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Abstract

Evaluating the creative capabilities of large language models (LLMs) in complex
tasks often requires human assessments that are difficult to scale. We introduce a
novel, scalable methodology for evaluating LLM story generation by analyzing
underlying social structures in narratives as signed character networks. To
demonstrate its effectiveness, we conduct a large-scale comparative analysis
of over 1,200 stories, generated by four leading LLMs (GPT-40, GPT-40 mini,
Gemini 1.5 Pro, and Gemini 1.5 Flash) and a human-written corpus. Our findings,
based on network properties like density, clustering, and signed edge weights,
show that LLM-generated stories consistently exhibit a strong bias toward tightly-
knit, positive relationships, which aligns with findings from prior research using
human assessment. Our proposed approach provides a valuable tool for evaluating
limitations and tendencies in the creative storytelling of current and future LLMs.

1 Introduction

The rise of capable large language models (LLMs) in the past few years has sparked research interest
in applying them to complex tasks, such as coding and agentic planning (1; 2). Although many
evaluation metrics have been proposed to assess their behaviors in such domains, evaluations of their
creative performance are still understudied (3;!4). One example of complex, creative tasks is story
generation, and prior research has discovered that LLM-generated stories tends to focus on positive
plot progression, and are less dynamic and inferior to human experts in terms of creativity (55 65 [75 I8]).
However, evaluating creative writing is often qualitative, requiring labor-intensive human assessment,
and suffers from low efficiency and scalability. We propose a novel, quantitative methodology that
leverages character networks and evaluates LLMs’ complex behaviors in story generation by focusing
on the structure of narrative character interactions. A character network models the relationships
between narrative characters by representing them as vertices and their interactions as edges. Our
analysis shows that the networks of LLM-generated stories exhibit significantly higher density,
clustering, and a strong bias towards positive relationships, revealing a systemic tendency to create
more tightly-knit and less conflict-driven social dynamics than those found in human-written stories.
Notably, this conclusion is supported by various evaluations such as plot progression analysis and
human assessment (5 16} [7)).

Although several works apply character network analysis to human-written narratives (95 [10; [115 12
13), to our knowledge, none have focused on the networks of LLM-generated stories. To demonstrate
the effectiveness of our proposed approach, in this study, we use our method to investigate LLMs’
creativity in story generation compared to humans. We extracted networks from over 1,200 LLM-
generated and human-written stories and conducted a large-scale analysis. Potential contributions
of our research are as follows: (1) we introduce a scalable framework for the quantitative network
analysis of Al-generated narratives, which reveals underlying tendencies of LLM story generation;
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(2) this is the first work applying network analysis to LLM-generated stories; and (3) our comparative
analysis provides empirical evidence that LLMs construct positive-biased narrative social structures
relative to humans.

2 Related work

LLMs in creative writing Motivated by the advancement of LLMs’ performance, researchers have
investigated the models’ creativity in story writing. They discovered that LLM-generated stories are
prone to construct positive plot and are inferior to human writing in terms of diversity, novelty, and
surprise through evaluation methods involving human annotation (55 |6; (7). There are also research
endeavors to establish evaluation frameworks for LLM creativity with human evaluators/Al systems
(65 145 115).

Character network analysis Early foundational work established methodologies for extracting
character relationships from novels, legends, movies, and comics through co-occurrence analysis,
conversation tracking, and coreference resolution (95 [10; [115 |12 [13). Genre classification and
narrative analysis through network properties have shown promising results, indicating networks are
a good model of social dynamics (9} [12; [13). Although various edge properties are used to model
social structures, signed scores (negative/positive labels of relationships) are one of the most popular
approaches for its simplicity (12} (165 [17;[18). In this study, we conduct an extensive analysis on
signed networks from LLM-written short stories.

