels of an input dataset: German
Bank 2010, provided by DFO [9], which had whole-image “benthoscape” that describe recognizable
combinations of substrate, bedforms, and biology visible in 3 181 images, collected off the southwest
coast of Nova Scotia, Canada. The labels are (1) “reef”, where boulders or bedrock with frequent
epifauna comprise more than 50% of images; (2) “glacial till”, consisting of mixed sediments (cobble,
gravel, sand); (3) “silt/mud” with frequent evidence of infaunal bioturbation; (4) “silt with bedforms”;
and (5) “sand with bedforms”, which commonly included sand dollars (Echinarachnius parma).
2681 images were used for training and 500 for testing. Both tasks have one-hot targets, which
simplifies model training and evaluation.

We initially considered four recent instance-learning SSL methods: SimSiam [15], Bootstrap Your
Own Latent (BYOL) [26], Momentum Contrast (MoCo-v2) [16], and Barlow Twins (BT) [83]. Using
a ResNet-50 trained on BenthicNet-1M with these methods, we found they performed similarly, with
BT performing consistently well at downstream classification tasks. Our analyses here thus show BT
as a representative SSL method. Using BT, we trained a ResNet-50 model on the BenthicNet-1M
dataset for 100, 200, and 400 epochs with the LARS optimizer [80]. The hyperparameters were as by
Zbontar et al. [83], except the learning rate which was set to 2 x 10~ and annealed using one-cycle
with 10 epochs of warm-up [69]. Models were trained using four Nvidia A100 GPUs, with total
batch size 512. We compare against transfer learning from a publicly available ResNet-50 model'
pretrained with cross-entropy on ImageNet-1k (600 epochs), provided by torchvision [56].

'torchvision.models .ResNet50_Weights.IMAGENET1K_V2 [recipe]


https://github.com/pytorch/vision/issues/3995#issuecomment-1013906621

Table 4: Micro-accuracy and macro F1-score (%) on two downstream test datasets when training from scratch
(No pretraining), or using a pretrained encoder either with linear probe (frozen weights; ) or full fine-tuning
(#). Mean (= std. err.) over 3 random seeds (same pretrained backbones over seeds). Bold: best performance.

Pretraining BenthicNet-Substrate-d2 German Bank 2010
Dataset Loss FT Epochs  Accuracy T Fl-score T Accuracy T Fl-score 1
No pretraining ) 100 81.0+06 553+1.5 534424 43.0£38
ImageNet-1k Cross-entropy % 100  81.84+0.1 56.6+0.3 376452 30.0£2.9
BenthicNet-1M ~ Barlow Twins & 100 83.6+0.1 57.7+£0.3 559+24 432-+6.0
No pretraining ) 400 838-+0.1 61.8403 541432 467432
ImageNet-1k Cross-entropy &  100+300 883+0.1 69.5+0.3 659+4.0 592+42
BenthicNet-IM ~ Barlow Twins &  100+300 88.1+0.1 685+0.2 77.0+0.7 723+0.8

Using one of the pretrained ResNet-50 backbone encoders, we performed a linear probe by training a
linear classifier head while keeping the encoder frozen. We trained the classifier head for 100 epochs
with one-cycle LR schedule, maximum LR 3 x 10~°, 10 ep. warm-up epochs. We performed full
fine-tuning with an unfrozen encoder and classifier head initialized from the linear probe. We trained
the network end-to-end with one tenth the learning rate used for the linear probe for 300 epochs. The
transfer-learning models were compared to models trained from scratch for 100 or 400 epochs, using
the one-cycle schedule with peak learning rate 3 x 107°.

As shown in Table 4, pretraining with BT on BenthicNet-1M consistently outperformed training
from scratch on the labelled data—the FT model outperformed training from scratch by +4.3% on
BenthicNet-Substrate-d2 and +22.9% on German Bank 2010, and the linear probe outperformed
training from scratch for 100 ep throughout. The BenthicNet-1M pretrained model outperformed the
ImageNet- 1k model across the linear probes, indicating its superior alignment to the downstream tasks
of benthic habitat mapping. The smaller dataset, German Bank 2010, was much more challenging,
with lower performance from all models and very poor linear probe performance from the ImageNet-
1k model (37.6%). With fine-tuning, the ImageNet-1k pretrained model was able to perform well on
the larger BenthicNet-Substrate-d2 evaluation task (88.3%), demonstrating the utility of the scale
of the labelled dataset; the ImageNet-1k model was even able to outperform our BenthicNet-1M
pretrained model by a small margin (0.2% acc.) on this task. However, on the smaller and more
challenging German Bank 2010, the BenthicNet-1M pretraining was greatly superior (+11.1%),
demonstrating the utility of a task-aligned pretrained model for transferring to small data regimes.

The confusion matrices (Appx. E) show the FT models have similar biases on BenthicNet-Substrate-
d2, confusing the same classes as each other (Fig. 8; Cobbles— Boulders; Pebble/gravel—Sand/mud;
etc.). On German Bank 2010 (Fig. 9), the BenthicNet-1M pretrained model was able to greatly
increase the recall of silt/mud, silt with bedforms, and glacial till, almost entirely removing ImageNet-
1k’s most confused class pair, glacial till <+ sand with bedforms.

Our ResNet-50 model pretrained on BenthicNet-1M with BT is accessible from the FRDR repository
[50].

