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Abstract

Advances in underwater imaging enable collection of extensive seafloor image1

datasets necessary for monitoring important benthic ecosystems. The ability to2

collect seafloor imagery has outpaced our capacity to analyze it, hindering mobi-3

lization of this crucial environmental information. Machine learning approaches4

provide opportunities to increase the efficiency with which seafloor imagery is ana-5

lyzed, yet large and consistent datasets to support development of such approaches6

are scarce. Here we present BenthicNet: a global compilation of seafloor imagery7

designed to support the training and evaluation of large-scale image recognition8

models. An initial set of over 11.4 million images was collected and curated to9

represent a diversity of seafloor environments using a representative subset of 1.310

million images. These are accompanied by 3.1 million annotations translated to11

the CATAMI scheme, which span 190 000 of the images. A large deep learning12

model was trained on this compilation and preliminary results suggest it has utility13

for automating large and small-scale image analysis tasks.14

1 Introduction15

Underwater imagery, including both still photographs and video, is among the most common forms16

of data used to inform benthic habitat mapping. Benthic habitat maps describe both biotic and abiotic17

elements of the seafloor [8, 47], useful for marine management goals such as monitoring species and18

habitats of interest, informing policy decisions, and guiding sustainable ocean resource use [27, 3].19

Seabed imagery has great utility for characterizing benthic environments for several reasons: it is20

non-invasive and minimally destructive, it may be collected remotely, it may be analyzed for multiple21

purposes (e.g. biology, geology), and it is more efficient to collect and store than physical samples22

(e.g. grabs, cores, preserved specimen).23

Benthic imagery is increasingly collected using automated and remote underwater vehicles (AUVs,24

ROVs), which have the potential to generate larger volumes of data than previous methods—faster25

even than it can be analyzed [74, 24, 66]. The manual classification, annotation, and labelling of26

seabed imagery therefore acts as a bottleneck in the habitat mapping workflow [6] — a challenge27

which automation with machine learning (ML) could address.28

Successfully training large-scale deep learning models from scratch requires large volumes of data.29

However, a deep neural network that has previously been trained on one task can be repurposed for30

a new task through transfer learning, provided the new task uses similar input stimuli to that used31

when training the original network. For vision models, transfer learning is typically performed by32

reusing models pretrained on the ImageNet dataset [64], comprised of photographs of terrestrial33

and anthropocentric objects. However, since this data does not represent subaqueous environments,34

the shift in domain may limit the capacity for transfer learning to benthic habitats [57, 42]. This35

motivates the need for a large-scale dataset of global seabed imagery.36
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Cumulatively, adequate volumes of benthic image data currently exist to support the development37

of large ML models, but they are spread globally among various research groups, government38

data portals, and open data repositories. Hence there is a need to compile and curate datasets39

for the development of large-scale image recognition models. Moreover, unlike terrestrial and40

anthropocentric images, there is no objective label for many seabed habitats, biological communities,41

substrate types, or organisms. Numerous different classification schemes are used to label benthic42

features [1, 50, 44], with small studies often coming up with their own bespoke classification scheme.43

Because no single vocabulary is universally applied to describe these features, we currently lack large44

sets of consistently labelled images that are necessary for training deep learning models for benthic45

environments. We note an outstanding need to develop standardized protocols for the translation of46

common marine image labelling schemes.47

For benthic data, as is the case for most domains, unlabelled data is much easier to obtain at scale48

than annotated data. Fortunately, self-supervised learning (SSL) techniques have been developed49

which can harness unlabelled data for the initial pretraining stage of the neural network. In SSL, a50

pretext task is constructed automatically from the input data itself [4, 13, 28, 14, 26, 15, 17, 11, 29],51

enabling training of large-scale models on unlabelled imagery which can be more easily collected at52

scale. After pretraining with SSL, models have already learnt to see and understand stimuli and can53

be fine-tuned for specific downstream tasks without needing large volumes of annotated data.54

The whole-image labels that typify benthic habitat image datasets may differ from other forms of55

marine image labelling that focus on locating specific objects, semantic labelling, bounding boxes,56

and masking. These forms of labelling are well suited to applications focusing on single taxa, pelagic57

biota, and object detection or tracking, and efforts to establish extensive image datasets for those58

applications are also underway. FathomNet [7, 36], contains over 100 000 images and over 200 00059

localization labels with bounding boxes focused generally on marine biota, while Orenstein et al. [53]60

present a dataset of 3.4 million plankton images that have been labelled and used to train deep learning61

models. Hong et al. [30] have established the TrashCan dataset, containing over 7 000 images of62

marine debris with corresponding bounding box and segmentation masks. Other comparable image63

datasets include WildFish for classifying fish species [83], the OUC-vision large-scale underwater64

image database for underwater salient object detection [34], and the Brackish dataset [56] for detecting65

fish, crabs and starfish in brackish waters. Multiple datasets have been established to support the66

automated annotation of coral imagery including Moorea Labeled Corals [5], the Gulf of Eilat dataset67

[60], and notably, CoralNet [6, 12]. In addition to serving as a data repository where users can upload68

and share underwater image data and point labels, CoralNet provides a web interface to facilitate69

labelling and development of image recognition models. Several other comparable data portals and70

software packages enable the labelling and centralization of marine image data in this way (e.g.71

FathomNet, 36; SQUIDLE+; BIIGLE, 39; VIAME).72

Here we describe BenthicNet: a global compilation of seafloor images that is designed to support73

development of automated image processing tools for benthic habitat data. With this compilation,74

we strive to obtain thematic diversity by (i) compiling benthic habitat images from locations around75

the world, and (ii) representing habitats from a broad range of marine environments. The compiled76

dataset is assessed for these qualities. Additionally, we aim to achieve diversity of non-thematic77

image characteristics (e.g. image quality, lighting, perspective) by obtaining data from a range of78

acquisition platforms and camera configurations. Diversity in the data is important for ensuring as79

much benthic imagery as possible is within the domain of our dataset. The dataset is presented in80

three parts: a diverse collection of over 11 million seafloor images from around the world, provided81

without labels (BenthicNet-11M); a rarefied subset of 1.3 million images, selected to maintain82

diversity in the imagery while reducing redundancy and volume (BenthicNet-1M); and a collection83

of 188 688 labelled images bearing 3.1 million annotations (BenthicNet-Labelled). We provide a84

large SSL model pretrained on BenthicNet-1M, and demonstrate its application using examples from85

BenthicNet-Labelled. The compilation and SSL model are made openly available to foster further86

development and assessment of benthic image automation tools.87

2 Data curation88

In order to achieve a diverse collection of benthic habitat images for training deep learning models,89

data spanning a range of environments and geographies was obtained from a variety of sources. These90

initially included project partners and research contacts, which were leveraged to establish additional91
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Table 1: Summary of BenthicNet data sources including the number of images in BenthicNet-11M (Full
collection), BenthicNet-1M (Subsampled), and BenthicNet-L (Labelled). Further details on the individual
datasets are provided within the BenthicNet metadata.

# Samples

Source Region # Datasets # Sites Full collection Subsampled Labelled

Online Repository/Collection
AADC Antarctic 2 86 2 056 2 024 203
Catlin Seaview Global 22 861 1 082 452 283 674 11 346
FathomNet W. USA 8 3 381 68 908 58 196 0
MGDS Global 6 32 15 023 6 154 0
NOAA (via OneStop) USA 18 526 73 019 40 714 4 543
NRCan Canada 78 1 804 23 855 18 851 3 595
PANGAEA Global 1 191 1 196 764 924 236 968 40 204
SQUIDLE+ Global 691 14 187 9 166 472 608 576 85 387
USAP-DC Antarctic 5 27 4 144 2 886 0
USGS USA 5 38 104 155 7 035 0

Individual Contributions
4D Oceans E. Canada 2 274 3 008 2 715 3 000
DFO (BIO) E. Canada 6 381 7 773 5 981 7 762
DFO (IOS) W. Canada 7 9 16 247 1 993 10 106
EAC E. Canada 1 7 1 220 1 015 886
Hakai Institute W. Canada 2 45 4 735 3 609 1 697
HAL Jamaica 1 1 505 505 0
LaboGeo/UFES E. Brazil 1 359 359 287 359
MUN Arctic 4 135 10 691 6 403 10 687
NGU Norway 4 580 50 290 50 275 0
NOAA (NEFSC) N.E. USA 1 2 2 240 2 065 2 240
SEAM E. Canada 3 284 6 811 5 170 6 673

