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ABSTRACT

Scaling laws describe how learning performance improves with data, compute,
or training time, and have become a central theme in modern deep learning.
We study this phenomenon in a canonical nonlinear model: phase retrieval with
anisotropic Gaussian inputs whose covariance spectrum follows a power law. Un-
like the isotropic case, where dynamics collapse to a two-dimensional system,
anisotropy yields a qualitatively new regime in which an infinite hierarchy of cou-
pled equations governs the evolution of the summary statistics. We develop a
tractable reduction that reveals a three-phase trajectory: (i) fast escape from low
alignment, (ii) slow convergence of the summary statistics, and (iii) spectral-tail
learning in low-variance directions. From this decomposition, we derive explicit
scaling laws for the mean-squared error, showing how spectral decay dictates con-
vergence times and error curves. Experiments confirm the predicted phases and
exponents. These results provide the first rigorous characterization of scaling
laws in nonlinear regression with anisotropic data, highlighting how anisotropy
reshapes learning dynamics.

1 INTRODUCTION

Scaling laws quantify how the performance of a learning algorithm varies with resources such as
training time, dataset size, or model capacity. Empirically, losses often follow simple power laws
across wide ranges of data and computation, enabling forecasting from a handful of measurements
(Hestness et al., 2017; Kaplan et al., 2020; Hoffmann et al., 2022). These regularities naturally raise
the fundamental question: when and how do such laws emerge from first principles?

Despite their central role in modern deep learning practice, neural scaling laws remain theoretically
poorly understood. A notable exception is provided by linear models, where the scaling of the gen-
eralization error has been thoroughly analysed within the classical kernel literature, encompassing
both ridge regression (Caponnetto & De Vito, 2007; Rudi & Rosasco, 2017) and stochastic gradient
descent (Yao et al., 2007; Ying & Pontil, 2008; Carratino et al., 2018; Pillaud-Vivien et al., 2018;
Kunstner & Bach, 2025). Recent developments in this direction, driven by the empirical observa-
tions of cross-overs and bottlenecks in the context of neural networks, demonstrate that analogous
phenomena are already present in linear settings (Cui et al., 2021; Defilippis et al., 2024; Bahri et al.,
2024; Maloney et al., 2022; Atanasov et al., 2024; Paquette et al., 2024; Bordelon et al., 2024; Lin
et al., 2024). By contrast, nonlinear settings, ubiquitous in practice (e.g., functional data, learned
feature maps, or embeddings with heavy spectral tails), remains far less understood.

We address this gap in the canonical nonlinear regression problem of phase retrieval:

y = ⟨x,w⋆⟩2 + ξ, x ∼ N (0, Q),

where w⋆ ∈ Rd is the target vector, and Q has eigenvalues (λi)
d
i=1 obeying a power law λi ∝ i−a

with a > 1 and noise ξ. This model captures two core difficulties: (i) a nonconvex landscape, and
(ii) strong anisotropy that induces highly unbalanced learning across directions.

Figure 1 illustrates this phenomenon: under the same initialization, noise level, stepsize, and opti-
mization algorithm (SGD), the mean-square error (MSE) behaves differently depending on a. Intu-
itively, when a is larger, directions associated with small eigenvalues λi are harder to learn, so the
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Figure 1: Evolution of the MSE during training with online SGD for different spectral exponents a
(log-log scale). For a > 1, convergence is markedly slower than the exponential decay seen in the
isotropic case, reflecting the difficulty of learning directions associated with small eigenvalues.

MSE decays more slowly. By contrast, in isotropic designs, all directions progress at comparable
rates, causing the error to drop sharply. These observations motivate our central question:

How does the input spectrum govern finite-time convergence in nonlinear regression, and can we
predict the learning curve from the spectral decay?

Concretely, we seek to (i) analyze the mechanisms behind the plateau–drop structure in anisotropic
phase retrieval, and (ii) derive scaling laws that quantify MSE decay as functions of the spectral
parameter a and time t.

