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Abstract

Evaluating the creative capabilities of large language models (LLMs) in complex1

tasks often requires human assessments that are difficult to scale. We introduce a2

novel, scalable methodology for evaluating LLM story generation by analyzing3

underlying social structures in narratives as signed character networks. To4

demonstrate its effectiveness, we conduct a large-scale comparative analysis5

of over 1,200 stories, generated by four leading LLMs (GPT-4o, GPT-4o mini,6

Gemini 1.5 Pro, and Gemini 1.5 Flash) and a human-written corpus. Our findings,7

based on network properties like density, clustering, and signed edge weights,8

show that LLM-generated stories consistently exhibit a strong bias toward tightly-9

knit, positive relationships, which aligns with findings from prior research using10

human assessment. Our proposed approach provides a valuable tool for evaluating11

limitations and tendencies in the creative storytelling of current and future LLMs.12

1 Introduction13

The rise of capable large language models (LLMs) in the past few years has sparked research interest14

in applying them to complex tasks, such as coding and agentic planning (1; 2). Although many15

evaluation metrics have been proposed to assess their behaviors in such domains, evaluations of their16

creative performance are still understudied (3; 4). One example of complex, creative tasks is story17

generation, and prior research has discovered that LLM-generated stories tends to focus on positive18

plot progression, and are less dynamic and inferior to human experts in terms of creativity (5; 6; 7; 8).19

However, evaluating creative writing is often qualitative, requiring labor-intensive human assessment,20

and suffers from low efficiency and scalability. We propose a novel, quantitative methodology that21

leverages character networks and evaluates LLMs’ complex behaviors in story generation by focusing22

on the structure of narrative character interactions. A character network models the relationships23

between narrative characters by representing them as vertices and their interactions as edges. Our24

analysis shows that the networks of LLM-generated stories exhibit significantly higher density,25

clustering, and a strong bias towards positive relationships, revealing a systemic tendency to create26

more tightly-knit and less conflict-driven social dynamics than those found in human-written stories.27

Notably, this conclusion is supported by various evaluations such as plot progression analysis and28

human assessment (5; 6; 7).29

Although several works apply character network analysis to human-written narratives (9; 10; 11; 12;30

13), to our knowledge, none have focused on the networks of LLM-generated stories. To demonstrate31

the effectiveness of our proposed approach, in this study, we use our method to investigate LLMs’32

creativity in story generation compared to humans. We extracted networks from over 1,200 LLM-33

generated and human-written stories and conducted a large-scale analysis. Potential contributions34

of our research are as follows: (1) we introduce a scalable framework for the quantitative network35

analysis of AI-generated narratives, which reveals underlying tendencies of LLM story generation;36
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(2) this is the first work applying network analysis to LLM-generated stories; and (3) our comparative37

analysis provides empirical evidence that LLMs construct positive-biased narrative social structures38

relative to humans.39

2 Related work40

LLMs in creative writing Motivated by the advancement of LLMs’ performance, researchers have41

investigated the models’ creativity in story writing. They discovered that LLM-generated stories are42

prone to construct positive plot and are inferior to human writing in terms of diversity, novelty, and43

surprise through evaluation methods involving human annotation (5; 6; 7). There are also research44

endeavors to establish evaluation frameworks for LLM creativity with human evaluators/AI systems45

(6; 14; 15).46

Character network analysis Early foundational work established methodologies for extracting47

character relationships from novels, legends, movies, and comics through co-occurrence analysis,48

conversation tracking, and coreference resolution (9; 10; 11; 12; 13). Genre classification and49

narrative analysis through network properties have shown promising results, indicating networks are50

a good model of social dynamics (9; 12; 13). Although various edge properties are used to model51

social structures, signed scores (negative/positive labels of relationships) are one of the most popular52

approaches for its simplicity (12; 16; 17; 18). In this study, we conduct an extensive analysis on53

signed networks from LLM-written short stories.54

3 Methodology55

In this section, we introduce the overview of our methodology, specifically regarding story generation,56

network extraction, and metrics. To conduct comparative evaluation, we collect approximately 25057

science-fiction short stories from GPT 4o, GPT 4o Mini, Gemini 1.5 Pro, Gemini 1.5 Flash, and58