Total Global 2 058 24 215 11 408 887 1 345 096 188 688

data partnerships with individuals, academic and not-for-profit research groups, and government92

organizations. The largest data volumes were obtained from several academic, government, and93

third-party public data repositories. The acquisition of labelled data was prioritized in all cases, but94

extensive high quality unlabelled data collections were also included where feasible.95

2.1 Data compilation and quality control96

The formats and varieties of data were diverse, including collections of images with spreadsheet97

metadata, images with metadata contained in file names, GIS files containing images from which98

metadata was extracted, lists of URL image links, and raw video with text file annotations. Datasets99

not formatted as a single folder of images or list of URL links with CSV metadata were re-formatted.100

Metadata contained in image file names was parsed and used to construct a metadata CSV file101

where necessary. Image data within GIS files was extracted using ArcGIS Pro and the ArcPy Python102

package, along with other metadata contained within the files. Geographic coordinates were converted103

to decimal degrees using the WGS 84 datum. Video files were subsampled by extracting still frames104

according to their metadata using FFmpeg. After formatting, all datasets were subjected to quality105

control checks for missing entries, duplicates, label consistency, image quality, and matches between106

images and metadata. Quality control of image labels was performed by sampling the metadata107

and comparing labels to corresponding images for each dataset. Datasets where notable label108

inconsistencies were detected were rejected. Data columns were renamed to match a standardized109

format for the BenthicNet dataset. Acquisition methodology for each source is described in detail in110

Appx. A. Statistics for the various data sources are summarized in Tab. 1.111

2.2 Data management112

In total, 11 408 887 images were collected from the sources described above (see §2.1). Of all113

the images acquired, 188 688 included labels corresponding to visible benthic elements. Labels114

enable training and validation for supervised modelling tasks, such as localized species or substrate115
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Table 2: Examples of original image labels translated to hierarchical labels according to CATAMI v1.4 and
WoRMS. Some original labels indicated both substrate and biota, while others indicated only one of these. For
biota, some original labels provided more morphological detail and others more taxonomic; as much detail was
retained as possible in both the CATAMI Biota and WoRMS taxonomic translations, respectively.

CATAMI WoRMS

Original Substrate Biota AphiaID Taxonomy

Mud and tube worms

Substrate↰

Unconsolidated (soft)↰

Sand / mud (<1mm)↰

Mud / silt (<64um)

Worms↰

Polychaetes↰

Tube worms
883 Annelida↰

Polychaeta

Hard Coral:
Non hermatypic:
Free living (Fungia etc)

–

Cnidaria↰

Corals↰

Stony corals↰

Solitary↰

Free living

1363
Cnidaria↰

Hexacorallia↰

Scleractinia

Pocillopora sp. –
Cnidaria↰

Corals↰

Stony corals
206938

Cnidaria↰

Hexacorallia↰

Scleractinia↰

Pocilloporidae↰

Pocillopora

identifications [33, 58], or bottom type classification [18]. There are several ways though that116

unlabelled data may still be utilized using unsupervised [77], semi-supervised [2, 54, 73, 78], and117

self-supervised [31, 4, 13, 28, 82, 26, 29] approaches. To facilitate a range of potential applications,118

we consider the dataset in two ways hereafter: the full set of images without their labels (BenthicNet-119

11M) and the set of labelled images (BenthicNet-Labelled).120

2.2.1 Labelled data121

Label translation. In order to increase the utility of the compiled data, and to facilitate validation122

of models trained on it, image labels from all datasets were translated to the CATAMI classification123

scheme (v1.4) [1], which spans both substrate and biota categories. Biota labels were additionally124

mapped to the World Registry of Marine Species (WoRMS) taxonomy [76].125

Images were originally labelled according to a range of different established and bespoke schemes, but126

a large number of these (e.g. from SQUIDLE+) were readily available as CATAMI labels. CATAMI127

is a flexible framework that offers several advantages to accommodate translation and integration of128

a broad range of other labelled data. First, CATAMI supports labels for multiple classes of benthic129

features, including “branches” for both biota and physical elements such as substrate, bedforms, and130

relief. This enables the translation of a range of labelled datasets that were initially collected for a131

variety of different purposes. Second, labels within these branches are hierarchical. This means that132

objects may be labelled at different or even multiple levels of detail depending on the quality of the133

data, the confidence of the analyst, or the requirements of a particular application. This is critical for134

the translation of the multi-source data compiled here, which were initially analyzed at a range of135

thematic (e.g. taxonomic) resolutions for different purposes. Finally, CATAMI implements labels that136

are designed to be visually recognizable from image data. At a coarse level, these may distinguish137

broad groups or phyla of biota, but at finer levels, where identifying individual genera or species may138

become difficult using image data alone, morphological labels may be applied. These describe the139

size, shape, colour, and growth form of an organism, which may be recognizable even though the140

taxonomy is ambiguous.141

We translated all image labels to the CATAMI (e.g. Tab. 2). All unique labels were extracted for each142

labelled image dataset in turn. Each unique label was translated to its closest CATAMI equivalent(s),143

maintaining the hierarchical level of the original data as closely as possible. In some cases, additional144

information within the metadata such as comments or auxiliary labels were used to complete the145

translation. Some annotations were provided in schemes that extend versions of CATAMI, such as the146

Australian Morphospecies Catalogue, which provides more precise morphological detail for the shape147

of sponges. Where this was done systematically and with more than 10 samples, we extended our148

scheme to match this increased level of morphological detail. Some annotations included man-made149
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objects, such as trash or cables, which fell outside the scope of the CATAMI scheme, but may have150

value toward monitoring the anthropogenic impact on benthic habitats. Thus we also added an151

additional Anthropogenic branch to the hierarchy to cater to these annotations. We also include fields152

for CATAMI modifiers that indicate additional information such as whether organisms are bleached153

or dead, or their colours.154

Some datasets provided taxonomic labels of biota at a high level of detail (genus or species level). To155

retain this information, taxonomic biota labels were additionally assigned an AphiaID from the World156

Registry of Marine Species (WoRMS). Where detailed taxonomic labels could not be determined,157

remaining biota annotations (e.g. morphological descriptions from CATAMI) were also mapped onto158

the WoRMS taxonomy at the highest level of specificity possible (typically phylum, class, or order).159

In total, there were 188 688 labelled images, 3 091 158 individual CATAMI labels, and 1 131 391160

WoRMS taxonomic labels for the BenthicNet-Labelled compilation.161

Partitioning. To enable consistent validation and benchmarking between models using the Ben-162

thicNet dataset compilation, we provide train and test partitions of the labelled data. Test data were163

selected according to a partially spatial and class-label stratified procedure in order to ensure repre-164

sentation of a broad range of labels, and to reduce the degree of similarity between test and training165

partitions caused by spatial autocorrelation [37, 48]. The challenge in partitioning the dataset stems166

from the multi-label nature and imbalanced proportions of labels in BenthicNet. Firstly, imbalance167

necessitates careful assignment of rarer labels in the dataset. Additionally, a single image may have168

any combination of labels across multiple branches of the CATAMI hierarchy. If an image is assigned169

to test or training partitions due to a particular label, we must consider how the assignment affects170

other labels on the same image, some of which may be rarer.171

Our partitioning process was as follows. We selected the target number of annotations per label to172

place in the test set as the smaller of 15% of the number of samples for the most frequently occurring173

label and 35% of the samples for the median label. We added images to train or test partitions one at174

a time, selecting the next label to add based on the following factors, in order of priority.175

1. Ensure at least two samples for each label can be placed in the train partition.176

2. Ensure at least 50% of the samples for each label can be placed in the train partition without177

using samples within 50 m of a test sample.178

3. Ensure at least 15% of the samples for each label can be placed in the test partition without179

using samples within 50 m of a train sample.180

4. Ensure no more than 35% of the samples for each label would be placed in the test partition.181

5. Prioritize the CATAMI label with the fewest remaining unallocated images.182

After determining the next label to add to a partition, we selected an image bearing that annotation to183

add to the partition as follows:184

1. Of unallocated images bearing the label, if any are within 50 m of an image already in the185

target partition, randomly select an image from the closest 10% of those images.186