3 Methodology

In this section, we introduce the overview of our methodology, specifically regarding story generation,
network extraction, and metrics. To conduct comparative evaluation, we collect approximately 250
science-fiction short stories from GPT 40, GPT 40 Mini, Gemini 1.5 Pro, Gemini 1.5 Flash, and
Project Gutenberg, respectively (19; ZO)H Further details about story generation and the selection
criteria of human-written stories are provided in Appendix [A]

Next, we extract character networks from the stories with our automated pipeline. The process starts
by splitting a story into approximately 100 narrative units. We then calculate the negative/positive
label of each narrative unit using a RoBERTa-based sentiment classifier (215 22). The relationship
labels between two characters are determined based on their co-occurrences in narrative units
with negative or positive labels. After constructing a network with characters (vertices) and their
relationships (edge weights € {—1,1}), the pipeline performs a vertex contraction if two characters
are estimated to refer to the same character. We then remove sparse networks based on our exclusion
criteria. Further details of network extraction and removal are outlined in Appendix [B| We note
the number of networks eventually obtained is 251 from GPT4o, 249 from GPT 40 Mini, 252 from
Gemini 1.5 Pro, 249 from Gemini 1.5 Flash, and 168 from Project Gutenberg.

We calculate multiple connectivity measures of a network using NetworkX and self-made functions.
We use average edge weight, as well as density, average clustering coefficient, and assortativity
mixing following prior research (9; 10 [115 13k 235 245 [25). In particular, average edge weight ranges
from —1 to 1 and represents the overall polarity of a network. Average clustering coefficient quantifies
the small-world-ness of a network, and assortativity mixing, ranging from —1 to 1, is designed to
represent the homogeneity of interactions among heroic and villainous characters. The formulas and
interpretations of the metrics are listed in Appendix[C} We also extract two subgraphs (one consisting
of only positive edges, which we call positive networks, and another only with negative edges, called
negative networks), and calculate density and average clustering.

4 Results

Distribution analysis We analyze the distributions of connectivity scores to better understand the
tendencies of LLMs and humans, which we collectively call writers, in story generation. Figure
E] visualizes the score distributions of each metric. Overall, the scores of LLM-generated stories

'Source: https://www.kaggle.com/datasets/shubchat/1002-short-stories-from-project-guttenberg
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fit in a similar range, while the scores of human-written stories (blue) spread out and diverge from
LLM counterparts. In particular, assortativity scores demonstrate a relatively strong trend of data
concentration among the Al models.
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Figure 1: Violin plots of connectivity measure distributions. The horizontal axes show writers: from
the left, Gemini 1.5 Flash (green), GPT 40 mini (yellow), Gemini 1.5 Pro (purple), GPT 4o (red), and
Project Gutenberg (blue). LLM score distributions cluster in the somewhat same range.

To quantify distances between score distributions by writers, we calculate Wasserstein distances (see
the heatmaps in Appendix [D). Overall, human stories have the greatest Wasserstein distances with all
the LLM stories in almost every metric, whereas LLMs maintain smaller distances with each other.

Overall analysis We also calculate the mean and standard deviation of the score distribution of each
writer and metric, which is outlined in Table[I] Notably, the average edge weight of LLM-generated
stories are higher than that of human stories, which is —0.061, the only negative average edge weight.
Moreover, density is also consistently higher in LLM-generated stories. We perform a similar analysis
to positive and negative networks. The results show that positive networks are higher both in the
density and average clustering relative to negative networks. The table is provided in Appendix [E]

Density Avg EW Avg Clustering ~ Assort Mixing
Models mean std mean std mean std mean std
GPT 4o 0.372 0.097 0.659 0.214 0.665 0.087  0.047 0.168

GPT 40 Mini 0.470 0.094 0.235 0.214 0.766 0.062 —0.072 0.118
Gemini 1.5Pro | 0.378 0.112 0.312 0.227 0.709 0.082  0.052 0.151
Gemini 1.5 Flash | 0.338 0.102 0.374 0.248 0.623 0.108 0.044 0.184
Humans 0.182 0.056 —0.061 0.398 0.485 0.140 0.012  0.260

Table 1: The mean and standard deviation of Density, Average Edge Weight (Avg EW), Average
Clustering (Avg Clustering), and Assortativity (Assort Mixing).

Statistical significance To rigorously measure similarities between pairs of score distributions, we
conduct t-tests. The null hypothesis is that the means of the score distributions are equal. Several
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metrics across models, such as density (Gemini Pro and GPT 40: p = 0.520) and average clustering of
positive networks (Gemini Pro and GPT 40 Mini: p = 0.792, GPT 40 and GPT 40 Mini: p = 0.116)
and negative networks (Gemini Flash and Pro: p = 0.840) have high p-values, indicating that the
scores samples from two distinct models are not unlikely to be drawn from the same sample space.
Besides assortativity, as expected, p-values for pairs with human-written stories are consistently very
low (p < 0.01) in almost every metrics. The details of the tests and results are in Appendix [F}

5 Discussion

Similarities of LLM-generated stories in original networks Overall, the Wasserstein distances
and t-tests show that LLMs have connectivity measure scores that cluster in identical ranges, while
human-written stories are dispersed and distant from LLM-generated stories. Moreover, LLM-written
stories tend to be denser, indicating more characters co-occur in the same narrative units compared
to the human-written stories. Their relatively high average clustering coefficient also supports our
observation that LLMs focus on tightly-knit character interactions.

