

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 FAST ESCAPE, SLOW CONVERGENCE: LEARNING DYNAMICS OF PHASE RETRIEVAL UNDER POWER-LAW DATA

Anonymous authors

Paper under double-blind review

ABSTRACT

Scaling laws describe how learning performance improves with data, compute, or training time, and have become a central theme in modern deep learning. We study this phenomenon in a canonical nonlinear model: phase retrieval with anisotropic Gaussian inputs whose covariance spectrum follows a power law. Unlike the isotropic case, where dynamics collapse to a two-dimensional system, anisotropy yields a qualitatively new regime in which an infinite hierarchy of coupled equations governs the evolution of the summary statistics. We develop a tractable reduction that reveals a three-phase trajectory: (i) fast escape from low alignment, (ii) slow convergence of the summary statistics, and (iii) spectral-tail learning in low-variance directions. From this decomposition, we derive explicit scaling laws for the mean-squared error, showing how spectral decay dictates convergence times and error curves. Experiments confirm the predicted phases and exponents. These results provide the first rigorous characterization of scaling laws in nonlinear regression with anisotropic data, highlighting how anisotropy reshapes learning dynamics.

1 INTRODUCTION

Scaling laws quantify how the performance of a learning algorithm varies with resources such as training time, dataset size, or model capacity. Empirically, losses often follow simple power laws across wide ranges of data and computation, enabling forecasting from a handful of measurements (Hestness et al., 2017; Kaplan et al., 2020; Hoffmann et al., 2022). These regularities naturally raise the fundamental question: *when and how do such laws emerge from first principles?*

Despite their central role in modern deep learning practice, neural scaling laws remain theoretically poorly understood. A notable exception is provided by linear models, where the scaling of the generalization error has been thoroughly analysed within the classical kernel literature, encompassing both ridge regression (Caponnetto & De Vito, 2007; Rudi & Rosasco, 2017) and stochastic gradient descent (Yao et al., 2007; Ying & Pontil, 2008; Carratino et al., 2018; Pillaud-Vivien et al., 2018; Kunstner & Bach, 2025). Recent developments in this direction, driven by the empirical observations of cross-overs and bottlenecks in the context of neural networks, demonstrate that analogous phenomena are already present in linear settings (Cui et al., 2021; Defilippis et al., 2024; Bahri et al., 2024; Maloney et al., 2022; Atanasov et al., 2024; Paquette et al., 2024; Bordelon et al., 2024; Lin et al., 2024). By contrast, *nonlinear* settings, ubiquitous in practice (e.g., functional data, learned feature maps, or embeddings with heavy spectral tails), remains far less understood.

We address this gap in the canonical nonlinear regression problem of phase retrieval:

$$y = \langle x, w^* \rangle^2 + \xi, \quad x \sim \mathcal{N}(0, Q),$$

where $w^* \in \mathbb{R}^d$ is the target vector, and Q has eigenvalues $(\lambda_i)_{i=1}^d$ obeying a power law $\lambda_i \propto i^{-a}$ with $a > 1$ and noise ξ . This model captures two core difficulties: (i) a nonconvex landscape, and (ii) strong anisotropy that induces highly unbalanced learning across directions.

Figure 1 illustrates this phenomenon: under the same initialization, noise level, stepsize, and optimization algorithm (SGD), the mean-square error (MSE) behaves differently depending on a . Intuitively, when a is larger, directions associated with small eigenvalues λ_i are harder to learn, so the

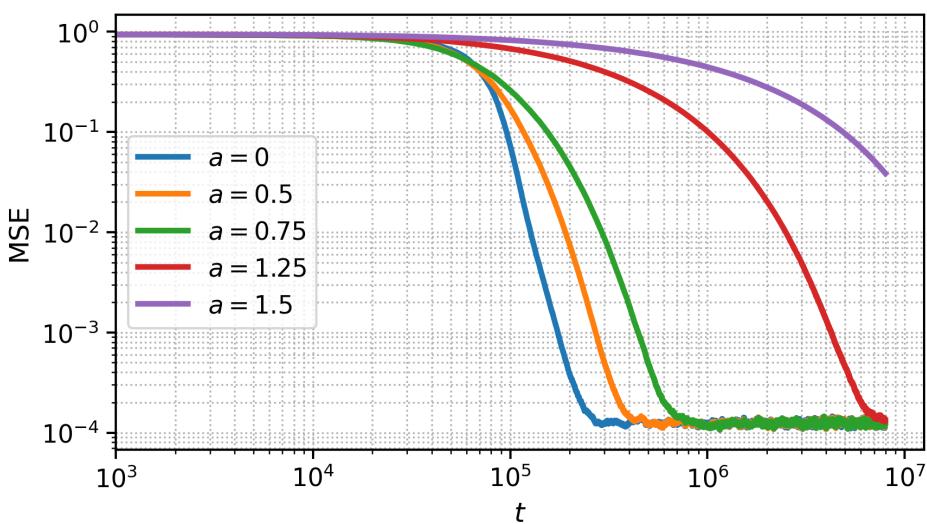


Figure 1: Evolution of the MSE during training with online SGD for different spectral exponents a (log-log scale). For $a > 1$, convergence is markedly slower than the exponential decay seen in the isotropic case, reflecting the difficulty of learning directions associated with small eigenvalues.

MSE decays more slowly. By contrast, in isotropic designs, all directions progress at comparable rates, causing the error to drop sharply. These observations motivate our central question:

How does the input spectrum govern finite-time convergence in nonlinear regression, and can we predict the learning curve from the spectral decay?

Concretely, we seek to (i) analyze the mechanisms behind the plateau–drop structure in anisotropic phase retrieval, and (ii) derive scaling laws that quantify MSE decay as functions of the spectral parameter a and time t .

1.1 CONTRIBUTIONS.

- **New phenomena in the anisotropic case.** We show that anisotropy challenges several aspects of the intuition developed in isotropic settings. In the isotropic setting, the dynamics collapse to a low-dimensional ODE, and the main challenge is escaping mediocrity, i.e. the regime where the correlation with the signal w^* is vanishing, before convergence accelerates. Under anisotropy, by contrast, the dynamics form an infinite hierarchy of coupled equations. This structural change flips the qualitative behavior, yielding a *escape-convergence trade-off*: escaping from mediocrity can be faster, but convergence to a low MSE is slowed by the difficulty of learning directions associated with small eigenvalues, as illustrated by Figure 1 (a large a is associated with a slow decay of the MSE) and Figure 3 (a large a leads quickly to constant order correlation with the signal). Numerical experiments confirm this phase-level contrast between isotropic and anisotropic regimes.

- **Analytical framework.** We first obtain a closed-form representation of the dynamics via *Duhamel’s formula*. We then introduce a phase decomposition of the trajectory, isolating regimes where different approximations become valid. This allows us to analyze the qualitative behavior of the ODE hierarchy phase by phase: (i) *fast escape from mediocrity*, (ii) *macroscopic convergence of summary statistics*, and (iii) *spectral-tail learning of small-eigenvalue directions*. The combination of Duhamel representation and phase-specific approximations provides a systematic way to make infinite-dimensional dynamics tractable.

- **Scaling laws.** As a byproduct of this analysis, we derive explicit scaling laws for anisotropic phase retrieval. These formulas quantify how the eigenvalue decay governs the MSE. Numerical results corroborate the predicted exponents across different spectral profiles.

108
109

1.2 OTHER RELATED WORK

110
111
112
113
114
115
116
117
118
119
120
121
122
123

Theory of scaling laws. The study of risk scaling in problems with power-law structure is a classical theme in the kernel literature, where it falls under the framework of *source and capacity conditions*. It has been extensively investigated for kernel ridge regression (Caponnetto & De Vito, 2007; Cui et al., 2021), random features regression (Rudi & Rosasco, 2017; Defilippis et al., 2024), and also for (S)GD (Yao et al., 2007; Ying & Pontil, 2008; Carratino et al., 2018; Pillaud-Vivien et al., 2018). This line of work has recently gained renewed relevance in the context of neural scaling laws, with linear models emerging as theoretical testbeds to explain the plateaus and cross-overs observed in practice (Bahri et al., 2024; Maloney et al., 2022; Atanasov et al., 2024; Bordelon et al., 2024; Worschach & Rosenow, 2024; Paquette et al., 2024; Lin et al., 2024). More recently, sums of orthogonal single-index models have been analysed in the *feature-learning* regime, albeit still under isotropic input distributions (Ren et al., 2025; Ben Arous et al., 2025). In short, while the linear setting with anisotropic spectra (e.g. power-law decays) is by now well understood, the nonlinear regime has remained largely isotropic. Our work addresses this gap by deriving compute–error scaling laws in a nonlinear model with anisotropic Gaussian inputs.

124
125
126
127
128
129
130
131
132
133

Phase retrieval. Phase retrieval (PR) is a classical inverse problem motivated by imaging: reconstruct a signal from intensity-only measurements; see Dong et al. (2023) for a recent tutorial. A rich algorithmic literature includes spectral initializations and nonconvex Wirtinger-flow refinements (Ma et al., 2021; Candès et al., 2015; Tan & Vershynin, 2019; 2023; Davis et al., 2020). PR can be viewed as learning a single neuron with a quadratic activation, connecting it to the broader theory of quadratic networks and their training dynamics (Sarao Mannelli et al., 2020; Arnaboldi et al., 2023a; Martin et al., 2024; Erba et al., 2025; Ben Arous et al., 2025). Most theoretical analyses of PR assume isotropic sub-Gaussian measurements; the impact of anisotropic covariances on the learning curve has received less attention. Our analysis isolates precisely this aspect and quantifies how the input spectrum shapes the three-phase trajectory and the resulting scaling laws.

134
135
136
137
138
139
140
141
142
143
144

Non-convex optimization and feature learning. A complementary line of work studies gradient-based training in multi-index and shallow networks, characterizing feature learning, convergence phases, and computational–statistical trade-offs, predominantly under isotropic designs (Saad & Solla, 1995b;a; Goldt et al., 2019; Veiga et al., 2022; Arnaboldi et al., 2023b; 2024; Collins-Woodfin et al., 2024; Ben Arous et al., 2022; Abbe et al., 2022; 2023; Bietti et al., 2025; Dandi et al., 2024; Bruna & Hsu, 2025). Results with anisotropic inputs are more limited: some works consider spiked covariances and rely on preconditioned methods (Ba et al., 2023), while others treat a broader but weaker anisotropic regime that does not include power-law spectra (Goldt et al., 2020; Braun et al., 2025). By contrast, we analyze the unpreconditioned gradient flow in a strongly anisotropic regime and show that anisotropy destroys the finite-dimensional closure of the dynamics, leading to an infinite hierarchy whose Duhamel–Volterra reduction yields explicit scaling laws.

145

1.3 NOTATIONS

146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

We use $\|\cdot\|$ and $\langle \cdot, \cdot \rangle$ to denote the Euclidean norm and scalar product, respectively. When applied to a matrix, $\|\cdot\|$ refers to the operator norm. Any positive definite matrix Q induces a scalar product defined by $\langle x, y \rangle_Q = x^\top Q y$. The Frobenius norm of a matrix A is denoted by $\|A\|_F$. The $d \times d$ identity matrix is represented by I_d . The $(d-1)$ -dimensional unit sphere is denoted by \mathbb{S}^{d-1} . We use the notation $a_n \lesssim b_n$ (or $a_n \gtrsim b_n$) for sequences $(a_n)_{n \geq 1}$ and $(b_n)_{n \geq 1}$ if there exists a constant $C > 0$ such that $a_n \leq C b_n$ (or $a_n \geq C b_n$) for all n . If the inequalities hold only for sufficiently large n , we write $a_n = O(b_n)$ (or $a_n = \Omega(b_n)$). We denote by $C_b^\infty(\mathbb{R}_{\geq 0}; \ell^2)$ the Banach space of bounded and infinitely differentiable functions from $\mathbb{R}_{\geq 0}$ to $\ell^2 := \{(x_n)_{n \geq 0} : \sum x_n^2 < \infty\}$, the Hilbert space of square summable sequences. We write $*$ for convolution, and for a function f we denote by \hat{f} its Laplace transform.

2 PROBLEM SETUP

Data distribution. By orthogonal invariance of the Gaussian distribution, we may assume without loss of generality that the covariance matrix is diagonal: $Q = \text{diag}(\lambda_1, \dots, \lambda_d) \in \mathbb{R}^{d \times d}$. We assume

162 a *power-law* spectrum,

$$164 \quad \lambda_i = \frac{i^{-a}}{\sum_{j=1}^d j^{-a}}, \quad a > 1,$$

166 so that $\text{tr}(Q) = 1$. This assumption reflects the slow, heavy-tailed eigenvalue decay observed in
167 many empirical covariance spectra (e.g., images, text embeddings, kernel features). From a theo-
168 retical perspective, the exponent a provides a simple parametrization of anisotropy: it controls the
169 balance between a few dominant directions and a long tail of weak ones. It is widely used as a
170 canonical model for scaling laws in learning dynamics. We consider the phase retrieval setting

$$171 \quad y = \langle x, w^* \rangle^2 + \xi, \quad x \sim \mathcal{N}(0, Q),$$

173 where the target weights are generated by $w^* = \frac{u}{\|Q^{1/2}u\|}$, $u \sim \mathcal{N}(0, I_d)$. This construction ensures
174 that $\|Q^{1/2}w^*\| = 1$. For numerical experiments, we sometimes adopt the alternative normalization
175 $\|w^*\|^2 = d$, so that all curves start from the same baseline when comparing different decay ex-
176ponents a ; both normalizations are of constant order in expectation. The noise term $\xi \sim \mathcal{N}(0, \sigma^2)$ is
177 independent of x . Since our analysis focuses on the *population dynamics*, label noise only shifts the
178 loss by a constant and can be set to zero without loss of generality.

181 **Model.** We consider estimators of the form $\langle x, w \rangle^2$ for $w \in \mathbb{R}^d$ and the population loss used to
182 train our model

$$183 \quad \mathcal{L}(w) = \mathbb{E}_x \left[((x^\top w)^2 - (x^\top w^*)^2)^2 \right].$$

185 However, under anisotropy, this loss can be misleading: a vector w that aligns with w^* only along
186 the directions corresponding to the largest eigenvalues may still achieve a small loss. To evaluate
187 how well w actually recovers the signal direction, a more natural metric is the MSE defined as

$$188 \quad \text{MSE}(w, w^*) = \frac{1}{d} \min \{ \|w - w^*\|^2, \|w + w^*\|^2 \}.$$

192 **Optimization.** The learner maintains a weight vector $w(t) \in \mathbb{R}^d$, initialized uniformly at random
193 on the unit sphere \mathbb{S}^{d-1} . Its evolution follows the gradient flow dynamics

$$195 \quad \dot{w}(t) = -\nabla_w \mathcal{L}(w(t))$$

197 which can be viewed as the continuous-time counterpart of gradient descent.

200 3 LOSS GEOMETRY AND EVOLUTION OF SUMMARY STATISTICS

201 In this section, we describe the main characteristics of the loss landscape and establish ODEs to
202 describe the evolution of the key summary statistics. The proofs are in the appendix, Section A.
203 For convenience, we introduce the following notations: $s := \|w\|_Q^2 = w^\top Q w$, $s_* := \|w^*\|_Q^2$, and
204 $u := \langle w, w^* \rangle_Q = w^\top Q w^*$.

206 3.1 LOSS SIMPLIFICATION

208 Although the loss is defined on a d -dimensional parameter space, it depends only on two summary
209 statistics: $\|w\|_Q^2$ and $\langle w, w^* \rangle_Q^2$. This dimensional reduction makes the geometry of the loss land-
210scape transparent, as captured in the following proposition.

211 **Proposition 1.** Let $x \sim \mathcal{N}(0, Q) \in \mathbb{R}^d$, where $Q \in \mathbb{R}^{d \times d}$ is a symmetric positive definite diagonal
212 matrix. Let $w, w^* \in \mathbb{R}^d$. The population loss can be rewritten as

$$213 \quad \mathcal{L}(w) = 3\|w\|_Q^4 + 3\|w^*\|_Q^4 - 4\langle w, w^* \rangle_Q^2 - 2\|w\|_Q^2 \cdot \|w^*\|_Q^2 = 3s^2 + 3s_*^2 - 4u^2 - 2s_*s$$

215 Next, we compute the population gradient and characterize the critical points.

216 3.2 GRADIENT, HESSIAN, AND CRITICAL POINTS
217218 **Proposition 2.** *The population gradient and Hessian of the loss \mathcal{L} are given by*

219
$$\nabla \mathcal{L}(w) = 12sQw - 4s_*Qw - 8uQw^*, \quad (3.1)$$

220
$$\nabla^2 \mathcal{L}(w) = 24(Qw)(Qw)^\top + (12s - 4s_*)Q - 8(Qw^*)(Qw^*)^\top. \quad (3.2)$$

222 *The set of critical points is $\{0, w^*, -w^*\} \cup \{w : (u, s) = (0, s_*/3)\}$. Among them, 0 is a strict
223 local maximum, $\pm w^*$ are strict global minima, and every w with $(u, s) = (0, s_*/3)$ is a saddle
224 point.*225 **Remark 1.** *The loss landscape contains no spurious local minima: the only minima are the global
226 optima $\pm w^*$. At the same time, the origin is a strict local maximum, and the remaining critical
227 points are saddles. Nevertheless, the dynamics exhibit a long plateau phase. At initialization, one
228 typically has $u(0) \approx d^{-1/2} \approx 0$. In this low-correlation regime, the gradient is small, so the iterates
229 take a long time to escape. Even after leaving this regime, convergence remains slower than in the
230 isotropic case.*231 **Remark 2.** *The anisotropic gradient flow can be viewed as a Q -preconditioned version of the
232 isotropic flow. Under the reparametrization $z = Q^{1/2}w$, define the isotropic loss $\mathcal{L}_I(z) =$
233 $\mathcal{L}(Q^{-1/2}z)$. By the chain rule, $\dot{z}(t) = -Q\nabla\mathcal{L}_I(z(t))$. Thus, while the critical points coincide
234 with those in the isotropic case, the dynamics differ substantially due to the preconditioning by Q .*236 3.3 INFINITE-DIMENSIONAL STRUCTURE OF GRADIENT FLOW
237238 As shown in Proposition 1, the loss depends only on the summary statistics $u(t)$ and $s(t)$. Controlling
239 these two quantities already yields a faithful description of the loss trajectory.240 A crucial distinction, however, arises between the isotropic and anisotropic settings. In the isotropic
241 case ($Q = I$), the dynamics of the loss can be expressed entirely in terms of two scalars: the signal
242 overlap $u(t)$ and the energy $s(t)$. This leads to a closed, two-dimensional ODE system.243 In contrast, as soon as $Q \neq I$, the situation changes qualitatively. Proposition 3 shows that the
244 evolution of $u(t)$ and $s(t)$ necessarily involves higher-order weighted overlaps,
245

246
$$s^{(k)}(t) := \|w(t)\|_{Q^k}^2, \quad s_*^{(k)} := \|w^*\|_{Q^k}^2, \quad u^{(k)}(t) := \langle w(t), w^* \rangle_{Q^k},$$

247 with the conventions $s = s^{(1)}(t)$, $u = u^{(1)}(t)$, and $s_* = s_*^{(1)} = 1$.249 The resulting system is an *infinite hierarchy of coupled ODEs*. Unlike the isotropic case, no finite-
250 dimensional closure exists: the time derivative of order- k statistics depends on order- $(k+1)$ statistics,
251 and so on. Understanding the anisotropic dynamics thus requires working with this infinite-
252 dimensional structure.253 **Proposition 3.** *The gradient flow dynamics satisfy*

254
$$\dot{w}_i(t) = 4\lambda_i(s_* - 3s(t))w_i(t) + 8\lambda_i u(t)w_i^*, \quad i = 1, \dots, d, \quad (3.3)$$

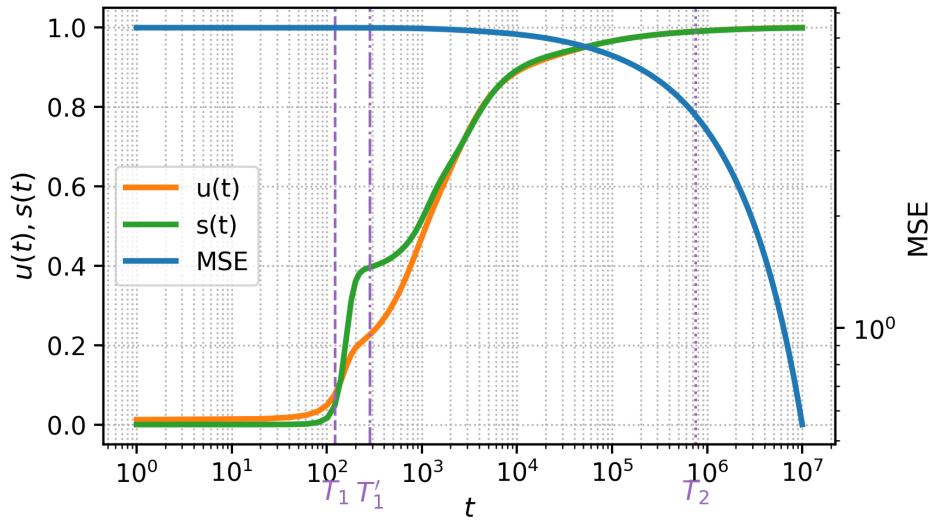
256
$$\dot{s}^{(k)}(t) = 8(s_* - 3s(t))s^{(k+1)}(t) + 16u(t)u^{(k+1)}(t), \quad (3.4)$$

258
$$\dot{u}^{(k)}(t) = 4(s_* - 3s(t))u^{(k+1)}(t) + 8u(t)s_*^{(k+1)}. \quad (3.5)$$

259 In particular, setting $k = 1$ recovers the dynamics of $s(t)$ and $u(t)$.261 3.4 THREE-PHASE STRUCTURE OF THE DYNAMICS
262263 The system of ODEs from Proposition 3 involves higher-order moments, preventing a closed-form
264 analysis as in the isotropic case. To guide our theory, we first examine the empirical evolution of the
265 key observables $u(t)$ and $s(t)$; see Figure 2. The trajectories display a *three-phase structure*:266 (i) **Phase I: Escape from mediocrity**, $s(t) \approx 0$ ($t \leq T_1$). The dynamics begin near $w(0) \approx 0$,
267 with no correlation to the signal. During this “warm-up” stage, the correlation $u(t)$ escapes
268 exponentially from zero and reaches a small but fixed constant $u(T_1) = \delta > 0$. The over-
269 all MSE, however, remains essentially unchanged, since only a few easy directions—those
aligned with large eigenvalues—have been learned so far.