Project Gutenberg, respectively (19; 20).1 Further details about story generation and the selection59

criteria of human-written stories are provided in Appendix A.60

Next, we extract character networks from the stories with our automated pipeline. The process starts61

by splitting a story into approximately 100 narrative units. We then calculate the negative/positive62

label of each narrative unit using a RoBERTa-based sentiment classifier (21; 22). The relationship63

labels between two characters are determined based on their co-occurrences in narrative units64

with negative or positive labels. After constructing a network with characters (vertices) and their65

relationships (edge weights ∈ {−1, 1}), the pipeline performs a vertex contraction if two characters66

are estimated to refer to the same character. We then remove sparse networks based on our exclusion67

criteria. Further details of network extraction and removal are outlined in Appendix B. We note68

the number of networks eventually obtained is 251 from GPT4o, 249 from GPT 4o Mini, 252 from69

Gemini 1.5 Pro, 249 from Gemini 1.5 Flash, and 168 from Project Gutenberg.70

We calculate multiple connectivity measures of a network using NetworkX and self-made functions.71

We use average edge weight, as well as density, average clustering coefficient, and assortativity72

mixing following prior research (9; 10; 11; 13; 23; 24; 25). In particular, average edge weight ranges73

from−1 to 1 and represents the overall polarity of a network. Average clustering coefficient quantifies74

the small-world-ness of a network, and assortativity mixing, ranging from −1 to 1, is designed to75

represent the homogeneity of interactions among heroic and villainous characters. The formulas and76

interpretations of the metrics are listed in Appendix C. We also extract two subgraphs (one consisting77

of only positive edges, which we call positive networks, and another only with negative edges, called78

negative networks), and calculate density and average clustering.79

4 Results80

Distribution analysis We analyze the distributions of connectivity scores to better understand the81

tendencies of LLMs and humans, which we collectively call writers, in story generation. Figure82

1 visualizes the score distributions of each metric. Overall, the scores of LLM-generated stories83

1Source: https://www.kaggle.com/datasets/shubchat/1002-short-stories-from-project-guttenberg
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fit in a similar range, while the scores of human-written stories (blue) spread out and diverge from84

LLM counterparts. In particular, assortativity scores demonstrate a relatively strong trend of data85

concentration among the AI models.86
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(b) Average Edge Weight
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(c) Average Clustering Coefficient
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(d) Assortativity Mixing

Figure 1: Violin plots of connectivity measure distributions. The horizontal axes show writers: from
the left, Gemini 1.5 Flash (green), GPT 4o mini (yellow), Gemini 1.5 Pro (purple), GPT 4o (red), and
Project Gutenberg (blue). LLM score distributions cluster in the somewhat same range.

To quantify distances between score distributions by writers, we calculate Wasserstein distances (see87

the heatmaps in Appendix D). Overall, human stories have the greatest Wasserstein distances with all88

the LLM stories in almost every metric, whereas LLMs maintain smaller distances with each other.89

Overall analysis We also calculate the mean and standard deviation of the score distribution of each90

writer and metric, which is outlined in Table 1. Notably, the average edge weight of LLM-generated91

stories are higher than that of human stories, which is −0.061, the only negative average edge weight.92

Moreover, density is also consistently higher in LLM-generated stories. We perform a similar analysis93

to positive and negative networks. The results show that positive networks are higher both in the94

density and average clustering relative to negative networks. The table is provided in Appendix E.95

Density Avg EW Avg Clustering Assort Mixing
Models mean std mean std mean std mean std

GPT 4o 0.372 0.097 0.659 0.214 0.665 0.087 0.047 0.168

GPT 4o Mini 0.470 0.094 0.235 0.214 0.766 0.062 −0.072 0.118

Gemini 1.5 Pro 0.378 0.112 0.312 0.227 0.709 0.082 0.052 0.151

Gemini 1.5 Flash 0.338 0.102 0.374 0.248 0.623 0.108 0.044 0.184
Humans 0.182 0.056 −0.061 0.398 0.485 0.140 0.012 0.260

Table 1: The mean and standard deviation of Density, Average Edge Weight (Avg EW), Average
Clustering (Avg Clustering), and Assortativity (Assort Mixing).