2. Otherwise, randomly select an image bearing the label which is not within 50 m of an image187

already allocated to the other partition. Images violating this were used if needed to satisfy188

minimum populations described above (50% in train, 15% in test).189

In practice, our partitions grow spatially outwards from initial seed locations, with new locations190

seeded to represent new label classes. Any remaining samples were allocated to the test partition if191

within 50 m of an image already in test, and to train otherwise. Effectively, test data was selected to192

prioritize representation of CATAMI labels, and then to minimize spatial overlap with the training data,193

as much as possible. This algorithm was run in parallel on 37 subsets of the data, each corresponding194

to a different ecological marine unit [65] (EMU; see Appx. C). 142 767 images (75.66%) were195

assigned to the training partition and 45 921 (24.34%) to test. The code for obtaining training and196

test partitions of the labelled data is provided at the BenthicNet code repository.197

2.2.2 Unlabelled data198

All images in BenthicNet may be used for applications which do not require labels, thus for the199

“unlabelled” slice of the data we considered all 11 408 887 images. We refer to the full collection as200

BenthicNet-11M. These images were not distributed uniformly in space; some datasets had a low201

sampling intensity, e.g. a few images per recording site taken by divers; while others were densely202
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Figure 1: Distribution of BenthicNet-1M images projected to Equal Earth.

sampled, e.g. AUV video. To reduce the redundancy of the densely sampled data (thereby also203

reducing data volume and imbalance) the data was subsampled spatially, as described in Appx. B.204

We refer to the subsampled dataset as BenthicNet-1M.205

3 Data Records206

All BenthicNet data, metadata, and models described here are available from [REDACTED]. These207

include (i) a CSV file with an entry for each image in the subsampled compilation, BenthicNet-1M,208

conforming to the convention presented in Tab. 5; (ii) a single CSV file with an entry for each label209

of each image of the labelled compilation, BenthicNet-Labelled, conforming to the format presented210

in Tab. 3; (iii) a tarred directory containing each image in BenthicNet-1M and BenthicNet-Labelled,211

resized and compressed to JPEG format; (iv) a version of the entire image compilation tarred at the212

individual subdataset level; and (v) the ResNet-50 model weights resulting from SSL pretraining213

on BenthicNet-1M as described in §4. We additionally include CSV files listing the counts of each214

individual CATAMI label present, and a list of WoRMS taxonomical labels present. The metadata215

and models are available for use without restriction under the Creative Commons Attribution 4.0216

License (CC-BY-4.0). Most images are available under CC-BY-4.0, except where the original217

licenses of subdatasets indicate limitations to derivative or commercial uses. Individual licenses for218

all subdatasets are retained and available along with the metadata within the repository.219

3.1 Data formats220

All unlabelled image metadata were standardized to a common format (Tab. 5). The datetime field221

was completed to the highest level of precision possible. Times were converted to UTC where222

timezones were indicated, and assumed to be UTC otherwise; it is not possible to guarantee all times223

are in UTC. Missing datetime and coordinate information was imputed where reasonably possible,224

e.g., by assigning the geographic mean centre of the acquisition site where coordinates were missing225

for some images. Labelled images were additionally assigned metadata describing the original and226

translated CATAMI labels, and WoRMS AphiaIDs (Tab. 3). Metadata indicating the pixel location of227

image labels were retained where provided.228

4 Technical Validation229

The subsampled BenthicNet dataset contains images from locations around the world (Fig. 1). Several230

regions are densely sampled: the Australian coast, Iberian Peninsula, Norwegian and Greenland Seas,231

North-Eastern and Western Canadian and U.S. continental shelves, and some Antarctic coast. Others232

are under-sampled, such as the Indian Ocean and the South Atlantic including the eastern coast of233

South America and west coast of Africa. Images collected in the open oceans are more dispersed234

than those at the continental shelves.235
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Table 3: Format for compiled BenthicNet-Labelled image metadata. Coverage is the fraction of images that
have at least one such metadata entry.
Column Contents Data-type Units Coverage

url URL address for this image String 100.00%
source Data provider/repository String 100.00%
dataset Name of dataset String 100.00%
site Image location name String 100.00%
image Image filename String 100.00%
latitude Latitude (WGS 84) Float Decimal degree 100.00%
longitude Longitude (WGS 84) Float Decimal degree 100.00%
datetime Acquisition date and time (UTC) String YYYY-MM-DD HH:mm:ss 100.00%
partition Train/test split allocation String 100.00%
annotation_column Relative x location of labelled pixel Float Fraction of image width 53.11%
annotation_row Relative y location of labelled pixel Float Fraction of image height 53.11%
original_label Original image label String 82.10%
catami_biota CATAMI biota label String 75.59%
catami_substrate CATAMI substrate label String 70.30%
catami_bedforms CATAMI bedform label String 6.87%
catami_relief CATAMI relief label String 2.46%
catami_qualifiers CATAMI label qualifier String 10.82%
colour_qualifier Label colour qualifier String 6.52%
bleached Whether biota is bleached Float Values 0 or 1 13.44%
dead Whether biota is deceased Float Values 0 or 1 25.76%
aphia_id WoRMS taxon AphiaID label Integer 60.73%
gebco_bathymetry Depth interpolated from GEBCO2022 Float Metres 100.00%
emu Nearest ecological marine unit Integer 99.98%

4.1 Environmental heterogeneity236

Images in the compiled datasets were acquired between 1965–2021 from depths ranging from < 1 m to237

over 5 500 m (Fig. 2). We analyzed the representativeness of image samples across the broader global238

oceans by comparing the sampled frequency to the area of each ocean basin (Fig. 3), demonstrating239

a similar distribution. We extended this analysis in more detail by considering the distribution240

of ecological marine units (EMUs) captured by the dataset (see Appx. C). The nearest EMU to241

each image is provided as a metadata field for both the BenthicNet-1M and BenthicNet-Labelled242

datasets; depths from the GEBCO2022 grid are also provided for each image (assigned using bilinear243

interpolation; Tables 3 and 5).244

Figure 2: Distribution of BenthicNet-1M images according to (a) log-scale depth data retrieved from the
GEBCO2022 grid [23] and (b) year of acquisition.

4.2 Model training245

We ran experiments to explore the utility of pretraining with SSL on the unlabelled BenthicNet-246

1M dataset for automating downstream benthic image labelling tasks. We identified two labelling247

tasks from within our data. BenthicNet-Substrate-d2. We considered all images in BenthicNet-248

Labelled with a whole-frame CATAMI substrate label to at least depth 2. We used the depth-2 labels,249
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Figure 3: Distribution of BenthicNet-1M images according to global ocean/sea basins [65]. (a) Proportion
and area of ocean basins. (b) Proportion of BenthicNet image samples from each ocean basin.

comprised of 5 classes “Sand/mud”, “Pebble/gravel”, “Cobbles”, “Boulders”, and “Rock”. This250

subset, “BenthicNet-Substrate-d2”, comprised of 43 430 training and 13 719 test images. This size251

was made possible by our large scale data collation and label mapping pipeline, but we anticipate252

that a pretrained model may be used on small datasets using a bespoke labelling scheme for the area.253

We thus also considered a classification task using the original labels of an input dataset: German254

Bank 2010, provided by DFO [9], which had whole-image “benthoscape” that describe recognizable255

combinations of substrate, bedforms, and biology visible in 3 181 images, collected off the southwest256

coast of Nova Scotia, Canada. The labels are (1) “reef”, where boulders or bedrock with frequent257

epifauna comprise more than 50% of images; (2) “glacial till”, consisting of mixed sediments (cobble,258

gravel, sand); (3) “silt/mud” with frequent evidence of infaunal bioturbation; (4) “silt with bedforms”;259

and (5) “sand with bedforms”, which commonly included sand dollars (Echinarachnius parma).260

2 681 images were used for training and 500 for testing. Both tasks have one-hot targets, which261

simplifies model training and evaluation.262

We initially considered four recent instance-learning SSL methods: SimSiam [15], Bootstrap Your263

Own Latent (BYOL) [26], Momentum Contrast (MoCo-v2) [16], and Barlow Twins (BT) [82]. Using264

a ResNet-50 trained on BenthicNet-1M with these methods, we found they performed similarly, with265

BT performing consistently well at downstream classification tasks. Our analyses here thus show BT266

as a representative SSL method. Using BT, we trained a ResNet-50 model on the BenthicNet-1M267

dataset for 100, 200, and 400 epochs with the LARS optimizer [79]. The hyperparameters were as for268