Positivity bias and plain relationship dynamics We can understand the relationship tendency
prevalent in LLM-generated stories through the average edge weight, assortativity, and average
clustering. As Table[I]shows, average edge weight is significantly higher in LLM-generated stories,
indicating that the stories largely have positive relationship dynamics. Moreover, although there
is some degree of standard deviation, the mean assortativity mixing of most LLM stories stays at
around 0.05. This result suggests that there is a subtle trend that characters of similar weighted
average neighbor degrees cluster together, i.e., they form slightly homogeneous interaction networks.
Interestingly, GPT 40 Mini tends to generate slightly non-homogenious networks. The relatively high
average clustering in LLMs also tells that the networks of LLM stories form relatively small worlds.
Table2]in Appendix [E|allows for a closer analysis of positive and negative subgraphs. It is noteworthy
that LLM positive networks tend to be denser than the negative networks, and their average clustering
coefficients are also considerably higher. These statistics indicate that a group of characters sharing
positive relationships form a more intimate and tied network in LLM-generated stories, whereas
the negative counterpart is sparse. Given that an edge is positive if two characters co-occur more in
positive narrative units, the high clustering coefficient in positive networks implies that a group of
amiable characters is prone to appear jointly in positive units repeatedly, which inhibits suspenseful or
dramatic plot progression (e.g., the group of protagonists explores a dungeon, and the story proceeds
by following their journey). These results show that LLMs generate stories that are biased toward
positive relationships and devoid of dramatic dynamics. Interestingly, these results align with the
past findings discovered through semi-manual plot analysis and creativity tests with human experts
(55165 7). This shows that our automated network-based evaluation method successfully identifies
underlying tendencies in LLM story generation, aligning with human-annotated evaluations
that focus on various aspects of narratives. Therefore, our methodology serves as a novel tool
utilizing large-scale evaluation for LLM creative writing.

6 Conclusion

In this research, we propose a evaluation method of LLM creativity in story generation through
character network analysis. We analyze the networks of short stories from four LLMs and a human
story corpus. Our extensive analysis reveals that LLMs overly focus on positive relationships and
lack creativity in dramatic narrative composition relative to human-written stories. These results
also demonstrate the effectiveness of our large-scale, automated network analysis method to evaluate
underlying strengths and limitations of LLMs in complex, creative tasks.

There are many promising future extensions of this research. One can use different edge weights, such
as conversations, mentions, and direct actions (12). Analyzing character networks from other genres
than science fiction may also be of interest. Another future direction is to introduce more extensive
human story datasets and examine potential similarities between LLM story generation with human
storytelling. One can also apply our method to longer and larger LLM-generated stories, which
would yield larger networks, and analyze community detection structures and robustness, potentially
producing further interesting findings. Finally, future research should apply network analysis to other
types of tasks that involve social structures to holistically understand LLM creativity.
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Appendix A: Story generation

A.1 Human short stories

To compare LLM-generated stories with human-written ones, we collected 255 short stories from
a dataset of 1,002 stories extracted from the Project Gutenberg datasetE| We classified their genres
using Gemini 2.0 Flash (26) and collected only science fiction since it was the most frequent genre in
the dataset. We also filtered out stories whose approximate word count is less than 3,000 or is larger
than 15,000 in order to align the length with LLM-generated stories.

A.2 LLM short stories

We used four major LLMs: OpenAl GPT40, GPT40-mini (19), Google Gemini-1.5-pro, and Gemini-
1.5-flash (20)), each of which generated around 250 science-fiction short stories. To ensure generality,
we created a predefined prompt template for character generation, plot planning, and story generation.
To maximize the randomness, we set temperature to 1. We also configured fop_p to 0.95 (8)) and
top_k to 40. For models that do not accept certain parameters, we used their default configurations.