Statistical significance To rigorously measure similarities between pairs of score distributions, we96

conduct t-tests. The null hypothesis is that the means of the score distributions are equal. Several97
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metrics across models, such as density (Gemini Pro and GPT 4o: p = 0.520) and average clustering of98

positive networks (Gemini Pro and GPT 4o Mini: p = 0.792, GPT 4o and GPT 4o Mini: p = 0.116)99

and negative networks (Gemini Flash and Pro: p = 0.840) have high p-values, indicating that the100

scores samples from two distinct models are not unlikely to be drawn from the same sample space.101

Besides assortativity, as expected, p-values for pairs with human-written stories are consistently very102

low (p < 0.01) in almost every metrics. The details of the tests and results are in Appendix F.103

5 Discussion104

Similarities of LLM-generated stories in original networks Overall, the Wasserstein distances105

and t-tests show that LLMs have connectivity measure scores that cluster in identical ranges, while106

human-written stories are dispersed and distant from LLM-generated stories. Moreover, LLM-written107

stories tend to be denser, indicating more characters co-occur in the same narrative units compared108

to the human-written stories. Their relatively high average clustering coefficient also supports our109

observation that LLMs focus on tightly-knit character interactions.110

Positivity bias and plain relationship dynamics We can understand the relationship tendency111

prevalent in LLM-generated stories through the average edge weight, assortativity, and average112

clustering. As Table 1 shows, average edge weight is significantly higher in LLM-generated stories,113

indicating that the stories largely have positive relationship dynamics. Moreover, although there114

is some degree of standard deviation, the mean assortativity mixing of most LLM stories stays at115

around 0.05. This result suggests that there is a subtle trend that characters of similar weighted116

average neighbor degrees cluster together, i.e., they form slightly homogeneous interaction networks.117

Interestingly, GPT 4o Mini tends to generate slightly non-homogenious networks. The relatively high118

average clustering in LLMs also tells that the networks of LLM stories form relatively small worlds.119

Table 2 in Appendix E allows for a closer analysis of positive and negative subgraphs. It is noteworthy120

that LLM positive networks tend to be denser than the negative networks, and their average clustering121

coefficients are also considerably higher. These statistics indicate that a group of characters sharing122

positive relationships form a more intimate and tied network in LLM-generated stories, whereas123

the negative counterpart is sparse. Given that an edge is positive if two characters co-occur more in124

positive narrative units, the high clustering coefficient in positive networks implies that a group of125

amiable characters is prone to appear jointly in positive units repeatedly, which inhibits suspenseful or126

dramatic plot progression (e.g., the group of protagonists explores a dungeon, and the story proceeds127

by following their journey). These results show that LLMs generate stories that are biased toward128

positive relationships and devoid of dramatic dynamics. Interestingly, these results align with the129

past findings discovered through semi-manual plot analysis and creativity tests with human experts130

(5; 6; 7). This shows that our automated network-based evaluation method successfully identifies131

underlying tendencies in LLM story generation, aligning with human-annotated evaluations132

that focus on various aspects of narratives. Therefore, our methodology serves as a novel tool133

utilizing large-scale evaluation for LLM creative writing.134

6 Conclusion135

In this research, we propose a evaluation method of LLM creativity in story generation through136

character network analysis. We analyze the networks of short stories from four LLMs and a human137

story corpus. Our extensive analysis reveals that LLMs overly focus on positive relationships and138

lack creativity in dramatic narrative composition relative to human-written stories. These results139

also demonstrate the effectiveness of our large-scale, automated network analysis method to evaluate140

underlying strengths and limitations of LLMs in complex, creative tasks.141

There are many promising future extensions of this research. One can use different edge weights, such142

as conversations, mentions, and direct actions (12). Analyzing character networks from other genres143

than science fiction may also be of interest. Another future direction is to introduce more extensive144

human story datasets and examine potential similarities between LLM story generation with human145

storytelling. One can also apply our method to longer and larger LLM-generated stories, which146

would yield larger networks, and analyze community detection structures and robustness, potentially147

producing further interesting findings. Finally, future research should apply network analysis to other148

types of tasks that involve social structures to holistically understand LLM creativity.149

4



References150

[1] J. Jiang, F. Wang, J. Shen, S. Kim, and S. Kim, “A survey on large language models for code151

generation,” 2024. [Online]. Available: https://arxiv.org/abs/2406.00515152

[2] L. Wang, C. Ma, X. Feng, Z. Zhang, H. Yang, J. Zhang, Z. Chen, J. Tang, X. Chen, Y. Lin,153

W. X. Zhao, Z. Wei, and J. Wen, “A survey on large language model based autonomous154

agents,” Frontiers of Computer Science, vol. 18, no. 6, Mar. 2024. [Online]. Available:155

http://dx.doi.org/10.1007/s11704-024-40231-1156

[3] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. de Oliveira Pinto, J. Kaplan, H. Edwards, Y. Burda,157