5 Usage Notes

Labels translated to the CATAMI scheme were sourced from a wide variety of scientific studies with
the express intent of supporting the training and validation of large image recognition models. Jointly,
these labels should be analyzed with care, particularly if utilized for other purposes. Some datasets
included whole image labels indicating the presence of a single benthic feature (e.g. organism,
substrate), while others supplied single labels indicating multiple features, or multiple labels for
different features within an image. One result of such diversity is variation in the completeness of
labels from different datasets—some, for example, focus on a the presence of single species, or only
focus on the most conspicuous or abundant substrate types. For some datasets, it is thus reasonable to
expect a larger proportion of false negative labels if the data is treated in a presence/absence manner.
In other words, many benthic features are likely visible in the images, which have not been labelled.



We operate under the assumption, though, that labels within a dataset were assigned consistently.
If performing analyses at the dataset level using the compilation presented here, it is important to
investigate the specifics of the dataset(s) in question.

Similarly, the diversity of labelling methodologies has resulted in a number of different schema by
which original labels were translated to CATAMI equivalents. For example, some labels indicating the
percent cover of organisms or substrate types in an image were converted to binary presence/absence.
Additionally, auxiliary information such as annotator notes were used in some cases to obtain a
CATAMI label. Efforts were made to indicate the original data label as closely as possible, but it
was not always possible to include all information used to translate an original label to CATAMI.
Therefore, original labels provided in our metadata may not contain all available information for each
image, and the source datasets should be referenced as the authoritative source in all cases.

The examples provided here focus on the physical environment, but there are abundant opportunities
to explore use of the biological labels. Through use of the SSL pretrained encoder, we anticipate
training and deployment of hierarchical morphological and biological identification models is possible.
A challenging component of this task is the imbalance of biota labels. Methods such as over-sampling,
weighting, and data augmentation may be necessary to achieve effective large-scale supervised models
in the biota hierarchy, both to address the label imbalance and distributional shift from the labelled
subset to the full range of ocean imagery. These applications will be explored in coming work.
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A Code Availability

Code used to query, download, convert, process, subsample, and partition the full data compila-
tion may be accessed without restriction from https://github.com/DalhousieAI/BenthicNet.
Code used to query and download data from SQUIDLE+ using the API is available at https:
//github.com/DalhousieAI/squidle-downloader. Code used to query and download data
from PANGAEA is available at https://github.com/DalhousieAl/pangaea-downloader.

Code used to train the self-supervised model is available at https://github.com/DalhousieAI/
ssl-bentho. Code used to perform one-hot multi-class transfer learning, as presented in §4.2, is
available at https://github.com/DalhousieAIl/benthicnet_probes.

B Data collation—additional details

As described in the main text (§2.1), we collated imagery from a variety of sources and converted
them to a standardized format (Table 5). In this section, we describe our protocol for each source.
The distribution of sources around the world is indicated in Fig. 4.

Table 5: Format for compiled BenthicNet-1M unlabelled image metadata.

Column Contents Data-type  Units Coverage
url URL address for this image String 100.00%
source Data provider/repository String 100.00%
dataset Name of dataset String 100.00%
site Image location name String 100.00%
image Image filename String 100.00%
latitude Latitude (WGS 84) Float Decimal degree 99.63%
longitude Longitude (WGS 84) Float Decimal degree 99.63%
datetime Acquisition date and time (UTC) String YYYY-MM-DD HH:mm:ss 99.85%
gebco_bathymetry  Depth interpolated from GEBC0O2022  Float Metres 99.63%
emu Nearest ecological marine unit Integer 99.63%
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Figure 4: Distribution of images projected to Equal Earth, coloured according to data source.

B.1 Individual contributions

A number of datasets were contributed by individual project partners; several of these were from
eastern Canada. The Seascape Ecology and Mapping (SEAM) Lab at Dalhousie University provided
three datasets for the BenthicNet compilation from this region. Still images were provided (n = 2281)
that were extracted from passive drop down video drifts conducted in the Bay of Fundy at 281 sites
between 2017-2019 using a 4k camera system [76]. Whole-image labels were supplied according to
site-specific “benthoscapes” interpreted by the image analyst, which are recognizable combinations
of dominant substrate type and biological characteristics [8, 47]. All megafauna were additionally
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identified to the highest possible taxonomic resolution for each image. A dataset of high definition
benthic photographs (n = 4064) was also provided from surveys conducted between 2009-2014
at the St Anns Bank marine protected area [38], which included whole-image benthoscape labels
defined for the site. Finally, the SEAM lab contributed photographs of the seabed (n = 62) used for
the 2017 R2Sonic Multispectral Challenge in the Bedford Basin, Nova Scotia [10], which included
broad whole-image substrate descriptions and, occasionally, biological observations. The 4D Oceans
lab at the Fisheries and Marine Institute of Memorial University of Newfoundland provided still
images (n = 3000) extracted from underwater video, as part of the project “Coastal Habitat Mapping
of Placentia Bay” conducted off the coast of Newfoundland, which included whole-image substrate-
derived bottom class labels [43, 52]. The Ecology Action Centre (EAC) provided 1220 images
collected by citizen scientists via Go Pro-mounted kayak between 2019-2021 at shallow eelgrass
sites in Nova Scotia. These included whole-image labels for the presence or absence of eelgrass
(Zostera marina).