Zbontar et al. [82], except the learning rate which was set to 2× 10−3 and annealed using one-cycle269

with 10 epochs of warm-up [68]. Models were trained using four Nvidia A100 GPUs, with total270

batch size 512. We compare against transfer learning from a publicly available ResNet-50 model1271

pretrained with cross-entropy on ImageNet-1k (600 epochs), provided by torchvision [55].272

Using one of the pretrained ResNet-50 backbone encoders, we performed a linear probe by training a273

linear classifier head while keeping the encoder frozen. We trained the classifier head for 100 epochs274

with one-cycle LR schedule, maximum LR 3× 10−5, 10 ep. warm-up epochs. We performed full275

fine-tuning with an unfrozen encoder and classifier head initialized from the linear probe. We trained276

the network end-to-end with one tenth the learning rate used for the linear probe for 300 epochs. The277

transfer-learning models were compared to models trained from scratch for 100 or 400 epochs, using278

the one-cycle schedule with peak learning rate 3× 10−5.279

As shown in Tab. 4, pretraining with BT on BenthicNet-1M consistently outperformed training280

from scratch on the labelled data—the FT model outperformed training from scratch by +4.3% on281

BenthicNet-Substrate-d2 and +22.9% on German Bank 2010, and the linear probe outperformed282

training from scratch 100 ep. The BenthicNet-1M pretrained model outperformed the ImageNet-1k283

model across the linear probes, indicating its superior alignment to the downstream tasks of benthic284

habitat mapping. The smaller dataset, German Bank 2010, was much more challenging, with lower285

performance from all models and very poor linear probe performance from the ImageNet-1k model286

(37.6%). With fine-tuning, the ImageNet-1k pretrained model was able to perform well on the larger287

BenthicNet-Substrate-d2 evaluation task, demonstrating the utility of the scale of the labelled dataset.288

1torchvision.models.ResNet50_Weights.IMAGENET1K_V2 [recipe]

8

https://github.com/pytorch/vision/issues/3995#issuecomment-1013906621


Table 4: Micro-accuracy and macro F1-score (%) on two downstream test datasets when training from scratch
(No pretraining), or using a pretrained encoder either with linear probe (frozen weights;^) or full fine-tuning
( ). Mean (± std. err.) over 3 random seeds (same pretrained backbones over seeds). Bold: best performance.

Pretraining BenthicNet-Substrate-d2 German Bank 2010

Dataset Loss FT Epochs Accuracy ↑ F1-score ↑ Accuracy ↑ F1-score ↑

No pretraining 100 81.0± 0.6 55.3± 1.5 53.4± 2.4 43.0± 3.8

ImageNet-1k Cross-entropy ^ 100 81.8± 0.1 56.6± 0.3 37.6± 5.2 30.0± 2.9

BenthicNet-1M Barlow Twins ^ 100 83.6± 0.1 57.7± 0.3 55.9± 2.4 43.2± 6.0

No pretraining 400 83.8± 0.1 61.8± 0.3 54.1± 3.2 46.7± 3.2

ImageNet-1k Cross-entropy 100+300 88.3± 0.1 69.5± 0.3 65.9± 4.0 59.2± 4.2

BenthicNet-1M Barlow Twins 100+300 88.1± 0.1 68.5± 0.2 77.0± 0.7 72.3± 0.8

The ImageNet-1k model was even able to outperform our BenthicNet-1M pretrained model by a289

small margin (0.2% acc.) on this task. However, on the smaller and more challenging German Bank290

2010, the BenthicNet-1M pretraining was greatly superior (+21.1%), demonstrating the utility of a291

task-aligned pretrained model for transferring to small data regimes.292

The confusion matrices (Appx. D) show the FT models have similar biases on BenthicNet-Substrate-293

d2, confusing the same classes as each other (Fig. 8; Cobbles→Boulders; Pebble/gravel→Sand/mud;294

etc.). On German Bank 2010 (Fig. 9), the BenthicNet-1M pretrained model was able to greatly295

increase the recall of silt/mud, silt with bedforms, and glacial till, almost entirely removing ImageNet-296

1k’s most confused class pair, glacial till ↔ sand with bedforms.297

5 Usage Notes298

Labels translated to the CATAMI scheme were sourced from a wide variety of scientific studies with299

the express intent of supporting the training and validation of large image recognition models. Jointly,300

these labels should be analyzed with care, particularly if utilized for other purposes. Some datasets301

included whole image labels indicating the presence of a single benthic feature (e.g. organism,302

substrate), while others supplied single labels indicating multiple features, or multiple labels for303

different features within an image. One result of such diversity is variation in the completeness of304

labels from different datasets—some, for example, focus on a the presence of single species, or only305

focus on the most conspicuous or abundant substrate types. For some datasets, it is thus reasonable to306

expect a larger proportion of false negative labels if the data is treated in a presence/absence manner.307

In other words, many benthic features are likely visible in the images, which have not been labelled.308

We operate under the assumption, though, that labels within a dataset were assigned consistently.309

If performing analyses at the dataset level using the compilation presented here, it is important to310

investigate the specifics of the dataset(s) in question.311

Similarly, the diversity of labelling methodologies has resulted in a number of different schema by312

which original labels were translated to CATAMI equivalents. For example, some labels indicating the313

percent cover of organisms or substrate types in an image were converted to binary presence/absence.314

Additionally, auxiliary information such as annotator notes were used in some cases to obtain a315

CATAMI label. Efforts were made to indicate the original data label as closely as possible, but it316

was not always possible to include all information used to translate an original label to CATAMI.317

Therefore, original labels provided in our metadata may not contain all available information for each318

image, and the source datasets should be referenced as the authoritative source in all cases.319

The examples provided here focus on the physical environment, but there are abundant opportunities320

to explore use of the biological labels. Through use of the SSL pretrained encoder, we anticipate321

training and deployment of hierarchical morphological and biological identification models is possible.322

A challenging component of this task is the imbalance of biota labels. Methods such as over-sampling,323

weighting, and data augmentation may be necessary to achieve effective large-scale supervised models324

in the biota hierarchy, both to address the label imbalance and distributional shift from the labelled325

subset to the full range of ocean imagery. These applications will be explored in coming work.326
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A Data collation—additional details688

As described in the main text (§2.1), we collated imagery from a variety of sources and converted689

them to a standardized format (Tab. 5). In this section, we describe our protocol for each source. The690

distribution of sources around the world is indicated in Fig. 4.691

Table 5: Format for compiled BenthicNet-1M unlabelled image metadata.
Column Contents Data-type Units Coverage

url URL address for this image String 100.00%
source Data provider/repository String 100.00%
dataset Name of dataset String 100.00%
site Image location name String 100.00%
image Image filename String 100.00%
latitude Latitude (WGS 84) Float Decimal degree 99.63%
longitude Longitude (WGS 84) Float Decimal degree 99.63%
datetime Acquisition date and time (UTC) String YYYY-MM-DD HH:mm:ss 99.85%
gebco_bathymetry Depth interpolated from GEBCO2022 Float Metres 99.63%
emu Nearest ecological marine unit Integer 99.63%

Figure 4: Distribution of images projected to Equal Earth, according to data source.

A.1 Individual contributions692

A number of datasets were contributed by individual project partners; several of these were from693

eastern Canada. The Seascape Ecology and Mapping (SEAM) Lab at Dalhousie University provided694

three datasets for the BenthicNet compilation from this region. Still images were provided (n = 2281)695

that were extracted from passive drop down video drifts conducted in the Bay of Fundy at 281 sites696

between 2017–2019 using a 4k camera system [75]. Whole-image labels were supplied according to697

site-specific “benthoscapes” interpreted by the image analyst, which are recognizable combinations698

of dominant substrate type and biological characteristics [8, 47]. All megafauna were additionally699

identified to the highest possible taxonomic resolution for each image. A dataset of high definition700

benthic photographs (n = 4064) was also provided from surveys conducted between 2009–2014701

at the St Anns Bank marine protected area [38], which included whole-image benthoscape labels702

defined for the site. Finally, the SEAM lab contributed photographs of the seabed (n = 62) used for703

the 2017 R2Sonic Multispectral Challenge in the Bedford Basin, Nova Scotia [10], which included704

broad whole-image substrate descriptions and, occasionally, biological observations. The 4D Oceans705

lab at the Fisheries and Marine Institute of Memorial University of Newfoundland provided still706

images (n = 3000) extracted from underwater video, as part of the project “Coastal Habitat Mapping707

of Placentia Bay” conducted off the coast of Newfoundland, which included whole-image substrate-708

derived bottom class labels [43, 51]. The Ecology Action Centre (EAC) provided 1 220 images709

collected by citizen scientists via Go Pro-mounted kayak between 2019–2021 at shallow eelgrass710

sites in Nova Scotia. These included whole-image labels for the presence or absence of eelgrass711