270 (ii) **Phase II: Convergence** $u(t), s(t) \rightarrow 1$ ($T_1 \leq t < T_2$). Here, the signal alignment strengthens
 271 and the summary statistics $u(t), s(t)$ approach their limiting values. Two distinct episodes
 272 appear:
 273 • (IIa) **Transition** ($T_1 \leq t \leq T'_1$). The energy $s(t)$ crosses the critical threshold $1/3$ and
 274 stays above it.
 275 • (IIb) **Asymptotic convergence** ($T'_1 < t < T_2$). Both $u(t)$ and $s(t)$ approach 1, but conver-
 276 gence is slower than in the isotropic case (see Section E), reflecting the difficulty of learning
 277 directions corresponding to small eigenvalues of Q (also see Section E.4).
 278 (iii) **Phase III: Spectral-tail learning** $u(t), s(t) \approx 1$ ($t > T_2$). After $u(t)$ and $s(t)$ have essen-
 279 tially stabilized, the MSE continues to decrease as the flow progressively learns directions
 280 associated with the small eigenvalues of Q .
 281

282 This empirical decomposition provides a roadmap for the analysis: by isolating each phase, the
 283 infinite-dimensional system becomes amenable to tractable approximations.
 284



303 Figure 2: Evolution of the MSE, $u(t)$ and $s(t)$ under population gradient descent (log-log scale).
 304 Parameters: $a = 2, d = 1000, \eta = 10^{-2}, T = 10^7, \varepsilon = 0.05$.
 305

306 4 MAIN RESULTS: THREE-PHASE GRADIENT FLOW DYNAMICS

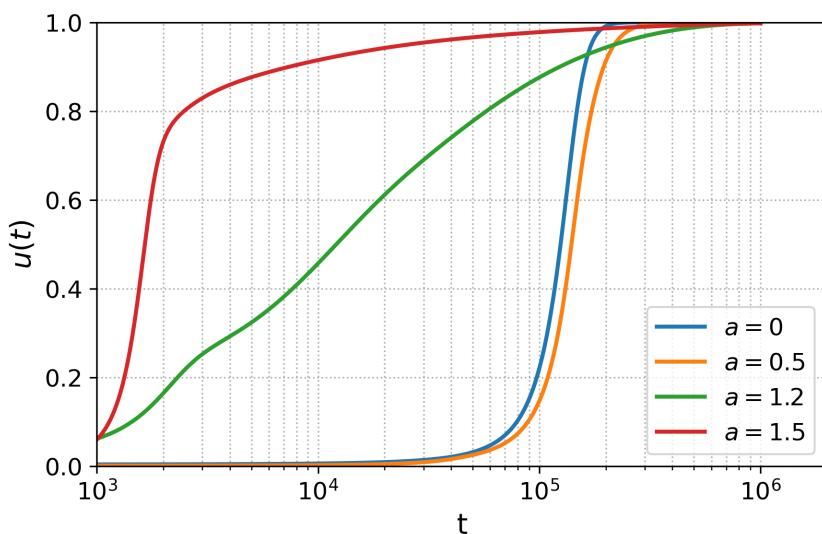
309 The experiments in Section 3.4 revealed a characteristic trajectory with three successive phases: (i)
 310 escape from mediocrity, (ii) convergence of the summary statistics, and (iii) spectral-tail learning.
 311 We now show that this qualitative picture admits a rigorous derivation from the gradient flow equa-
 312 tions. The following theorems make precise the stopping times, plateau behavior, and tail-driven
 313 decay observed empirically.
 314

315 4.1 PHASE I-II: ESCAPE AND APPROXIMATE CONVERGENCE OF THE SUMMARY STATISTICS

316 The next theorem formalizes escape and approximate convergence, under initialization conditions
 317 whose full statement is deferred to Appendix B (see Assumption A1).
 318

Theorem 1 (Phases I and II). *For d sufficiently large, let $\varepsilon \gtrsim d^{-(a-1)/2}$. Under mild conditions on
 319 initialization (e.g. $s(0) \asymp d^{-1/2}$), there exist stopping times $T_1 = O(\log d)$, $T'_1 = T_1 + O(1)$, and
 320 $T_2 = T'_1 + O(\varepsilon^{-2a/(a-1)} \log(1/\varepsilon))$ such that:*

- 322 (i) *There exists a constant $\delta > 0$ such that $|u(T_1)|, s(T_1), |u^{(2)}(T_1)| \geq \delta$, and the sign of
 323 $u^{(2)}(T_1)$ agrees with that of $u(T_1)$.*
- 324 (ii) *There exists a constant $s_0 > 0$ such that $s(t) > 1/3 + s_0$ for all $t \geq T'_1$.*

Figure 3: Evolution of the correlation $u(t)$ for different exponent a ($d = 1000, \eta = 10^{-3}$).

(iii) At time T_2 , both statistics are close to their limits: $|u(T_2)|, s(T_2) \in [1 - \varepsilon, 1]$.

Remark 3. Several features of the theorem are worth noting.

- **Sign symmetry.** The sign of $u(t)$ is fixed at initialization; w.l.o.g. one may assume it positive by replacing w_* with $-w_*$.
- **Anisotropic vs. isotropic.** In isotropic models $s(0)$ directly controls early growth and convergence is relatively fast; in the anisotropic setting, the Volterra reduction shows that escape depends instead on a linear functional of the initialization (via residual/resolvent calculus), and convergence after escape is tail-controlled and slower.
- **Accuracy vs. time.** For $\varepsilon \gtrsim d^{-(a-1)/2}$ stabilization occurs within $O(\varepsilon^{-2a/(a-1)} \log(1/\varepsilon))$, while demanding $\varepsilon \ll d^{-(a-1)/2}$ leads to even higher time costs (see Phase III analysis).

Remark 4. The analysis of Phase I reveals that the $u(t)$ grows exponentially at a rate depending on a : the convergence is faster when a is large (see Proposition 9 in the appendix, and Figure 3 for a numerical illustration).

4.2 SPECTRAL-TAIL LEARNING AND PHASE III

While Phases I–II describe the evolution of summary statistics (u, s) , these quantities do not capture how the estimator $w(t)$ approaches the ground truth entrywise. The mean squared error

$$\text{MSE}(t) = \frac{1}{d} \sum_{i=1}^d (w_i(t) - w_i^*)^2$$

is the natural measure of recovery: it is the quantity plotted in Fig. 1, and its log–log decay rates yield the scaling laws highlighted in the introduction. Moreover, the MSE aggregates contributions from all eigen-directions, making it the right observable to expose the effect of the spectral tail.

Up to time T_2 , while the summary statistics are still converging, the MSE shows almost no decrease and stays essentially at its initial level. The following proposition captures this plateau behavior.

Proposition 4. Let $\sigma_*^2 = \frac{1}{d} \sum_{i=1}^d (w_i^*)^2$. Under the assumptions of Theorem 1 we have

$$|\text{MSE}(T_2) - \sigma_*^2| \lesssim \left(\frac{\varepsilon^{-a}}{d} \right)^{1/3} + \left(\frac{\log d}{d} \right)^{1/3}.$$

After T_2 , progress is governed by coordinates aligned with the smallest eigenvalues. Let $e_i(t) = w_i(t) - w_i^*$ be the coordinate error and define $\pi_i = e_i(T_2)^2 / \sum_j e_j(T_2)^2$. The weighted average

$\widehat{S}_d(\tau) = \sum_i \pi_i e^{-16\lambda_i \tau}$ describes the spectral decay of the error, while the uniform benchmark $S_d(\tau) = d^{-1} \sum_i e^{-16\lambda_i \tau}$ admits explicit asymptotics. We also set $s_\star^{(2)} = \frac{1}{d} \sum_i \lambda_i^2 (w_i^*)^2$, $H_{d,a} = \sum_{j=1}^d j^{-a}$, $\beta_d = 16/H_{d,a}$, and $x_d = (\beta_d \tau)^{1/a}$.

Theorem 2 (Phase III: spectral-tail learning). *Under the assumptions of Theorem 1, the MSE satisfies for every $\tau \geq 0$,*

$$\text{MSE}(T_2 + \tau) = (1 + O(\varepsilon)) \text{MSE}(T_2) \widehat{S}_d(\tau) + O\left(\varepsilon^2 \tau^2 \frac{1}{d} s_\star^{(2)}\right). \quad (4.1)$$

Moreover, $\widehat{S}_d(\tau) \leq C S_d(\tau)$ for some $C > 0$, and $S_d(\tau)$ admits the asymptotics

$$S_d(\tau) = \begin{cases} 1 - \frac{16}{d} \tau + O\left(\frac{\tau^2}{d}\right), & \beta_d \tau \ll 1, \\ 1 - \Gamma(1 - \frac{1}{a}) \frac{x_d}{d} + o\left(\frac{x_d}{d}\right), & 1 \ll x_d \ll d, \\ \leq \exp(-\beta_d \tau d^{-a}), & x_d \gtrsim d. \end{cases}$$

Thus, the plateau persists until T_2 , after which the MSE decays at a rate controlled by the spectral tail. The exponent a determines the slope of this decay on log–log scales, accounting for the scaling laws observed in Fig. 1.

5 PROOF OUTLINE

We briefly sketch the main ingredients of our analysis, deferring complete proofs to the appendix: Section B (Phase I), Section C (Phase II), and Section D (Phase III).

5.1 PHASE I: ESCAPE FROM MEDIOCRITY

In the anisotropic setting, the summary statistics (u, s) do not form a closed system; instead, they are coupled to an infinite hierarchy of correlations. Our strategy is to lift the dynamics to an infinite-dimensional space, solve the system there, and then project back to obtain a closed Volterra representation for $u(t)$, which we can analyze directly.

Step 1: Infinite-dimensional formulation. The core difficulty is the infinite hierarchy of coupled correlations. To tame it, we collect them into the vector $U(t) = (u^{(1)}(t), u^{(2)}(t), \dots)^\top \in \mathcal{H} := C_b^\infty(\mathbb{R}_{\geq 0}; \ell^2)$. Let B be the right-shift operator on sequences, defined by $(Bx)_k := x_{k+1}$ and let $S := (Bs_\star^\infty) e_1^\top$ be a rank one operator with $s_\star^\infty = (s_\star^{(1)}, s_\star^{(2)}, \dots)^\top \in \ell^2$ and $e_1 = (1, 0, 0, \dots)^\top$. Then the correlation dynamics (3.5) collapse into the compact operator form

$$\dot{U}(t) = \left(4(1 - 3s(t))B + 8S\right)U(t). \quad (5.1)$$

This is the key structural observation: the entire infinite system is generated by the shift operator B plus a rank-one perturbation S . Applying Duhamel’s formula yields the following representation.

Lemma 1. *The unique solution $U \in C_b^\infty(\mathbb{R}_{\geq 0}; \ell^2)$ of (5.1) satisfies, for all $t \geq 0$,*

$$U(t) = e^{4B\Theta(t)} U_0 + 8 \int_0^t e^{4B(\Theta(t) - \Theta(\tau))} (Bs_\star^\infty) u^{(1)}(\tau) d\tau, \quad (5.2)$$

where $u^{(1)}(\tau) := \langle e_1, U(\tau) \rangle = u(t)$, and $\Theta(t) := \int_0^t (1 - 3s(\tau)) d\tau$.

Step 2: Reduction to a Volterra equation. Let $\delta > 0$ be arbitrarily small, and let T_1 denote the stopping time such that $s(t) \leq \delta$ for all $t \leq T_1$. On this time interval we may approximate $\Theta(t) \approx t$. Projecting the representation (5.2) onto e_1 then yields the Volterra equation

$$u(t) = a_0(t) + 8 \int_0^t K(t - \tau) u(\tau) d\tau, \quad (5.3)$$

where

$$a_0(t) = \sum_i w_i(0) w_i^* \lambda_i e^{4\lambda_i t}, \quad K(t) = \sum_i (w_i^*)^2 \lambda_i^2 e^{4\lambda_i t}.$$

432 Applying the Laplace transform gives $\hat{u}(p) = \frac{\hat{u}_0(p)}{1-8\hat{K}(p)}$. The growth of $u(t)$ is therefore governed by the rightmost pole of $\hat{u}(p)$ (see Section B and Chapter VII of [Gripenberg et al. \(1990\)](#)). Computing $\hat{K}(p)$ and solving the equation $1 = 8\hat{K}(p)$ yields the following.

436 **Lemma 2** (Exponential growth rate). *The correlation $u(t)$ grows at rate $e^{\rho_{\text{true}}t}$, where $\rho_{\text{true}} > 4\lambda_1$ is the unique positive solution of*

$$438 \quad 1 - 8\hat{K}(\rho) = 0. \\ 439$$

440 **Step 3: Control of the higher-order correlations.** A similar analysis shows that the influence of 441 all higher-order terms is dominated by the leading mode $u(t)$. Without loss of generality, we assume 442 that $u(t)$ grows positively (the case of negative growth is analogous). The key point is that at time 443 T_1 , the second correlation $u^{(2)}(T_1)$ has the same sign as $u(T_1)$, a fact that will be critical in the 444 analysis of Phase IIa.

445 **Proposition 5** (Control of higher-order correlations). *For all $k \geq 1$ and all $t \in [0, T_1]$, we have*

$$447 \quad -\lambda_1^k \sqrt{\frac{\log d}{d}} e^{4\lambda_1 t} + 8s_*^{(k)} \int_0^t u(\tau) d\tau \leq u^{(k)}(t) \leq \lambda_1^k \sqrt{\frac{\log d}{d}} e^{4\lambda_1 t} + \lambda_1^{k-1} (u(t) - u(0)). \\ 448 \quad 449 \quad (5.4)$$

450 In particular, for d sufficiently large there exists a constant $c_1 > 0$ such that $u^{(2)}(T_1) \geq c_1$.

452 5.2 PHASE II: CONVERGENCE OF SUMMARY STATISTICS

454 Since the proof techniques differ, we separate the analysis of Phase IIa and Phase IIb.

456 5.2.1 ANALYSIS OF PHASE IIA

458 The first step is to show that $s(t)$, which at time T_1 is still small ($s(T_1) = \delta'_2$), must *increase up to* 459 *the critical threshold 1/3*. Indeed, from

$$460 \quad \dot{s}(t) = 8(1 - 3s(t)) s^{(2)}(t) + 16u(t)u^{(2)}(t), \\ 461$$

462 both terms on the right-hand side are positive whenever $s(t) \leq 1/3$, so $s(t)$ is driven upward and 463 crosses 1/3 in finite time.

464 The second step establishes *stability beyond the threshold*: once $s(t)$ has passed 1/3, it cannot fall 465 back below. Close to the boundary, the positive contribution $16u(t)u^{(2)}(t)$ dominates the negative 466 drift from the first term. A careful comparison shows that $s(t)$ remains uniformly above $1/3 + \delta$ for 467 some constant $\delta > 0$. The detailed proof of these two points is given in Section C.1.

469 5.2.2 ANALYSIS OF PHASE IIIB

471 We now study the error $\Delta(t) := 1 - u(t) \geq 0$ for $t \geq T'_1$ through the Volterra equation

$$473 \quad \Delta(t) = b_\Theta(t) + \int_{T'_1}^t K_\Theta(t, \tau) \Delta(\tau) d\tau, \\ 474 \quad 475$$

476 where the source term b_Θ is detailed in [Appendix C.2](#). Since after T'_1 we have $\Theta(t) - \Theta(\tau) \leq$ 477 $-s_0(t - \tau)$, the kernel K_Θ is decreasing, so the integral contribution diminishes over time.

478 To control the positive part of b_Θ , we split the spectrum at a cutoff λ_c : directions with $\lambda_i < \lambda_c$ form 479 the *tail*, which is small but slow to learn, while $\lambda_i \geq \lambda_c$ form the *head*, easier but requiring more 480 training time when λ_c is small. Balancing these two effects yields the following result.

481 **Proposition 6.** *Let $\varepsilon \gtrsim d^{-\frac{a-1}{2}}$, and set*

$$483 \quad T_2(\varepsilon) = T'_1 + \frac{C}{4s_0} \varepsilon^{-\frac{2a}{a-1}} \log \frac{1}{\varepsilon}, \\ 484 \quad 485$$

with $C > 0$ sufficiently large. Then $\Delta(T_2) \leq \varepsilon$.

486 **Remark 5.** The condition $\varepsilon \gtrsim d^{-\frac{a-1}{2}}$ prevents ε from being too small. Otherwise the required time
 487 becomes much larger; for instance, $\varepsilon = d^{-1}$ already forces $T \gtrsim d^a$. Note that the exponent $\frac{2a}{a-1}$
 488 decreases as a increases, so $T_2(\varepsilon)$ is shorter for faster spectral decay. Intuitively, for larger a , the
 489 lighter tail means fewer small eigenvalues to learn, so the error contracts more rapidly. In contrast,
 490 for a close to 1 the heavy tail creates many slow directions, delaying convergence. This trend is
 491 confirmed numerically in Section E.
 492

493 5.3 PHASE III: SPECTRAL-TAIL LEARNING AND THE SCALING LAW

495 After T_2 , both $u(t)$ and $s(t)$ are close to one, so the coordinate dynamics reduce to
 496

$$497 \dot{w}_i(t) \approx 8\lambda_i(w_i^* - w_i(t)),$$

498 whose solution shows exponential relaxation of each w_i toward w_i^* . The resulting MSE is a weighted
 499 spectral average $\hat{S}_d(\tau)$; under the heuristic $\pi_i \approx d^{-1}$, this reduces to the benchmark $S_d(\tau)$, whose
 500 asymptotics follow from classical sum–integral comparisons and reveal distinct decay regimes. The
 501 approximation error is controlled by a Duhamel (variation-of-constants) representation, together
 502 with Phase IIb bounds on $1 - u(t)$ and $1 - s(t)$. A Grönwall argument shows that these corrections
 503 remain small, so the full trajectory closely tracks the idealized one. Altogether, this yields the scaling
 504 law of Theorem 2, see Section E.1 for an illustration of the approximation.
 505

506 6 DISCUSSION

507 **Summary.** We analyzed the gradient flow dynamics of anisotropic phase retrieval. Unlike the
 508 isotropic case, which reduces to a two-dimensional ODE, the anisotropic setting induces an infinite
 509 hierarchy of coupled equations. Our main contribution is to render this structure tractable via a
 510 Duhamel–Volterra reduction, revealing a three-phase trajectory: (i) escape from mediocrity, (ii)
 511 convergence of summary statistics, and (iii) spectral-tail learning driven by small eigenvalues. This
 512 decomposition leads to explicit scaling laws, validated empirically.
 513

514 **Limitations.** Our analysis assumes Gaussian inputs with a power-law spectrum, simplifying the
 515 theory, but this may not be essential for the three-phase phenomenon. In addition, our quantitative
 516 results apply only in the gradient flow limit; extending them to discrete-time SGD remains an open
 517 problem.
 518

519 **Future directions.** Several extensions are natural. On the theoretical side, deriving scaling laws
 520 for discrete-time SGD, analyzing finite-sample effects, and relaxing distributional assumptions
 521 would strengthen the link to practice. On the modeling side, extending beyond quadratic nonlin-
 522 earities to more general single- and multi-index models could reveal new scaling regimes. More
 523 broadly, our findings raise the question of whether analogous phase decompositions and scaling
 524 laws govern the training dynamics of wider neural networks, potentially offering a bridge between
 525 nonlinear regression models and deep learning theory.
 526

527 **Large Language Model Usage.** Large language models were used to assist with light editing and
 528 organization of the manuscript and to refactor plotting code. All technical content, experiments, and
 529 conclusions are the authors’ own; all model-assisted text and code were reviewed and revised by the
 530 authors prior to submission.
 531

532 REFERENCES

533 Emmanuel Abbe, Enric Boix Adsera, and Theodor Misiakiewicz. The merged-staircase property: a
 534 necessary and nearly sufficient condition for sgd learning of sparse functions on two-layer neural
 535 networks. In *Conference on Learning Theory*, pp. 4782–4887. PMLR, 2022.
 536

537 Emmanuel Abbe, Enric Boix Adsera, and Theodor Misiakiewicz. Sgd learning on neural networks:
 538 leap complexity and saddle-to-saddle dynamics. In *The Thirty Sixth Annual Conference on Learn-
 539 ing Theory*, pp. 2552–2623. PMLR, 2023.

540 Luca Arnaboldi, Florent Krzakala, Bruno Loureiro, and Ludovic Stephan. Escaping medi-
 541 ocrity: how two-layer networks learn hard generalized linear models with sgd. *arXiv preprint*
 542 *arXiv:2305.18502*, 2023a.

543

544 Luca Arnaboldi, Ludovic Stephan, Florent Krzakala, and Bruno Loureiro. From high-dimensional &
 545 mean-field dynamics to dimensionless odes: A unifying approach to sgd in two-layers networks.
 546 In *The Thirty Sixth Annual Conference on Learning Theory*, pp. 1199–1227. PMLR, 2023b.

547

548 Luca Arnaboldi, Yatin Dandi, Florent Krzakala, Luca Pesce, and Ludovic Stephan. Repetita iu-
 549 vant: Data repetition allows sgd to learn high-dimensional multi-index functions. *arXiv preprint*
 550 *arXiv:2405.15459*, 2024.

551

552 Alexander Atanasov, Jacob A Zavatone-Veth, and Cengiz Pehlevan. Scaling and renormalization in
 553 high-dimensional regression. *arXiv preprint arXiv:2405.00592*, 2024.

554

555 Jimmy Ba, Murat A Erdogdu, Taiji Suzuki, Zhichao Wang, and Denny Wu. Learning in the presence
 556 of low-dimensional structure: A spiked random matrix perspective. In *Thirty-seventh Conference*
 557 *on Neural Information Processing Systems*, 2023.

558

559 Yasaman Bahri, Ethan Dyer, Jared Kaplan, Jaehoon Lee, and Utkarsh Sharma. Explaining neural
 560 scaling laws. *Proceedings of the National Academy of Sciences*, 121(27):e2311878121, 2024.

561

562 Gerard Ben Arous, Reza Gheissari, and Aukosh Jagannath. High-dimensional limit theorems for
 563 sgd: Effective dynamics and critical scaling. *Advances in neural information processing systems*,
 564 35:25349–25362, 2022.

565

566 Gérard Ben Arous, Murat A Erdogdu, N Mert Vural, and Denny Wu. Learning quadratic neural
 567 networks in high dimensions: Sgd dynamics and scaling laws. *arXiv preprint arXiv:2508.03688*,
 568 2025.

569

570 Alberto Bietti, Joan Bruna, and Lucas Pillaud-Vivien. On learning gaussian multi-index models
 571 with gradient flow part i: General properties and two-timescale learning. *Communications on*
 572 *Pure and Applied Mathematics*, 2025.

573

574 Blake Bordelon, Alexander Atanasov, and Cengiz Pehlevan. A dynamical model of neural scal-
 575 ing laws. In *Proceedings of the 41st International Conference on Machine Learning*, ICML’24.
 576 JMLR, 2024.

577

578 Guillaume Braun, Minh Ha Quang, and Masaaki Imaizumi. Learning a single index model from
 579 anisotropic data with vanilla stochastic gradient descent. In *The 28th International Conference*
 580 *on Artificial Intelligence and Statistics*, 2025.

581

582 Joan Bruna and Daniel Hsu. Survey on algorithms for multi-index models, 2025. URL <https://arxiv.org/abs/2504.05426>.

583

584 Emmanuel J. Candès, Xiaodong Li, and Mahdi Soltanolkotabi. Phase retrieval via wirtinger flow:
 585 Theory and algorithms. *IEEE Transactions on Information Theory*, 61(4):1985–2007, 2015.

586

587 Andrea Caponnetto and Ernesto De Vito. Optimal rates for the regularized least-squares algorithm.
 588 *Foundations of Computational Mathematics*, 7(3):331–368, 2007.

589

590 Luigi Carratino, Alessandro Rudi, and Lorenzo Rosasco. Learning with sgd and random features.
 591 *Advances in neural information processing systems*, 31, 2018.

592

593 Elizabeth Collins-Woodfin, Courtney Paquette, Elliot Paquette, and Inbar Seroussi. Hitting the
 594 high-dimensional notes: An ode for sgd learning dynamics on glms and multi-index models.
 595 *Information and Inference: A Journal of the IMA*, 13(4):iaae028, 2024.

596

597 Hugo Cui, Bruno Loureiro, Florent Krzakala, and Lenka Zdeborová. Generalization error rates
 598 in kernel regression: The crossover from the noiseless to noisy regime. *Advances in Neural*
 599 *Information Processing Systems*, 34:10131–10143, 2021.