Several datasets collected by researchers at Memorial University of Newfoundland (MUN) were
also contributed from northern Canada. These included 895 images collected for a benthic mapping
project in Frobisher Bay, Nunavut, between 2015-2016 [49]; 1059 images from Wager Bay, Nunavut,
collected in collaboration with Parks Canada as part of the Ukkusiksalik National Park Marine
Baseline Data Collection Project; 541 images from Chesterfield Inlet, Nunavut, collected for a local
benthic habitat mapping project conducted in coordination with the Government of Nunavut, and
University of Manitoba; and 8 443 images from the area around Qikiqtarjuaq, Nunavut, which were
obtained as part of a mapping campaign to monitor a locally harvested soft-shell clam population [48].
These datasets were each accompanied by site-specific whole-image labels describing the dominant
substrate types visible in each image.

Several image datasets were provided by the Hakai Institute from western Canada. A total of 8 787
images were obtained from nearshore benthic surveys conducted between 2017-2020 from sites on
the central coast of British Columbia and sites within Pacific Rim National Park Reserve (PRNPR).
This data was comprised of still images from ROV deployments and GIS-annotated drop camera
videos collected primarily for the purposes of mapping eelgrass meadows (Zostera marina). Still
images were extracted from videos using the methods described above (i.e. using FFmpeg). Whole-
image labels were provided corresponding to the dominant visible substrate and vegetation type
present in each image.

Individual datasets were also acquired from outside Canada. The Marine Geosciences Lab (LaboGeo)
at Universidade Federal do Espirito Santo (UFES) provided quadrat sample images acquired by
drop camera during rhodolith surveys off the east coast of Brazil between 2015-2020 [45, 46].
These were cropped to remove the quadrat frame, and 360 images were included in the BenthicNet
compilation. Whole-image labels were provided that identify the presence of rhodoliths and select
biogenic substrate types. A dataset of 505 images was provided by the Hierarchical Anticipatory
Learning (HAL) lab at Dalhousie University, which was collected from Ocho Rios, Jamaica, in
shallow water by snorkeler in 2022. Images were unlabelled, and comprised coral reef and a range of
substrate types.

B.2 DFO

Fisheries and Oceans Canada (DFO) is a federal institution responsible for managing many of
Canada’s marine resources. DFO provided three separate contributions to the BenthicNet compilation.
The Population Ecology Division at the Bedford Institute of Oceanography (BIO) contributed 645
annotated images from George’s Bank, which separates the Gulf of Maine from the Northwest
Atlantic. These images were collected by the Geological Survey of Canada (GSC) Atlantic for
programs under Natural Resources Canada (NRCan) using the Campod digitial camera system
deployed from the CCGS Hudson in 2000 [70] and 2002 [71]. Annotations included whole-image
benthoscape labels describing the primary substrate and presence of characteristic biota. Benthic
images were also contributed from a GSC survey on German Bank off the southwest coast of Nova
Scotia in 2003 [72] using Campod (n = 641), and from DFO Ecosystems and Ocean Science Sector
surveys in 2006 [73] (n = 2044), and 2010 [9] (n = 3181) using the Towcam underwater imaging
platform. These images included whole-image labels describing the dominant visible substrate
type, some of which additionally included detailed comments describing the proportion of cover for
multiple substrate types. A separate contribution from the Habitat Ecology Section at BIO comprised
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1262 images from coastal eelgrass and macroalgae surveys along the Eastern Shore of Nova Scotia
between 2019 and 2020 [53]. These images were extracted from video footage captured by a GoPro
HERO7 (1080p or 2.7k resolution) deployed from a drop-down platform for passive drifts at 269
sites. Substrate labels were provided at the whole-image level according to the Coastal and Marine
Ecological Classification Standard (CMECS) [44], as were labels for particular biota, including
macroalgae and seagrasses. Finally, the DFO Deep-sea Ecology Program at the Institute of Ocean
Sciences (I0S), British Columbia, contributed data collected during the 2018 Northeast Pacific
Seamount Expedition using the ROV Hercules. Northeast Pacific Seamount Expedition Partners
and Ocean Exploration Trust collected imagery at SGaan Kinghlas-Bowie, Explorer, and Dellwood
Seamounts off the west coast of Canada in 2018. Video frames were extracted every 10 seconds
for analysis, and 16247 were included here. Labels were provided for some images describing
the primary substrate type and also the “biotope” observed, which broadly describes the benthic
community and/or habitat context (e.g. coral garden, vertical wall, sponge ground). Some images
overlapped and were thus not originally labelled; in such cases, neighbouring image labels were
interpolated where not initially assigned due to overlap with other images.