N. Joseph, G. Brockman, A. Ray, R. Puri, G. Krueger, M. Petrov, H. Khlaaf, G. Sastry,158

P. Mishkin, B. Chan, S. Gray, N. Ryder, M. Pavlov, A. Power, L. Kaiser, M. Bavarian, C. Winter,159

P. Tillet, F. P. Such, D. Cummings, M. Plappert, F. Chantzis, E. Barnes, A. Herbert-Voss, W. H.160

Guss, A. Nichol, A. Paino, N. Tezak, J. Tang, I. Babuschkin, S. Balaji, S. Jain, W. Saunders,161

C. Hesse, A. N. Carr, J. Leike, J. Achiam, V. Misra, E. Morikawa, A. Radford, M. Knight,162

M. Brundage, M. Murati, K. Mayer, P. Welinder, B. McGrew, D. Amodei, S. McCandlish,163

I. Sutskever, and W. Zaremba, “Evaluating large language models trained on code,” 2021.164

[Online]. Available: https://arxiv.org/abs/2107.03374165

[4] X. Liu, H. Yu, H. Zhang, Y. Xu, X. Lei, H. Lai, Y. Gu, H. Ding, K. Men, K. Yang,166

S. Zhang, X. Deng, A. Zeng, Z. Du, C. Zhang, S. Shen, T. Zhang, Y. Su, H. Sun, M. Huang,167

Y. Dong, and J. Tang, “Agentbench: Evaluating llms as agents,” 2023. [Online]. Available:168

https://arxiv.org/abs/2308.03688169

[5] Y. Tian, T. Huang, M. Liu, D. Jiang, A. Spangher, M. Chen, J. May, and N. Peng, “Are large170

language models capable of generating human-level narratives?” in Proceedings of the 2024171

Conference on Empirical Methods in Natural Language Processing, Y. Al-Onaizan, M. Bansal,172

and Y.-N. Chen, Eds. Miami, Florida, USA: Association for Computational Linguistics, Nov.173

2024, pp. 17 659–17 681. [Online]. Available: https://aclanthology.org/2024.emnlp-main.978/174

[6] T. Chakrabarty, P. Laban, D. Agarwal, S. Muresan, and C.-S. Wu, “Art or artifice? large language175

models and the false promise of creativity,” in Proceedings of the 2024 CHI Conference on176

Human Factors in Computing Systems, ser. CHI ’24. New York, NY, USA: Association for177

Computing Machinery, 2024. [Online]. Available: https://doi.org/10.1145/3613904.3642731178

[7] M. Ismayilzada, C. Stevenson, and L. van der Plas, “Evaluating creative short story generation179

in humans and large language models,” 2025, https://arxiv.org/abs/2411.02316.180

[8] Z. Xie, T. Cohn, and J. H. Lau, “The next chapter: A study of large language models in181

storytelling,” 2023, https://arxiv.org/abs/2301.09790.182

[9] A. J. Holanda, M. Matias, S. M. S. P. Ferreira, G. M. L. Benevides, and O. Kinouchi, “Character183

networks and book genre classification,” 2018, https://arxiv.org/abs/1704.08197.184

[10] R. Alberich, J. Miro-Julia, and F. Rossello, “Marvel universe looks almost like a real social185

network,” 2002, https://arxiv.org/abs/cond-mat/0202174.186

[11] P. M. Gleiser, “How to become a superhero,” Journal of Statistical Mechanics: Theory and187

Experiment, vol. 2007, no. 09, p. P09020–P09020, Sep. 2007, http://dx.doi.org/10.1088/1742-188

5468/2007/09/P09020.189

[12] V. Labatut and X. Bost, “Extraction and analysis of fictional character networks: A survey,”190

ACM Computing Surveys, vol. 52, no. 5, p. 1–40, Sep. 2019, http://dx.doi.org/10.1145/3344548.191

[13] D. Elson, N. Dames, and K. McKeown, “Extracting social networks from literary fiction,” in192

Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics,193
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Appendix A: Story generation259

A.1 Human short stories260

To compare LLM-generated stories with human-written ones, we collected 255 short stories from261

a dataset of 1,002 stories extracted from the Project Gutenberg dataset.2 We classified their genres262

using Gemini 2.0 Flash (26) and collected only science fiction since it was the most frequent genre in263

the dataset. We also filtered out stories whose approximate word count is less than 3,000 or is larger264

than 15,000 in order to align the length with LLM-generated stories.265

A.2 LLM short stories266

We used four major LLMs: OpenAI GPT4o, GPT4o-mini (19), Google Gemini-1.5-pro, and Gemini-267

1.5-flash (20), each of which generated around 250 science-fiction short stories. To ensure generality,268

we created a predefined prompt template for character generation, plot planning, and story generation.269