594 Yatin Dandi, Emanuele Troiani, Luca Arnaboldi, Luca Pesce, Lenka Zdeborova, and Florent Krzakala. The benefits of reusing batches for gradient descent in two-layer networks: Breaking the
 595 curse of information and leap exponents. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller,
 596 Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), *Proceedings of the
 597 41st International Conference on Machine Learning*, volume 235 of *Proceedings of Machine
 598 Learning Research*, pp. 9991–10016. PMLR, 21–27 Jul 2024.

600 Damek Davis, Dmitriy Drusvyatskiy, and Courtney Paquette. The nonsmooth landscape of phase
 601 retrieval. *IMA Journal of Numerical Analysis*, 40(4):2652–2695, 2020.

603 Leonardo Defilippis, Bruno Loureiro, and Theodor Misiakiewicz. Dimension-free deterministic
 604 equivalents and scaling laws for random feature regression. *Advances in Neural Information
 605 Processing Systems*, 37:104630–104693, 2024.

607 Jonathan Dong, Lorenzo Valzania, Antoine Maillard, Thanh-an Pham, Sylvain Gigan, and Michael
 608 Unser. Phase retrieval: From computational imaging to machine learning: A tutorial. *IEEE Signal
 609 Processing Magazine*, 40(1):45–57, 2023.

610 Vittorio Erba, Emanuele Troiani, Lenka Zdeborová, and Florent Krzakala. The nuclear route: Sharp
 611 asymptotics of erm in overparameterized quadratic networks. *arXiv preprint arXiv:2505.17958*,
 612 2025.

613 Sebastian Goldt, Madhu Advani, Andrew M Saxe, Florent Krzakala, and Lenka Zdeborová. Dy-
 614 namics of stochastic gradient descent for two-layer neural networks in the teacher-student setup.
 615 *Advances in neural information processing systems*, 32, 2019.

617 Sebastian Goldt, Marc Mézard, Florent Krzakala, and Lenka Zdeborová. Modeling the influence of
 618 data structure on learning in neural networks: The hidden manifold model. *Physical Review X*,
 619 10(4):041044, 2020.

621 G. Gripenberg, S. O. Londen, and O. Staffans. *Volterra Integral and Functional Equations*. Ency-
 622 clopedia of Mathematics and its Applications. Cambridge University Press, 1990.

623 Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun, Hassan Kianinejad,
 624 Md. Mostafa Ali Patwary, Yang Yang, and Yanqi Zhou. Deep learning scaling is predictable,
 625 empirically, 2017. URL <https://arxiv.org/abs/1712.00409>.

627 Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
 628 Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Henni-
 629 gan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy, Simon
 630 Osindero, Karen Simonyan, Erich Elsen, Oriol Vinyals, Jack W. Rae, and Laurent Sifre. Training
 631 compute-optimal large language models. In *Proceedings of the 36th International Conference on
 632 Neural Information Processing Systems*, NeurIPS '22, 2022.

633 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
 634 Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
 635 models, 2020. URL <https://arxiv.org/abs/2001.08361>.

637 Frederik Kunstner and Francis Bach. Scaling laws for gradient descent and sign descent for linear
 638 bigram models under Zipf's law. *arXiv preprint arXiv:2505.19227*, 2025.

639 Licong Lin, Jingfeng Wu, Sham M. Kakade, Peter Bartlett, and Jason D. Lee. Scaling laws in linear
 640 regression: Compute, parameters, and data. In *The Thirty-eighth Annual Conference on Neural
 641 Information Processing Systems*, 2024.

643 Junjie Ma, Rishabh Dudeja, Ji Xu, Arian Maleki, and Xiaodong Wang. Spectral method for phase
 644 retrieval: An expectation propagation perspective. *IEEE Transactions on Information Theory*, 67
 645 (2):1332–1355, 2021.

646 Alexander Maloney, Daniel A Roberts, and James Sully. A solvable model of neural scaling laws.
 647 *arXiv preprint arXiv:2210.16859*, 2022.

648 Simon Martin, Francis Bach, and Giulio Biroli. On the impact of overparameterization on the
 649 training of a shallow neural network in high dimensions. In *International Conference on Artificial*
 650 *Intelligence and Statistics*, pp. 3655–3663. PMLR, 2024.

651

652 Elliot Paquette, Courtney Paquette, Lechao Xiao, and Jeffrey Pennington. 4+3 phases of compute-
 653 optimal neural scaling laws. In *The Thirty-eighth Annual Conference on Neural Information*
 654 *Processing Systems*, 2024.

655 Amnon Pazy. *Semigroups of linear operators and applications to partial differential equations*,
 656 volume 44. Springer Science & Business Media, 2012.

657

658 Loucas Pillaud-Vivien, Alessandro Rudi, and Francis Bach. Statistical optimality of stochastic gra-
 659 dient descent on hard learning problems through multiple passes. *Advances in Neural Information*
 660 *Processing Systems*, 31, 2018.

661 Yunwei Ren, Eshaan Nichani, Denny Wu, and Jason D. Lee. Emergence and scaling laws in sgd
 662 learning of shallow neural networks, 2025.

663

664 Alessandro Rudi and Lorenzo Rosasco. Generalization properties of learning with random features.
 665 *Advances in neural information processing systems*, 30, 2017.

666 David Saad and Sara Solla. Dynamics of on-line gradient descent learning for multilayer neural
 667 networks. *Advances in neural information processing systems*, 8, 1995a.

668

669 David Saad and Sara A Solla. On-line learning in soft committee machines. *Physical Review E*, 52
 670 (4):4225, 1995b.

671 Stefano Sarao Mannelli, Eric Vanden-Eijnden, and Lenka Zdeborová. Optimization and gener-
 672 alization of shallow neural networks with quadratic activation functions. *Advances in Neural*
 673 *Information Processing Systems*, 33:13445–13455, 2020.

674

675 Yan Shuo Tan and Roman Vershynin. Phase retrieval via randomized kaczmarz: theoretical guaran-
 676 tees. *Information and Inference: A Journal of the IMA*, 8(1):97–123, 2019.

677

678 Yan Shuo Tan and Roman Vershynin. Online stochastic gradient descent with arbitrary initialization
 679 solves non-smooth, non-convex phase retrieval. *Journal of Machine Learning Research*, 24(58):
 1–47, 2023.

680

681 Gerald Teschl. *Ordinary differential equations and dynamical systems*, volume 140. American
 682 Mathematical Soc., 2012.

683

684 Rodrigo Veiga, Ludovic Stephan, Bruno Loureiro, Florent Krzakala, and Lenka Zdeborová. Phase
 685 diagram of stochastic gradient descent in high-dimensional two-layer neural networks. *Advances*
 686 *in Neural Information Processing Systems*, 35:23244–23255, 2022.

687

688 Roman Worschech and Bernd Rosenow. Analyzing neural scaling laws in two-layer networks with
 689 power-law data spectra, 2024.

690

691 Yuan Yao, Lorenzo Rosasco, and Andrea Caponnetto. On early stopping in gradient descent learn-
 692 ing. *Constructive approximation*, 26(2):289–315, 2007.

693

694 Yiming Ying and Massimiliano Pontil. Online gradient descent learning algorithms. *Foundations of*
 695 *Computational Mathematics*, 8(5):561–596, 2008.

696

697

698

699

700

701

The appendix is organized as follows. Section A contains the proofs of the results stated in Section 3. Section B provides the detailed analysis of Phase I, followed by the analysis of Phase II in Section C and Phase III in Section D. Finally, Section E presents additional numerical experiments.

A PROOF OF SECTION 3

This section provides the proofs of the results stated in Section 3.

Proposition 1. *Let $x \sim \mathcal{N}(0, Q) \in \mathbb{R}^d$, where $Q \in \mathbb{R}^{d \times d}$ is a symmetric positive definite diagonal matrix. Let $w, w^* \in \mathbb{R}^d$. The population loss can be rewritten as*

$$\mathcal{L}(w) = 3\|w\|_Q^4 + 3\|w^*\|_Q^4 - 2\langle w, w^* \rangle_Q^2 - 2\|w\|_Q^2 \cdot \|w^*\|_Q^2 = 3s^2 + 3s_*^2 - 4u^2 - 2s_*s$$

Proof. Expanding the loss gives

$$\mathcal{L}(w) = \mathbb{E}[(x^\top w)^4] + \mathbb{E}[(x^\top w^*)^4] - 2\mathbb{E}[(x^\top w)^2(x^\top w^*)^2].$$

Step 1. Fourth moment of a Gaussian linear form. Since $x \sim \mathcal{N}(0, Q)$, the scalar $x^\top w$ is Gaussian with variance $w^\top Q w = \|w\|_Q^2$. Its fourth moment is

$$\mathbb{E}[(x^\top w)^4] = 3(w^\top Q w)^2 = 3\|w\|_Q^4.$$

By the same reasoning,

$$\mathbb{E}[(x^\top w^*)^4] = 3\|w^*\|_Q^4.$$

Step 2. Mixed fourth moment. Expanding the product gives

$$(x^\top w)^2(x^\top w^*)^2 = \sum_{i,j,k,\ell} x_i x_j x_k x_\ell w_i w_j w_k^* w_\ell^*.$$

For Gaussian x , Wick's formula expresses the fourth moment as a sum over pairings:

$$\mathbb{E}[x_i x_j x_k x_\ell] = \mathbb{E}[x_i x_j] \mathbb{E}[x_k x_\ell] + \mathbb{E}[x_i x_k] \mathbb{E}[x_j x_\ell] + \mathbb{E}[x_i x_\ell] \mathbb{E}[x_j x_k].$$

Since $Q = \text{diag}(\lambda_1, \dots, \lambda_d)$, $\mathbb{E}[x_i x_j] = \lambda_i \delta_{ij}$.

Evaluating the three pairings:

- Pairing $(i, j)(k, \ell)$ contributes

$$\sum_{i,k} \lambda_i \lambda_k w_i^2 (w_k^*)^2 = \|w\|_Q^2 \cdot \|w^*\|_Q^2.$$

- Pairing $(i, k)(j, \ell)$ contributes

$$\sum_{i,j} \lambda_i \lambda_j w_i w_j w_i^* w_j^* = \left(\sum_i \lambda_i w_i w_i^* \right)^2 = \langle w, w^* \rangle_Q^2.$$

- Pairing $(i, \ell)(j, k)$ contributes the same quantity

$$\langle w, w^* \rangle_Q^2.$$

Summing up,

$$\mathbb{E}[(x^\top w)^2(x^\top w^*)^2] = \|w\|_Q^2 \cdot \|w^*\|_Q^2 + 2\langle w, w^* \rangle_Q^2.$$

Step 3. Final expression. Putting everything together,

$$\begin{aligned} \mathcal{L}(w) &= 3\|w\|_Q^4 + 3\|w^*\|_Q^4 - 2\left(\|w\|_Q^2 \cdot \|w^*\|_Q^2 + 2\langle w, w^* \rangle_Q^2\right) \\ &= 3\|w\|_Q^4 + 3\|w^*\|_Q^4 - 2\|w\|_Q^2 \cdot \|w^*\|_Q^2 - 4\langle w, w^* \rangle_Q^2. \end{aligned}$$

□

756 **Proposition 2.** *The population gradient and Hessian of the loss \mathcal{L} are given by*

757
$$\nabla \mathcal{L}(w) = 12sQw - 4s_*Qw - 8uQw^*, \quad (3.1)$$

759
$$\nabla^2 \mathcal{L}(w) = 24(Qw)(Qw)^\top + (12s - 4s_*)Q - 8(Qw^*)(Qw^*)^\top. \quad (3.2)$$

760 *The set of critical points is $\{0, w^*, -w^*\} \cup \{w : (u, s) = (0, s_*/3)\}$. Among them, 0 is a strict
761 local maximum, $\pm w^*$ are strict global minima, and every w with $(u, s) = (0, s_*/3)$ is a saddle
762 point.*

764 *Proof.* The proof proceeds in three steps: computing the gradient, identifying the critical points, and
765 classifying them via the Hessian.

767 **Gradient.** To compute the gradient, we use the closed-form expression $\mathcal{L}(w) = 3s^2 + 3(s_*)^2 -$
768 $2ss_* - 4u^2$, apply the chain rule and use $\nabla s = 2Qw$ and $\nabla u = Qw^*$ to get

770
$$\nabla \mathcal{L}(w) = 6s\nabla s - 2s_*\nabla s - 8u\nabla u = (12s - 4s_*)Qw - 8uQw^*,$$

772 which is (3.1).

773 **Critical points.** Setting $\nabla \mathcal{L}(w) = 0$ and using $Q \succ 0$ leads to

775
$$(12s - 4s_*)w - 8uw^* = 0.$$

777 – *Case 1:* If $12s - 4s_* \neq 0$, then w must lie in $\text{span } w^*$. Write $w = \alpha w^*$; then $s = \alpha^2 s_*$ and
778 $u = \alpha s_*$. Substituting gives

779
$$(12\alpha^2 - 4)\alpha w^* = 8\alpha w^* \iff 12\alpha^3 - 12\alpha = 0 \iff \alpha \in \{0, \pm 1\}.$$

781 Hence, we obtain the critical points 0 and $\pm w^*$.

783 – *Case 2:* If $12s - 4s_* = 0$, then necessarily $s = s_*/3$. The gradient condition reduces to $-8uw^* = 0$, i.e. $u = 0$. Thus every w with $(u, s) = (0, s_*/3)$ is a critical point.

785 **Hessian.** Differentiating (3.1), and recalling that $\nabla s = 2Qw$ and $\nabla u = Qw^*$, we obtain

787
$$\nabla^2 \mathcal{L}(w) = 24(Qw)(Qw)^\top + (12s - 4s_*)Q - 8(Qw^*)(Qw^*)^\top,$$

789 which is (3.2).

791 **Characterization of the critical points.** At $w = 0$ (so $s = 0, u = 0$),

792
$$\nabla^2 \mathcal{L}(0) = -4s_*Q - 8(Qw^*)(Qw^*)^\top,$$

794 which is strictly negative definite since $Q \succ 0$ and the rank-one term is negative semidefinite. Thus
795 $w = 0$ is a strict local maximum since $\mathcal{L}(0) > \mathcal{L}(\pm w^*) = 0$.

796 At $w = \pm w^*$ (so $s = s_*$, $u = \pm s_*$),

798
$$\nabla^2 \mathcal{L}(\pm w^*) = 24(Qw^*)(Qw^*)^\top + (12s_* - 4s_*)Q - 8(Qw^*)(Qw^*)^\top = 16(Qw^*)(Qw^*)^\top + 8s_*Q \succ 0,$$

799 hence both $\pm w^*$ are strict local (and, by the loss formula, global) minima.

801 Finally, for any w with $(u, s) = (0, s_*/3)$, the Hessian reduces to

802
$$\nabla^2 \mathcal{L}(w) = 24(Qw)(Qw)^\top - 8(Qw^*)(Qw^*)^\top.$$

804 Since $Q \succ 0$, $w^* \neq 0$, and $w^\top Qw^* = 0$, $s = w^\top Qw = \frac{1}{3}s_* = \frac{1}{3}(w^*)^\top Qw^*$, we have

806
$$w^\top \nabla^2 \mathcal{L}(w) w = w^\top [24Qww^\top Q - 8Qw^*(w^*)^\top Q]w = 24(w^\top Qw)^2 = 8[(w^*)^\top Qw^*]^2 > 0,$$

807
$$(w^*)^\top \nabla^2 \mathcal{L}(w) w^* = (w^*)^\top [24Qww^\top Q - 8Qw^*(w^*)^\top Q](w^*) = -8[(w^*)^\top Qw^*]^2 < 0.$$

809 It follows that $\nabla^2 \mathcal{L}(w)$ must necessarily have both positive and negative directions. Thus, this
critical point is a saddle. \square

810 **Proposition 3.** *The gradient flow dynamics satisfy*

812 $\dot{w}_i(t) = 4\lambda_i(s_\star - 3s(t))w_i(t) + 8\lambda_i u(t)w_i^*, \quad i = 1, \dots, d,$ (3.3)

813 $\dot{s}^{(k)}(t) = 8(s_\star - 3s(t))s^{(k+1)}(t) + 16u(t)u^{(k+1)}(t),$ (3.4)

815 $\dot{u}^{(k)}(t) = 4(s_\star - 3s(t))u^{(k+1)}(t) + 8u(t)s_\star^{(k+1)}.$ (3.5)

816 *In particular, setting $k = 1$ recovers the dynamics of $s(t)$ and $u(t)$.*

819 *Proof.* We first derive the component-wise ODE, then deduce the dynamics for the summary
820 statistics $s(t)$ and $u(t)$. Recall from the previous computation that the population gradient flow
821 $\dot{w}(t) = -\nabla \mathcal{L}(w(t))$ satisfies

822 $\dot{w}(t) = 4(s_\star - 3s)Qw + 8uQw^*.$ (A.1)

825 **Component-wise dynamics.** With $Q = \text{diag}(\lambda_1, \dots, \lambda_d)$, taking the i -th coordinate in (A.1)
826 yields

827 $\dot{w}_i(t) = 4(s_\star - 3s)\lambda_i w_i(t) + 8u \lambda_i w_i^*.$

829 **Dynamics for $s(t)$.** Differentiate $s(t) = w(t)^\top Qw(t)$ along the flow:

831 $\dot{s}(t) = 2\dot{w}(t)^\top Qw(t).$

833 Using (A.1) and defining

834 $s^{(2)}(t) := w(t)^\top Q^2w(t), \quad u^{(2)}(t) := w(t)^\top Q^2w^*,$

836 we obtain

837 $\dot{s}(t) = 8(s_\star - 3s)s^{(2)}(t) + 16u u^{(2)}(t).$

839 **Dynamics for $u(t)$.** Differentiate $u(t) = w(t)^\top Qw^*$:

841 $\dot{u}(t) = \dot{w}(t)^\top Qw^*.$

843 Using (A.1) and letting $s_\star^{(2)} := w^{*\top} Q^2 w^*$, we get

845 $\dot{u}(t) = 4(s_\star - 3s)u^{(2)}(t) + 8u s_\star^{(2)}.$

847 These identities establish the stated ODEs for $s(t)$ and $u(t)$.

849 **Higher-order moments.** The same computation applies to $s^{(k)}(t) = w(t)^\top Q^k w(t)$ and $u^{(k)}(t) =$
850 $w(t)^\top Q^k w^*$, leading to

852 $\dot{s}^{(k)}(t) = 8(s_\star - 3s(t))s^{(k+1)}(t) + 16u(t)u^{(k+1)}(t),$

853 $\dot{u}^{(k)}(t) = 4(s_\star - 3s(t))u^{(k+1)}(t) + 8u(t)s_\star^{(k+1)}.$

855 \square

857 B ANALYSIS OF PHASE I: ESCAPING MEDIOCRITY

860 In this section, we provide the detailed proofs for the analysis of Phase I outlined in Section 5.1. We
861 begin by formalizing the infinite-dimensional ODE in a suitable Banach space (Section B.1). We
862 then derive a closed-form solution (Section B.2), show that $u(t)$ satisfies a Volterra integral equation
863 by projection (Section B.3), and analyze its asymptotic behavior. Finally, we study higher-order
864 correlation terms (Section B.4), showing that their dynamics are primarily driven by $u(t)$.

864 B.1 STEP 0: PRELIMINARIES ON BANACH-VALUED ODES
865

866 Before entering the main steps of the proof, we formalize the Banach space on which the ODE (B.9)
867 is defined. Throughout the following, $\mathcal{L}(w)$ refers to the loss function in Proposition 1. Recall that
868 we define $U(t) = (u^{(1)}(t), u^{(2)}(t), \dots)^\top$, where $u^{(k)}(t) = w(t)^\top Q^k w^*$. We show that

$$869 \quad U \in \mathcal{H} := C_b^\infty(\mathbb{R}_{\geq 0}; \ell^2),$$

870 where $\ell^2 = \{(a_k)_{k \geq 1} : \sum_{k=1}^{\infty} a_k^2 < \infty\}$ is the Hilbert space of square-summable sequences. Thus
871 U is a bounded, smooth ℓ^2 -valued function on $\mathbb{R}_{\geq 0}$.

872 **Lemma 3** (Coercivity of the loss). *The loss function \mathcal{L} in Proposition 1 is coercive, that is
873 $\lim_{\|w\| \rightarrow \infty} \mathcal{L}(w) = \infty$.*

874 *Proof.* By the Cauchy-Schwarz inequality

$$875 \quad \mathcal{L}(w) = 3\|w\|_Q^4 + 3\|w^*\|_Q^4 - 4\langle w, w^* \rangle_Q^2 - 2\|w\|_Q^2\|w^*\|_Q^2 \\ 876 \quad \geq 3\|w\|_Q^4 + 3\|w^*\|_Q^4 - 6\|w\|_Q^2\|w^*\|_Q^2 = 3(\|w\|_Q^2 - \|w^*\|_Q^2)^2,$$

877 from which it clearly follows that $\lim_{\|w\| \rightarrow \infty} \mathcal{L}(w) = \infty$. \square

878 **Lemma 4** (Local Lipschitz continuity of the gradient). *Consider the function $Z : \mathbb{R}^d \mapsto \mathbb{R}^d$ defined
879 by*

$$880 \quad Z(w) = 3\|w\|_Q^2 Qw - \|w^*\|_Q^2 Qw - 2(w^\top Qw^*)Qw^*. \quad (\text{B.1})$$

881 For all $w_1, w_2 \in \mathbb{R}^d$,

$$882 \quad \|Z(w_1) - Z(w_2)\| \leq 3\|Q\|^2\|w_1 - w_2\| \left[(\|w_1\| + \|w_2\|)\|w_1\| + \|w_2\|^2 + \|w^*\|^2 \right]. \quad (\text{B.2})$$

883 In particular, for $\|w_1\| \leq M, \|w_2\| \leq M$, with $M > 0$,

$$884 \quad \|Z(w_1) - Z(w_2)\| \leq 3(3M^2 + \|w^*\|^2)\|Q\|^2\|w_1 - w_2\|. \quad (\text{B.3})$$

885 *Proof.*

$$886 \quad \|Z(w_1) - Z(w_2)\| \\ 887 \quad \leq 3\| \|w_1\|_Q^2 Qw_1 - \|w_2\|_Q^2 Qw_2 \| + \|w^*\|_Q^2 \|Qw_1 - Qw_2\| + 2\| (w_1 - w_2)^\top Qw^* Qw^* \| \\ 888 \quad \leq 3\| \|w_1\|_Q^2 - \|w_2\|_Q^2 \| \|Qw_1\| + 3\|w_2\|_Q^2 \|Qw_1 - Qw_2\| \\ 889 \quad + \|w^*\|_Q^2 \|Q\| \|w_1 - w_2\| + 2\|w_1 - w_2\| \|Qw^*\|^2 \\ 890 \quad \leq 3\|w_1 - w_2\|_Q [\|w_1\|_Q + \|w_2\|_Q] \|Qw_1\| + 3\|w_2\|_Q^2 \|Q\| \|w_1 - w_2\| \\ 891 \quad + \|w^*\|_Q^2 \|Q\| \|w_1 - w_2\| + 2\|w_1 - w_2\| \|Qw^*\|^2 \\ 892 \quad = \|w_1 - w_2\| [3(\|w_1\| + \|w_2\|) \|Q\|^2 \|w_1\| + 3\|w_2\|^2 \|Q\|^2 + \|w^*\|_Q^2 \|Q\| + 2\|Qw^*\|^2] \\ 893 \quad \leq 3\|Q\|^2 \|w_1 - w_2\| [(\|w_1\| + \|w_2\|) \|w_1\| + \|w_2\|^2 + \|w^*\|^2].$$

894 \square

895 We recall the classical Picard-Lindelöf Theorem for the existence and uniqueness of the solution of
896 the initial value problem

$$897 \quad \dot{x} = f(t, x), \quad x(t_0) = x_0, \quad (\text{B.4})$$

898 where $f \in C(U; \mathbb{R}^d)$, $U \subset \mathbb{R}^{d+1}$ is an open subset, and $(t_0, x_0) \in U$, see e.g. [Teschl \(2012\)](#)
899 (Theorem 2.2, Lemma 2.3).