B.3 NRCan

Natural Resources Canada (NRCan) is a federal organization responsible for managing and research-
ing a range of natural resources at the national scale. NRCan makes data freely available via the
Canada Open Government Portal. The NRCan/GSC Seabed Photo Collection was acquired for this
project, which includes 20 260 images recorded from 1 804 camera stations across 78 expeditions
distributed throughout the waters surrounding Canada. These photographs were collected between
1965 and 2015 using a range of equipment; photographs taken before 1978 were in greyscale, and
after 1978 in colour. Photographs before 2000 were collected using film and after 2004 were digital,
with both used in the interim. 3 767 of the photographs were annotated with verbose descriptions of
either geological features, biological contents, or both. These descriptions were parsed in order to
apply whole-image substrate and biota labels (see §2.2). The full list of expeditions associated with
this dataset was obtained along with URLs of corresponding metadata CSV files in GeoDataBase
format from the NRCan FTP server. The GeoDataBase file was processed with geopandas, and CSV
files were downloaded for each expedition location (URLs were manually corrected for expedition
82F0GO-ISLE, for which the CSV files were available at URLs containing the string 82F0GO_ISLE
instead). These CSV files, containing URLSs for individual images from the expeditions, were merged
together. The year of acquisition was inferred from the expedition name, and columns were renamed
to match the standardized dataset format. Sample images were inspected from each expedition to
verify their appropriateness. All images from expedition 71014 consisted of collages formed of 2—-6
individual photographs, and were excluded.

B4 NGU

The Geological Survey of Norway (NGU) is responsible for national geological mapping and research,
including marine applications. NGU contributed 50 290 images to this project, which were extracted
from 581 underwater video transects acquired during six cruises. These were carried out between
2010 and 2017 in coastal areas and fjords of Norway (Astafjorden, Frohavet, Sgre Sunmgre, Sogn
og Fjordane, Ofoten, Tysfjorden, and Tjeldsundet), as part of several “Marine Base Maps” projects.
The videos were acquired using a camera rig towed near the seafloor (0 m to 200 m depth) from the
NGU research vessel Seisma. The 2010 cruises (codes 1002 and 1007) used a 720x480 digital video
camera, while all the other cruises (codes 1408, 1508, 1511, and 1706) used a higher-resolution
GoPro HERO3+. The images were obtained by extracting one video frame every 10 seconds of video
footage.

B.5 MGDS

The Marine Geoscience Data System (MGDS) is a data repository that offers public access to a curated
collection of marine geophysical data products and complementary data related to understanding
the formation and evolution of the seafloor and sub-seafloor. MGDS provides tools and services
for the discovery and download of data collected throughout the global oceans produced primarily
by researchers funded by the U.S. National Science Foundation. Six datasets were obtained from
MGDS, in collaboration with the Lamont-Doherty Earth Observatory at Columbia University. Four
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of these were collected from the Long Island Sound Estuary in 2012 and 2013 using the United
States Geological Survey (USGS) Seabed Observation and Sampling System (SEABOSS), Integrated
Seafloor Imagery System camera sled, and the Kraken2 ROV [81]. One dataset was obtained from
the East Pacific Rise Spreading Center during the 2011 Atlantis expedition, using an Insite Scorpio
Digital Camera mounted on the ROV Jason II. The final dataset was acquired by the Schmidt Ocean
Institute (SOI) during the 2020 R/V Falkor expedition FK200429 off the northeast coast of Australia.
Here, the ROV SuBastian was mobilized and images were obtained using a Subsea Systems and
Inc. Z70 Digital Camera. All datasets from MGDS were manually reviewed and filtered to remove
surface images (e.g. on the research vessel) and duplicates.

B.6 NOAA

The U.S. National Oceanic and Atmospheric Administration (NOAA) is a federal science institution
that conducts extensive marine research. NOAA hosts diverse collections of environmental data that
are made available to the public. Benthic images were sourced from the NOAA data repository for
addition to the BenthicNet dataset. Candidate data were identified using the NOAA OneStop portal,
using the search strings “benthic”, “habitat”, “image”, “camera”, and “photograph”. Datasets returned
not containing image files were rejected. The remainder were reviewed manually, and datasets were
additionally rejected that did not meet quality or content standards. Reasons for rejection included
substantial proportions of non-benthic images (e.g. above-water, pelagic, individual animals, air
photos), partial or full scene obstruction by non-benthic objects (e.g. equipment, ROV/AUYV parts),
highly inconsistent image content or quality, and incoherent dataset or metadata formatting (e.g.
unorganized collections of various types of data, metadata not readable via script). Datasets were
also excluded that did not meet the metadata requirements of this project—namely, those lacking
metadata entirely, or lacking geographic locations for images. Where the latter occurred, efforts were
made to estimate image locations using available information; for example, by assigning general
study site coordinates to images, or by assigning the mean geographic centre of other images at the
study site. Datasets that were otherwise suitable for inclusion were generally not rejected due to
poor image quality or low resolution alone. All datasets were subjected to the quality control checks
listed previously before downloading for inclusion in the BenthicNet collection, and columns were
renamed to match the standardized dataset format. Several datasets included labels associated with
the National Coral Reef Monitoring Program (NCRMP) describing the benthic cover, which primarily
comprised coral taxa and substrate labels applied to both whole-images and points. These labels were
retained.

Additional data was contributed by the NOAA Northeast Fisheries Science Center (NEFSC). These
included benthic images from Georges Bank, the Mid-Atlantic Bight, and off the coast of Cape Cod
(n = 2240). Image surveys were conducted in 2015 using the NOAA HabCam benthic imaging
platform. Whole-image labels were provided indicating the primary and secondary substrate types,
and also the presence of certain taxa (mussels, Didemnum tunicates, bryozoans).