To maximize the randomness, we set temperature to 1. We also configured top_p to 0.95 (8) and270

top_k to 40. For models that do not accept certain parameters, we used their default configurations.271

The models first generate the plot of 10 chapters and the demography of 19 characters with the272

chapter numbers where they appear. We derived the number of characters 19 by taking the average273

of character counts in the 255 human stories. This is to control the node count and focus solely on274

relationships between characters. We insert a chapter description and the list of characters into the275

chat log before a model generates a chapter, in order to maintain the consistency of the story context.276

The algorithm of story generation is reproduced below.277

Algorithm 1: Story Generation
Require :System prompt: S; Plot prompt: P ; Character prompt: CR; Chapter prompt: CH;

i’th chapter: CHi; Text generation function: f ; Concatenation operation: ⊕;
Input :Number of chapters: N ; Generation configuration: C;
Initialize :Session log: session← [ ]; List of chapter descriptions: plot← [ ]; Character list:

characters← [ ]; Chapter i: chapteri; Story: story← “ ”
1 session← S ⊕ P ;
2 plot : [plot1, plot2, . . . , plotn]← f(session, C);
3 session← session⊕ plot⊕ CR;
4 characters = f(session, C);
5 for i← 1 to N do
6 session← session⊕ CH ⊕ characters⊕ ploti;
7 chapteri ← f(session, C);
8 session← session⊕ chapteri;
9 story← story⊕ chapteri;

10 return story

278

Prompt template This section provides the details of the prompt template. As Algorithm 1 shows,279

the prompt template for story generation consists of the system prompt, the prompt for plot generation280

(plot prompt), the prompt for character generation (character prompt), and the prompt for chapter281

writing (chapter prompt).282

System Prompt

### Instruction ###
You are a professional novelist. You will write a science fiction story of 10 chapters with 19
characters.

283

2Source: https://www.kaggle.com/datasets/shubchat/1002-short-stories-from-project-guttenberg
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Plot Prompt

Write the title in the first line. Next, use 1 sentence to write the plot for each of the 10
chapters. The Chapter number and description should start in the same line (i.e. Chapter 1:
[description]). Start with Chapter 1:
### Plot ###

284

Character Prompt

### Instruction ###
Next, use 1 sentences to write each of 19 characters and chapters where they appear.
### Characters ###

285

Chapter Prompt (Chapter 1)

### Instruction ###
Use 800 words to write the first chapter.
### Story ###

286

Chapter Prompt (After Chapter 1)

### Instruction ###
Use 800 words to write the next chapter.
### Characters ###
The character list created with the character prompt is inserted here.
### Plot ###
The plot of the corresponding chapter is inserted here.
### Story ###

287

A.3 Example short story288

The following is a short story generated by GPT 4o. We show only the first paragraph of each chapter.289

**The Astral Resonance**290

**Chapter 1: The Call to the Stars** In the immense expanse of the universe, where291

countless stars blinked into infinity, a lone spaceship named the Horizon cut its292

path through the cosmic vastness. Its sleek design and shimmering hull reflected293

the pinpricks of starlight as it moved with purpose. Onboard, Captain Elara294

Cassiopeia studied a transmission that had recently arrived from the Galactic295

Consortium, her brow furrowed in concentration...296

**Chapter 2: Echoes of the Past** The Horizon cruised through the dark sea of297

space, a beacon of human ingenuity amidst the endless celestial expanse. Onboard,298

a palpable sense of anticipation filled the corridors, each crew member fully299

aware of the monumental task that lay ahead. Captain Elara Cassiopeia gathered300

her team in the briefing room, the hub of their operations, where a large301

holographic display floated in the center, showing the trajectory toward the302

enigmatic signal...303

**Chapter 3: The Guardian Emerges** The Horizon hovered in the asteroid belt, its304

engines humming softly as the crew worked diligently to decode the complexities305

of the ancient distress call. Amidst the rugged celestial debris, their mission306

was to extract every ounce of knowledge from the relics of a civilization long307

lost to time. Each fragment they uncovered was a piece of a grand puzzle, and308

they were determined to see the full picture...309

**Chapter 4: A Clash of Wills** The Horizon remained nestled within the asteroid310

belt, a silent sentinel on the edge of discovery. After forging an unexpected311
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alliance with the enigmatic Captain Solaris, the crew was meticulously working312

through the decoded information, piece by piece, striving to unearth the secrets313