The models first generate the plot of 10 chapters and the demography of 19 characters with the
chapter numbers where they appear. We derived the number of characters 19 by taking the average
of character counts in the 255 human stories. This is to control the node count and focus solely on
relationships between characters. We insert a chapter description and the list of characters into the
chat log before a model generates a chapter, in order to maintain the consistency of the story context.
The algorithm of story generation is reproduced below.

Algorithm 1: Story Generation

Require :System prompt: .S; Plot prompt: P; Character prompt: C'R; Chapter prompt: C'H,;
1’th chapter: C' H;; Text generation function: f; Concatenation operation: €;
Input  :Number of chapters: N; Generation configuration: C,
Initialize : Session log: session < []; List of chapter descriptions: plot « []; Character list:
characters < []; Chapter i: chapter;; Story: story < “”
session + S @ P;
plot : [ploty,plots,...,ploty] < f(session, C);
session < session @ plot © CR;
characters = f(session, C);
fori < 1to N do
session < session ® C'H & characters @ plot;;
chapter; < f(session,C);
session < session @ chapter;;
story < story & chapter;;

return story

Prompt template This section provides the details of the prompt template. As Algorithm [T|shows,
the prompt template for story generation consists of the system prompt, the prompt for plot generation
(plot prompt), the prompt for character generation (character prompt), and the prompt for chapter
writing (chapter prompt).

System Prompt

### Instruction ###
You are a professional novelist. You will write a science fiction story of 10 chapters with 19
characters.

2Source: https://www.kaggle.com/datasets/shubchat/1002-short-stories-from-project-guttenberg
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Plot Prompt

Write the title in the first line. Next, use 1 sentence to write the plot for each of the 10
chapters. The Chapter number and description should start in the same line (i.e. Chapter 1:
[description]). Start with Chapter 1:

## Plot ##

Character Prompt

### Instruction ###
Next, use 1 sentences to write each of 19 characters and chapters where they appear.
### Characters ###

Chapter Prompt (Chapter 1)

### Instruction ###
Use 800 words to write the first chapter.
#i## Story #i##

Chapter Prompt (After Chapter 1)

#i## Instruction ###

Use 800 words to write the next chapter.

#i## Characters ###

The character list created with the character prompt is inserted here.
#i## Plot ##Ht

The plot of the corresponding chapter is inserted here.

#i## Story ###

A.3 Example short story

The following is a short story generated by GPT 40. We show only the first paragraph of each chapter.
**The Astral Resonancexx

**Chapter 1: The Call to the Stars** In the immense expanse of the universe, where
countless stars blinked into infinity, a lone spaceship named the Horizon cut its
path through the cosmic vastness. Its sleek design and shimmering hull reflected
the pinpricks of starlight as it moved with purpose. Onboard, Captain Elara
Cassiopeia studied a transmission that had recently arrived from the Galactic
Consortium, her brow furrowed in concentration...

*xChapter 2: Echoes of the Past*x The Horizon cruised through the dark sea of
space, a beacon of human ingenuity amidst the endless celestial expanse. Onboard,
a palpable sense of anticipation filled the corridors, each crew member fully
aware of the monumental task that lay ahead. Captain Elara Cassiopeia gathered
her team in the briefing room, the hub of their operations, where a large
holographic display floated in the center, showing the trajectory toward the
enigmatic signal...

*xChapter 3: The Guardian Emerges** The Horizon hovered in the asteroid belt, its
engines humming softly as the crew worked diligently to decode the complexities
of the ancient distress call. Amidst the rugged celestial debris, their mission
was to extract every ounce of knowledge from the relics of a civilization long
lost to time. Each fragment they uncovered was a piece of a grand puzzle, and
they were determined to see the full picture...

**Chapter 4: A Clash of Wills** The Horizon remained nestled within the asteroid
belt, a silent sentinel on the edge of discovery. After forging an unexpected
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alliance with the enigmatic Captain Solaris, the crew was meticulously working
through the decoded information, piece by piece, striving to unearth the secrets
of the ancient civilization’s warning. Each revelation was a step closer to
understanding the looming cosmic threat, an understanding crucial to averting
disaster...