900 **Theorem 3 (Picard-Lindelöf).** *Let $f \in C^k(U; \mathbb{R}^d)$, $k \geq 0$, where $U \subset \mathbb{R}^{d+1}$ is an open subset
901 and $(t_0, x_0) \in U$. Assume that f is locally Lipschitz continuous in the second argument, uniformly
902 with respect to the first argument, i.e. $\forall V \subset U$, V compact, $\exists L = L(V) > 0$ such that*

$$903 \quad \|f(t, x_1) - f(t, x_2)\| \leq L\|x_1 - x_2\|, \quad \forall (t, x_1), (t, x_2) \in V. \quad (\text{B.5})$$

904 Then there exists $\epsilon > 0$ such that the initial value problem (B.4) possesses a unique solution $x^*(t) \in$
905 $C^{k+1}(I; \mathbb{R}^d)$, where $I = [t_0 - \epsilon, t_0 + \epsilon]$.

918 **Lemma 5** (Well-posedness of the gradient flow). *The gradient flow on $\mathbb{R} \times \mathbb{R}^d$*

$$919 \quad \begin{cases} \dot{w}(t) = -\nabla \mathcal{L}(w(t)), \\ 920 \quad w(0) = w_0 \in \mathbb{R}^d \end{cases} \quad (B.6)$$

922 has a unique solution $w \in C_b^\infty(\mathbb{R}_{\geq 0}; \mathbb{R}^d) \forall w_0 \in \mathbb{R}^d$.

924 *Proof.* By Lemma 4, the gradient $\nabla_w \mathcal{L}(w)$ is locally Lipschitz on \mathbb{R}^d , thus by Picard-Lindelöf
925 Theorem there exists a unique local solution $w \in C^\infty(I; \mathbb{R}^d)$ on $I = [-\epsilon, \epsilon]$ for some $\epsilon > 0$, since
926 $\mathcal{L} \in C^\infty(\mathbb{R}^{d+1}; \mathbb{R}^d)$. The interval I can in fact be extended to all of \mathbb{R} . By differentiating $\mathcal{L}(w(t))$
927 we have, by the chain rule,

$$928 \quad \frac{d\mathcal{L}(w(t))}{dt} = (\dot{w}(t))^\top \nabla \mathcal{L}(w(t)) = -\|\nabla \mathcal{L}(w(t))\|^2 \leq 0.$$

931 Thus $\mathcal{L}(w(t))$ is decreasing along the flow $w(t)$ and therefore $w(t)$ always lies in the level set
932 $L_{w_0}(\mathcal{L}) = \{w \in \mathbb{R}^d : \mathcal{L}(w) \leq \mathcal{L}(w_0)\}$. Since $\mathcal{L}(w)$ is coercive by Lemma 3, $L_{w_0}(\mathcal{L})$ must
933 necessarily be bounded. Thus Picard-Lindelöf Theorem can be repeatedly applied to extend I to all
934 of $\mathbb{R}_{\geq 0}$. Since $\mathcal{L}(w)$ is bounded below by zero, the limit $\lim_{t \rightarrow \infty} \mathcal{L}(w(t))$ necessarily exists. Let
935 $B_{\mathbb{R}^d}(0, M)$ be the smallest ball in \mathbb{R}^d , centered at the origin, such that $L_{w_0}(\mathcal{L}) \subset B_{\mathbb{R}^d}(0, M)$, then
936 $\|w(t)\| \leq M \forall t \geq 0$. Thus $w(t) \in C_b^\infty(\mathbb{R}_{\geq 0}; \mathbb{R}^d)$. \square

937 **Lemma 6.** *Let w be the unique global solution of the gradient flow (B.6). Define $U : \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}^\infty$
938 by $U(t) = (u^{(1)}(t), u^{(2)}(t), \dots)^\top$, where $u^{(k)}(t) = w(t)^\top Q^k w^*$. Then $U \in C_b^\infty(\mathbb{R}_{\geq 0}; \ell^2)$.*

940 *Proof.* By the assumption that $\text{tr}(Q) = 1$ and $\lambda_1 \geq \dots \geq \lambda_d > 0$, we have $\|Q\| = \lambda_1 < 1$. For
941 each fixed t , we have

$$942 \quad \begin{aligned} \sum_{k=1}^{\infty} |u^{(k)}(t)|^2 &= \sum_{k=1}^{\infty} (w(t)^\top Q^k w^*)^2 \leq \|w(t)\|^2 \|w^*\|^2 \sum_{k=1}^{\infty} \|Q^k\|^2 \\ 943 \quad &\leq \|w(t)\|^2 \|w^*\|^2 \sum_{k=1}^{\infty} \|Q\|^{2k} = \|w(t)\|^2 \|w^*\|^2 \frac{\|Q\|^2}{1 - \|Q\|^2} < \infty. \end{aligned}$$

944 Since w is bounded, for each fixed t , we thus have $U(t) \in \ell^2$, and

$$945 \quad \|U\|_\infty = \sup_{t \geq 0} \|U(t)\| \leq \|w\|_\infty \|w^*\| \frac{\|Q\|}{\sqrt{1 - \|Q\|^2}}.$$

946 As w is bounded and smooth, so is U , hence $U \in C_b^\infty(\mathbb{R}_{\geq 0}; \ell^2)$. \square

947 B.2 STEP 1: INFINITE-DIMENSIONAL ODE FOR THE MOMENT SYSTEM

948 Contrary to the isotropic setting where the dynamics only depend on two ODEs involving $u(t)$ and
949 $s(t)$, in the anisotropic setting, higher order correlations $u^{(k)}$ and $s^{(k)}$ appear. We first derive ODEs
950 for higher-order correlation terms and then solve the infinite-dimensional ODE system.

951 Differentiating $u^{(k)}(t) = w(t)^\top Q^k w^*$ along (3.1) gives, for $k \geq 1$,

$$952 \quad \dot{u}^{(k)}(t) = 4(s_\star - 3s(t))u^{(k+1)}(t) + 8u(t)s_\star^{(k+1)}. \quad (B.7)$$

953 Using the normalization $s_\star = 1$, we obtain

$$954 \quad \dot{u}^{(k)}(t) = 4(1 - 3s(t))u^{(k+1)}(t) + 8u(t)s_\star^{(k+1)}. \quad (B.8)$$

955 **Infinite-dimensional ODE.** Let $U(t) = (u^{(1)}(t), u^{(2)}(t), \dots)^\top \in \mathbb{R}^\infty$. By Lemma 6, we have
956 $U \in C_b^\infty(\mathbb{R}_{\geq 0}; \ell^2)$. Consider $B : \ell^2 \rightarrow \ell^2$, the right-shift operator on sequences in ℓ^2 , defined
957 by $(Bx)_k := x_{k+1}$ for $x = (x_k)_{k \in \mathbb{N}} \in \ell^2$. Let $S := (Bs_\star^\infty) e_1^\top : \ell^2 \rightarrow \ell^2$ be a rank one operator
958 with $s_\star^\infty = (s_\star^{(1)}, s_\star^{(2)}, \dots)^\top \in \ell^2$, $Bs_\star^\infty = (s_\star^{(2)}, s_\star^{(3)}, \dots)^\top \in \ell^2$ and $e_1 = (1, 0, 0, \dots)^\top$ is

972 the first basis vector in the canonical orthonormal basis for ℓ^2 . Then (B.8) admits the equivalent
 973 formulation

$$974 \quad \dot{U}(t) = \left(4(1 - 3s(t))B + 8S\right)U(t). \quad (B.9)$$

976 This is an infinite-dimensional ODE, with U belonging to the Banach space $C_b^\infty(\mathbb{R}_{\geq 0}; \ell^2)$ of smooth,
 977 bounded functions with values in the Hilbert space ℓ^2 . In the following, we seek to solve (B.9).

978 We recall that on a Banach space \mathcal{B} , with $\mathcal{L}(\mathcal{B})$ denoting the Banach space of bounded linear opera-
 979 tors on \mathcal{B} , the exponential operator e^A is well-defined $\forall A \in \mathcal{L}(\mathcal{B})$, with

$$981 \quad e^A = \sum_{k=0}^{\infty} \frac{A^k}{k!} : \mathcal{L}(\mathcal{B}) \rightarrow \mathcal{L}(\mathcal{B}), \quad (B.10)$$

$$984 \quad \|e^A\| \leq \sum_{k=0}^{\infty} \frac{\|A\|^k}{k!} = e^{\|A\|} < \infty. \quad (B.11)$$

986 **Lemma 7** (Shift exponential). *For any $\theta \in \mathbb{R}$ and $x \in \ell^2$,*

$$988 \quad (e^{\theta B} x)_k = \sum_{m=0}^{\infty} \frac{\theta^m}{m!} x_{k+m}. \quad (B.12)$$

991 *Proof.* Because B is bounded on ℓ^2 with $\|B\| \leq 1$, the exponential series for $e^{\theta B}$ converges in
 992 operator norm for every $\theta \in \mathbb{R}$, and (B.12) follows from $B^m x$ having coordinates $(B^m x)_k =$
 993 x_{k+m} . \square

995 **Proposition 7.** *Define the function $\Theta : \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}$ by*

$$996 \quad \Theta(t) := \int_0^t (1 - 3s(\tau)) d\tau. \quad (B.13)$$

999 *The initial value problem on ℓ^2*

$$1000 \quad \dot{U}(t) = \left(4(1 - 3s(t))B + 8S\right)U(t), \quad U(0) = U_0 \in \ell^2, \quad (B.14)$$

1002 *has a unique solution $U \in C_b^\infty(\mathbb{R}_{\geq 0}; \ell^2)$, satisfying, $\forall t \geq 0$,*

$$1004 \quad U(t) = e^{4B\Theta(t)} U_0 + 8 \int_0^t e^{4B(\Theta(t) - \Theta(\tau))} S U(\tau) d\tau. \quad (5.2)$$

1006 *Equivalently, since $S = (Bs_*^\infty) e_1^\top$, (5.2) can be written as*

$$1008 \quad U(t) = e^{4B\Theta(t)} U_0 + 8 \int_0^t e^{4B(\Theta(t) - \Theta(\tau))} (Bs_*^\infty) u^{(1)}(\tau) d\tau,$$

1010 *where $u^{(1)}(\tau) := \langle e_1, U(\tau) \rangle$.*

1012 To prove Proposition 7, we apply the following result on ODEs in Banach space.

1013 **Theorem 4** (Pazy (2012), Theorem 5.1). *Let \mathcal{B} be a Banach space. Assume that $A(t) : \mathcal{B} \rightarrow \mathcal{B}$ is a
 1014 bounded linear operator $\forall t \in [0, T]$, $0 \leq T < \infty$, and that the map $t \rightarrow A(t)$ is continuous in the
 1015 uniform operator topology, with $\max_{t \in [0, T]} \|A(t)\| < \infty$. Then $\forall u_0 \in \mathcal{B}$, the initial value problem*

$$1016 \quad \begin{cases} \frac{du}{dt} = A(t)u(t), & 0 \leq t_0 \leq t \leq T < \infty, \\ u(t_0) = u_0 \in \mathcal{B}. \end{cases} \quad (B.15)$$

1018 *has a unique solution $u \in C^1([t_0, T]; \mathcal{B})$.*

1020 **Proof of Proposition 7.** Let $a : \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}$ be defined by $a(t) = 1 - 3s(t) = 1 - 3w(t)^\top Qw(t)$.
 1021 Since $w \in C_b^\infty(\mathbb{R}_{\geq 0}; \mathbb{R}^d)$ by Lemma 5, we have $s \in C_b^\infty(\mathbb{R}_{\geq 0}; \mathbb{R})$, $a \in C_b^\infty(\mathbb{R}_{\geq 0}; \mathbb{R})$, with

$$1023 \quad |a(t)| \leq 1 + 3\|Q\| \|w(t)\|^2, \quad \|a\|_\infty \leq 1 + 3\|Q\| \|w\|_\infty^2,$$

$$1024 \quad |a(t_1) - a(t_2)| = 3|w(t_1)^\top Qw(t_1) - w(t_2)^\top Qw(t_2)| \\ 1025 \quad \leq 3\|Q\| \|w(t_1) - w(t_2)\| [\|w(t_1)\| + \|w(t_2)\|].$$

1026 Let $A : \mathbb{R}_{\geq 0} \rightarrow \mathcal{L}(\ell^2)$ be defined by $A(t) = 4a(t)B + 8S$, then $A(t) : \ell^2 \rightarrow \ell^2$ is a bounded linear
 1027 operator $\forall t \geq 0$, with
 1028

$$1029 \quad \|A(t)\| \leq 4\|B\| (1 + 3\|Q\| \|w(t)\|^2) + 8\|S\|$$

$$1030 \quad \|A\|_\infty \leq 4\|B\| (1 + 3\|Q\| \|w\|_\infty^2) + 8\|S\|,$$

$$1031 \quad \|A(t_1) - A(t_2)\| \leq 12\|B\| \|Q\| \|w(t_1) - w(t_2)\| [\|w(t_1)\| + \|w(t_2)\|] \\ 1032 \quad \leq 24\|B\| \|Q\| \|w\|_\infty \|w(t_1) - w(t_2)\|.$$

1033
 1034 Thus $A(t)$ is continuous in the uniform operator topology and $\sup_{t \geq 0} \|A(t)\| < \infty$. By Theorem 4,
 1035 the initial value problem (B.14) has a unique solution $U \in C^1([0, T]; \ell^2)$, $\forall 0 < T < \infty$. Since $s(t)$
 1036 is smooth, it follows immediately that $U \in C^\infty([0, T]; \ell^2)$, $\forall 0 < T < \infty$. Consider the following
 1037 function $U : \mathbb{R}_{\geq 0} \rightarrow \ell^2$ satisfying

$$1038 \quad U(t) = e^{4B\Theta(t)} U_0 + 8 \int_0^t e^{4B(\Theta(t)-\Theta(\tau))} S U(\tau) d\tau \\ 1039 \\ 1040 \quad = e^{4B\Theta(t)} U_0 + 8e^{4B\Theta(t)} \int_0^t e^{-4B\Theta(\tau)} S U(\tau) d\tau,$$

1041 where we recall that $\Theta(t) = \int_0^t a(\tau) d\tau = \int_0^t (1 - 3s(\tau)) d\tau$, with $\dot{\Theta}(t) = a(t)$. Differentiating
 1042 $U(t)$ on both sides gives, via the product rule,

$$1043 \quad \dot{U}(t) = 4a(t)B e^{4B\Theta(t)} U_0 + 32a(t)B e^{4B\Theta(t)} \int_0^t e^{-4B\Theta(\tau)} S U(\tau) d\tau + 8S U(t) \\ 1044 \\ 1045 \quad = 4a(t)B U(t) + 8S U(t),$$

1046 which is precisely the differential equation in (B.14). Since $a \in C_b^\infty(\mathbb{R}_{\geq 0}; \mathbb{R})$, it follows that
 1047 $U \in C^\infty(\mathbb{R}_{\geq 0}; \ell^2)$. Therefore, the unicity of solution implies that U must be the unique solution of
 1048 (B.14) and we must have $U \in C_b^\infty(\mathbb{R}_{\geq 0}; \ell^2)$. \square

1054 B.3 STEP 2: VOLTERRA REDUCTION

1055 Taking the first coordinate of (5.2) yields a Volterra equation for $u(t) = u^{(1)}(t)$.

1056 **Proposition 8** (Volterra equation). *Define*

$$1057 \quad a_\Theta(t) := (e^{4B\Theta(t)} U(0))_1 = \sum_{m \geq 0} \frac{(4\Theta(t))^m}{m!} u^{(1+m)}(0), \quad (\text{B.16})$$

$$1058 \quad K_\Theta(t) := (e^{4B\Theta(t)} B s_*^\infty)_1 = \sum_{m \geq 0} \frac{(4\Theta(t))^m}{m!} s_*^{(2+m)}. \quad (\text{B.17})$$

1059 Then u satisfies

$$1060 \quad u(t) = a_\Theta(t) + 8 \int_0^t K_\Theta(t - \tau) u(\tau) d\tau. \quad (\text{B.18})$$

1061 Moreover,

$$1062 \quad a_\Theta(t) = \sum_i w_i(0) w_i^* \lambda_i e^{4\lambda_i \Theta(t)}, \quad K_\Theta(t) = \sum_i (w_i^*)^2 \lambda_i^2 e^{4\lambda_i \Theta(t)}. \quad (\text{B.19})$$

1063 *Proof.* Equation (B.18) is the first coordinate of (5.2). The spectral forms follow by expanding
 1064 $u^{(1+m)}(0) = \sum_i \lambda_i^{1+m} w_i(0) w_i^*$ and $s_*^{(2+m)} = \sum_i (w_i^*)^2 \lambda_i^{2+m}$ and summing the exponential series.
 1065 \square

1066 To analyze the growth of $u(t)$, we employ the Laplace transform together with residue calculus;
 1067 see (Gripenberg et al., 1990, Chapters 2, 3, and 7) for a detailed exposition. We first illustrate the
 1068 method in the ideal case $\Theta(t) = t$, and then explain how the analysis extends to the approximated
 1069 case.

1080 B.3.1 IDEAL CASE: $\Theta(t) = t$
 1081

1082 Fix $b > 0$ (e.g. $b = 4$ if $\Theta(t) = t$) and consider the scalar Volterra equation of the second kind
 1083

$$1084 \alpha_b(t) = a_\Theta(t) + 8 \int_0^t K_b(t-s) \alpha_b(s) ds, \quad K_b(t) = \sum_{i \geq 1} (w_i^*)^2 \lambda_i^2 e^{b\lambda_i t}, \quad t \geq 0, \quad (\text{B.20})$$

1085

1086 where $\lambda_1 = \max_i \lambda_i$, and the series defining K_b (hence \widehat{K}_b) converges for $\Re s > b\lambda_1$. Define
 1087

$$1088 D_b(s) := 1 - 8 \widehat{K}_b(s) = 1 - 8 \sum_{i \geq 1} \frac{(w_i^*)^2 \lambda_i^2}{s - b\lambda_i}, \quad \Re s > b\lambda_1.$$

1089

1090 **Lemma 8.** *There is a unique real $\rho(b) > b\lambda_1$ such that*

1091

$$1092 D_b(\rho(b)) = 0 \iff 1 = 8 \sum_{i \geq 1} \frac{(w_i^*)^2 \lambda_i^2}{\rho(b) - b\lambda_i}. \quad (\text{B.21})$$

1093

1094 Moreover, the function $b \mapsto \rho(b)$ is strictly increasing and continuous.
 1095

1096 *Proof.* We first note that for a fixed b , $F_b(\rho) := 8 \widehat{K}_b(s)$ is strictly decreasing in $\rho \in (b\lambda_1, \infty)$. If
 1097 $b_2 > b_1$, then $\rho - b_2 \lambda_i < \rho - b_1 \lambda_i$, hence $F_{b_2}(\rho) > F_{b_1}(\rho) \forall \rho \in (b_2 \lambda_1, \infty)$. Evaluating at $\rho = \rho(b_1)$
 1098 gives $1 = F_{b_2}(\rho(b_2)) = F_{b_1}(\rho(b_1)) < F_{b_2}(\rho(b_1))$, so, since F_{b_2} is strictly decreasing in ρ , we have
 1099 $\rho(b_2) > \rho(b_1)$. Continuity follows from dominated convergence applied to $F_b(\rho)$ (for ρ bounded
 1100 away from $b\lambda_1$) and the continuity of the inverse graph of strictly decreasing functions. \square
 1101

1102 **Proposition 9.** *Fix $b > 0$ and let $\rho(b) > b\lambda_1$ be the unique real zero of $D_b(s) = 1 - 8 \sum_{i=1}^d (w_i^*)^2 \lambda_i^2 / (s - b\lambda_i)$. Set $\delta_b := \rho(b) - b\lambda_1 > 0$. Then, for all $t \geq 0$,*

1103

$$1104 \alpha_b(t) = \frac{c(b)}{\sqrt{d}} e^{\rho(b)t} (1 + o(1)), \quad (\text{B.22})$$

1105

1106 where the (dimension-free) constant

1107

$$1108 c(b) = \frac{\sqrt{d} \widehat{a}_\Theta(\rho(b))}{D'_b(\rho(b))} \text{ satisfies } 0 < c(b) \leq \frac{8(s_\star^{(2)})^{3/2}}{\delta_b}.$$

1109

1110 In particular, if $\widehat{a}_\Theta(\rho(b)) > 0$, then $c(b) > 0$.

1111

1112 *Proof.* The proof consists in solving the Volterra equation in the Laplace domain, and then applying
 1113 Laplace inversion together with residue calculus to characterize the solution in the original domain.
 1114

1115 **Step 1: Laplace inversion.** For $\Re s > b\lambda_1$ we have

1116

$$1117 \widehat{\alpha}_b(s) = \frac{\widehat{a}_\Theta(s)}{D_b(s)}, \quad \widehat{a}_\Theta(s) = \sum_{i=1}^d \frac{\lambda_i w_i(0) w_i^*}{s - b\lambda_i}.$$

1118

1119 By Bromwich inversion, for any $\sigma_R > \rho(b)$,

1120

$$1121 \alpha_b(t) = \frac{1}{2\pi i} \int_{\sigma_R - i\infty}^{\sigma_R + i\infty} e^{st} \frac{\widehat{a}_\Theta(s)}{D_b(s)} ds.$$

1122

1123 **Step 2: Contour shift and residue extraction.** Fix $\sigma_* \in (b\lambda_1, \rho(b))$ and $T > 0$. Consider the
 1124 rectangle with vertices $\sigma_R \pm iT$ and $\sigma_* \pm iT$. The only singularity of $e^{st} \widehat{a}_\Theta(s) / D_b(s)$ in the strip
 1125 $\{\sigma_* < \Re s < \sigma_R\}$ is the simple pole at $s = \rho(b)$ (zeros of D_b are real and interlace the poles $b\lambda_i$).
 1126 Introduce the notation

$$1127 \delta_b := \rho(b) - b\lambda_1 > 0$$

1128

1129 for the gap between the top pole and the dominant zero. On the horizontal edges $s = x \pm iT$ with
 1130 $x \in [\sigma_*, \sigma_R]$, using $u(0) = cd^{-1/2}$ we obtain
 1131

$$1132 |\widehat{a}_\Theta(s)| \leq \sum_i \frac{|\lambda_i w_i(0) w_i^*|}{|x - b\lambda_i \pm iT|} \leq \frac{1}{T} \sum_i |\lambda_i w_i(0) w_i^*| \leq \frac{c}{T\sqrt{d}}.$$

1133

1134 Since D_b is continuous and nonvanishing on the compact strip, $\inf_{x \in [\sigma_*, \sigma_R], |y|=T} |D_b(x+iy)| \geq$
 1135 $c_* > 0$. Therefore the horizontal contributions are $O(T^{-1})$ and vanish as $T \rightarrow \infty$. By the residue
 1136 theorem, we obtain the exact identity (valid for all $t \geq 0$):
 1137

$$1138 \alpha_b(t) = \frac{\widehat{a}_\Theta(\rho(b))}{D'_b(\rho(b))} e^{\rho(b)t} + \mathcal{R}_{\sigma_*}(t), \quad \mathcal{R}_{\sigma_*}(t) := \frac{1}{2\pi i} \int_{\sigma_* - i\infty}^{\sigma_* + i\infty} e^{st} \frac{\widehat{a}_\Theta(s)}{D_b(s)} ds. \quad (\text{B.23})$$