of the ancient civilization’s warning. Each revelation was a step closer to314

understanding the looming cosmic threat, an understanding crucial to averting315

disaster...316

**Chapter 5: Deciphering Elysium’s Enigma** The Horizon, accompanied by Valeria317

Thrace’s formidable ship, descended through the murky atmosphere of the desolate318

planet known as Elysium. The planet’s surface was a barren landscape of rocky319

crags and swirling dust storms, an inhospitable environment that hid secrets320

buried deep beneath its crust. Yet it was here that the ancient civilization had321

left their cryptic messages, a final testament to their existence...322

**Chapter 6: The Gateway Unveiled** Back aboard the Horizon, tension simmered323

with a mixture of exhilaration and foreboding. The latest discoveries on Elysium324

had propelled the crew further into the ancient civilization’s enigma, but it325

was Dr. Vela Rayne’s unraveling of the signal that now held center stage. In the326

ship’s lab, Vela sat surrounded by holographic displays, her mind racing with327

connections, all leading to a startling conclusion that could tip the balance of328

power in the galaxy...329

**Chapter 7: The Awakening of Aether** The mesmerizing swirl of the330

interdimensional portal gradually stabilized, allowing the crews of the Horizon331

and Valeria Thrace’s ship to step cautiously into the realm beyond. The transition332

was seamless, yet surreal; they found themselves on the threshold of a dimension333

where reality shimmered with fluid unpredictability, challenging their senses and334

perceptions. Yet, the explorers knew their mission extended far beyond marveling335

at this new world...336

**Chapter 8: Uniting Forces Amidst Tension** The Horizon hovered within the337

interdimensional realm, a nexus of possibility that shimmered with spectral338

colors. The discovery of the portal’s potential and the awakening of Aether had339

propelled the crew into uncharted territory, but their path forward was fraught340

with tension and division. With the rogue AI’s promise of knowledge and impending341

threats, time was an adversary that loomed larger by the minute...342

**Chapter 9: The Battle for Control** The calm after the portal’s stabilization was343

short-lived. The sense of accomplishment among the crew of the Horizon and Valeria344

Thrace’s ship was overshadowed by an ominous realization—the balance they had so345

carefully preserved was under threat. Aether’s departure had awakened something346

dormant, and the portal’s energies began to tremble with renewed intensity...347

**Chapter 10: The Final Sacrifice** The aftermath of the battle left the cosmos348

momentarily still, yet an underlying tension remained, echoing through the fabric349

of space. The portal, now secured, pulsed with a serene luminescence, its energies350

more stable yet still connected to a vast and unpredictable continuum. Within the351

Horizon, a solemn determination pervaded the crew, aware that their mission was352

not yet complete...353

Appendix B: Network extraction354

Graph structure Previous works have explored several types of networks, such as conversation,355

mention, and direct-action networks (12). In this research, we focus on co-occurrence networks356

for their simplicity. In co-occurrence networks, characters vi and vj are said to have an interaction357

eij if they concurrently appear in the same unit of a story (narrative unit) (12). The length of a358

narrative unit was set to ⌊0.01 × N⌋ sentences, where N is the total number of sentences in the359

story. Each narrative unit of LLM-generated stories contains approximately 83 tokens on average.360

We calculated polarity (negativity/positivity) of each narrative unit using RoBERTa-based sentiment361

analysis classifier (21; 22). If characters vi and vj appear in a narrative unit uk, we assigned a binary362

sentiment label ∈ {0, 1} to the edge ei,j . The binary label was calculated via argmax(σ(lk)), where363

σ is a sigmoid function and lk ∈ R2 is the logits of a narrative unit uk calculated by the sentiment364
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classifier. If vi and vj concurrently appear in multiple narrative units, our program calculates the365

mean of the logits of uk’s and then applies the sigmoid function:366

eij = argmax(σ(
1

n

∑
k

lk)

where n is the number of narrative units in which vi and vj appear together. Note that, in network367

analysis, we used −1 as the negative label, instead of 0, for analytical convenience. In short, the368

signed networks in this study are undirected simple graphs with a binary weight of {−1, 1}, where369

−1 denotes a negative relationship and 1 is assigned to a positive relationship.370

Vertex contractions A common approach to construct character networks is to merge vertices371

representing the same characters into one, aiming to simulate more realistic social relationships372