**Chapter 5: Deciphering Elysium’s Enigma** The Horizon, accompanied by Valeria
Thrace’s formidable ship, descended through the murky atmosphere of the desolate
planet known as Elysium. The planet’s surface was a barren landscape of rocky
crags and swirling dust storms, an inhospitable environment that hid secrets
buried deep beneath its crust. Yet it was here that the ancient civilization had
left their cryptic messages, a final testament to their existence...

**Chapter 6: The Gateway Unveiled*x Back aboard the Horizon, tension simmered
with a mixture of exhilaration and foreboding. The latest discoveries on Elysium
had propelled the crew further into the ancient civilization’s enigma, but it
was Dr. Vela Rayne’s unraveling of the signal that now held center stage. In the
ship’s lab, Vela sat surrounded by holographic displays, her mind racing with
connections, all leading to a startling conclusion that could tip the balance of
power in the galaxy...

**Chapter 7: The Awakening of Aether*x The mesmerizing swirl of the
interdimensional portal gradually stabilized, allowing the crews of the Horizon
and Valeria Thrace’s ship to step cautiously into the realm beyond. The transition
was seamless, yet surreal; they found themselves on the threshold of a dimension
where reality shimmered with fluid unpredictability, challenging their senses and
perceptions. Yet, the explorers knew their mission extended far beyond marveling
at this new world...

**Chapter 8: Uniting Forces Amidst Tension** The Horizon hovered within the
interdimensional realm, a nexus of possibility that shimmered with spectral
colors. The discovery of the portal’s potential and the awakening of Aether had
propelled the crew into uncharted territory, but their path forward was fraught
with tension and division. With the rogue AI’s promise of knowledge and impending
threats, time was an adversary that loomed larger by the minute...

**Chapter 9: The Battle for Control** The calm after the portal’s stabilization was
short-lived. The sense of accomplishment among the crew of the Horizon and Valeria
Thrace’s ship was overshadowed by an ominous realization—the balance they had so
carefully preserved was under threat. Aether’s departure had awakened something
dormant, and the portal’s energies began to tremble with renewed intensity...

**xChapter 10: The Final Sacrificexx The aftermath of the battle left the cosmos
momentarily still, yet an underlying tension remained, echoing through the fabric
of space. The portal, now secured, pulsed with a serene luminescence, its energies
more stable yet still connected to a vast and unpredictable continuum. Within the
Horizon, a solemn determination pervaded the crew, aware that their mission was
not yet complete...

Appendix B: Network extraction

Graph structure Previous works have explored several types of networks, such as conversation,
mention, and direct-action networks (12). In this research, we focus on co-occurrence networks
for their simplicity. In co-occurrence networks, characters v; and v; are said to have an interaction
e;; if they concurrently appear in the same unit of a story (narrative unit) (12). The length of a
narrative unit was set to |0.01 x N | sentences, where N is the total number of sentences in the
story. Each narrative unit of LLM-generated stories contains approximately 83 tokens on average.
We calculated polarity (negativity/positivity) of each narrative unit using RoBERTa-based sentiment
analysis classifier (215 22). If characters v; and v; appear in a narrative unit uy, we assigned a binary
sentiment label € {0, 1} to the edge e; ;. The binary label was calculated via argmax(o(l))), where
o is a sigmoid function and [, € R? is the logits of a narrative unit uy, calculated by the sentiment

10
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classifier. If v; and v; concurrently appear in multiple narrative units, our program calculates the
mean of the logits of uj’s and then applies the sigmoid function:

1
e = argmam(a(ﬁ Z k)
k

where n is the number of narrative units in which v; and v; appear together. Note that, in network
analysis, we used —1 as the negative label, instead of 0, for analytical convenience. In short, the
signed networks in this study are undirected simple graphs with a binary weight of {—1, 1}, where
—1 denotes a negative relationship and 1 is assigned to a positive relationship.