B.7 USGS

The United States Geological Survey (USGS) is a federal organization that conducts earth science
research and provides public geoscience information and data. A series of unlabelled benthic image
datasets were retrieved from the USGS Science Data Catalogue. Several of these were initially
discovered from review of the scientific literature [40, 82], and the remainder were discovered
by querying the repository using the search strings “benthic”, “habitat”, “image”, “camera”, and
“photograph”. Candidate datasets were screened using the same methodology as outlined above
for data retrieved from the NOAA repository. Datasets were rejected that did not contain images,
contained non-benthic images, were largely obstructed by non-benthic objects, or were formatted
incoherently. Where precise image locations were not provided, estimates were obtained using the
mean centre of the study site bounding box coordinates. All candidate datasets were subjected to the
quality control checks listed previously and columns were renamed to match the standardized dataset
format.

B.8 USAP-DC

The U.S. Antarctic Program Data Center (USAP-DC) is funded by the U.S. National Science
Foundation and is a domain repository for U.S. Antarctic Research data from all disciplines. Five
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unlabelled datasets were obtained from USAP-DC. These were discovered from the USAP-DC
website using the search strings “benthic”, “habitat”, “image”, “camera”, and “photograph”. Datasets
were screened using the methodology described for the NOAA and USGS repositories. Additionally,
some images that did not depict the seabed (e.g. pictures on the boat deck) were manually omitted.
The mean centre of the study site bounding boxes were used to estimate image locations where precise
positioning was not provided. These were checked for quality using the methodology described

previously and columns were renamed to match the standardized dataset format.

B.9 AADC

The Australian Antarctic Data Centre (AADC) is a long-term repository for Australia’s Antarctic data.
This data is freely and openly available for scientific use. Two datasets were obtained for this project
from the AADC data portal. Seafloor images (n = 203) from the Sabrina slope, East Antarctica,
were collected in 2017 over four transects during survey “IN2017_V01” using the Australian CSIRO
Marine National Facility’s Deep Tow Camera [60], and were downloaded along with associated
metadata from AADC. These included whole-image labels indicating the substrate type coverage
and the presence of biota; the former were retained here. Additionally, Geoscience Australia and
the Australian Antarctic Division collected underwater photographs in 2011 at 97 sites in the Mertz
Glacier region of Antarctica [68], and 1 853 images were acquired for this project. Images and
metadata from both datasets were checked for quality and formatted for standardization with the
BenthicNet compilation.

B.10 SQUIDLE+

SQUIDLE+ is an online tool for managing, exploring, and annotating images and video of the
seafloor. It also serves as a global repository, containing standardized records for images collected by
different groups around the world. SQUIDLE+ is a living product that is updated continuously with
new images and labels. A snapshot of the images available on SQUIDLE+ was acquired on April 13,
2023. The SQUIDLE+ web API was used to download the records for every image on SQUIDLE+,
totalling 9 166472 at that time. The paginated download was joined together and merged into a single
CSV file, and columns were renamed to match our standardized format for the compilation.

Several of the large individual SQUIDLE+ datasets in this collection additionally included publicly
accessible image annotations. These included Australia’s Integrated Marine Observing System
(IMOS), which distributes oceanographic data from a consortium of Australian institutions that
is freely and openly available to the scientific community. This data included a large number of
images collected by the IMOS AUV Facility, notably, using Sirius and Nimbus AUVs. IMOS images
available from SQUIDLE+ were cross-referenced with data entries from the Australian Ocean Data
Network (AODN) portal for this project. Labelled images were also provided by the Reef Life
Survey (RLS) [19, 20], which is a global citizen science program that trains SCUBA divers to conduct
underwater visual surveys of shallow reef biodiversity in temperate and tropical reef habitats, typically
between 2 m — 20 m depth. Divers capture approximately 20 images per survey using an underwater
camera positioned approximately 50 cm from the substrate, and images vary in resolution and quality
due to camera configuration and environmental conditions. The Schmidt Ocean Institute (SOI)
is a non-profit foundation established to advance global oceanographic research that hosts a large
labelled image collection on SQUIDLE+. Deployed from the SOI R/V Falkor, the ROV SuBastian
has collected high resolution images from waters around the world, including the deep ocean. All
oceanographic data collected by the SOI are made openly available for research purposes. The
National Environmental Science Program (NESP) Marine Biodiversity Hub [35] has also provided
a large labelled image dataset. This project aims to provide foundational science for conservation
in Australian and provides data openly in support of marine research. Each of the above datasets
included sub-image point labels identifying underlying physical or biological elements according
to the CATAMI scheme [1]. Finally, the image dataset presented by Yamada et al. [78] collected
via AUV from the Southern Hydrate Ridge was downloaded from a separate SQUIDLE domain,
SOI SQUIDLE+, along with point annotations describing substrate or biotic elements according to a
site-specific scheme.
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B.11 FathomNet

FathomNet [36] is an open-source underwater image database with global scope operated by the
Monterey Bay Aquarium Research Institute (MBARI). FathomNet is soliciting contributions from
around the world to develop a large open-source database of images that may be used to develop
artificial intelligence algorithms, with a focus on identifying marine species. Like SQUIDLE+,
FathomNet is a living product that is updated continuously. We used the FathomNet Python API to
download a snapshot of the images available on FathomNet as of April 6, 2023. The code for this API
call is provided in Appx. G. At the time of downloading, these images were primarily acquired from
Pacific Waters around California, Western USA. Records were partitioned into “sites” based on the
directory structure in the URL. Where not available in the record itself, timestamps were extracted
from image names, where possible. Columns were renamed to match our standardized format. Many
of the images were annotated with bounding boxes around animals and other concepts appearing
in the images. However, annotations were available only under a No Derivatives license (CC BY-
ND 4.0), which prohibited conversion to other schemes and formats. All FathomNet annotations
were thus discarded.