1140 **Step 3: Coefficient bound.** Let $v_i := \lambda_i/(\rho(b) - b\lambda_i)$. By Cauchy–Schwarz and $\|w(0)\|_2 =$
 1141 $d^{-1/2}$,

$$1143 |\widehat{a}_\Theta(\rho(b))| = \left| \sum_i w_i(0) w_i^* v_i \right| \leq \|w(0)\|_2 \left(\sum_i (w_i^*)^2 v_i^2 \right)^{1/2} \leq \frac{1}{\sqrt{d}} \cdot \frac{1}{\delta_b} \left(\sum_i (w_i^*)^2 \lambda_i^2 \right)^{1/2} = \frac{\sqrt{s_*^{(2)}}}{\delta_b \sqrt{d}}.$$

1144 Next,

$$1145 D'_b(\rho(b)) = 8 \sum_i \frac{(w_i^*)^2 \lambda_i^2}{(\rho(b) - b\lambda_i)^2} \geq \frac{1}{8 \sum_i (w_i^*)^2 \lambda_i^2} = \frac{1}{8s_*^{(2)}},$$

1146 where we used $1 = 8 \sum_i (w_i^*)^2 \lambda_i^2 / (\rho(b) - b\lambda_i)$ and Cauchy–Schwarz. Hence

$$1147 \left| \frac{\widehat{a}_\Theta(\rho(b))}{D'_b(\rho(b))} \right| \leq \frac{8(s_*^{(2)})^{3/2}}{\delta_b \sqrt{d}}. \quad (\text{B.24})$$

1148 **Step 4: Remainder bound on $\operatorname{Re} s = \sigma_*$.** For $s = \sigma_* + iy$,

$$1149 \operatorname{Re} D_b(s) = 1 - 8 \operatorname{Re} \widehat{K}_b(s) \geq 1 - 8 \widehat{K}_b(\sigma_*) = F_b(\sigma_*) - 1, \quad F_b(\rho) := 8 \sum_i \frac{(w_i^*)^2 \lambda_i^2}{\rho - b\lambda_i}.$$

1150 Since F_b is decreasing and convex on $(b\lambda_1, \infty)$ and $F_b(\rho(b)) = 1$,

$$1151 F_b(\sigma_*) - 1 \geq (\rho(b) - \sigma_*) |F'_b(\rho(b))| = \frac{\rho(b) - \sigma_*}{8} D'_b(\rho(b)) \geq \frac{\rho(b) - \sigma_*}{64 s_*^{(2)}}.$$

1152 Therefore

$$1153 \inf_{y \in \mathbb{R}} |D_b(\sigma_* + iy)| \geq \frac{\rho(b) - \sigma_*}{64 s_*^{(2)}}.$$

1154 Moreover, by Cauchy–Schwarz in i ,

$$1155 |\widehat{a}_\Theta(\sigma_* + iy)| = \left| \sum_i w_i(0) w_i^* \frac{\lambda_i}{\sigma_* - b\lambda_i + iy} \right| \leq \frac{1}{\sqrt{d}} \left(\sum_i (w_i^*)^2 \frac{\lambda_i^2}{(\sigma_* - b\lambda_i)^2 + y^2} \right)^{1/2}.$$

1156 Using $\sigma_* - b\lambda_i \geq \sigma_* - b\lambda_1 = \delta_b/2$, and the standard integral $\int_{\mathbb{R}} [(a^2 + y^2)^{-1/2} (A^2 + y^2)^{-1/2}] dy \leq$
 1157 π/\sqrt{aA} , one obtains

$$1158 |\mathcal{R}_{\sigma_*}(t)| \leq \frac{C(s_*^{(2)}, b)}{\sqrt{d}(\rho(b) - \sigma_*)} e^{\sigma_* t}, \quad C(s_*^{(2)}, b) = O\left(\frac{(s_*^{(2)})^{3/2}}{\delta_b}\right).$$

1159 With the midpoint choice $\sigma_* = \rho(b) - \delta_b/2$,

$$1160 \frac{|\mathcal{R}_{\sigma_*}(t)|}{|\widehat{a}_\Theta(\rho(b))/D'_b(\rho(b))| e^{\rho(b)t}} \lesssim e^{-(\delta_b/2)t}. \quad (\text{B.25})$$

1161 **Step 5: Uniformity for $t = O(\log d)$.** From the relation,

$$1162 1 = 8 \sum_{i=1}^d \frac{(w_i^*)^2 \lambda_i^2}{\rho(b) - b\lambda_i} \geq \frac{8(w_1^*)^2 \lambda_1^2}{\rho(b) - b\lambda_1} = \frac{8(w_1^*)^2 \lambda_1^2}{\delta_b},$$

1163 so $\delta_b \geq 8(w_1^*)^2 \lambda_1^2$. If $(w_1^*)^2 \lambda_1^2 \geq \kappa_\Theta > 0$, then $\delta_b \geq \delta_\Theta := 8\kappa_\Theta$, a constant independent of d .
 1164 Taking $t = c \log d$ in (B.25) yields

$$1165 \frac{|\mathcal{R}_{\sigma_*}(t)|}{|C_1| e^{\rho(b)t}} \lesssim d^{-c\delta_\Theta/2} \rightarrow 0.$$

1166 Combining with (B.24) gives the claim with $c(b) = \sqrt{d} \widehat{a}_\Theta(\rho(b))/D'_b(\rho(b))$ and $0 < c(b) \leq$
 1167 $8(s_*^{(2)})^{3/2}/\delta_b$. \square

1188 B.3.2 GENERAL CASE
1189

1190 The ideal case $\Theta(t) = t$ served as a benchmark where the growth rate and coefficient could be
1191 computed explicitly. In the general case, $\Theta(t)$ is only an approximation of t , and the kernel K_Θ
1192 becomes a perturbation of the ideal one. The key point is to show that the dominant pole of the
1193 Laplace transform is stable under this perturbation, so that the same exponential growth persists up
1194 to a small shift in the rate and coefficient.

1195 **Proposition 10.** Denote by $\rho(4) > 4\lambda_1$ the unique real zero of F_4 on $(4\lambda_1, \infty)$. Write $F(p) :=$
1196 $1 - 8\widehat{K}_\Theta(p)$ and let ρ_{true} be the rightmost real zero of F . Then:

1197 *i)* $|\rho_{\text{true}} - \rho(4)| \leq C\delta$.

1198 *ii)* Let $c(\delta) = \sqrt{d}\widehat{a}_\Theta(\rho_{\text{true}})/F'(\rho_{\text{true}})$. We have $|c(\delta)| \lesssim (s_\star^{(2)})^{3/2}/(\rho_{\text{true}} - 4\lambda_1)$. and

1201
$$u(t) = \frac{c(\delta)}{\sqrt{d}} e^{\rho_{\text{true}} t} (1 + o(1)).$$

1202
1203

1204 *Proof.* Let $\Delta K := K_\Theta - K$ be the difference between the ideal kernel and the true one.

1205 **Step 1: Pointwise kernel perturbation.** Since $(1 - 3\delta)t \leq \Theta(t) \leq t$ and $e^x - 1 \leq x$ for $x \leq 0$,

1206
$$|e^{4\lambda_i \Theta(t)} - e^{4\lambda_i t}| \leq 4\lambda_i (t - \Theta(t)) e^{4\lambda_i t} \leq 12\delta \lambda_i t e^{4\lambda_i t}.$$

1207 Multiplying by $(w_i^*)^2 \lambda_i^2$ and summing,

1208
$$|\Delta K(t)| \leq 12\lambda_1 \delta t K(t) \quad (t \geq 0). \quad (\text{B.26})$$

1209
1210

1211 **Step 2: Laplace control of the perturbation.** For $\Re p > 4\lambda_1$,

1212
$$\widehat{\Delta K}(p) = \int_0^\infty e^{-pt} \Delta K(t) dt, \quad |\widehat{\Delta K}(p)| \leq \int_0^\infty e^{-(\Re p)t} |\Delta K(t)| dt.$$

1213
1214

1215 Using (B.26) and differentiating under the integral sign (dominated by $tK(t)e^{-(\Re p)t}$),

1216
$$|\widehat{\Delta K}(p)| \leq 12\lambda_1 \delta \int_0^\infty t e^{-pt} K(t) dt = -12\lambda_1 \delta \widehat{K}'(p).$$

1217
1218

1219 Hence, for $F(p) = 1 - 8\widehat{K}_\Theta(p) = 1 - 8(\widehat{K}(p) + \widehat{\Delta K}(p))$,

1220
$$|F(p) - F_4(p)| = 8 |\widehat{\Delta K}(p)| \leq 96 \lambda_1 \delta (-\widehat{K}'(p)), \quad \Re p > 4\lambda_1. \quad (\text{B.27})$$

1221
1222

1223 **Step 3: Unicity of the dominant zero.** Let $p_0 = \rho(4)$; then $F'_4(p_0) = -8\widehat{K}'(p_0) =: c_0 > 0$ and
1224 F_4 is strictly increasing on $(4\lambda_1, \infty)$. By continuity, pick $r > 0$ such that on $I := [p_0 - r, p_0 + r]$

1225
$$F'_4(p) \geq c_0/2, \quad M_1 := \sup_{p \in I} (-\widehat{K}'(p)) < \infty. \quad (\text{B.28})$$

1226
1227

1228 From (B.27),

1229
$$\sup_{p \in I} |F(p) - F_4(p)| \leq 96 \lambda_1 M_1 \delta =: \varepsilon_\delta.$$

1230
1231

1232 Choose δ_Θ small such that $\varepsilon_\delta \leq (c_0/4)r$ for all $\delta \in (0, \delta_\Theta]$. Then

1233
$$F(p_0 + r) \geq F_4(p_0 + r) - \varepsilon_\delta \geq (c_0/4)r > 0, \quad F(p_0 - r) \leq F_4(p_0 - r) + \varepsilon_\delta \leq -(c_0/4)r < 0.$$

1234
1235

1236 Because $F'(p) = -8\widehat{K}'_\Theta(p) = 8 \int_0^\infty t e^{-pt} K_\Theta(t) dt > 0$ on $(4\lambda_1, \infty)$, there is a unique zero
1237 $\rho_{\text{true}} \in (p_0 - r, p_0 + r)$ and it is the rightmost one. Moreover,

1238
$$|\rho_{\text{true}} - \rho(4)| \leq \frac{\varepsilon_\delta}{c_0/2} \lesssim \delta,$$

1239
1240

1241 proving i).

1242 **Step 4: Contour decomposition and leading coefficient.** Bromwich inversion and a contour shift
 1243 to $\Re p = \sigma_* \in (4\lambda_1, \rho_{\text{true}})$ give the exact identity
 1244

$$1245 \quad u(t) = \frac{\widehat{a}_\Theta(\rho_{\text{true}})}{F'(\rho_{\text{true}})} e^{\rho_{\text{true}} t} + \frac{1}{2\pi i} \int_{\sigma_* - i\infty}^{\sigma_* + i\infty} e^{pt} \frac{\widehat{a}_\Theta(p)}{F(p)} dp, \quad (\text{B.29})$$

1247 since the only singularity crossed is the simple pole at $p = \rho_{\text{true}}$. For the coefficient, by Cauchy–
 1248 Schwarz with $v_i = \lambda_i/(\rho_{\text{true}} - 4\lambda_i)$ and $\|w(0)\|_2 = d^{-1/2}$,

$$1250 \quad |\widehat{a}_\Theta(\rho_{\text{true}})| = \left| \sum_i w_i(0) w_i^* v_i \right| \leq \frac{1}{\sqrt{d}} \left(\sum_i (w_i^*)^2 v_i^2 \right)^{1/2} \leq \frac{1}{\sqrt{d}} \cdot \frac{\sqrt{s_*^{(2)}}}{\rho_{\text{true}} - 4\lambda_1}.$$

1254 Further, $F'(\rho_{\text{true}}) = 8 \int_0^\infty t e^{-\rho_{\text{true}} t} K_\Theta(t) dt > 0$, and continuity from the ideal case implies
 1255 $F'(\rho_{\text{true}}) \geq \frac{1}{16 s_*^{(2)}}$ for all small δ . Therefore, under Assumption A1
 1256

$$1257 \quad \left| \frac{\widehat{a}_\Theta(\rho_{\text{true}})}{F'(\rho_{\text{true}})} \right| \lesssim \frac{(s_*^{(2)})^{3/2}}{\sqrt{d} (\rho_{\text{true}} - 4\lambda_1)}. \quad (\text{B.30})$$

1260 **Step 5: Vertical-line remainder.** On $\Re p = \sigma_*$, monotonicity/convexity and $F'(\rho_{\text{true}}) > 0$ yield
 1261 a uniform gap $\inf_y |F(\sigma_* + iy)| \gtrsim \rho_{\text{true}} - \sigma_*$. Also,

$$1263 \quad |\widehat{a}_\Theta(\sigma_* + iy)| \leq \frac{1}{\sqrt{d}} \left(\sum_i (w_i^*)^2 \frac{\lambda_i^2}{(\sigma_* - 4\lambda_i)^2 + y^2} \right)^{1/2}.$$

1267 Estimating the integral in (B.29) by Cauchy–Schwarz in y and using $\int_{\mathbb{R}} \frac{dy}{\sqrt{a^2 + y^2}} = \pi/a$ and

$$1269 \quad \int_{\mathbb{R}} \frac{dy}{\sqrt{a^2 + y^2} \sqrt{A^2 + y^2}} \leq \pi/\sqrt{aA},$$

1271 we obtain

$$1273 \quad \underbrace{\left| \frac{1}{2\pi i} \int_{\sigma_* - i\infty}^{\sigma_* + i\infty} e^{pt} \frac{\widehat{a}_\Theta(p)}{F(p)} dp \right|}_R \lesssim \frac{1}{\sqrt{d}} \cdot \frac{e^{\sigma_* t}}{\rho_{\text{true}} - \sigma_*}.$$

1276 Choose the midpoint $\sigma_* = \rho_{\text{true}} - \Delta/2$ with $\Delta := \rho_{\text{true}} - 4\lambda_1$. Then

$$1278 \quad R \lesssim \frac{1}{\sqrt{d}} e^{(\rho_{\text{true}} - \Delta/2)t}.$$

1281 **Step 6: Conclusion.** From the ideal dispersion relation,

$$1283 \quad 1 = 8 \sum_i \frac{(w_i^*)^2 \lambda_i^2}{\rho(4) - 4\lambda_i} \geq \frac{8(w_1^*)^2 \lambda_1^2}{\rho(4) - 4\lambda_1} \Rightarrow \rho(4) - 4\lambda_1 \geq 8\kappa_\Theta.$$

1285 By i), for small δ the true gap obeys $\Delta = \rho_{\text{true}} - 4\lambda_1 \geq 4\kappa_\Theta =: \Delta_\Theta > 0$. Hence for $t = c \log d$,

$$1287 \quad \frac{R}{|\widehat{a}_\Theta(\rho_{\text{true}})/F'(\rho_{\text{true}})| e^{\rho_{\text{true}} t}} \lesssim e^{-(\Delta_\Theta/2)t} = d^{-c\Delta_\Theta/2} \rightarrow 0.$$

1290 Putting this with (B.30) yields the stated asymptotic with $c(\delta) = \sqrt{d} \widehat{a}_\Theta(\rho_{\text{true}})/F'(\rho_{\text{true}})$, continuous
 1291 in δ and bounded away from 0 as $\delta \rightarrow 0$ when $\widehat{a}_\Theta(\rho(4)) > 0$. \square

1293 This proposition motivates our assumption on initialization.

1294 **Assumption A1** (Initialization). *We assume that $u(0) \asymp d^{-1/2}$ and $\widehat{a}_\Theta(\rho_{\text{true}}) \asymp d^{-1/2}$. Moreover,
 1295 we assume that w_1^* is of constant order.*

1296 **Remark 6** (On the initialization assumption). *The assumption in A1 is natural under random initialization. Indeed, if $w(0) \sim \mathcal{N}(0, I_d/d)$ (or uniform on the sphere) independently of w_* , then*
 1297 *conditionally on w_* we have*
 1298

$$1300 \quad \widehat{a}_\Theta(\rho_{\text{true}}) = \sum_i w_i(0) w_i^* v_i \sim \mathcal{N}\left(0, \frac{1}{d} \sum_i (w_i^*)^2 v_i^2\right), \quad v_i = \frac{\lambda_i}{\rho_{\text{true}} - 4\lambda_i}.$$

$$1301$$

1302 *This variance is of order $1/d$. Hence $\widehat{a}_\Theta(\rho_{\text{true}})$ is of order $d^{-1/2}$ with large probability, so that the*
 1303 *prefactor in Proposition 10(ii) is indeed nontrivial.*
 1304

1305 *The quantity $s(0)$ also fluctuates on the order $d^{-1/2}$ for Gaussian initialization, but establishing a*
 1306 *deterministic relation between $s(0)$ and $\widehat{a}_\Theta(\rho_{\text{true}})$ is delicate, as the two depend differently on the*
 1307 *spectrum and on w_* . This explains why A1 is stated as a mild probabilistic assumption rather than*
 1308 *a deterministic condition.*

1309 B.4 STEP 3: BOUNDING HIGHER-ORDER STATISTICS AND POSITIVITY OF $u^{(2)}$

1311 Our goal in this subsection is to show that the second moment $u^{(2)}(T_1)$ is *strictly positive*.
 1312

1313 For $k \geq 1$, define

$$1314 \quad (K_\Theta)_k(t) := (e^{4B\Theta(t)} s_*)_k = \sum_{m \geq 0} \frac{(4\Theta(t))^m}{m!} s_*^{(k+m)}, \quad s_*^{(\ell)} = \sum_i (w_i^*)^2 \lambda_i^\ell, \quad \ell \geq 1.$$

$$1315$$

$$1316$$

1317 **Lemma 9** (Kernel domination). *For all $k \geq 1$ and $t \in [0, T_1]$,*

$$1319 \quad (K_\Theta)_k(t) \leq \lambda_1^{k-1} K_\Theta(t), \quad K_\Theta(t) := \sum_{m \geq 0} \frac{(4\Theta(t))^m}{m!} s_*^{(1+m)}.$$

$$1320$$

$$1321$$

1322 *Proof.* Since $\Theta(t) \geq 0$ for $t \leq T_1$, all coefficients $\frac{(4\Theta(t))^m}{m!}$ are nonnegative. For each $m \geq 0$,
 1323

$$1324 \quad s_*^{(k+m)} = \sum_i (w_i^*)^2 \lambda_i^{k+m} \leq \lambda_1^{k-1} \sum_i (w_i^*)^2 \lambda_i^{1+m} = \lambda_1^{k-1} s_*^{(1+m)}.$$

$$1325$$

1326 Multiplying termwise by the nonnegative coefficients and summing over m yields the claim. \square
 1327

1328 **Lemma 10** (Kernel positivity). *For all $k \geq 1$ and $t \in [0, T_1]$,*

$$1329 \quad (K_\Theta)_k(t) \geq s_*^{(k)} \geq (w_1^*)^2 \lambda_1^k.$$

$$1330$$

1331 *Proof.* When $\Theta(t) \geq 0$, all coefficients $\frac{(4\Theta(t))^m}{m!}$ in the definition of $(K_\Theta)_k(t)$ are nonnegative. In
 1332 particular, the $m = 0$ term contributes $s_*^{(k)}$, so $(K_\Theta)_k(t) \geq s_*^{(k)}$. Finally, $s_*^{(k)} = \sum_i (w_i^*)^2 \lambda_i^k \geq
 1333 $(w_1^*)^2 \lambda_1^k$. \square
 1334$

1335 **Proposition 11** (Control of higher-order correlations). *For all $k \geq 1$ and all $t \in [0, T_1]$, we have*

$$1337 \quad -\lambda_1^k \sqrt{\frac{\log d}{d}} e^{4\lambda_1 t} + 8s_*^{(k)} \int_0^t u(\tau) d\tau \leq u^{(k)}(t) \leq \lambda_1^k \sqrt{\frac{\log d}{d}} e^{4\lambda_1 t} + \lambda_1^{k-1} (u(t) - u(0)).$$

$$1338$$

$$1339 \quad (B.31)$$

1340 *In particular, for d sufficiently large there exists a constant $c_1 > 0$ such that $u^{(2)}(T_1) \geq c_1$.*
 1341

1342 *Proof.* Work on $[0, T_1]$ where $\Theta \geq 0$ (so Lemma 10 applies), and recall Lemma 9. We have w.h.p.
 1343

$$1344 \quad |u^{(k+m)}(0)| \leq \lambda_1^{k+m} \sqrt{\frac{\log d}{d}}, \quad \text{for all } k \geq 1, m \geq 0. \quad (B.32)$$

$$1345$$

1346 By Duhamel's formula, for each $k \geq 1$ and $t \in [0, T_1]$,

$$1347$$

$$1348 \quad u^{(k)}(t) = \sum_{m \geq 0} \frac{(4\Theta(t))^m}{m!} u^{(k+m)}(0) + 8 \int_0^t (K_\Theta)_k(t-\tau) u(\tau) d\tau.$$

$$1349$$

1350 From (B.32) and $\Theta(t) \leq t$, we obtain
 1351

$$\begin{aligned} 1352 \left| \sum_{m \geq 0} \frac{(4\Theta(t))^m}{m!} u^{(k+m)}(0) \right| &\leq \sqrt{\frac{\log d}{d}} \sum_{m \geq 0} \frac{(4\Theta(t)\lambda_1)^m}{m!} \lambda_1^k \\ 1353 &= \lambda_1^k \sqrt{\frac{\log d}{d}} e^{4\lambda_1\Theta(t)} \\ 1354 &\leq \lambda_1^k \sqrt{\frac{\log d}{d}} e^{4\lambda_1 t}. \end{aligned}$$

1360 Furthermore, by Lemma 9, we have $(K_\Theta)_k \leq \lambda_1^{k-1}(K_\Theta)$, so
 1361

$$1362 \int_0^t (K_\Theta)_k(t-\tau) u(\tau) d\tau \leq \lambda_1^{k-1}(u(t) - a_\Theta(t)). \\ 1363$$

1364 Combining with the homogeneous upper bound yields the right-hand inequality in (B.31).
 1365

1366 Lemma 10 gives $(K_\Theta)_k(t-\tau) \geq s_*^{(k)}$ for $\tau \in [0, t]$, hence
 1367

$$1368 \int_0^t (K_\Theta)_k(t-\tau) u(\tau) d\tau \geq s_*^{(k)} \int_0^t u(\tau) d\tau. \\ 1369$$

1370 Combining with the homogeneous lower bound gives the left-hand inequality in (B.31).
 1371

1372 Finally, under the positive growth of α assumed in Step 3 (e.g. $\alpha(t) \geq \frac{C}{\sqrt{d}} e^{\rho t}$ for large t), together
 1373 with a rate gap $\rho > 4\lambda_1$, the integral term $8s_*^{(2)} \int_0^{T_1} \alpha$ dominates the homogeneous remainder
 1374 $\lambda_1^2 \sqrt{\frac{\log d}{d}} e^{4\lambda_1 T_1} = O(\sqrt{\log d})$ for d large enough. Hence, there exists $c_1 > 0$ such that $u^{(2)}(T_1) \geq$
 1375 c_1 . \square
 1376

1377 C ANALYSIS OF PHASE II

1380 In Section C.1, we show that $s(t)$ crosses the threshold $1/3$ within $O(1)$ time and remains above
 1381 it thereafter. Once $s(t) > 1/3$, the key quantity $\Theta(t)$ appearing in the Volterra equation begins
 1382 to decrease and eventually becomes negative. This marks a qualitative shift in the dynamics of
 1383 the system. We leverage this change in Section C.2 to derive a convergence rate for the summary
 1384 statistics.