(Zostera marina).712
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Several datasets collected by researchers at Memorial University of Newfoundland (MUN) were713

also contributed from northern Canada. These included 895 images collected for a benthic mapping714

project in Frobisher Bay, Nunavut, between 2015–2016 [49]; 1059 images from Wager Bay, Nunavut,715

collected in collaboration with Parks Canada as part of the Ukkusiksalik National Park Marine716

Baseline Data Collection Project; 541 images from Chesterfield Inlet, Nunavut, collected for a local717

benthic habitat mapping project conducted in coordination with the Government of Nunavut, and718

University of Manitoba; and 8 443 images from the area around Qikiqtarjuaq, Nunavut, which were719

obtained as part of a mapping campaign to monitor a locally harvested soft-shell clam population [48].720

These datasets were each accompanied by site-specific whole-image labels describing the dominant721

substrate types visible in each image.722

Several image datasets were provided by the Hakai Institute from western Canada. A total of 8 787723

images were obtained from nearshore benthic surveys conducted between 2017–2020 from sites on724

the central coast of British Columbia and sites within Pacific Rim National Park Reserve (PRNPR).725

This data was comprised of still images from ROV deployments and GIS-annotated drop camera726

videos collected primarily for the purposes of mapping eelgrass meadows (Zostera marina). Still727

images were extracted from videos using the methods described above (i.e. using FFmpeg). Whole-728

image labels were provided corresponding to the dominant visible substrate and vegetation type729

present in each image.730

Individual datasets were also acquired from outside Canada. The Marine Geosciences Lab (LaboGeo)731

at Universidade Federal do Espirito Santo (UFES) provided quadrat sample images acquired by732

drop camera during rhodolith surveys off the east coast of Brazil between 2015–2020 [45, 46].733

These were cropped to remove the quadrat frame, and 360 images were included in the BenthicNet734

compilation. Whole-image labels were provided that identify the presence of rhodoliths and select735

biogenic substrate types. A dataset of 505 images was provided by the Hierarchical Anticipatory736

Learning (HAL) lab at Dalhousie University, which was collected from Ocho Rios, Jamaica, in737

shallow water by snorkeler in 2022. Images were unlabelled, and comprised coral reef and a range of738

substrate types.739

A.2 DFO740

Fisheries and Oceans Canada (DFO) is a federal institution responsible for managing many of741

Canada’s marine resources. DFO provided three separate contributions to the BenthicNet compilation.742

The Population Ecology Division at the Bedford Institute of Oceanography (BIO) contributed 645743

annotated images from George’s Bank, which separates the Gulf of Maine from the Northwest744

Atlantic. These images were collected by the Geological Survey of Canada (GSC) Atlantic for745

programs under Natural Resources Canada (NRCan) using the Campod digitial camera system746

deployed from the CCGS Hudson in 2000 [69] and 2002 [70]. Annotations included whole-image747

benthoscape labels describing the primary substrate and presence of characteristic biota. Benthic748

images were also contributed from a GSC survey on German Bank off the southwest coast of Nova749

Scotia in 2003 [71] using Campod (n = 641), and from DFO Ecosystems and Ocean Science Sector750

surveys in 2006 [72] (n = 2044), and 2010 [9] (n = 3181) using the Towcam underwater imaging751

platform. These images included whole-image labels describing the dominant visible substrate752

type, some of which additionally included detailed comments describing the proportion of cover for753

multiple substrate types. A separate contribution from the Habitat Ecology Section at BIO comprised754

1 262 images from coastal eelgrass and macroalgae surveys along the Eastern Shore of Nova Scotia755

between 2019 and 2020 [52]. These images were extracted from video footage captured by a GoPro756

HERO7 (1080p or 2.7k resolution) deployed from a drop-down platform for passive drifts at 269757

sites. Substrate labels were provided at the whole-image level according to the Coastal and Marine758

Ecological Classification Standard (CMECS) [44], as were labels for particular biota, including759

macroalgae and seagrasses. Finally, the DFO Deep-sea Ecology Program at the Institute of Ocean760

Sciences (IOS), British Columbia, contributed data collected during the 2018 Northeast Pacific761

Seamount Expedition using the ROV Hercules. Northeast Pacific Seamount Expedition Partners762

and Ocean Exploration Trust collected imagery at SGaan Kinghlas-Bowie, Explorer, and Dellwood763

Seamounts off the west coast of Canada in 2018. Video frames were extracted every 10 seconds764

for analysis, and 16 247 were included here. Labels were provided for some images describing765

the primary substrate type and also the “biotope” observed, which broadly describes the benthic766

community and/or habitat context (e.g. coral garden, vertical wall, sponge ground). Some images767
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overlapped and were thus not originally labelled; in such cases, neighbouring image labels were768

interpolated where not initially assigned due to overlap with other images.769

A.3 NRCan770

Natural Resources Canada (NRCan) is a federal organization responsible for managing and research-771

ing a range of natural resources at the national scale. NRCan makes data freely available via the772

Canada Open Government Portal. The NRCan/GSC Seabed Photo Collection was acquired for this773

project, which includes 20 260 images recorded from 1 804 camera stations across 78 expeditions774

distributed throughout the waters surrounding Canada. These photographs were collected between775

1965 and 2015 using a range of equipment; photographs taken before 1978 were in greyscale, and776

after 1978 in colour. Photographs before 2000 were collected using film and after 2004 were digital,777

with both used in the interim. 3 767 of the photographs were annotated with verbose descriptions of778

either geological features, biological contents, or both. These descriptions were parsed in order to779

apply whole-image substrate and biota labels (see §2.2). The full list of expeditions associated with780

this dataset was obtained along with URLs of corresponding metadata CSV files in GeoDataBase781

format from the NRCan FTP server. The GeoDataBase file was processed with geopandas, and CSV782

files were downloaded for each expedition location (URLs were manually corrected for expedition783

82FOGO-ISLE, for which the CSV files were available at URLs containing the string 82FOGO_ISLE784

instead). These CSV files, containing URLs for individual images from the expeditions, were merged785

together. The year of acquisition was inferred from the expedition name, and columns were renamed786

to match the standardized dataset format. Sample images were inspected from each expedition to787

verify their appropriateness. All images from expedition 71014 consisted of collages formed of 2–6788

individual photographs, and were excluded.789

A.4 NGU790

The Geological Survey of Norway (NGU) is responsible for national geological mapping and research,791

including marine applications. NGU contributed 50 290 images to this project, which were extracted792

from 581 underwater video transects acquired during six cruises. These were carried out between793

2010 and 2017 in coastal areas and fjords of Norway (Astafjorden, Frohavet, Søre Sunmøre, Sogn794

og Fjordane, Ofoten, Tysfjorden, and Tjeldsundet), as part of several “Marine Base Maps” projects.795

The videos were acquired using a camera rig towed near the seafloor (0 m to 200 m depth) from the796

NGU research vessel Seisma. The 2010 cruises (codes 1002 and 1007) used a 720x480 digital video797

camera, while all the other cruises (codes 1408, 1508, 1511, and 1706) used a higher-resolution798

GoPro HERO3+. The images were obtained by extracting one video frame every 10 seconds of video799

footage.800

A.5 MGDS801

The Marine Geoscience Data System (MGDS) is a data repository that offers public access to a curated802

collection of marine geophysical data products and complementary data related to understanding803

the formation and evolution of the seafloor and sub-seafloor. MGDS provides tools and services804

for the discovery and download of data collected throughout the global oceans produced primarily805

by researchers funded by the U.S. National Science Foundation. Six datasets were obtained from806

MGDS, in collaboration with the Lamont-Doherty Earth Observatory at Columbia University. Four807

of these were collected from the Long Island Sound Estuary in 2012 and 2013 using the United808

States Geological Survey (USGS) Seabed Observation and Sampling System (SEABOSS), Integrated809

Seafloor Imagery System camera sled, and the Kraken2 ROV [80]. One dataset was obtained from810

the East Pacific Rise Spreading Center during the 2011 Atlantis expedition, using an Insite Scorpio811

Digital Camera mounted on the ROV Jason II. The final dataset was acquired by the Schmidt Ocean812