B.12 PANGAEA

PANGAEA is an open access repository aimed at archiving, publishing and distributing georeferenced
data from earth system research, hosting 678 projects and 408 811 datasets from various fields at
the time of writing. We searched and retrieved benthic image datasets from PANGAEA with a
combination of API calls and web-scraping, then pruned the resulting datasets and reformatted
them. The pangaeapy Python package [32] was used to interface with the PANGAEA library. Using
the PanQuery API, PANGAEA was searched for 20 queries with various combinations of benthic
environment related keywords to find photographs of the seafloor (see Appx. F for complete list). The
PanDataSet API was used to retrieve the metadata for the dataset IDs identified in these searches.
Some IDs corresponded to dataset series, which list multiple child datasets. In these cases, all child
datasets were retrieved. Some datasets were available in tabular format, and were downloaded directly.
Other datasets were paginated, with images hosted on webpages on PANGAEA; these could not be
downloaded with the API and were scraped with a custom webscraper using the BeautifulSoup4
and request libraries.

All datasets returned by this search as of January 1, 2024 were downloaded and results were filtered
as follows. (1) Datasets that did not possess a column containing the word “url” or “image” that was
populated by hyperlinks to files in an image format (TIFF, JPEG, PNG, BMP, CR2) were removed to
enable automation of the data acquisition process. It was not possible to verify any ZIP file would
contain images without downloading it, and was impractical to automatically associate metadata with
the images within a ZIP file of unknown structure. Datasets with images only available to download
as a ZIP file were thus discarded. (2) False positives from the search (datasets comprising imagery
not of the seafloor) were filtered out by removing datasets with titles containing undesired keywords
appearing in a manually curated blacklist (e.g. “aquarium”, “meteorological observations”, “sea
ice conditions”, “do not use”). (3) URLs for images consisting of maps, other dataset summary
figures, and inappropriate photo subjects were filtered out by removing data hosted on PANGAEA
subdomains dedicated to subjects such as maps, projects, publications, sea ice, and satellite imagery.
(4) Images were removed where the URL contained text indicating the subject matter was otherwise
inappropriate (e.g. “dredgephotos”, “grabsample”, “core”, “aquarium”, “divemap”). Finally, the
columns in the CSV files were renamed to our standardized format. Details for individual datasets
are provided with the BenthicNet metadata [50].

Several of the datasets obtained from PANGAEA included thematic labels corresponding to benthic
images. Many of these were labels of specific biota identified to the highest possible taxonomic
resolution, some of which included estimates of percentage cover of each organism in the image.
Several of the latter datasets comprised experimental growth plates harbouring the labelled biota.
Some datasets additionally included labels for trash and anthropogenic debris. All labels were
dropped where datasets indicated usage of machine-assisted annotation instead of manual annotation.
Finally, additional point labels were obtained for datasets from the Great Barrier Reef Marine Park,
eastern Australia, collected for habitat mapping purposes by the University of Queensland Remote
Sensing Research Centre. These datasets comprised quadrat images collected via snorkel and diving
from over 100 reefs throughout the Great Barrier Reef Marine Park [63, 62, 64]. Points were labelled
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according to a custom scheme used for these projects at the Great Barrier Reef that describe biotic
and abiotic elements found within the reef. Additional labels were also provided indicating the biotic
functional group, and a simplified classification scheme applicable to a global context.

B.13 XL Catlin Seaview Survey

The XL Catlin Seaview Survey was a large-scale project undertaken between 2012-2018 to document
and study the status of coral reefs globally using underwater imagery. Surveys focused on shallow
reefs typically around 10 m depth and comprised linear transects ranging between 1.6 km to 2 km
in length. Downward-facing seabed images of approximately 1 m?> were acquired using Canon 5D
MII cameras mounted on a self-propelled diver-operated platform called the “SVII” [24, 25]. Data
from the project is made openly available for further scientific research. For this project, 1 082452
images from 860 surveys organized into 22 regional datasets were downloaded from the University of
Queensland data repository. Tabular data providing image metadata was also acquired in CSV format,
including image point labels identifying biotic and abiotic elements using the global scheme applied
above for the Great Barrier Reef mapping projects. The metadata were renamed and formatted to
match the standardized BenthicNet compilation.

C Spatial subsampling

The aim of the subsampling procedure was to obtain a manageable unlabelled data volume without
reducing the breadth of benthic environments represented. Many datasets indicated which images
were collected at the same recording station, or the same camera deployment/transect. We collectively
refer to this location annotation as a “site”. To maximize spatial and thematic diversity of images,
subsampling was performed separately for each unique site in the unlabelled datatset.

In order to subsample the data spatially, we first determined a desirable number of images that should
be drawn from a given site based on the data density. The base target number of images sought at
each site was set to 250, meaning that the subsampling procedure would not reduce the number of
images below this number. Not all component datasets indicated whether images were collected at
the same site, despite containing images from multiple distinct locations that would meet our “site”
criteria. To address this, we automatically detected the number of “pseudo-sites” within an annotated
site, or within a dataset originally lacking any site labels. Pseudo-sites were determined as clusters of
samples at least 1 000 m from each other. The target number of samples was scaled up by the number
of pseudo-sites within a labelled site. Some (pseudo-)sites additionally had gaps between them of
several hundred metres, which we refer to as “subsites”. The target number of samples for a site was
increased by 50 for each subsite within it separated by at least 100 m.