Vertex contractions A common approach to construct character networks is to merge vertices
representing the same characters into one, aiming to simulate more realistic social relationships
(27;128). We first apply Transformer-based Named Entity Recognition to identify character names
in a story (with precision, recall, and F-score of 0.90 in SpaCy version 3.8.0) (29). Next, character
genders are estimated as either male, female, or unknown based on their title (i.e. Mr., Mrs., Ms., if
any) and the lists of 2940 male and 4987 female namesﬂ (23;128). Third, our pipeline creates a list of
possible referents for each character name based on the following rules:

* Add possible nicknames based on the first name (i.e. Tomas — Tom, Tommy) from the
predefined list(12; 23; 1285 130)

* Add possible combinations of parsed name elements using customized
python-nameparserﬂ (i.e. Mr. Sherlock Holmes — Mr. Holmes, Sherlock, Sherlock
Holmes, Holmes). (12} (13523} 128))

Then, a vertex contraction is performed between two vertices if (1) the genders of the two vertices do
not conflict (e.g. male and female characters were not merged whereas male and unknown characters
were sometimes integrated), (2) the name of v; is in the referent list of v; and vice versa, and (3) their
titles do not conflict, if any. If two distinct vertices possibly refer to the same name vy, the character
name that appears more in the story absorbs vy. For instance, if a vertex Holmes possibly belongs to
other vertices Sherlock Holmes or Mycroft Holmes, we contract vertices Holmes and Sherlock
Holmes since the name Sherlock Holmes appears more often. When contracted, the edge between
the two vertices is simply removed.

Exclusion criteria To analyze only non-trivial networks that are meaningfully dense, we filter
out character networks whose node count is less than 10 or density is less than 0.1. We eventually
selected 251 networks from GPT 4o, 249 networks from GPT 40 Mini, 252 networks from Gemini
1.5 Pro, 249 networks from Gemini 1.5 Flash, and 168 networks from Project Gutenberg.

Appendix C: Connectivity measures

We analyzed multiple connectivity measures using the NetworkX library and self-made functions.
For each network, we also extracted two subgraphs (one consisting of only positive edges and another
only with negative edges) and applied some of the metrics tested on the original network. We refer to
the original networks both with positive and negative edges as original networks, the subgraphs with
positive edges as positive networks, and the subgraphs with negative edges as negative networks.

Density (9; [135 23 124) of a graph takes a value from O to 1 and is calculated as
2m

n(n—1)

where m is the number of edges and n is the number of vertices in the graph.

d:

Average edge weight is calculated as the sum of edge weights divided by the number of edges:

Z?;1 Wi

m

aew =

3Source: https://www.cs.cmu.edu/Groups/Al/areas/nlp/corpora/names/
4Source: https://en.wiktionary.org/wiki/Appendix:English_given_names
>Source: https://nameparser.readthedocs.io/en/latest/
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where w; is the weight of the ’th edge in the graph. The average edge weight ranges from —1 to 1
and is introduced to measure the overall positivity/negativity of a character network. We note that the
edge weight of a positive network is 1 and that of a negative network is -1.

Average clustering coefficient (9} [10; [11; 23} 245 125) is calculated by taking the average of the
clustering coefficients of each node. The clustering coefficient of a vertex is the number of edges in
the subgraph induced by the neighborhood of the vertex v;, divided by (1“21) , where k; is the number
of neighbors of v;. Therefore, average clustering coefficient is calculated as:

1 & 2;
C_ﬁ;ki(ki—l)

where [; is the number of edges between the k; neighbors. The average clustering coefficient measures
the small-world-ness of a network by quantifying how much the neighbors of vertices are tied together
(31:132).

Assortativity mixing (9;24) quantifies how likely vertices of similar numeric values are to be adjacent
to each other and ranges from —1 (vertices of the same category are less likely to be adjacent) through
1 (vertices of the same category are more likely to be adjacent). To assign categories to each vertex,
we first calculated the weighted average neighbor degree of each vertex v;:

1
avg_ndi = E ‘ Z U)iij
JEN (v;)

where k; is the degree of v;, N(v;) is the set of v;’s neighbors, and s; is the weighted degree of
the neighbor v;. The weighted average neighbor degree focuses on what type of relationships the
neighboring vertices are involved in and what relationships the character v; have with these neighbors.
Therefore, this metric serves as the indicator of the positivity/negativity of character personalities and,
intuitively, quantifies the heroic and villainous nature of a character. We note that, when calculating
the weighted average neighbor degree, in contrast to the common derivation, we divide the summation
by k; (unweighted degree) instead of by s; (weighted degree) and use s; instead of k; inside the sum.
We divide by k; to avoid the weighted average neighbor degree being positive when a vertex v; has
dominantly more negative edges. We multiply w;; by s; to ensure that when a vertex has a negative
relationship w;; with a character who has a negative weighted degree s;, v; gains a positive score
(i.e., I am the enemy of their enemy, so I am their friend).