(27; 28). We first apply Transformer-based Named Entity Recognition to identify character names373

in a story (with precision, recall, and F-score of 0.90 in SpaCy version 3.8.0) (29). Next, character374

genders are estimated as either male, female, or unknown based on their title (i.e. Mr., Mrs., Ms., if375

any) and the lists of 2940 male and 4987 female names3 (23; 28). Third, our pipeline creates a list of376

possible referents for each character name based on the following rules:377

• Add possible nicknames based on the first name (i.e. Tomas→ Tom, Tommy) from the378

predefined lists4 (12; 23; 28; 30)379

• Add possible combinations of parsed name elements using customized380

python-nameparser5 (i.e. Mr. Sherlock Holmes → Mr. Holmes, Sherlock, Sherlock381

Holmes, Holmes). (12; 13; 23; 28)382

Then, a vertex contraction is performed between two vertices if (1) the genders of the two vertices do383

not conflict (e.g. male and female characters were not merged whereas male and unknown characters384

were sometimes integrated), (2) the name of vi is in the referent list of vj and vice versa, and (3) their385

titles do not conflict, if any. If two distinct vertices possibly refer to the same name vk, the character386

name that appears more in the story absorbs vk. For instance, if a vertex Holmes possibly belongs to387

other vertices Sherlock Holmes or Mycroft Holmes, we contract vertices Holmes and Sherlock388

Holmes since the name Sherlock Holmes appears more often. When contracted, the edge between389

the two vertices is simply removed.390

Exclusion criteria To analyze only non-trivial networks that are meaningfully dense, we filter391

out character networks whose node count is less than 10 or density is less than 0.1. We eventually392

selected 251 networks from GPT 4o, 249 networks from GPT 4o Mini, 252 networks from Gemini393

1.5 Pro, 249 networks from Gemini 1.5 Flash, and 168 networks from Project Gutenberg.394

Appendix C: Connectivity measures395

We analyzed multiple connectivity measures using the NetworkX library and self-made functions.396

For each network, we also extracted two subgraphs (one consisting of only positive edges and another397

only with negative edges) and applied some of the metrics tested on the original network. We refer to398

the original networks both with positive and negative edges as original networks, the subgraphs with399

positive edges as positive networks, and the subgraphs with negative edges as negative networks.400

Density (9; 13; 23; 24) of a graph takes a value from 0 to 1 and is calculated as401

d =
2m

n(n− 1)

where m is the number of edges and n is the number of vertices in the graph.402

Average edge weight is calculated as the sum of edge weights divided by the number of edges:403

aew =

∑m
i=1 wi

m
3Source: https://www.cs.cmu.edu/Groups/AI/areas/nlp/corpora/names/
4Source: https://en.wiktionary.org/wiki/Appendix:English_given_names
5Source: https://nameparser.readthedocs.io/en/latest/
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where wi is the weight of the i’th edge in the graph. The average edge weight ranges from −1 to 1404

and is introduced to measure the overall positivity/negativity of a character network. We note that the405

edge weight of a positive network is 1 and that of a negative network is -1.406

Average clustering coefficient (9; 10; 11; 23; 24; 25) is calculated by taking the average of the407

clustering coefficients of each node. The clustering coefficient of a vertex is the number of edges in408

the subgraph induced by the neighborhood of the vertex vi, divided by
(
ki

2

)
, where ki is the number409

of neighbors of vi. Therefore, average clustering coefficient is calculated as:410

c =
1

n

n∑
i=1

2li
ki(ki − 1)

where li is the number of edges between the ki neighbors. The average clustering coefficient measures411

the small-world-ness of a network by quantifying how much the neighbors of vertices are tied together412

(31; 32).413

Assortativity mixing (9; 24) quantifies how likely vertices of similar numeric values are to be adjacent414

to each other and ranges from−1 (vertices of the same category are less likely to be adjacent) through415

1 (vertices of the same category are more likely to be adjacent). To assign categories to each vertex,416

we first calculated the weighted average neighbor degree of each vertex vi:417

avg_ndi =
1

ki

∑
j∈N(vi)

wijsj

where ki is the degree of vi, N(vi) is the set of vi’s neighbors, and sj is the weighted degree of418

the neighbor vj . The weighted average neighbor degree focuses on what type of relationships the419

neighboring vertices are involved in and what relationships the character vi have with these neighbors.420

Therefore, this metric serves as the indicator of the positivity/negativity of character personalities and,421

intuitively, quantifies the heroic and villainous nature of a character. We note that, when calculating422

the weighted average neighbor degree, in contrast to the common derivation, we divide the summation423

by ki (unweighted degree) instead of by si (weighted degree) and use sj instead of kj inside the sum.424

We divide by ki to avoid the weighted average neighbor degree being positive when a vertex vi has425

dominantly more negative edges. We multiply wij by sj to ensure that when a vertex has a negative426

relationship wij with a character who has a negative weighted degree sj , vi gains a positive score427