After determining the target number of images to draw from each site in the unlabelled dataset, the
data was subsampled spatially. Sites with fewer than 40 samples per pseudo-site were not subsampled.
At sites with more than 40 images, images were subsampled with a target separation distance of
A = 1.25 m according to the following procedure.

1. Add the first image in the dataset.

2. Continue through the list of images in the dataset (sorted in collection order; i.e. chrono-
logically) until finding the first image at least A = 1.25 m from the last image added to the
dataset.

3. Add either this image or the previous image in the list, whichever is closest to being a
distance A = 1.25 m from the last image added to the dataset.

4. From the list of remaining images to consider, remove all images collected within A/2 =
0.625 m of this image.

5. Return to Step 2; repeat until reaching the end of the dataset.
6. Add the last image in the dataset if it was at least A /2 = 0.625 m from all other images.
Sites lacking precise coordinate information for each image could not be subsampled spatially. In

these cases, sites were subsampled by keeping every n-th image (ordered chronologically) at the site
to achieve the desired number.
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Many sites still had more images than their target number of samples after this initial spatial subsam-
pling, so this process was repeated with larger separation distances until the target subsample size
was achieved at each site, or a maximum downsampling separation distance of 20 m was reached.
Separation distances were scaled up by factors of 2, 3, 4, 6, 8, 10, 12, 14, or 16 compared to the
base subsampling of 1.25 m target separation to achieve the desired subsample size (i.e. A =2.5m,
3.75m, ..., 20m). The subsampling distance selected (and hence subsampled set of images at that
site) was the largest distance that did not reduce the total number of images below the target for the
site (250+), determined as described above. The subsampling procedure selected 1345 096 images
(11.8% of the total) to be included in the subsampled BenthicNet dataset (Fig. 1), which we refer to
as BenthicNet-1M.

D Ecological Marine Units

Sayre et al. [66] introduced a three-dimensional partitioning of the global oceans into statistical
clusters based on a 57-year climatology of physiochemical oceanographic measurements [41, 85, 21,
22]. These 37 “ecological marine units” (EMUs) represent a concise and objective summary of global
marine environments at 0.25° horizontal resolution. The bottom-layer EMUs were extracted to assess
the distribution of BenthicNet image samples across global benthic environmental regions. Each
image was assigned the nearest bottom-layer (i.e. seafloor) EMU in space to compare the sampled
frequency of each environment to the proportion of area covered by each EMU (Figs. 5 and 6).

D.1 Unlabelled data exploratory analysis

Generally, images were distributed more evenly across the bottom-layer EMUs than would be
expected from a random sample, while the distribution across the major ocean basins more closely
matched expectation. The majority of the global seafloor (82.4%) is classified into EMUs 14 (deep,
very cold, normal salinity, moderate oxygen, high nitrate, low phosphate, high silicate), 13 (deep, very
cold, normal salinity, low oxygen, high nitrate, medium phosphate, high silicate), and 36 (deep, very
cold, normal salinity, moderate oxygen, medium nitrate, low phosphate, low silicate) [66], comprising
most of the Pacific, Indian, and polar oceans. These environments are not over-represented in
the BenthicNet dataset, with no single EMU accounting for > 20.6%. The three most common
EMUs sampled (47.6%) were 24 (shallow, warm, normal salinity, moderate oxygen, low nitrate,
low phosphate, low silicate), 11 (shallow, cool, normal salinity, moderate oxygen, low nitrate, low
phosphate, low silicate), and 13 (deep, very cold, normal salinity, low oxygen, high nitrate, medium
phosphate, high silicate), representing continental shelves in the equatorial regions, the shallow
sub-tropics, and the deep Pacific and Indian oceans. The distribution of images across ocean basins
was generally proportionate to the expectation given the area of each ocean, but notable exceptions
include an apparent under-representation of the South Atlantic, and over-representation of the South
Pacific.

D.2 Labelled data exploratory analysis

The BenthicNet-Labelled data spans an environmental extent similar to that of the BenthicNet-1M
data. Two of the EMUs that were abundantly sampled with unlabelled imagery were also prominently
represented in the labelled dataset; EMUs 11 (shallow, cool, normal salinity, moderate oxygen, low
nitrate, low phosphate, low silicate) and 24 (shallow, warm, normal salinity, moderate oxygen, low
nitrate, low phosphate, low silicate) comprised a near-majority (49.82%) of the labelled dataset
(Fig. 7). These two environments are broadly distributed in space [66], and here primarily represent
datasets from Australia, Tasmania, and Central America. The full distribution of labels across the
CATAMI hierarchy is provided within the dataset hosted on FRDR [50].