Institute (SOI) during the 2020 R/V Falkor expedition FK200429 off the northeast coast of Australia.813

Here, the ROV SuBastian was mobilized and images were obtained using a Subsea Systems and814

Inc. Z70 Digital Camera. All datasets from MGDS were manually reviewed and filtered to remove815

surface images (e.g. on the research vessel) and duplicates.816

20

https://www.nrcan.gc.ca/
https://open.canada.ca/en
https://ftp.maps.canada.ca/pub/nrcan_rncan/Seas_Mer/SeabedPhotoCollection_CollectionPhotosFondsMarins/GSC_Seabed_Photo_Collection.gdb.zip
https://pypi.org/project/geopandas/
https://www.ngu.no/en
https://www.marine-geo.org/
https://www.usgs.gov/


A.6 NOAA817

The U.S. National Oceanic and Atmospheric Administration (NOAA) is a federal science institution818

that conducts extensive marine research. NOAA hosts diverse collections of environmental data that819

are made available to the public. Benthic images were sourced from the NOAA data repository for820

addition to the BenthicNet dataset. Candidate data were identified using the NOAA OneStop portal,821

using the search strings “benthic”, “habitat”, “image”, “camera”, and “photograph”. Datasets returned822

not containing image files were rejected. The remainder were reviewed manually, and datasets were823

additionally rejected that did not meet quality or content standards. Reasons for rejection included824

substantial proportions of non-benthic images (e.g. above-water, pelagic, individual animals, air825

photos), partial or full scene obstruction by non-benthic objects (e.g. equipment, ROV/AUV parts),826

highly inconsistent image content or quality, and incoherent dataset or metadata formatting (e.g.827

unorganized collections of various types of data, metadata not readable via script). Datasets were828

also excluded that did not meet the metadata requirements of this project—namely, those lacking829

metadata entirely, or lacking geographic locations for images. Where the latter occurred, efforts were830

made to estimate image locations using available information; for example, by assigning general831

study site coordinates to images, or by assigning the mean geographic centre of other images at the832

study site. Datasets that were otherwise suitable for inclusion were generally not rejected due to833

poor image quality or low resolution alone. All datasets were subjected to the quality control checks834

listed previously before downloading for inclusion in the BenthicNet collection, and columns were835

renamed to match the standardized dataset format. Several datasets included labels associated with836

the National Coral Reef Monitoring Program (NCRMP) describing the benthic cover, which primarily837

comprised coral taxa and substrate labels applied to both whole-images and points. These labels were838

retained.839

Additional data was contributed by the NOAA Northeast Fisheries Science Center (NEFSC). These840

included benthic images from Georges Bank, the Mid-Atlantic Bight, and off the coast of Cape Cod841

(n = 2240). Image surveys were conducted in 2015 using the NOAA HabCam benthic imaging842

platform. Whole-image labels were provided indicating the primary and secondary substrate types,843

and also the presence of certain taxa (mussels, Didemnum tunicates, bryozoans).844

A.7 USGS845

The United States Geological Survey (USGS) is a federal organization that conducts earth science846

research and provides public geoscience information and data. A series of unlabelled benthic image847

datasets were retrieved from the USGS Science Data Catalogue. Several of these were initially848

discovered from review of the scientific literature [40, 81], and the remainder were discovered849

by querying the repository using the search strings “benthic”, “habitat”, “image”, “camera”, and850

“photograph”. Candidate datasets were screened using the same methodology as outlined above851

for data retrieved from the NOAA repository. Datasets were rejected that did not contain images,852

contained non-benthic images, were largely obstructed by non-benthic objects, or were formatted853

incoherently. Where precise image locations were not provided, estimates were obtained using the854

mean centre of the study site bounding box coordinates. All candidate datasets were subjected to the855

quality control checks listed previously and columns were renamed to match the standardized dataset856

format.857

A.8 USAP-DC858

The U.S. Antarctic Program Data Center (USAP-DC) is funded by the U.S. National Science859

Foundation and is a domain repository for U.S. Antarctic Research data from all disciplines. Five860

unlabelled datasets were obtained from USAP-DC. These were discovered from the USAP-DC861

website using the search strings “benthic”, “habitat”, “image”, “camera”, and “photograph”. Datasets862

were screened using the methodology described for the NOAA and USGS repositories. Additionally,863

some images that did not depict the seabed (e.g. pictures on the boat deck) were manually omitted.864

The mean centre of the study site bounding boxes were used to estimate image locations where precise865

positioning was not provided. These were checked for quality using the methodology described866

previously and columns were renamed to match the standardized dataset format.867
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A.9 AADC868

The Australian Antarctic Data Centre (AADC) is a long-term repository for Australia’s Antarctic data.869

This data is freely and openly available for scientific use. Two datasets were obtained for this project870

from the AADC data portal. Seafloor images (n = 203) from the Sabrina slope, East Antarctica,871

were collected in 2017 over four transects during survey “IN2017_V01” using the Australian CSIRO872

Marine National Facility’s Deep Tow Camera [59], and were downloaded along with associated873

metadata from AADC. These included whole-image labels indicating the substrate type coverage874

and the presence of biota; the former were retained here. Additionally, Geoscience Australia and875

the Australian Antarctic Division collected underwater photographs in 2011 at 97 sites in the Mertz876

Glacier region of Antarctica [67], and 1 853 images were acquired for this project. Images and877

metadata from both datasets were checked for quality and formatted for standardization with the878

BenthicNet compilation.879

A.10 SQUIDLE+880

SQUIDLE+ is an online tool for managing, exploring, and annotating images and video of the881

seafloor. It also serves as a global repository, containing standardized records for images collected by882

different groups around the world. SQUIDLE+ is a living product that is updated continuously with883

new images and labels. A snapshot of the images available on SQUIDLE+ was acquired on April 13,884

2023. The SQUIDLE+ web API was used to download the records for every image on SQUIDLE+,885

totalling 9 166 472 at that time. The paginated download was joined together and merged into a single886

CSV file, and columns were renamed to match our standardized format for the compilation.887

Several of the large individual SQUIDLE+ datasets in this collection additionally included publicly888

accessible image annotations. These included Australia’s Integrated Marine Observing System889

(IMOS), which distributes oceanographic data from a consortium of Australian institutions that890

is freely and openly available to the scientific community. This data included a large number of891

images collected by the IMOS AUV Facility, notably, using Sirius and Nimbus AUVs. IMOS images892

available from SQUIDLE+ were cross-referenced with data entries from the Australian Ocean Data893

Network (AODN) portal for this project. Labelled images were also provided by the Reef Life894

Survey (RLS) [19, 20], which is a global citizen science program that trains SCUBA divers to conduct895

underwater visual surveys of shallow reef biodiversity in temperate and tropical reef habitats, typically896

between 2 m – 20 m depth. Divers capture approximately 20 images per survey using an underwater897

camera positioned approximately 50 cm from the substrate, and images vary in resolution and quality898

due to camera configuration and environmental conditions. The Schmidt Ocean Institute (SOI)899

is a non-profit foundation established to advance global oceanographic research that hosts a large900

labelled image collection on SQUIDLE+. Deployed from the SOI R/V Falkor, the ROV SuBastian901

has collected high resolution images from waters around the world, including the deep ocean. All902

oceanographic data collected by the SOI are made openly available for research purposes. The903

National Environmental Science Program (NESP) Marine Biodiversity Hub [35] has also provided904

a large labelled image dataset. This project aims to provide foundational science for conservation905

in Australian and provides data openly in support of marine research. Each of the above datasets906

included sub-image point labels identifying underlying physical or biological elements according907

to the CATAMI scheme [1]. Finally, the image dataset presented by Yamada et al. [77] collected908

via AUV from the Southern Hydrate Ridge was downloaded from a separate SQUIDLE domain,909

SOI SQUIDLE+, along with point annotations describing substrate or biotic elements according to a910

site-specific scheme.911

A.11 FathomNet912

FathomNet [36] is an open-source underwater image database with global scope operated by the913

Monterey Bay Aquarium Research Institute (MBARI). FathomNet is soliciting contributions from914

around the world to develop a large open-source database of images that may be used to develop915

artificial intelligence algorithms, with a focus on identifying marine species. Like SQUIDLE+,916

FathomNet is a living product that is updated continuously. We used the FathomNet Python API to917

download a snapshot of the images available on FathomNet as of April 6, 2023. The code for this API918

call is provided in Appx. F. At the time of downloading, these images were primarily acquired from919