Appendix D: Wasserstein distances

The following heatmaps visualize Wasserstein distances for pairs of score distributions. Overall,
human stories have the greatest Wasserstein distances with all the LLM stories in almost every metric,
whereas LLMs maintain relatively smaller distances with each other. One interesting finding, which
can also be inferred from Table[I] is that the Wasserstein distances of GPT 40 Mini with other writers
are the highest in assortativity mixing. Nonetheless, humans have the second largest distances from
other writers.

12
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Figure 2: Wasserstein distances (WD) between pairs of distributions for the connectivity measures.

Overall, human-written stories have the highest distances with LLMs, while the models have relatively
close distributions with each other.
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Appendix E: Density and average clustering of positive and negative networks

Table 2| below shows density and average clustering coefficient of positive and negative networks.
Notably, these two measures mark higher scores in positive networks of LLM-generated stories,
whereas they are higher in negative networks of human-written stories.

Positive Networks Negative Networks
Density Avg Clustering Density Avg Clustering
Models mean std mean std mean std mean std
GPT 4o 0.354 0.088 0.572 0.090 | 0.253 0.185 0.072 0.136

GPT 40 Mini 0.395 0.092 0.587 0.116 | 0.254 0.066 0.139 0.113
Gemini 1.5 Pro | 0.338 0.087 0.589 0.095 | 0.222 0.073 0.212 0.138
Gemini 1.5 Flash | 0.315 0.073 0.531 0.128 | 0.261 0.107 0.209 0.176
Humans 0294 0.135 0.259 0.223 | 0.313 0.163 0.395 0.229

Table 2: The mean and standard deviation of Density and Average Clustering (Avg Clustering). The
sample sizes of the models after filtering are: GPT 40 (n = 251), GPT 40 Mini (n = 249), Gemini
1.5 Pro (n = 252), Gemini 1.5 Flash (n = 249), and Humans/Project Gutenberg (n = 168).

Appendix F: t-test

We ran Welch’s t-tests for two independently-sampled sets of scores, assuming that the variances
of the two sets of samples differ, with scipy.stats.ttest_ind function. The null hypothesis is
Ho @ fomny s = Py - High p-values indicate that, at a certain statistical significance level, we
cannot reject the null hypothesis that the means of the two score sets from different models are
identical. For every metric except for the assortativity mixing and the average clustering of negative
networks, the sample size of scores for each writer was equal to the number of networks analyzed
(GPT 40: n = 251, GPT 40 Mini: n = 249, Gemini 1.5 Pro: n = 252, Gemini 1.5 Flash: n = 249,
and Humans: n = 168). We have smaller sample sizes for the two metrics above due to the system’s
inability to calculate them for some networks. In assortativity mixing, the sample size of humans is
n = 167, and the other sample sizes are equal to their network counts. For the clustering coefficient
of negative networks, GPT 40 has n = 245, Gemini 1.5 Flash has n = 247, humans have n = 166,
and GPT 40 Mini, Gemini 1.5 Pro do not have any missing instances.

Several metrics across some models, such as density (Gemini Pro and GPT 4o: p = 0.520) and
average clustering of positive networks (Gemini Pro and GPT 40 Mini: p = 0.792, GPT 40 and GPT
40 Mini: p = 0.116) and negative networks (Gemini Flash and Pro: p = 0.840), have high p-values,
indicating that the score samples from two distinct models are not unlikely to be drawn from the same
sample space. Interestingly, only the assortativity mixing consistently shows high p-values with a
couple of pairs that include humans (Gemini Flash and GPT 4o0: p = 0.852, Gemini Flash and Pro:
p = 0.607, Gemini Pro and GPT 4o0: p = 0.736, Gemini Flash and Humans: p = 0.165, GPT 40 and
Humans: p = 0.122). It is also noteworthy that, overall, the density of negative networks has high
p-values compared to positive networks (GPT 40 and GPT 40 Mini: p = 0.936, Gemini Flash and
GPT 4o0: p = 0.546, Gemini Flash and GPT 40 Mini: p = 0.369). Besides assortativity mixing, as
expected, p-values for pairs including human-written stories are consistently very low (p < 0.01),
except for the density of positive networks with Gemini 1.5 Flash (p = 0.070), which still indicates
the weak evidence for the null hypothesis.
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