1385 C.1 PHASE IIA: CROSSING THE $s(t) = 1/3$ THRESHOLD AND IRREVERSIBLE GROWTH

1386 Recall that at the end of Phase I, there exists an absolute constant $\delta > 0$ such that
 1387

$$1388 u(T_1) > \delta, \quad s(T_1) \geq \delta, \quad u^{(2)}(T_1) > \delta.$$

1389 At a high level, the behavior of $s(t)$ in this regime is governed by a simple mechanism. While
 1390 $s(t) \leq 1/3$, both terms in (C.1) are nonnegative, so $s(t)$ is pushed upward and necessarily crosses the
 1391 threshold $1/3$ in finite time. Once $s(t)$ has crossed, the positive mixed term $16 u(t)u^{(2)}(t)$ outweighs
 1392 the negative contribution of the first term near the boundary, which prevents $s(t)$ from falling back.
 1393 Thus $s(t)$ remains bounded away from $1/3$ uniformly after crossing. The next proposition makes
 1394 this precise.
 1395

1396 **Proposition 12** (Crossing and stability beyond the $1/3$ -threshold). *Let T_1 be the stopping time from
 1397 Theorem 1. There exist constants $\delta > 0$ and $C > 0$ such that:*

1398 1. *There exists $T'_1 \in [T_1, T_1 + C]$ with*

$$1400 s(T'_1) \geq \frac{1}{3} + \delta.$$

1401 2. *For all $t \geq T'_1$,*

$$1402 s(t) \geq \frac{1}{3} + \delta.$$

1404 *Proof.* From T_1 onward we first prove that $u^{(2)}(t)$ and then $u(t)$ stay strictly positive. While $s(t) \leq 1/3$, this makes both terms in \dot{s} nonnegative, so s reaches $1/3$ in finite time (Part A). Next, we work in a thin band $[1/3, 1/3 + \eta]$, show that for η small enough the drift of s is still uniformly positive, so s reaches $1/3 + \eta$ in finite time, and that the vector field points inward at $s = 1/3 + \eta$, preventing any return (Part B).

1409 Recall

$$\dot{s}(t) = 8(1 - 3s(t))s^{(2)}(t) + 16u(t)u^{(2)}(t), \quad (\text{C.1})$$

$$\dot{u}(t) = 4(1 - 3s(t))u^{(2)}(t) + 8s_*^{(2)}u(t), \quad \dot{u}^{(2)}(t) = 4(1 - 3s(t))u^{(3)}(t) + 8s_*^{(3)}u(t). \quad (\text{C.2})$$

1414

1415 **Part A: Pre-band positivity and finite-time reach of $s = 1/3$.** Fix $\tau := t - T_1 \geq 0$ and define
1416 $\Theta_{T_1}(\tau) := \Theta(T_1 + \tau) - \Theta(T_1)$. Writing $\alpha_i(t) := w_i(t)w_i^*$, we have

$$\dot{\alpha}_i(t) = 4(1 - 3s(t))\lambda_i\alpha_i(t) + 8\lambda_i(w_i^*)^2u(t).$$

1419 Multiplying by $e^{-4\lambda_i\Theta(t)}$ and integrating from T_1 to $T_1 + \tau$ yields

$$\alpha_i(T_1 + \tau) = e^{4\lambda_i\Theta_{T_1}(\tau)}\alpha_i(T_1) + 8 \int_0^\tau e^{4\lambda_i(\Theta_{T_1}(\tau) - \Theta_{T_1}(s))} \lambda_i(w_i^*)^2 u(T_1 + s) ds.$$

1423 Multiplying by λ_i^2 and summing gives

$$u^{(2)}(T_1 + \tau) = \underbrace{\sum_i \lambda_i^2 e^{4\lambda_i\Theta_{T_1}(\tau)} \alpha_i(T_1)}_{=: \tilde{a}_0^{(2)}(\tau)} + 8 \int_0^\tau K_{\times}(\tau - s) u(T_1 + s) ds, \quad (\text{C.3})$$

1424 with

$$K_{\times}(\zeta) := \sum_i (w_i^*)^2 \lambda_i^3 e^{4\lambda_i\Theta_{T_1}(\zeta)} \geq 0.$$

1432 On the pre-band interval where $s \leq 1/3$, we have $\Theta_{T_1}(\tau) \geq 0$, so $e^{4\lambda_i\Theta_{T_1}(\tau)} \geq 1$. Thus

$$\tilde{a}_0^{(2)}(\tau) \geq \sum_i \lambda_i^2 \alpha_i(T_1) = u^{(2)}(T_1) > 0.$$

1436 By (C.3) and $K_{\times} \geq 0$,

$$u^{(2)}(t) \geq u^{(2)}(T_1) > 0 \quad \text{for all } T_1 \leq t \leq T_{1/3} := \inf\{t \geq T_1 : s(t) = 1/3\}. \quad (\text{C.4})$$

1439 While $s \leq 1/3$, from (C.2) and (C.4),

$$\dot{u}(t) \geq 8s_*^{(2)}u(t), \quad T_1 \leq t \leq T_{1/3},$$

1442 so $u(t) \geq u(T_1)e^{8s_*^{(2)}(t-T_1)} > 0$ there. Finally, (C.1) gives on $\{s \leq 1/3\}$

$$\dot{s}(t) \geq 16u(t)u^{(2)}(t) \geq 16u(T_1)u^{(2)}(T_1) := \kappa_{\Theta} > 0.$$

1445 Hence

$$T_{1/3} - T_1 \leq \frac{(\frac{1}{3}) - s(T_1)}{\kappa_{\Theta}} \leq \frac{1/3}{16u(T_1)u^{(2)}(T_1)}. \quad (\text{C.5})$$

1449 Thus s reaches $1/3$ in finite time.

1450

1451 **Part B: Crossing the band $[1/3, 1/3 + \eta]$ and no return.** We record uniform bounds that will be
1452 used in-band. Since $Q \preceq \lambda_1 I$ and $\|w(t)\| \leq M$,

$$0 \leq s^{(2)}(t) \leq \lambda_1^2 \|w(t)\|^2 \leq S_2^{\max}, \quad S_2^{\max} := \lambda_1^2 M^2, \quad (\text{C.6})$$

1454 and $0 \leq s(t) \leq S^{\max}$ with $S^{\max} := \lambda_1 M^2$. By Cauchy–Schwarz,

$$|u^{(2)}(t)| \leq \sqrt{s(t)} \sqrt{s_*^{(3)}} \leq \sqrt{S_2^{\max} s_*^{(3)}} =: C_2, \quad |u^{(3)}(t)| \leq \sqrt{s^{(2)}(t)} \sqrt{s_*^{(4)}} \leq \sqrt{S_2^{\max} s_*^{(4)}} =: C_3. \quad (\text{C.7})$$

1458 Fix $\eta \in (0, 1/6]$. On $\{1/3 \leq s \leq 1/3 + \eta\}$ we have $1 - 3s \in [-3\eta, 0]$. From (C.2) and (C.7),
 1459

$$1460 \quad \dot{u} \geq -12\eta C_2 + 8s_\star^{(2)} u, \quad \dot{u}^{(2)} \geq -12\eta C_3 + 8s_\star^{(3)} u.$$

1461 As in a linear comparison argument, if

$$1463 \quad \eta \leq \frac{2}{3} \frac{s_\star^{(2)}}{C_2} u(T_1), \quad \eta \leq \frac{2}{3} \frac{s_\star^{(3)}}{C_3} u(T_1), \quad (C.8)$$

1465 then throughout the band one has $u(t) \geq u(T_1)$ and $u^{(2)}(t) \geq u^{(2)}(T_1)$.

1466 Now, from (C.1), (C.6), and these lower bounds,

$$1468 \quad \dot{s}(t) \geq -24\eta S_2^{\max} + 16u(T_1)u^{(2)}(T_1).$$

1469 Choosing

$$1470 \quad \eta \leq \min \left\{ \frac{u(T_1)u^{(2)}(T_1)}{3S_2^{\max}}, \frac{2}{3} \frac{s_\star^{(2)}}{C_2} u(T_1), \frac{2}{3} \frac{s_\star^{(3)}}{C_3} u(T_1), \frac{1}{6} \right\}, \quad (C.9)$$

1472 we get $\dot{s}(t) \geq 8u(T_1)u^{(2)}(T_1) > 0$ across the band. Thus s overshoots to $1/3 + \eta$ in time at most
 1473 $\eta/(8u(T_1)u^{(2)}(T_1))$, and at any last contact with $s = 1/3 + \eta$ the same inequality shows $\dot{s} > 0$, so
 1474 the vector field points inward. Therefore, s cannot return below $1/3 + \eta$.

1475 Together with (C.5), this completes the proof: s reaches $1/3$ in finite time, then crosses to $1/3 + \eta$
 1476 in finite time, and never falls back below. \square

1478

1479 C.2 PHASE IIB: APPROXIMATE CONVERGENCE OF THE SUMMARY STATISTICS

1480 After the entrance time T'_1 , the error $\Delta(t) := 1 - u(t)$ satisfies

$$1482 \quad \Delta(t) = b_\Theta(t) + \int_{T'_1}^t K_\Theta(t, \tau) \Delta(\tau) d\tau, \quad t \geq T'_1, \quad (C.10)$$

1485 with

$$1486 \quad K_\Theta(t, \tau) = \sum_{i=1}^d 8\lambda_i^2 (w_i^*)^2 e^{4\lambda_i(\Theta(t) - \Theta(\tau))}, \quad h_\Theta(t) := \sum_{i=1}^d \lambda_i w_i^* w_i(T'_1) e^{4\lambda_i(\Theta(t) - \Theta(T'_1))},$$

$$1489 \quad b_\Theta(t) := 1 - h_\Theta(t) - \int_{T'_1}^t K_\Theta(t, \tau) d\tau.$$

1492 We will repeatedly use the following facts:

1494 (i) $1 \geq \Delta(\tau) \geq 0$ and $K_\Theta(t, \tau) \geq 0$ for $t \geq \tau \geq T'_1$.
 1495 (ii) $\Theta'(t) = 1 - 3s(t) \leq -s_0 < 0$, hence $e^{4\lambda(\Theta(t) - \Theta(\tau))} \leq e^{-4s_0\lambda(t - \tau)}$ for $t \geq \tau \geq T'_1$.

1496 The first fact results from Lemma 11.

1498 For a cutoff $\lambda_c > 0$ let

$$1500 \quad \mathcal{I}_< := \{i : \lambda_i < \lambda_c\}, \quad \mathcal{I}_\geq := \{i : \lambda_i \geq \lambda_c\}.$$

1501 Define

$$1503 \quad T(\lambda_c) := \sum_{\lambda_i < \lambda_c} \lambda_i (w_i^*)^2, \quad s_\star^{(2)} := \sum_{i=1}^d \lambda_i^2 (w_i^*)^2, \quad s(T'_1) = \sum_{i=1}^d \lambda_i w_i(T'_1)^2 \leq 1,$$

1505 and the head alignment term

$$1507 \quad S_\geq(\lambda_c) := \sum_{\lambda_i \geq \lambda_c} \lambda_i |w_i^* w_i(T'_1)| \leq \left(\sum_{\lambda_i \geq \lambda_c} \lambda_i (w_i^*)^2 \right)^{1/2} \left(\sum_{\lambda_i \geq \lambda_c} \lambda_i w_i(T'_1)^2 \right)^{1/2} \leq \sqrt{s_\star^{(2)} s(T'_1)}.$$

1510 **Proposition 13.** For all $t \geq T'_1$ and any cutoff $\lambda_c > 0$,

$$1511 \quad \Delta(t) \leq T(\lambda_c) + \sqrt{T(\lambda_c) s(T'_1)} + S_\geq(\lambda_c) e^{-4s_0 \lambda_c (t - T'_1)}. \quad (C.11)$$

1512 *Proof.* From the Volterra equation (C.10) and the definition of b_Θ ,

$$1514 \quad \Delta(t) = (1 - h_\Theta(t)) + \int_{T'_1}^t K_\Theta(t, \tau) (\Delta(\tau) - 1) d\tau.$$

1517 Since $0 \leq \Delta(\tau)$ and $K_\Theta \geq 0$, the integral is nonpositive. Hence

$$1518 \quad \Delta(t) \leq (1 - h_\Theta(t))_+.$$

1520 Now split the spectrum into $\mathcal{I}_< = \{i : \lambda_i < \lambda_c\}$ and $\mathcal{I}_\geq = \{i : \lambda_i \geq \lambda_c\}$. Using $\Theta(t) \leq \Theta(T'_1)$ and $\Theta'(t) \leq -s_0$, we obtain

$$1523 \quad (1 - h_\Theta(t))_+ \leq \sum_{i \in \mathcal{I}_<} \lambda_i (w_i^*)^2 + \sum_{i \in \mathcal{I}_<} \lambda_i |w_i^* w_i(T'_1)| + \sum_{i \in \mathcal{I}_\geq} \lambda_i |w_i^* w_i(T'_1)| e^{-4s_0 \lambda_c (t - T'_1)}.$$

1526 The first sum equals $T(\lambda_c)$. By Cauchy–Schwarz,

$$1528 \quad \sum_{i \in \mathcal{I}_<} \lambda_i |w_i^* w_i(T'_1)| \leq \sqrt{T(\lambda_c) s(T'_1)}.$$

1531 The last sum is bounded by $S_\geq(\lambda_c) e^{-4s_0 \lambda_c (t - T'_1)}$. Combining these estimates yields (C.11). \square

1533 **Corollary 1** (Time to reach accuracy ε). *Fix $\varepsilon \in (0, 1)$ and choose $\lambda_\varepsilon > 0$ such that*

$$1535 \quad T(\lambda_\varepsilon) \leq \frac{\varepsilon}{4}, \quad \sqrt{T(\lambda_\varepsilon) s(T'_1)} \leq \frac{\varepsilon}{4} \iff T(\lambda_\varepsilon) \leq \min \left\{ \frac{\varepsilon}{4}, \frac{\varepsilon^2}{16 s(T'_1)} \right\}. \quad (\text{C.12})$$

1538 *Then*

$$1539 \quad T_2(\varepsilon) := T'_1 + \frac{1}{4s_0 \lambda_\varepsilon} \log \left(\frac{4S_\geq(\lambda_\varepsilon)}{\varepsilon} \right) \quad (\text{C.13})$$

1541 *satisfies $\Delta(t) \leq \varepsilon$ for all $t \geq T_2(\varepsilon)$.*

1543 *Proof.* From (C.11) with $\lambda_c = \lambda_\varepsilon$ and (C.12),

$$1545 \quad \Delta(t) \leq \frac{\varepsilon}{4} + \frac{\varepsilon}{4} + S_\geq(\lambda_\varepsilon) e^{-4s_0 \lambda_\varepsilon (t - T'_1)} = \frac{\varepsilon}{2} + S_\geq(\lambda_\varepsilon) e^{-4s_0 \lambda_\varepsilon (t - T'_1)}.$$

1547 Choosing t so that the last term is $\leq \varepsilon/2$ gives (C.13). \square

1549 **Corollary 2** (Power-law spectral tail). *Suppose $T(\lambda) \asymp C_{\text{tail}} \lambda^\beta$ as $\lambda \downarrow 0$ with $\beta = 1 - \frac{1}{a} \in (0, 1)$. Then*

$$1552 \quad \lambda_\varepsilon \asymp \left(\frac{\min\{\varepsilon, \varepsilon^2/s(T'_1)\}}{C_{\text{tail}}} \right)^{1/\beta}, \quad T_2(\varepsilon) \lesssim T'_1 + \frac{1}{4s_0} \left(\frac{C_{\text{tail}}}{\min\{\varepsilon, \varepsilon^2/s(T'_1)\}} \right)^{1/\beta} \log \frac{1}{\varepsilon}.$$

1555 *In particular, when ε is small and $s(T'_1) \leq 1$, the quadratic condition dominates:*

$$1557 \quad T_2(\varepsilon) \lesssim T'_1 + \frac{1}{4s_0} \varepsilon^{-2/\beta} \log \frac{1}{\varepsilon} = T'_1 + \frac{1}{4s_0} \varepsilon^{-\frac{2a}{a-1}} \log \frac{1}{\varepsilon}.$$

1560 C.2.1 TECHNICAL LEMMA

1562 It will be convenient to approximate the discrete measure μ_d by a continuous reference measure
1563 with density proportional to $\lambda^{1-1/a}$ near $\lambda = 0$. This approximation is crucial in Phase II, since
1564 the long-time behavior of the kernel K_Θ depends only on the small- λ (tail) mass of μ_d , which in
1565 turn reflects the power-law spectrum assumption. The following proposition shows that, with high
probability, μ_d has a similar tail behaviour to its continuous counterpart.

1566 **Proposition 14** (Spectral/teacher tail near $\lambda = 0$ holds w.h.p.). *Let $a > 1$ and define the spectrum*
 1567 *by $\lambda_i := i^{-a}/H_{d,a}$, where $H_{d,a} = \sum_{j=1}^d j^{-a}$. Let $w_i^* \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, 1)$, independent of (λ_i) , and set*
 1568

$$1569 \quad 1570 \quad 1571 \quad \mu_d := 8 \sum_{i=1}^d \lambda_i (w_i^*)^2 \delta_{\lambda_i}.$$

1572 *Fix constants $C_* > 1$ and $\rho \in (0, 1)$, and define the tail scale $\Lambda_d := C_* \lambda_d = C_* d^{-a}/H_{d,a}$ and the*
 1573 *geometric bins*

$$1574 \quad B_k := (\rho^{k+1} \Lambda_d, \rho^k \Lambda_d], \quad k = 0, 1, \dots, K,$$

1575 *where $K := \lceil \log_{1/\rho}(C_*) \rceil - 1$. Then there exist constants $C_-, C_+, c > 0$ depending only on*
 1576 *(a, ρ, C_*) such that, for all sufficiently large d , with probability at least $1 - e^{-cd}$,*
 1577

$$1578 \quad C_- \int_{B_k} \lambda^{-\frac{1}{a}} d\lambda \leq \mu_d(B_k) \leq C_+ \int_{B_k} \lambda^{-\frac{1}{a}} d\lambda \quad \text{for all } k = 0, 1, \dots, K. \quad (\text{C.14})$$

1580 *Consequently, with the same probability bound, for every $\lambda \in (0, \Lambda_d]$,*
 1581

$$1582 \quad \mu_d((0, \lambda]) \asymp \lambda^{1-\frac{1}{a}}, \quad (\text{C.15})$$

1583 *and, more generally, for any nonnegative step test function $\varphi(\lambda) = \sum_{k=0}^K a_k \mathbf{1}_{B_k}(\lambda)$,*
 1584

$$1585 \quad C_- \int_0^{\Lambda_d} \lambda^{-\frac{1}{a}} \varphi(\lambda) d\lambda \leq \int_{(0, \Lambda_d]} \varphi(\lambda) \mu_d(d\lambda) \leq C_+ \int_0^{\Lambda_d} \lambda^{-\frac{1}{a}} \varphi(\lambda) d\lambda. \quad (\text{C.16})$$

1588 *Proof.* We split the proof into several steps.
 1589

1590 **Step 1: Bin sizes are linear in d .** Let $I_k := \{1 \leq i \leq d : \lambda_i \in B_k\}$. Since $\lambda_i = i^{-a}/H_{d,a}$, the
 1591 condition $\lambda_i \leq t$ is equivalent to $i \geq (tH_{d,a})^{-1/a}$. Thus the counting function
 1592

$$1593 \quad N(t) := \#\{i : \lambda_i \leq t\} = d - \lceil (tH_{d,a})^{-1/a} \rceil + 1.$$

1594 Therefore,

$$1595 \quad |I_k| = N(\rho^k \Lambda_d) - N(\rho^{k+1} \Lambda_d) = \lceil (\rho^{k+1} \Lambda_d H_{d,a})^{-1/a} \rceil - \lceil (\rho^k \Lambda_d H_{d,a})^{-1/a} \rceil.$$

1596 Using $\Lambda_d H_{d,a} = C_* d^{-a}$ gives
 1597

$$1598 \quad |I_k| = \lceil \rho^{-(k+1)/a} C_*^{-1/a} d \rceil - \lceil \rho^{-k/a} C_*^{-1/a} d \rceil.$$

1599 Hence, for all d large enough,
 1600

$$1601 \quad c_1 d \rho^{-k/a} \leq |I_k| \leq c_2 d \rho^{-k/a} \quad (k = 0, 1, \dots, K), \quad (\text{C.17})$$

1602 for constants $c_1, c_2 > 0$ depending only on (a, ρ, C_*) . Thus $|I_k| = \Theta(d \rho^{-k/a})$, and K is a fixed
 1603 constant (independent of d). Note: for the last bin B_K , the lower endpoint may fall below λ_d , but
 1604 by definition I_K only counts actual indices $i \leq d$.
 1605

1606 **Step 2: Deterministic comparison of $\sum_{i \in I_k} \lambda_i$.** For $i \in I_k$ we have $\rho^{k+1} \Lambda_d < \lambda_i \leq \rho^k \Lambda_d$, so
 1607

$$1608 \quad (\rho^{k+1} \Lambda_d) |I_k| \leq \sum_{i \in I_k} \lambda_i \leq (\rho^k \Lambda_d) |I_k|.$$

1609 On the other hand,
 1610

$$1611 \quad \int_{B_k} \lambda^{-\frac{1}{a}} d\lambda = \frac{(\rho^k \Lambda_d)^{1-\frac{1}{a}} - (\rho^{k+1} \Lambda_d)^{1-\frac{1}{a}}}{1 - \frac{1}{a}} = \left(\frac{1 - \rho^{1-\frac{1}{a}}}{1 - \frac{1}{a}} \right) \Lambda_d^{1-\frac{1}{a}} \rho^{k(1-\frac{1}{a})}. \quad (\text{C.18})$$

1612 Since $a > 1$, the exponent $1 - 1/a > 0$. Using (C.17) and (C.18), there exist constants $D_-, D_+ > 0$
 1613 (depending only on a, ρ, C_* and the bounded factor $H_{d,a}^{-1/a} \in [\zeta(a)^{-1/a}, 1]$) such that
 1614

$$1615 \quad D_- \int_{B_k} \lambda^{-\frac{1}{a}} d\lambda \leq \sum_{i \in I_k} \lambda_i \leq D_+ \int_{B_k} \lambda^{-\frac{1}{a}} d\lambda \quad (k = 0, 1, \dots, K). \quad (\text{C.19})$$

1620 **Step 3: Concentration for the teacher weights.** Let $S_k := \sum_{i \in I_k} (w_i^*)^2$. Since $S_k \sim \chi^2_{|I_k|}$ and
 1621 $|I_k| \geq c_1 d$ by (C.17), the standard χ^2 tail bound yields, for any $\varepsilon \in (0, 1)$,
 1622

$$1623 \quad \mathbb{P}\left(\left|S_k - |I_k|\right| > \varepsilon |I_k|\right) \leq 2 \exp\left(-\frac{\varepsilon^2}{4} |I_k|\right) \leq 2 e^{-c_2 d}.$$

1625 Since $K + 1$ is fixed, a union bound gives
 1626

$$1627 \quad \mathbb{P}\left(\forall k = 0, \dots, K : (1 - \varepsilon)|I_k| \leq S_k \leq (1 + \varepsilon)|I_k|\right) \geq 1 - e^{-cd} \quad (\text{C.20})$$

1629 for some $c > 0$ independent of d .
 1630

1631 **Step 4: Comparing $\mu_d(B_k)$ to the bin integral.** On the event in (C.20),
 1632

$$1633 \quad 8(1 - \varepsilon) \sum_{i \in I_k} \lambda_i \leq \mu_d(B_k) = 8 \sum_{i \in I_k} \lambda_i (w_i^*)^2 \leq 8(1 + \varepsilon) \sum_{i \in I_k} \lambda_i.$$

1635 Combining with (C.19) proves (C.14) with
 1636

$$1637 \quad C_- := 8(1 - \varepsilon)D_-, \quad C_+ := 8(1 + \varepsilon)D_+.$$

1638 **Step 5: Tail.** Summing (C.14) over $\{j \geq m\}$ where m is the unique index such that $\lambda \in$
 1639 $(\rho^{m+1} \Lambda_d, \rho^m \Lambda_d]$, and using the geometric form (C.18), yields
 1640

$$1641 \quad \mu_d((0, \lambda]) \asymp \Lambda_d^{1 - \frac{1}{d}} \rho^{m(1 - \frac{1}{d})} \asymp \lambda^{1 - \frac{1}{d}} \quad (\text{since } \rho^m \asymp \lambda/\Lambda_d),$$

1643 which is (C.15). The step-function bound (C.16) follows from linearity, as $\int_{(0, \Lambda_d]} \varphi d\mu_d =$
 1644 $\sum_k a_k \mu_d(B_k)$ and the same for the right-hand integrals. \square
 1645

1646 The following lemma formally shows that after T'_1 , $u(t)$ and $s(t)$ cannot go above 1. In particular, it
 1647 justifies the positivity of $\Delta(t)$.
 1648

1649 **Lemma 11** (Post-alignment barrier and correlation bound). *Let $Q = \text{diag}(\lambda_i) \succ 0$ and let w^*
 1650 satisfy $\langle w^*, Qw^* \rangle = 1$. Consider the population gradient flow for anisotropic phase retrieval with
 1651 Gaussian inputs, and define*

$$1652 \quad s(t) := \langle w(t), Qw(t) \rangle, \quad u(t) := \langle w(t), Qw^* \rangle.$$

1653 Fix a time t_0 (e.g. $t_0 = T'_1$) such that
 1654

$$1655 \quad 0 < u(t_0) < 1, \quad s(t_0) \leq 1.$$

1656 Then:

- 1658 1. $s(t) \leq 1$ for all $t \geq t_0$ (forward invariance of $\{s \leq 1\}$).
- 1659 2. $0 < u(t) \leq 1$ for all $t \geq t_0$, and in fact $u(t) < 1$ for every finite $t \geq t_0$ unless $w(t_0) = w^*$.