Pacific Waters around California, Western USA. Records were partitioned into “sites” based on the920

directory structure in the URL. Where not available in the record itself, timestamps were extracted921
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from image names, where possible. Columns were renamed to match our standardized format. Many922

of the images were annotated with bounding boxes around animals and other concepts appearing923

in the images. However, annotations were available only under a No Derivatives license (CC BY-924

ND 4.0), which prohibited conversion to other schemes and formats. All FathomNet annotations925

were thus discarded.926

A.12 PANGAEA927

PANGAEA is an open access repository aimed at archiving, publishing and distributing georeferenced928

data from earth system research, hosting 678 projects and 408 811 datasets from various fields at929

the time of writing. We searched and retrieved benthic image datasets from PANGAEA with a930

combination of API calls and web-scraping, then pruned the resulting datasets and reformatted931

them. The pangaeapy Python package [32] was used to interface with the PANGAEA library. Using932

the PanQuery API, PANGAEA was searched for 20 queries with various combinations of benthic933

environment related keywords to find photographs of the seafloor (see Appx. E for complete list). The934

PanDataSet API was used to retrieve the metadata for the dataset IDs identified in these searches.935

Some IDs corresponded to dataset series, which list multiple child datasets. In these cases, all child936

datasets were retrieved. Some datasets were available in tabular format, and were downloaded directly.937

Other datasets were paginated, with images hosted on webpages on PANGAEA; these could not be938

downloaded with the API and were scraped with a custom webscraper using the BeautifulSoup4939

and request libraries.940

All datasets returned by this search as of January 1, 2024 were downloaded and results were filtered941

as follows. (1) Datasets that did not possess a column containing the word “url” or “image” that was942

populated by hyperlinks to files in an image format (TIFF, JPEG, PNG, BMP, CR2) were removed to943

enable automation of the data acquisition process. It was not possible to verify any ZIP file would944

contain images without downloading it, and was impractical to automatically associate metadata with945

the images within a ZIP file of unknown structure. Datasets with images only available to download946

as a ZIP file were thus discarded. (2) False positives from the search (datasets comprising imagery947

not of the seafloor) were filtered out by removing datasets with titles containing undesired keywords948

appearing in a manually curated blacklist (e.g. “aquarium”, “meteorological observations”, “sea949

ice conditions”, “do not use”). (3) URLs for images consisting of maps, other dataset summary950

figures, and inappropriate photo subjects were filtered out by removing data hosted on PANGAEA951

subdomains dedicated to subjects such as maps, projects, publications, sea ice, and satellite imagery.952

(4) Images were removed where the URL contained text indicating the subject matter was otherwise953

inappropriate (e.g. “dredgephotos”, “grabsample”, “core”, “aquarium”, “divemap”). Finally, the954

columns in the CSV files were renamed to our standardized format.955

Several of the datasets obtained from PANGAEA included thematic labels corresponding to benthic956

images. Many of these were labels of specific biota identified to the highest possible taxonomic957

resolution, some of which included estimates of percentage cover of each organism in the image.958

Several of the latter datasets comprised experimental growth plates harbouring the labelled biota.959

Some datasets additionally included labels for trash and anthropogenic debris. All labels were960

dropped where datasets indicated usage of machine-assisted annotation instead of manual annotation.961

Finally, additional point labels were obtained for datasets from the Great Barrier Reef Marine Park,962

eastern Australia, collected for habitat mapping purposes by the University of Queensland Remote963

Sensing Research Centre. These datasets comprised quadrat images collected via snorkel and diving964

from over 100 reefs throughout the Great Barrier Reef Marine Park [62, 61, 63]. Points were labelled965

according to a custom scheme used for these projects at the Great Barrier Reef that describe biotic966

and abiotic elements found within the reef. Additional labels were also provided indicating the biotic967

functional group, and a simplified classification scheme applicable to a global context.968

A.13 XL Catlin Seaview Survey969

The XL Catlin Seaview Survey was a large-scale project undertaken between 2012–2018 to document970

and study the status of coral reefs globally using underwater imagery. Surveys focused on shallow971

reefs typically around 10 m depth and comprised linear transects ranging between 1.6 km to 2 km972

in length. Downward-facing seabed images of approximately 1 m2 were acquired using Canon 5D973

MII cameras mounted on a self-propelled diver-operated platform called the “SVII” [24, 25]. Data974

from the project is made openly available for further scientific research. For this project, 1 082 452975
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images from 860 surveys organized into 22 regional datasets were downloaded from the University of976

Queensland data repository. Tabular data providing image metadata was also acquired in CSV format,977

including image point labels identifying biotic and abiotic elements using the global scheme applied978

above for the Great Barrier Reef mapping projects. The metadata were renamed and formatted to979

match the standardized BenthicNet compilation.980

B Spatial subsampling981

The aim of the subsampling procedure was to obtain a manageable unlabelled data volume without982

reducing the breadth of benthic environments represented. Many datasets indicated which images983

were collected at the same recording station, or the same camera deployment/transect. We collectively984

refer to this location annotation as a “site”. To maximize spatial and thematic diversity of images,985

subsampling was performed separately for each unique site in the unlabelled datatset.986

In order to subsample the data spatially, we first determined a desirable number of images that should987

be drawn from a given site based on the data density. The base target number of images sought at988

each site was set to 250, meaning that the subsampling procedure would not reduce the number of989

images below this number. Not all component datasets indicated whether images were collected at990

the same site, despite containing images from multiple distinct locations that would meet our “site”991

criteria. To address this, we automatically detected the number of “pseudo-sites” within an annotated992

site, or within a dataset originally lacking any site labels. Pseudo-sites were determined as clusters of993

samples at least 1 000 m from each other. The target number of samples was scaled up by the number994

of pseudo-sites within a labelled site. Some (pseudo-)sites additionally had gaps between them of995

several hundred metres, which we refer to as “subsites”. The target number of samples for a site was996

increased by 50 for each subsite within it separated by at least 100 m.997

After determining the target number of images to draw from each site in the unlabelled dataset, the998

data was subsampled spatially. Sites with fewer than 40 samples per pseudo-site were not subsampled.999

At sites with more than 40 images, images were subsampled with a target separation distance of1000

∆ = 1.25m according to the following procedure.1001

1. Add the first image in the dataset.1002

2. Continue through the list of images in the dataset (sorted in collection order; i.e. chrono-1003

logically) until finding the first image at least ∆ = 1.25m from the last image added to the1004

dataset.1005

3. Add either this image or the previous image in the list, whichever is closest to being a1006

distance ∆ = 1.25m from the last image added to the dataset.1007

4. From the list of remaining images to consider, remove all images collected within ∆/2 =1008

0.625m of this image.1009

5. Return to Step 2; repeat until reaching the end of the dataset.1010

6. Add the last image in the dataset if it was at least ∆/2 = 0.625m from all other images.1011

Sites lacking precise coordinate information for each image could not be subsampled spatially. In1012

these cases, sites were subsampled by keeping every n-th image (ordered chronologically) at the site1013

to achieve the desired number.1014

Many sites still had more images than their target number of samples after this initial spatial subsam-1015

pling, so this process was repeated with larger separation distances until the target subsample size1016

was achieved at each site, or a maximum downsampling separation distance of 20 m was reached.1017

Separation distances were scaled up by factors of 2, 3, 4, 6, 8, 10, 12, 14, or 16 compared to the1018

base subsampling of 1.25 m target separation to achieve the desired subsample size (i.e. ∆ = 2.5 m,1019

3.75 m, . . . , 20 m). The subsampling distance selected (and hence subsampled set of images at that1020

site) was the largest distance that did not reduce the total number of images below the target for the1021

site (250+), determined as described above. The subsampling procedure selected 1 345 096 images1022

(11.8% of the total) to be included in the subsampled BenthicNet dataset (Fig. 1), which we refer to1023

as BenthicNet-1M.1024
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C Ecological Marine Units1025

Sayre et al. [65] introduced a three-dimensional partitioning of the global oceans into statistical1026

clusters based on a 57-year climatology of physiochemical oceanographic measurements [41, 84, 21,1027

22]. These 37 “ecological marine units” (EMUs) represent a concise and objective summary of global1028

marine environments at 0.25° horizontal resolution. The bottom-layer EMUs were extracted to assess1029

the distribution of BenthicNet image samples across global benthic environmental regions. Each1030

image was assigned the nearest bottom-layer (i.e. seafloor) EMU in space to compare the sampled1031

frequency of each environment to the proportion of area covered by each EMU (Figs. 5 and 6).1032

Figure 5: Examples of BenthicNet images from each sampled ecological marine unit (EMU), indicated by a
number in white overlaid in the top-left of each image. See Sayre et al. [65] for a full description of the EMU
classes.