26



Figure 5: Examples of BenthicNet images from each sampled ecological marine unit (EMU), indicated by a
number in white overlaid in the top-left of each image. See Sayre et al. [66] for a full description of the EMU
classes.
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Figure 6: Distribution of BenthicNet-1M images according to bottom layer ecological marine units (EMUs).
(a) Proportion and area of global oceans classified into each EMU. (b) Proportion of BenthicNet image samples
from each EMU. See Sayre et al. [66] for a full description of the EMU classes.
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Figure 7: Distribution of BenthicNet images according to bottom layer ecological marine units (EMUs) for
(a) unlabelled and (b) labelled datasets. See Sayre et al. [66] for a full description of the EMU classes.
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Figure 8: Confusion matrix (% of ground truth) for CATAMI Substrate predictions on BenthicNet-
Substrate-d2 test data. (Left) Model pretrained with cross-entropy on ImageNet-1k, fine-tuned on BenthicNet-
Substrate-d2. (Right) Model pretrained with Barlow Twins on BenthicNet-1M, fine-tuned on BenthicNet-
Substrate-d2.
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Figure 9: Confusion matrix (% of ground truth) for the German Bank 2010 test data. (Left) Model
pretrained with cross-entropy on ImageNet-1k, fine-tuned on German Bank 2010. (Right) Model pretrained with
Barlow Twins on BenthicNet-1M, fine-tuned on German Bank 2010.

E Confusion matrices

In this section, we provide confusion matrices for the fine-tuned models described in §4.2.

An important observation is that for both supervised classification tasks, and both transfer models,
the best-predicted classes tended to be those that are most distinct, while the intermediate classes
were subject to confusion. For example, “cobble” was the most difficult label to predict in the
BenthicNet-Substrate-d2 dataset, and indeed, it can be difficult even for a human to differentiate
cobbles from pebbles or boulders in underwater imagery. These substrate class boundaries are
defined arbitrarily at a particular length scale (2 mm and 64 mm) that may only be determined through
accurate measurement or image scaling; there is substantial possibility of incorrect or subjective
human labels for such data. Additionally, the imbalanced priors for the classes may also play a role
in predictive success. Sand and mud labels dominate both data subsets—it is not surprising that the
models have a tendency to predict sand for other classes, and to perform strongly on sand.
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F PANGAEA Search

To thoroughly search PANGAEA for seafloor imagery, we used 20 search terms with a range of
synonyms for the content of interest. The PANGAEA search API is comprehensive and allows terms
be combined with AND or OR operators, and negative search terms to be used. However, we could
not merge all our synonyms together into a single, large query because the number of results which
can be returned by one query is limited to 500 records.

The search terms used were as follows:

(seabed OR "sea bed" OR "sea-bed") (image OR imagery OR photo OR photograph
OR "photo-transect" OR photoquad* OR photo-quad* OR jpg OR jpeg OR png OR tif
OR tiff)

(seafloor OR "sea floor" OR "sea-floor") (image OR imagery OR photo OR photograph
OR "photo-transect" OR photoquad* OR photo-quad* OR jpg OR jpeg OR png OR tif
OR tiff)

("ocean floor" OR "ocean-floor") (image OR imagery OR photo OR photograph
OR "photo-transect" OR photoquad* OR photo-quad* OR jpg OR jpeg OR png OR tif
OR tiff)

underwater (habitat* OR substrate OR sediment) (image OR imagery OR photo
OR photograph OR "photo-transect" OR photoquad* OR photo-quad* OR jpg OR jpeg
OR png OR tif OR tiff)

benthic (image OR imagery OR photo OR photograph OR "photo-transect" OR photoquad*
OR photo-quad* OR jpg OR jpeg OR png OR tif OR tiff)

(benthos or benthoz) (image OR imagery OR photo OR photograph OR "photo-transect"
OR photoquad* OR photo-quad* OR jpg OR jpeg OR png OR tif OR tiff)

(coral OR reef OR seagrass OR "sea grass") (image OR imagery OR photo OR photograph
OR "photo-transect" OR photoquad* OR photo-quad* OR jpg OR jpeg OR png OR tif
OR tiff)

(auv OR rov OR uuv OR "underwater vehicle") (image OR imagery OR photo OR photograph
OR "photo-transect" OR photoquad* OR photo-quad* OR jpg OR jpeg OR png OR tif
OR tiff)

benthoscape habitat* image

benthoscape habitat* imagery

benthoscape habitat* photo

benthoscape habitat* photograph

benthoscape habitat* ("photo-transect" OR photoquad* OR photo-quad)

benthoscape habitat* (jpg OR jpeg OR png OR tif OR tiff)

benthoscape image

benthoscape imagery

benthoscape photo

benthoscape photograph

benthoscape ("photo-transect" OR photoquad* OR photo-quad*)

benthoscape (jpg OR jpeg OR png OR tif OR tiff)

Each search term was prefixed with a set of negative search terms to remove false positives, given as
follows

-microscop? -"Meteorological observations" -topsoil -soil -sky
-"wind vector" -"wind stress" -"vertical profile" -"vertical distribution"

The full code for our PANGAEA search is publicly available at
https://github.com/DalhousieAIl/pangaea-downloader.
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G FathomNet Python API Code

We retrieved the full set of images on FathomNet by using the FathomNet API from the fathonnet-py

Python package as follows.

import fathomnet.api.images
import pandas as pd

keys = ["url", "uuid", "timestamp", "latitude", "longitude"]

records = []
for submitter in fathomnet.api.images.find_distinct_submitter():
for image in fathomnet.api.images.find_by_contributors_email (submitter):
records.append({k: getattr(image, k) for k in keys})

df = pd.DataFrame.from_records(records)
df .drop_duplicates(subset="url", inplace=True)
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