1661 *Proof.* Work with the Q -inner product $\langle x, y \rangle_Q := \langle x, Qy \rangle$. Decompose w into its Q -orthogonal
 1662 parts:
 1663

$$1664 \quad w = u w^* + z, \quad \langle z, Qw^* \rangle = 0.$$

1665 Then

$$1666 \quad s = \langle w, Qw \rangle = u^2 + \|z\|_Q^2, \quad \|z\|_Q^2 = s - u^2 \geq 0. \quad (\text{C.21})$$

1668 **Claim 0 (pre-boundary: $u < 1$).** Since $s(t_0) \leq 1$, Cauchy–Schwarz in $\langle \cdot, \cdot \rangle_Q$ gives
 1669

$$1670 \quad u(t_0) = \langle w(t_0), Qw^* \rangle \leq \|w(t_0)\|_Q \|w^*\|_Q = \sqrt{s(t_0)} \leq 1,$$

1672 and by assumption $u(t_0) > 0$; hence $0 < u(t_0) < 1$. Moreover, as long as $s(t) < 1$, the same
 1673 inequality implies $u(t) \leq \sqrt{s(t)} < 1$. Thus before any potential first time when s could reach the
 boundary 1, we indeed have $u(t) < 1$.

1674 **Claim 1 (uniform drift for $s \geq 1$).** Recall that
 1675
 1676
$$\dot{s} = 8(1 - 3s) s^{(2)} + 16u u^{(2)}.$$

 1677 Using $\lambda_{\min}\langle z, Qz \rangle \leq s^{(2)}$ and (C.21), when $s \geq 1$ we have $1 - 3s \leq -2$, hence
 1678
 1679
$$\dot{s} \leq 8(1 - 3s) s^{(2)} \leq -16s^{(2)} \leq -16\lambda_{\min}\langle z, Qz \rangle = -16\lambda_{\min}\|z\|_Q^2 = -16\lambda_{\min}(s - u^2). \quad (\text{C.22})$$

 1680
 1681

1682 **Claim 2 (no upward crossing at $s = 1$).** Let $t_1 > t_0$ be a *first* time with $s(t_1) = 1$ and $s(t) < 1$ for $t < t_1$ (if no such t_1 exists, we are done). By the discussion in Claim 0, we then have $u(t_1^-) \leq \sqrt{s(t_1^-)} < 1$, hence $u(t_1) \leq 1$ by continuity. By definition of first hitting, there exists $\varepsilon > 0$ with $s(t) \geq 1$ for all $t \in [t_1, t_1 + \varepsilon]$, so (C.22) applies on $(t_1, t_1 + \varepsilon)$. Taking the right Dini derivative and using continuity of $s - u^2$,

1688
$$D^+s(t_1) := \limsup_{h \downarrow 0} \frac{s(t_1 + h) - s(t_1)}{h} \leq -16\lambda_{\min} \lim_{t \downarrow t_1} (s(t) - u(t)^2) = -16\lambda_{\min}(1 - u(t_1)^2) \leq 0.$$

 1689
 1690 Thus the vector field is inward-pointing (nonpositive) at the boundary, which contradicts an upward crossing from $s < 1$ to $s > 1$ at t_1 . Hence $s(t) \leq 1$ for all $t \geq t_0$.

1691 **Claim 3 ($u \leq 1$ and strictness).** For all t , Cauchy–Schwarz gives
 1692
 1693
$$|u(t)| \leq \|w(t)\|_Q \|w^*\|_Q = \sqrt{s(t)} \leq 1,$$

 1694 so $0 < u(t) \leq 1$ for $t \geq t_0$ (positivity after T'_1 follows from the Volterra positivity in Phase I). Finally, unless $w(t_0) = w^*$, the real-analytic gradient flow reaches the minimizer only as $t \rightarrow \infty$, so $u(t) < 1$ for all finite $t \geq t_0$. \square

1700 Next, we show $u(t)$ and $s(t) \rightarrow 1$.
 1701

1702 **Lemma 12 (Convergence of $s(t)$ and $u(t)$).** As $t \rightarrow \infty$,

1703
$$s(t) \rightarrow 1, \quad u(t) \rightarrow 1.$$

 1704

1705 *Proof.* By Lemma 5, the trajectory $w(t)$ is bounded, hence precompact in \mathbb{R}^d . Moreover,
 1706

1707
$$\dot{\mathcal{L}}(t) = -\|\nabla \mathcal{L}(w(t))\|^2 \leq 0,$$

 1708 so $\mathcal{L}(w(t))$ is nonincreasing and convergent. Phase IIa yields forward invariance of the region $\{s > \frac{1}{3}\}$: there exists $T'_1 \geq 0$ such that $s(t) > \frac{1}{3}$ for all $t \geq T'_1$.
 1709 By LaSalle’s invariance principle, the ω -limit set
 1710

1711
$$\Omega := \{ \omega : \exists t_n \rightarrow \infty \text{ with } w(t_n) \rightarrow \omega \}$$

 1712 is nonempty, compact, invariant, and contained in the largest invariant subset of $\{\nabla \mathcal{L} = 0\} \cap \{s \geq \frac{1}{3}\}$. By the critical-point characterization in Section 3 (Proposition 2), every critical point with $s > \frac{1}{3}$ is of the form $w = \pm w^*$, under the normalization $\sum_i \lambda_i(w_i^*)^2 = 1$. In particular, all such critical points satisfy $s = 1$ and $u = \pm 1$.
 1713

1714 Hence for any $\omega \in \Omega$ we must have $(s(\omega), u(\omega)) \in \{(1, 1), (1, -1)\}$. Since $s(\cdot), u(\cdot)$ are continuous, it follows that
 1715

1716
$$s(t_n) \rightarrow 1, \quad u(t_n) \rightarrow \pm 1$$

 1717 for every sequence $t_n \rightarrow \infty$ with $w(t_n) \rightarrow \omega$. Phase I guarantees $u(T'_1) > 0$, and positivity is forward-invariant (via the Volterra representation after T'_1), so $u(t) > 0$ for all $t \geq T'_1$. Therefore, every limit point must satisfy $u(\omega) = +1$. Thus $(s(t), u(t)) \rightarrow (1, 1)$ as $t \rightarrow \infty$.
 1718

1719 Finally, if $s(t)$ or $u(t)$ did not converge, there would exist $\varepsilon > 0$ and a sequence $t_n \rightarrow \infty$ such that either $|s(t_n) - 1| \geq \varepsilon$ or $|u(t_n) - 1| \geq \varepsilon$. By precompactness, we may extract a subsequence $w(t_{n_k}) \rightarrow \omega \in \Omega$, but then $(s(t_{n_k}), u(t_{n_k})) \rightarrow (1, 1)$, a contradiction. Hence $s(t) \rightarrow 1$ and $u(t) \rightarrow 1$. \square

1728 **D PHASE III: SCALING LAWS**
 1729

1730 We first show in Section D.1 that the MSE does not change significantly from initialization. In
 1731 Section D.2, we then characterize its decay for $t \geq T_2$.
 1732

1733 **D.1 STABILITY OF THE MSE FOR $t \leq T_2$**
 1734

1735 **Proposition 4.** *Let $\sigma_*^2 = \frac{1}{d} \sum_{i=1}^d (w_i^*)^2$. Under the assumptions of Theorem 1 we have*

$$1737 \quad \left| \text{MSE}(T_2) - \sigma_*^2 \right| \lesssim \left(\frac{\varepsilon^{-a}}{d} \right)^{1/3} + \left(\frac{\log d}{d} \right)^{1/3}.$$

1739 *Proof. Step 1: Variation of constants.* For each coordinate i ,
 1740

$$1741 \quad \dot{w}_i(t) = 4\lambda_i(1 - 3s(t)) w_i(t) + 8\lambda_i u(t) w_i^*, \quad \Theta(t) := \int_0^t (1 - 3s(\tau)) d\tau.$$

1744 By Duhamel's formula, for all $t \geq 0$,

$$1745 \quad w_i(t) = e^{4\lambda_i \Theta(t)} w_i(0) + 8\lambda_i w_i^* \int_0^t e^{4\lambda_i(\Theta(t) - \Theta(\tau))} u(\tau) d\tau. \quad (\text{D.1})$$

1748 **Step 2: Phase clocks and the key split.** Let T'_1 be the first time $s(t) = \frac{1}{3}$. Then Θ increases on
 1749 $[0, T'_1]$ and decreases on $[T'_1, \infty)$. Define
 1750

$$1751 \quad \Theta_{\max} := \Theta(T'_1), \quad \Lambda(t) := \Theta_{\max} - \Theta(t), \quad t \geq T'_1.$$

1752 Fix $t \geq T'_1$. Splitting the integral in (D.1) at T'_1 and changing variables to Θ on each side, and using
 1753 $0 \leq u \leq 1$, we obtain the bound
 1754

$$1755 \quad \int_0^t e^{4\lambda_i(\Theta(t) - \Theta(\tau))} d\tau \leq C \left(\frac{1 - e^{-4\lambda_i \Theta_{\max}}}{\lambda_i} + \frac{1 - e^{-4\lambda_i \Lambda(t)}}{\lambda_i} \right), \quad (\text{D.2})$$

1757 where $C = C(\delta, s_0)$. This refines earlier estimates by accounting for the change of sign in $\Theta(t) - \Theta(\tau)$ across phases.
 1758

1759 **Step 3: Frontier at T_2 and inactive bound.** At time T_2 , fix $\zeta \in (0, 1]$ and define the index sets
 1760

$$1761 \quad \mathcal{I}_\zeta(T_2) := \{i : 4\lambda_i \Lambda(T_2) \geq \zeta\}, \quad \mathcal{I}_\zeta^c(T_2) := [d] \setminus \mathcal{I}_\zeta(T_2).$$

1763 For $i \in \mathcal{I}_\zeta^c(T_2)$, $4\lambda_i \Lambda(T_2) \leq \zeta$, so $1 - e^{-4\lambda_i \Lambda(T_2)} \leq 4\lambda_i \Lambda(T_2)$. Combining (D.1) and (D.2), and
 1764 after absorbing constants,

$$1765 \quad |w_i(T_2)| \leq e^{4\lambda_i \Theta(T_2)} |w_i(0)| + 8\lambda_i |w_i^*| \cdot C \left(\frac{1 - e^{-4\lambda_i \Theta_{\max}}}{\lambda_i} + 4\Lambda(T_2) \right) \leq e^\zeta |w_i(0)| + C' \zeta |w_i^*|. \quad (\text{D.3})$$

1768 **Step 4: Active correlation and energy.** On $\mathcal{I}_\zeta(T_2)$, $\lambda_i \geq \zeta/(4\Lambda(T_2))$. Applying the weighted
 1769 Cauchy–Schwarz inequality $\sum_i |x_i y_i| \leq (\sum x_i^2 / \lambda_i)^{1/2} (\sum \lambda_i y_i^2)^{1/2}$, we get
 1770

$$1771 \quad \sum_{i \in \mathcal{I}_\zeta(T_2)} |w_i^*| |w_i(T_2)| \leq \left(\sum_{i \in \mathcal{I}_\zeta(T_2)} \frac{(w_i^*)^2}{\lambda_i} \right)^{1/2} \left(\sum_{i \in \mathcal{I}_\zeta(T_2)} \lambda_i w_i(T_2)^2 \right)^{1/2} \leq \sqrt{\frac{4\Lambda(T_2)}{\zeta}} \sqrt{d \sigma_*^2} \sqrt{s(T_2)}.$$

1774 Hence the active correlation contribution satisfies

$$1775 \quad \frac{2}{d} \left| \sum_{i \in \mathcal{I}_\zeta(T_2)} w_i^* w_i(T_2) \right| \lesssim \sqrt{\frac{\Lambda(T_2)}{\zeta d}}. \quad (\text{D.4})$$

1778 Similarly, for the active energy,
 1779

$$1780 \quad \frac{1}{d} \sum_{i \in \mathcal{I}_\zeta(T_2)} w_i(T_2)^2 \leq \frac{1}{d \lambda_{\min}(\mathcal{I}_\zeta(T_2))} \sum_{i \in \mathcal{I}_\zeta(T_2)} \lambda_i w_i(T_2)^2 \leq \frac{4\Lambda(T_2)}{\zeta d} s(T_2) \lesssim \frac{\Lambda(T_2)}{\zeta d}, \quad (\text{D.5})$$

1782 since $s(T_2) \leq 1$.
 1783

1784 **Step 5: Inactive correlation and energy.** From (D.3) and Cauchy–Schwarz, and using $\|w^*\|_2^2 =$
 1785 $d\sigma_{\star}^2$,

$$1786 \sum_{i \in \mathcal{I}_{\zeta}^c(T_2)} |w_i^*| |w_i(T_2)| \leq \|w^*\|_2 \left(\sum_{i \in \mathcal{I}_{\zeta}^c(T_2)} w_i(T_2)^2 \right)^{1/2} \leq \sqrt{d\sigma_{\star}^2} \left(2e^{2\zeta} \|w(0)\|_2^2 + 8\zeta^2 d\sigma_{\star}^2 \right)^{1/2}.$$

1789 Therefore,

$$1791 \frac{2}{d} \sum_{i \in \mathcal{I}_{\zeta}^c(T_2)} |w_i^*| |w_i(T_2)| \lesssim \zeta + d^{-1/2}. \quad (\text{D.6})$$

1793 Moreover,

$$1795 \frac{1}{d} \sum_{i \in \mathcal{I}_{\zeta}^c(T_2)} w_i(T_2)^2 \leq \frac{2e^{2\zeta}}{d} \|w(0)\|_2^2 + 8\zeta^2 \sigma_{\star}^2 \lesssim \zeta^2 + d^{-1}. \quad (\text{D.7})$$

1797 **Step 6: Combination and optimization.** Since

$$1799 \text{MSE}(T_2) - \sigma_{\star}^2 = -\frac{2}{d} \sum_i w_i^* w_i(T_2) + \frac{1}{d} \sum_i w_i(T_2)^2,$$

1802 combining (D.4)–(D.7) yields

$$1803 \left| \text{MSE}(T_2) - \sigma_{\star}^2 \right| \lesssim \underbrace{\sqrt{\frac{\Lambda(T_2)}{\zeta d}} + \frac{\Lambda(T_2)}{\zeta d}}_{\text{active}} + \underbrace{\zeta + \zeta^2}_{\text{inactive}} + d^{-1/2}. \quad (\text{D.8})$$

1806 The right-hand side is minimized (up to constants) by taking

$$1809 \zeta^* \asymp \left(\frac{\Lambda(T_2)}{d} \right)^{1/3} \wedge 1,$$

1811 which balances the active and inactive contributions. For this choice,

$$1812 \sqrt{\frac{\Lambda(T_2)}{\zeta^* d}} \asymp \frac{\Lambda(T_2)}{\zeta^* d} \asymp \zeta^* \asymp \left(\frac{\Lambda(T_2)}{d} \right)^{1/3}.$$

1815 Therefore,

$$1817 \left| \text{MSE}(T_2) - \sigma_{\star}^2 \right| \lesssim \left(\frac{\Lambda(T_2)}{d} \right)^{1/3} + d^{-1/2}.$$

1819 Finally, the Phase IIb analysis (via the Volterra–renewal argument) gives $1 - u(t) \asymp \Lambda(t)^{-1/a}$. At
 1820 $t = T_2$, $1 - u(T_2) = \varepsilon$, hence $\Lambda(T_2) \asymp \varepsilon^{-a}$. Substituting into the above bound gives

$$1822 \left| \text{MSE}(T_2) - \sigma_{\star}^2 \right| \lesssim \left(\frac{\varepsilon^{-a}}{d} \right)^{1/3} + d^{-1/2}.$$

1824 Adding the Phase I “plateau” contribution $(\log d/d)^{1/3}$ yields the stated result. \square

1826 D.2 EVOLUTION OF THE MSE FOR $t \geq T_2$

1828 We first analyze the idealized dynamics where $u \equiv s \equiv 1$ (Section D.2.1), and then control the
 1829 approximation error in Section D.2.2.

1831 D.2.1 IDEAL CASE WHERE $u \equiv s \equiv 1$

1832 We begin by studying the evolution of the MSE under the idealization $u \equiv s \equiv 1$.

1833 **Lemma 13.** *In the post- T_2 idealization ($s \equiv u \equiv 1$), the coordinate errors $e_i(t) := w_i(t) - w_i^*$
 1834 evolve as*

$$1835 e_i(T_2 + \tau) = e_i(T_2) e^{-8\lambda_i \tau} \quad (\tau \geq 0).$$

1836 *Consequently,*

1838
$$\text{MSE}(T_2 + \tau) = \frac{1}{d} \sum_{i=1}^d e_i(T_2)^2 e^{-16\lambda_i \tau} = \text{MSE}(T_2) \hat{S}_d(\tau),$$

1840 where the normalized spectral mixing curve is

1843
$$\hat{S}_d(\tau) := \sum_{i=1}^d \pi_i e^{-16\lambda_i \tau}, \quad \pi_i := \frac{e_i(T_2)^2}{\sum_{j=1}^d e_j(T_2)^2}, \quad \sum_{i=1}^d \pi_i = 1.$$

1846 *Proof.* Setting $s \equiv u \equiv 1$ in the gradient flow gives

1848
$$\dot{w}(t) = -8Q(w(t) - w^*).$$

1849 Defining $e(t) = w(t) - w^*$ yields $\dot{e}(t) = -8Qe(t)$. Since Q is diagonal with entries (λ_i) , each
1850 coordinate satisfies $\dot{e}_i(t) = -8\lambda_i e_i(t)$, hence
1851

1852
$$e_i(T_2 + \tau) = e_i(T_2) e^{-8\lambda_i \tau}.$$

1853 Squaring and averaging proves the formula for the MSE. Factoring $\text{MSE}(T_2)$ defines the weights
1854 π_i , and the claim follows. \square
1855

1856 Since \hat{S}_d depends on the (random) weights π_i , we introduce the proxy
1857

1858
$$S_d(\tau) := \frac{1}{d} \sum_{i=1}^d e^{-\beta_d \tau i^{-a}}, \quad \beta_d = 16L_d,$$

1861 which corresponds to uniform weights. The next result shows that this is a valid approximation.