C.1 Unlabelled data exploratory analysis1033

Generally, images were distributed more evenly across the bottom-layer EMUs than would be1034

expected from a random sample, while the distribution across the major ocean basins more closely1035

25



Figure 6: Distribution of BenthicNet-1M images according to bottom layer ecological marine units (EMUs).
(a) Proportion and area of global oceans classified into each EMU. (b) Proportion of BenthicNet image samples
from each EMU. See Sayre et al. [65] for a full description of the EMU classes.

matched expectation. The majority of the global seafloor (82.4%) is classified into EMUs 14 (deep,1036

very cold, normal salinity, moderate oxygen, high nitrate, low phosphate, high silicate), 13 (deep, very1037

cold, normal salinity, low oxygen, high nitrate, medium phosphate, high silicate), and 36 (deep, very1038

cold, normal salinity, moderate oxygen, medium nitrate, low phosphate, low silicate) [65], comprising1039

most of the Pacific, Indian, and polar oceans. These environments are not over-represented in1040

the BenthicNet dataset, with no single EMU accounting for > 20.6%. The three most common1041

EMUs sampled (47.6%) were 24 (shallow, warm, normal salinity, moderate oxygen, low nitrate,1042

low phosphate, low silicate), 11 (shallow, cool, normal salinity, moderate oxygen, low nitrate, low1043

phosphate, low silicate), and 13 (deep, very cold, normal salinity, low oxygen, high nitrate, medium1044

phosphate, high silicate), representing continental shelves in the equatorial regions, the shallow1045

sub-tropics, and the deep Pacific and Indian oceans. The distribution of images across ocean basins1046

was generally proportionate to the expectation given the area of each ocean, but notable exceptions1047

include an apparent under-representation of the South Atlantic, and over-representation of the South1048

Pacific.1049

C.2 Labelled data exploratory analysis1050

The BenthicNet-Labelled data spans an environmental extent similar to that of the BenthicNet-1M1051

data. Two of the EMUs that were abundantly sampled with unlabelled imagery were also prominently1052

represented in the labelled dataset; EMUs 11 (shallow, cool, normal salinity, moderate oxygen, low1053

nitrate, low phosphate, low silicate) and 24 (shallow, warm, normal salinity, moderate oxygen, low1054

nitrate, low phosphate, low silicate) comprised a near-majority (49.82%) of the labelled dataset1055

(Fig. 7). These two environments are broadly distributed in space [65], and here primarily represent1056

datasets from Australia, Tasmania, and Central America.1057
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Figure 7: Distribution of BenthicNet images according to bottom layer ecological marine units (EMUs) for
(a) unlabelled and (b) labelled datasets. See Sayre et al. [65] for a full description of the EMU classes.

D Confusion matrices1058

In this section, we provide confusion matrices for the fine-tuned models described in §4.2.1059

An important observation is that for both supervised classification tasks, and both transfer models,1060

the best-predicted classes tended to be those that are most distinct, while the intermediate classes1061

were subject to confusion. For example, “cobble” was the most difficult label to predict in the1062

BenthicNet-Substrate-d2 dataset, and indeed, it can be difficult even for a human to differentiate1063

cobbles from pebbles or boulders in underwater imagery. These substrate class boundaries are1064

defined arbitrarily at a particular length scale (2 mm and 64 mm) that may only be determined through1065

accurate measurement or image scaling; there is substantial possibility of incorrect or subjective1066

human labels for such data. Additionally, the imbalanced priors for the classes may also play a role1067

in predictive success. Sand and mud labels dominate both data subsets—it is not surprising that the1068

models have a tendency to predict sand for other classes, and to perform strongly on sand.1069
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Figure 8: Confusion matrix (% of ground truth) for CATAMI Substrate predictions on BenthicNet-
Substrate-d2 test data. (Left) Model pretrained with cross-entropy on ImageNet-1k, fine-tuned on BenthicNet-
Substrate-d2. (Right) Model pretrained with Barlow Twins on BenthicNet-1M, fine-tuned on BenthicNet-
Substrate-d2.
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Figure 9: Confusion matrix (% of ground truth) for the German Bank 2010 test data. (Left) Model
pretrained with cross-entropy on ImageNet-1k, fine-tuned on German Bank 2010. (Right) Model pretrained with
Barlow Twins on BenthicNet-1M, fine-tuned on German Bank 2010.

E PANGAEA Search1070

To thoroughly search PANGAEA for seafloor imagery, we used 20 search terms with a range of1071

synonyms for the content of interest. The PANGAEA search API is comprehensive and allows terms1072

be combined with AND or OR operators, and negative search terms to be used. However, we could1073

not merge all our synonyms together into a single, large query because the number of results which1074

can be returned by one query is limited to 500 records.1075

The search terms used were as follows:1076

(seabed OR "sea bed" OR "sea-bed") (image OR imagery OR photo OR photograph1077

OR "photo-transect" OR photoquad* OR photo-quad* OR jpg OR jpeg OR png OR tif1078

OR tiff)1079

(seafloor OR "sea floor" OR "sea-floor") (image OR imagery OR photo OR photograph1080

OR "photo-transect" OR photoquad* OR photo-quad* OR jpg OR jpeg OR png OR tif1081

OR tiff)1082

("ocean floor" OR "ocean-floor") (image OR imagery OR photo OR photograph1083

OR "photo-transect" OR photoquad* OR photo-quad* OR jpg OR jpeg OR png OR tif1084
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OR tiff)1085

underwater (habitat* OR substrate OR sediment) (image OR imagery OR photo1086

OR photograph OR "photo-transect" OR photoquad* OR photo-quad* OR jpg OR jpeg1087

OR png OR tif OR tiff)1088

benthic (image OR imagery OR photo OR photograph OR "photo-transect" OR photoquad*1089

OR photo-quad* OR jpg OR jpeg OR png OR tif OR tiff)1090

(benthos or benthoz) (image OR imagery OR photo OR photograph OR "photo-transect"1091

OR photoquad* OR photo-quad* OR jpg OR jpeg OR png OR tif OR tiff)1092

(coral OR reef OR seagrass OR "sea grass") (image OR imagery OR photo OR photograph1093

OR "photo-transect" OR photoquad* OR photo-quad* OR jpg OR jpeg OR png OR tif1094

OR tiff)1095

(auv OR rov OR uuv OR "underwater vehicle") (image OR imagery OR photo OR photograph1096

OR "photo-transect" OR photoquad* OR photo-quad* OR jpg OR jpeg OR png OR tif1097

OR tiff)1098

benthoscape habitat* image1099

benthoscape habitat* imagery1100

benthoscape habitat* photo1101

benthoscape habitat* photograph1102

benthoscape habitat* ("photo-transect" OR photoquad* OR photo-quad*)1103

benthoscape habitat* (jpg OR jpeg OR png OR tif OR tiff)1104

benthoscape image1105

benthoscape imagery1106

benthoscape photo1107

benthoscape photograph1108

benthoscape ("photo-transect" OR photoquad* OR photo-quad*)1109

benthoscape (jpg OR jpeg OR png OR tif OR tiff)1110

Each search term was prefixed with a set of negative search terms to remove false positives, given as1111

follows1112

-microscop? -"Meteorological observations" -topsoil -soil -sky1113

-"wind vector" -"wind stress" -"vertical profile" -"vertical distribution"1114

The full code for our PANGAEA search is publicly available at [REDACTED].1115

F FathomNet Python API Code1116

We retrieved the full set of images on FathomNet by using the FathomNet API from the fathonnet-py1117

Python package as follows.1118

1 import fathomnet.api.images
2 import pandas as pd
3

4 keys = ["url", "uuid", "timestamp", "latitude", "longitude"]
5

6 records = []
7 for submitter in fathomnet.api.images.find_distinct_submitter():
8 for image in fathomnet.api.images.find_by_contributors_email(submitter):
9 records.append({k: getattr(image, k) for k in keys})

10

11 df = pd.DataFrame.from_records(records)
12 df.drop_duplicates(subset="url", inplace=True)
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https://fathomnet-py.readthedocs.io/en/latest/api.html
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