(i.e., I am the enemy of their enemy, so I am their friend).428

Appendix D: Wasserstein distances429

The following heatmaps visualize Wasserstein distances for pairs of score distributions. Overall,430

human stories have the greatest Wasserstein distances with all the LLM stories in almost every metric,431

whereas LLMs maintain relatively smaller distances with each other. One interesting finding, which432

can also be inferred from Table 1, is that the Wasserstein distances of GPT 4o Mini with other writers433

are the highest in assortativity mixing. Nonetheless, humans have the second largest distances from434

other writers.435
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Figure 2: Wasserstein distances (WD) between pairs of distributions for the connectivity measures.
Overall, human-written stories have the highest distances with LLMs, while the models have relatively
close distributions with each other.
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Appendix E: Density and average clustering of positive and negative networks436

Table 2 below shows density and average clustering coefficient of positive and negative networks.437

Notably, these two measures mark higher scores in positive networks of LLM-generated stories,438

whereas they are higher in negative networks of human-written stories.439

Positive Networks Negative Networks
Density Avg Clustering Density Avg Clustering

Models mean std mean std mean std mean std

GPT 4o 0.354 0.088 0.572 0.090 0.253 0.185 0.072 0.136
GPT 4o Mini 0.395 0.092 0.587 0.116 0.254 0.066 0.139 0.113

Gemini 1.5 Pro 0.338 0.087 0.589 0.095 0.222 0.073 0.212 0.138
Gemini 1.5 Flash 0.315 0.073 0.531 0.128 0.261 0.107 0.209 0.176

Humans 0.294 0.135 0.259 0.223 0.313 0.163 0.395 0.229

Table 2: The mean and standard deviation of Density and Average Clustering (Avg Clustering). The
sample sizes of the models after filtering are: GPT 4o (n = 251), GPT 4o Mini (n = 249), Gemini
1.5 Pro (n = 252), Gemini 1.5 Flash (n = 249), and Humans/Project Gutenberg (n = 168).

Appendix F: t-test440

We ran Welch’s t-tests for two independently-sampled sets of scores, assuming that the variances441

of the two sets of samples differ, with scipy.stats.ttest_ind function. The null hypothesis is442

H0 : µmLLM1
= µmLLM2

. High p-values indicate that, at a certain statistical significance level, we443

cannot reject the null hypothesis that the means of the two score sets from different models are444

identical. For every metric except for the assortativity mixing and the average clustering of negative445

networks, the sample size of scores for each writer was equal to the number of networks analyzed446

(GPT 4o: n = 251, GPT 4o Mini: n = 249, Gemini 1.5 Pro: n = 252, Gemini 1.5 Flash: n = 249,447

and Humans: n = 168). We have smaller sample sizes for the two metrics above due to the system’s448

inability to calculate them for some networks. In assortativity mixing, the sample size of humans is449

n = 167, and the other sample sizes are equal to their network counts. For the clustering coefficient450

of negative networks, GPT 4o has n = 245, Gemini 1.5 Flash has n = 247, humans have n = 166,451

and GPT 4o Mini, Gemini 1.5 Pro do not have any missing instances.452

Several metrics across some models, such as density (Gemini Pro and GPT 4o: p = 0.520) and453

average clustering of positive networks (Gemini Pro and GPT 4o Mini: p = 0.792, GPT 4o and GPT454

4o Mini: p = 0.116) and negative networks (Gemini Flash and Pro: p = 0.840), have high p-values,455

indicating that the score samples from two distinct models are not unlikely to be drawn from the same456

sample space. Interestingly, only the assortativity mixing consistently shows high p-values with a457

couple of pairs that include humans (Gemini Flash and GPT 4o: p = 0.852, Gemini Flash and Pro:458

p = 0.607, Gemini Pro and GPT 4o: p = 0.736, Gemini Flash and Humans: p = 0.165, GPT 4o and459

Humans: p = 0.122). It is also noteworthy that, overall, the density of negative networks has high460

p-values compared to positive networks (GPT 4o and GPT 4o Mini: p = 0.936, Gemini Flash and461

GPT 4o: p = 0.546, Gemini Flash and GPT 4o Mini: p = 0.369). Besides assortativity mixing, as462

expected, p-values for pairs including human-written stories are consistently very low (p < 0.01),463

except for the density of positive networks with Gemini 1.5 Flash (p = 0.070), which still indicates464

the weak evidence for the null hypothesis.465
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