1862 **Proposition 15.** *There exists a constant $C < \infty$, independent of d , such that*

1864
$$\|\pi\|_\infty \leq \frac{C}{d}, \quad \text{and} \quad \hat{S}_d(\tau) \leq C S_d(\tau).$$

1867 *Proof.* From Proposition 4, $\max_i |e_i(T_2)| = O(1)$ while $\text{MSE}(T_2) \geq c > 0$ with high probability,
1868 hence

1869
$$\sum_{j=1}^d e_j(T_2)^2 \asymp d.$$

1872 Therefore $\pi_i = e_i(T_2)^2 / \sum_j e_j(T_2)^2 = O(1/d)$ uniformly, giving $\|\pi\|_\infty \leq C/d$. The second
1873 inequality follows directly. \square

1874 We now analyze the asymptotics of $S_d(\tau)$.

1876 **Proposition 16** (Asymptotics of the spectral average). *Let $a > 1$ and set $x_d := (\beta_d \tau)^{1/a}$. Then
1877 $S_d(\tau)$ satisfies:*

1879 1. Early time ($\beta_d \tau \ll 1$):

1881
$$S_d(\tau) = 1 - \frac{\beta_d \tau}{d} \sum_{i=1}^d i^{-a} + \frac{(\beta_d \tau)^2}{2d} \sum_{i=1}^d i^{-2a} + O\left(\frac{(\beta_d \tau)^3}{d}\right).$$

1884 Under trace normalization $L_d = 1/H_{d,a}$ this simplifies to

1885
$$S_d(\tau) = 1 - \frac{16}{d} \tau + O\left(\frac{\tau^2}{d}\right).$$

1887 2. Mesoscopic window ($1 \ll x_d \ll d$):

1889
$$S_d(\tau) = 1 - \Gamma\left(1 - \frac{1}{a}\right) \frac{x_d}{d} + o\left(\frac{x_d}{d}\right).$$

1890 3. Late time ($x_d \gtrsim d$):

1891
$$S_d(\tau) \leq \exp(-\beta_d \tau d^{-a}).$$

1892
1893 *Proof.* (i) For $z \in [0, 1]$, $e^{-z} = 1 - z + z^2/2 + R_3(z)$ with $|R_3(z)| \leq z^3/6$. If $\beta_d \tau \ll 1$, all
1894 $z_i = \beta_d \tau i^{-a}$ are small, and averaging the expansion over $i = 1, \dots, d$ yields the stated series.
1895

1896 (ii) Writing

1897
$$1 - S_d(\tau) = \frac{1}{d} \sum_{i=1}^d (1 - e^{-(x_d/i)^a}),$$

1898 1900 and defining $g_x(t) = 1 - e^{-(x/t)^a}$, we have

1901
$$\int_0^\infty g_x(t) dt = \int_0^\infty (1 - e^{-(x/t)^a}) dt = x \Gamma\left(1 - \frac{1}{a}\right),$$

1902 1904 by the substitution $y = (x/t)^a$. Since g_x is monotone decreasing in t ,

1905
$$\int_1^d g_x(t) dt \leq \sum_{i=1}^d g_x(i) \leq g_x(1) + \int_1^d g_x(t) dt.$$

1906 Thus

1907
$$\sum_{i=1}^d g_x(i) = x \Gamma(1 - 1/a) + O(1) + O(x^a d^{1-a}).$$

1908 1912 Dividing by d proves the expansion for $1 \ll x_d \ll d$.1913 (iii) For $i \leq d$, $i^{-a} \geq d^{-a}$, hence $e^{-\beta_d \tau i^{-a}} \leq e^{-\beta_d \tau d^{-a}}$. Averaging over i gives the bound. \square
19141915 **Corollary 3.** For all $\tau \geq 0$,

1916
$$\text{MSE}(T_2 + \tau) = \text{MSE}(T_2) \widehat{S}_d(\tau) \leq C \text{MSE}(T_2) S_d(\tau).$$

1918 D.2.2 HANDLING THE APPROXIMATION TERM

1919 Let $\delta_s(t) = 1 - s(t)$ and $\delta_u(t) = 1 - u(t)$. We will first show that the convergence approximation
1921 remains of order ε after T_2 .1922 **Lemma 14.** Assume Phase IIb yields, at time T_2 ,

1923
$$|\delta_s(T_2)| + |\delta_u(T_2)| \leq \varepsilon. \quad (\text{D.9})$$

1925 Then there exists a constant $C > 0$ and $\varepsilon_0 > 0$ such that, if $\varepsilon \leq \varepsilon_0$, then for all $\tau \geq 0$,

1926
$$|\delta_s(T_2 + \tau)| + |\delta_u(T_2 + \tau)| \leq C \varepsilon. \quad (\text{D.10})$$

1928 *Proof.* Write $\tau = t - T_2$. After T_2 , the full flow satisfies

1929
$$\dot{w}(t) = -8Qw(t) + (8\delta_u(t) - 12\delta_s(t))Qw^* - 12\delta_s(t)Qw(t).$$

1931 This is a linear time-varying system. Its mild form (variation of constants) is

1933
$$w(T_2 + \tau) = e^{-8Q\tau} w(T_2) + \int_0^\tau e^{-8Q(\tau-s)} \left[(8\delta_u - 12\delta_s)(T_2 + s) Qw^* - 12\delta_s(T_2 + s) Qw(T_2 + s) \right] ds. \quad (\text{D.11})$$

1935 Set

1937
$$A(\tau) := e^{-8Q\tau} w(T_2), \quad B(\tau) := \int_0^\tau e^{-8Q(\tau-s)} \left[(8\delta_u - 12\delta_s)(T_2 + s) Qw^* - 12\delta_s(T_2 + s) Qw(T_2 + s) \right] ds,$$

1939 so that $w(T_2 + \tau) = A(\tau) + B(\tau)$. We can interpret $A(\tau)$ as the term giving the dynamics in the
1940 ideal case, and $B(\tau)$ as a perturbation term.1941 *Step 1. (Uniform semigroup bounds).* Since $Q \succ 0$,

1943
$$\int_0^\infty e^{-8Qr} Q dr = \frac{1}{8} I, \quad \int_0^\infty Q^{1/2} e^{-8Qr} Q dr = \frac{1}{8} Q^{1/2}.$$

1944 Hence for any bounded h and any vector v ,
 1945

$$1946 \quad \left\| \int_0^\tau e^{-8Q(\tau-s)} h(s) Qv \, ds \right\|_2 \leq \frac{1}{8} \|h\|_\infty \|v\|_2, \quad (\text{D.12})$$

$$1948 \quad \left\| Q^{1/2} \int_0^\tau e^{-8Q(\tau-s)} h(s) Qv \, ds \right\|_2 \leq \frac{1}{8} \|h\|_\infty \|Q^{1/2}v\|_2. \quad (\text{D.13})$$

1950
 1951 *Step 2. (Bounding $B(\tau)$).* Let $g(s) := 8\delta_u(T_2+s) - 12\delta_s(T_2+s)$. On $[T_2, T_2+\tau]$, $|g(s)| \leq 20G(\tau)$
 1952 where

$$1953 \quad G(\tau) := \sup_{0 \leq t \leq \tau} (|\delta_s(T_2+t)| + |\delta_u(T_2+t)|).$$

1954 By (D.12)–(D.13),
 1955

$$1956 \quad \|B(\tau)\|_2 \leq c_1 G(\tau), \quad \|Q^{1/2}B(\tau)\|_2 \leq c_2 G(\tau), \quad (\text{D.14})$$

1957 for some absolute constants c_1, c_2 .
 1958

1959 *Step 3. (Comparing with the ideal trajectory).* The “ideal” evolution keeps only the base drift:

$$1960 \quad w^{\text{ideal}}(T_2 + \tau) := w^* + e^{-8Q\tau}(w(T_2) - w^*) = w^* + e^{-8Q\tau}e(T_2),$$

1961 so that

$$1963 \quad s^{\text{ideal}}(T_2 + \tau) = \|Q^{1/2}w^{\text{ideal}}(T_2 + \tau)\|_2^2, \quad u^{\text{ideal}}(T_2 + \tau) = \langle w^{\text{ideal}}(T_2 + \tau), Qw^* \rangle.$$

1964 Because $e^{-8Q\tau}$ is a contraction,

$$1966 \quad |1 - s^{\text{ideal}}(T_2 + \tau)| \leq |\delta_s(T_2)| \leq \varepsilon, \quad |1 - u^{\text{ideal}}(T_2 + \tau)| \leq |\delta_u(T_2)| \leq \varepsilon.$$

1967 *Step 4. (Deviations of s and u).* From $w(T_2 + \tau) = A(\tau) + B(\tau)$,

$$1969 \quad s(T_2 + \tau) = \|Q^{1/2}(A(\tau) + B(\tau))\|_2^2 = s^{\text{ideal}}(T_2 + \tau) + 2\langle Q^{1/2}w^{\text{ideal}}(T_2 + \tau), Q^{1/2}B(\tau) \rangle + \|Q^{1/2}B(\tau)\|_2^2,$$

$$1971 \quad u(T_2 + \tau) = \langle A(\tau) + B(\tau), Qw^* \rangle = u^{\text{ideal}}(T_2 + \tau) + \langle B(\tau), Qw^* \rangle.$$

1972 Hence,

$$1973 \quad |\delta_s(T_2 + \tau)| \leq \varepsilon + 2\|Q^{1/2}B(\tau)\|_2 + \|Q^{1/2}B(\tau)\|_2^2, \quad (\text{D.15})$$

$$1975 \quad |\delta_u(T_2 + \tau)| \leq \varepsilon + \|B(\tau)\|_2 \|Qw^*\|_2 \leq \varepsilon + c_3 G(\tau), \quad (\text{D.16})$$

1976 using (D.14).

1977 *Step 5. Combining (D.15)–(D.16) and the definition of $G(\tau)$ gives*

$$1979 \quad G(\tau) \leq 2\varepsilon + aG(\tau) + bG(\tau)^2, \quad a := 2c_2 + c_3, \quad b := c_2^2.$$

1980 Fix $M \geq 3$ and set $\varepsilon_0 := \min \{(M-2)/(2aM), (M-2)/(2bM^2)\}$. If $\varepsilon \leq \varepsilon_0$, define $\tau^* :=$
 1981 $\sup\{\tau : G(\tau) \leq M\varepsilon\}$. Then on $[0, \tau^*]$,

$$1982 \quad G(\tau) \leq 2\varepsilon + aM\varepsilon + bM^2\varepsilon^2 \leq M\varepsilon.$$

1984 By continuity, $\tau^* = \infty$, so $G(\tau) \leq M\varepsilon$ for all τ . Setting $C := M$ gives

$$1986 \quad |\delta_s(T_2 + \tau)| + |\delta_u(T_2 + \tau)| \leq C\varepsilon, \quad \forall \tau \geq 0.$$

1987 \square

1988 Let $\tau = t - T_2(\varepsilon)$ and set

$$1990 \quad \text{MSE}^{\text{full}}(T_2 + \tau) := \frac{1}{d} \|e(T_2 + \tau)\|_2^2, \quad \text{MSE}^{\text{ideal}}(T_2 + \tau) := \frac{1}{d} \sum_{i=1}^d e_i(T_2)^2 e^{-16\lambda_i \tau}.$$

1993 Define $\Delta e(\tau) := e^{\text{full}}(T_2 + \tau) - e^{\text{ideal}}(T_2 + \tau)$. Subtracting the full and ideal flows yields, for
 1994 $\tau \geq 0$,

$$1996 \quad \Delta e(\tau) = \int_0^\tau e^{-8Q(\tau-s)} \left(-12\delta_s(T_2+s) Q(e^{\text{ideal}}(T_2+s) + \Delta e(s)) + (8\delta_u - 12\delta_s)(T_2+s) Qw^* \right) ds. \quad (\text{D.17})$$

1998

1999 **Theorem 5.** Assume (D.10) holds. There exist absolute constants $A, B, C < \infty$ such that, for all
2000 $\tau \geq 0$,

2001

$$\begin{aligned} \left| \text{MSE}^{\text{full}}(T_2 + \tau) - \text{MSE}^{\text{ideal}}(T_2 + \tau) \right| &\leq A \varepsilon \left(\text{MSE}^{\text{ideal}}(T_2) - \text{MSE}^{\text{ideal}}(T_2 + \tau) \right) \\ &\quad + B \varepsilon^2 \frac{1}{d} \sum_{i=1}^d (1 - e^{-8\lambda_i \tau})^2 (w_i^*)^2 + C \varepsilon F(\tau), \end{aligned} \quad (\text{D.18})$$

2002

2003

2004

2005

2006

2007

2008

where $F(\tau) := \sup_{0 \leq s \leq \tau} \|\Delta e(s)\|_2 / \sqrt{d}$. In particular, if $\varepsilon \leq \varepsilon_0$ is small enough so that $C\varepsilon \leq \frac{1}{2}$,
then the feedback term can be absorbed to give

2009

2010

2011

2012

2013

2014

2015

2016

$$\begin{aligned} \left| \text{MSE}^{\text{full}}(T_2 + \tau) - \text{MSE}^{\text{ideal}}(T_2 + \tau) \right| &\leq \frac{A}{1 - C\varepsilon} \varepsilon \left(\text{MSE}^{\text{ideal}}(T_2) - \text{MSE}^{\text{ideal}}(T_2 + \tau) \right) \\ &\quad + \frac{B}{1 - C\varepsilon} \varepsilon^2 \frac{1}{d} \sum_{i=1}^d (1 - e^{-8\lambda_i \tau})^2 (w_i^*)^2, \end{aligned} \quad (\text{D.19})$$

and, e.g., for $\varepsilon \leq 1/3$, $(1 - C\varepsilon)^{-1} \leq 2$ (after adjusting C if needed).

2017

2018

Proof. (i) Term with Qe^{ideal} . Using $e^{\text{ideal}}(T_2 + s) = e^{-8Qs} e(T_2)$ and semigroup commutation,

2019

2020

$$\int_0^\tau e^{-8Q(\tau-s)} Q e^{\text{ideal}}(T_2 + s) ds = \tau e^{-8Q\tau} Q e(T_2).$$

2021

2022

Taking inner product with $e^{\text{ideal}}(T_2 + \tau) = e^{-8Q\tau} e(T_2)$, dividing by d , and using $xe^{-x} \leq 1 - e^{-x}$
with $x = 16\lambda_i \tau$,

2023

2024

2025

$$\frac{2}{d} \left\langle e^{\text{ideal}}(T_2 + \tau), \int_0^\tau e^{-8Q(\tau-s)} Q e^{\text{ideal}}(T_2 + s) ds \right\rangle \leq \frac{1}{8} \left(\text{MSE}^{\text{ideal}}(T_2) - \text{MSE}^{\text{ideal}}(T_2 + \tau) \right).$$

2026

Multiplying by $|\delta_s| \leq \varepsilon$ yields the first term in (D.18) with $A = \frac{1}{8}$.

2027

2028

(ii) Teacher-forcing term. Let

2029

2030

$$\mathcal{T}(\tau) := \int_0^\tau e^{-8Q(\tau-s)} (8\delta_u - 12\delta_s)(T_2 + s) Q w^* ds, \quad g(s) := 8\delta_u(T_2 + s) - 12\delta_s(T_2 + s).$$

2031

Then $|g(s)| \leq 20\varepsilon$ and

2032

2033

2034

$$\mathcal{T}_i(\tau) = \lambda_i w_i^* \int_0^\tau g(s) e^{-8\lambda_i(\tau-s)} ds, \quad \left| \int_0^\tau g(s) e^{-8\lambda_i(\tau-s)} ds \right| \leq 20\varepsilon \frac{1 - e^{-8\lambda_i \tau}}{8\lambda_i}.$$

2035

Hence

2036

2037

2038

$$\frac{1}{d} \|\mathcal{T}(\tau)\|_2^2 \leq \frac{25}{4} \varepsilon^2 \frac{1}{d} \sum_{i=1}^d (1 - e^{-8\lambda_i \tau})^2 (w_i^*)^2,$$

2039

2040

which yields the second term in (D.18) with $B = \frac{25}{4}$. The bound is *saturating*: for small τ , one may use $1 - e^{-8\lambda_i \tau} \leq 8\lambda_i \tau$ to recover the quadratic behavior

2041

2042

2043

$$\frac{1}{d} \|\mathcal{T}(\tau)\|_2^2 \leq 400 \varepsilon^2 \tau^2 \frac{1}{d} \sum_{i=1}^d \lambda_i^2 (w_i^*)^2,$$

2044

2045

whereas for large τ it saturates at $O(\varepsilon^2) \cdot \frac{1}{d} \sum_i (w_i^*)^2$.

2046

(iii) Self-interaction term. Write

2047

2048

2049

2050

$$\mathcal{S}(\tau) := \int_0^\tau e^{-8Q(\tau-s)} (-12\delta_s(T_2 + s)) Q \Delta e(s) ds.$$

2051

For each coordinate i ,

2052

2053

2054

2055

$$\mathcal{S}_i(\tau) = -12 \int_0^\tau \lambda_i e^{-8\lambda_i(\tau-s)} \delta_s(T_2 + s) \Delta e_i(s) ds.$$

2052 Using $|\delta_s| \leq \varepsilon$ and the uniform L^1 bound $\int_0^\infty \lambda_i e^{-8\lambda_i u} du = \frac{1}{8}$, Young's inequality gives
 2053

$$\frac{\|\mathcal{S}(\tau)\|_2}{\sqrt{d}} \leq \frac{3}{2} \varepsilon \sup_{0 \leq s \leq \tau} \frac{\|\Delta e(s)\|_2}{\sqrt{d}}.$$

2056 Thus the self-interaction contributes a *linear feedback* term $C\varepsilon F(\tau)$ in (D.18) with $C = \frac{3}{2}$. Absorbing this term to the left yields (D.19) whenever $C\varepsilon < 1$. \square
 2057

2058 **Corollary 4.** *Under (D.10) and for $\varepsilon \leq \varepsilon_0$ small enough,*
 2059

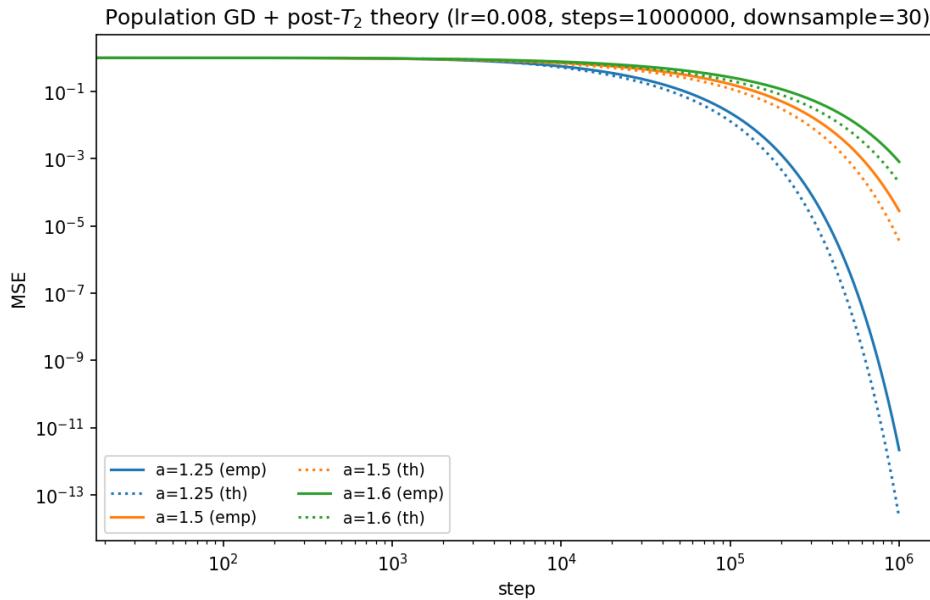
$$2060 \left| \text{MSE}^{\text{full}}(T_2 + \tau) - \text{MSE}^{\text{ideal}}(T_2 + \tau) \right| \leq C_1 \varepsilon \left(\text{MSE}^{\text{ideal}}(T_2) - \text{MSE}^{\text{ideal}}(T_2 + \tau) \right) + C_2 \frac{\varepsilon^2}{d} s_\star^{(2)}.$$

2061 *In particular, for each fixed τ the difference is $O(\varepsilon)$ relative to the drop of the ideal MSE from T_2 to
 2062 $T_2 + \tau$, plus a negligible $O(\varepsilon^2/d)$ additive term.*
 2063

2064 E ADDITIONAL NUMERICAL EXPERIMENTS

2065 E.1 APPROXIMATION $\dot{w}_i(t) \approx 8\lambda_i(w_i^* - w_i(t))$.

2066 We empirically confirm the approximation used for the Phase III analysis. In Figure 4 we compare
 2067 the MSE of the population dynamic with the one predicted with the approximation $\dot{w}_i(t) \approx
 2068 8\lambda_i(w_i^* - w_i(t))$ where T_2 is chosen such that $u(T_2) = 0.7$.
 2069

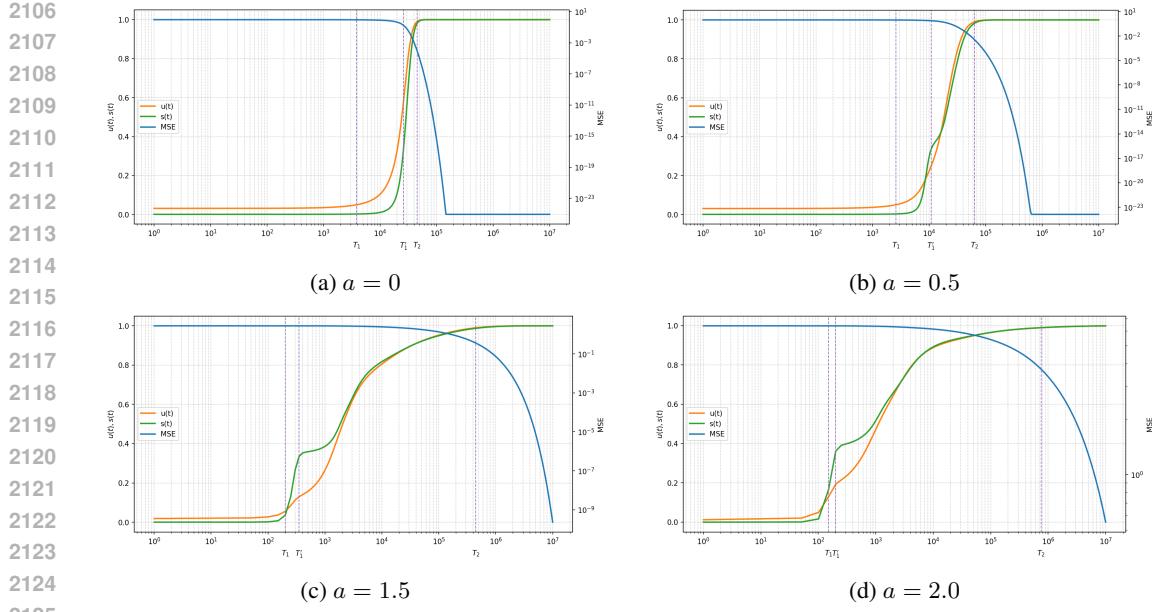


2092 Figure 4: Comparison between MSE obtained from the population dynamic (emp.), and the approximated one used to derive scaling law (th.) (log-log scale). Parameters: $d = 1000$, $\eta = 0.008$, $T = 2093 10^6$.
 2094

2095 E.2 INFLUENCE OF THE EXPONENT a IN THE DYNAMICS

2099 To illustrate how the spectral profile affects convergence, we report in Figure 5 the trajectories of
 2100 the key summary statistics $u(t)$, $s(t)$, and the MSE for different exponent parameter a values. We
 2101 fixed $d = 1000$, the learning rate $\eta = 0.01$, and the number of iterations $T = 10^7$.
 2102

2103 As the spectral decay parameter a increases, the system escapes the mediocrity regime earlier, but
 2104 the overall convergence slows down. The reason is that for large a only a few directions carry most
 2105 of the signal (those with large eigenvalues), so learning them is enough to trigger rapid macroscopic
 2106 alignment. However, achieving full convergence requires capturing the weaker directions in the
 2107 spectral tail, which become increasingly difficult to learn as a grows.
 2108

Figure 5: Dynamics for different values of the spectral decay parameter a .

E.3 ONLINE SGD

In the main text, we focused on the gradient flow to highlight the phase decomposition. Here, we complement the analysis with simulations of online SGD, see Figure 6. We track the trajectories of the key order parameters when training with a small learning rate and without mini-batching. We used the same parameters as in the previous section, but used empirical gradient and added noise $\varepsilon_t \sim \mathcal{N}(0, 0.05)$.

Figure 6: Dynamics of online SGD for different a .

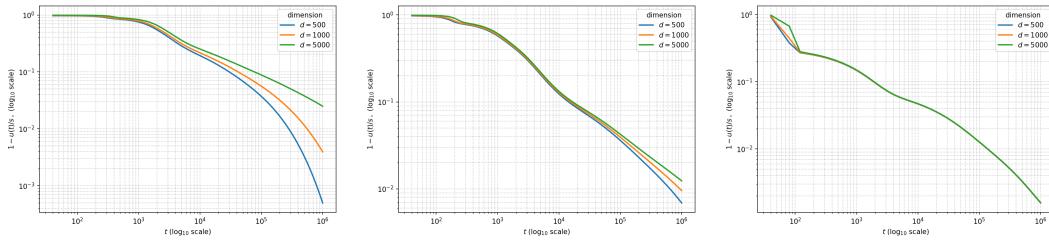
Compared to gradient flow, online SGD exhibits the same qualitative phases, but with additional noise. This suggests that our theoretical scaling laws are robust to stochastic perturbations introduced by SGD. Moreover, the magnitude of fluctuations increases with the spectral decay parameter a . Intuitively, when a is large, only a few top directions dominate the signal, so SGD updates concentrate heavily along these directions, amplifying variance and making the trajectory noisier.

E.4 RATE OF CONVERGENCE OF $u(t)$

In Figure 7 we plot $\log(1 - u(t))$ as a function of $\log t$ for $a = 1, 1.5$ and 4 for inputs in dimension $d = 500, 2000$ and 5000 .

We observe that the ambient dimension d only starts to affect the dynamics once $1 - u(t)$ has already become small: larger d makes it harder to learn directions associated with the smallest eigenvalues. Moreover, increasing a extends the initial phase where d plays essentially no role, since learning is then dominated by the leading entries of the spectrum.

2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213

(a) $a = 1.5$ (b) $a = 2$ (c) $a = 4$ Figure 7: Convergence rate of $1 - u(t)$ for different a and d (log-log scale).