1.1 CONTRIBUTIONS.

• New phenomena in the anisotropic case. We show that anisotropy challenges several aspects
of the intuition developed in isotropic settings. In the isotropic setting, the dynamics collapse to
a low-dimensional ODE, and the main challenge is escaping mediocrity , i.e. the regime where
the correlation with the signal w∗ is vanishing, before convergence accelerates. Under anisotropy,
by contrast, the dynamics form an infinite hierarchy of coupled equations. This structural change
flips the qualitative behavior, yielding a escape-convergence trade-off : escaping from mediocrity
can be faster, but convergence to a low MSE is slowed by the difficulty of learning directions
associated with small eigenvalues, as illustrated by Figure 1 (a large a is associated with a slow
decay of the MSE) and Figure 3 (a large a leads quickly to constant order correlation with the sig-
nal). Numerical experiments confirm this phase-level contrast between isotropic and anisotropic
regimes.

• Analytical framework. We first obtain a closed-form representation of the dynamics via
Duhamel’s formula. We then introduce a phase decomposition of the trajectory, isolating regimes
where different approximations become valid. This allows us to analyze the qualitative behavior
of the ODE hierarchy phase by phase: (i) fast escape from mediocrity, (ii) macroscopic conver-
gence of summary statistics, and (iii) spectral-tail learning of small-eigenvalue directions. The
combination of Duhamel representation and phase-specific approximations provides a systematic
way to make infinite-dimensional dynamics tractable.

• Scaling laws. As a byproduct of this analysis, we derive explicit scaling laws for anisotropic
phase retrieval. These formulas quantify how the eigenvalue decay governs the MSE. Numerical
results corroborate the predicted exponents across different spectral profiles.
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1.2 OTHER RELATED WORK

Theory of scaling laws. The study of risk scaling in problems with power-law structure is a clas-
sical theme in the kernel literature, where it falls under the framework of source and capacity condi-
tions. It has been extensively investigated for kernel ridge regression (Caponnetto & De Vito, 2007;
Cui et al., 2021), random features regression (Rudi & Rosasco, 2017; Defilippis et al., 2024), and
also for (S)GD (Yao et al., 2007; Ying & Pontil, 2008; Carratino et al., 2018; Pillaud-Vivien et al.,
2018). This line of work has recently gained renewed relevance in the context of neural scaling
laws, with linear models emerging as theoretical testbeds to explain the plateaux and cross-overs
observed in practice (Bahri et al., 2024; Maloney et al., 2022; Atanasov et al., 2024; Bordelon et al.,
2024; Worschech & Rosenow, 2024; Paquette et al., 2024; Lin et al., 2024). More recently, sums of
orthogonal single-index models have been analysed in the feature-learning regime, albeit still under
isotropic input distributions (Ren et al., 2025; Ben Arous et al., 2025). In short, while the linear
setting with anisotropic spectra (e.g. power-law decays) is by now well understood, the nonlin-
ear regime has remained largely isotropic. Our work addresses this gap by deriving compute–error
scaling laws in a nonlinear model with anisotropic Gaussian inputs.

Phase retrieval. Phase retrieval (PR) is a classical inverse problem motivated by imaging: re-
construct a signal from intensity-only measurements; see Dong et al. (2023) for a recent tutorial. A
rich algorithmic literature includes spectral initializations and nonconvex Wirtinger-flow refinements
(Ma et al., 2021; Candès et al., 2015; Tan & Vershynin, 2019; 2023; Davis et al., 2020). PR can be
viewed as learning a single neuron with a quadratic activation, connecting it to the broader theory
of quadratic networks and their training dynamics (Sarao Mannelli et al., 2020; Arnaboldi et al.,
2023a; Martin et al., 2024; Erba et al., 2025; Ben Arous et al., 2025). Most theoretical analyses
of PR assume isotropic sub-Gaussian measurements; the impact of anisotropic covariances on the
learning curve has received less attention. Our analysis isolates precisely this aspect and quantifies
how the input spectrum shapes the three-phase trajectory and the resulting scaling laws.

Non-convex optimization and feature learning. A complementary line of work studies
gradient-based training in multi-index and shallow networks, characterizing feature learning, con-
vergence phases, and computational–statistical trade-offs, predominantly under isotropic designs
(Saad & Solla, 1995b;a; Goldt et al., 2019; Veiga et al., 2022; Arnaboldi et al., 2023b; 2024; Collins-
Woodfin et al., 2024; Ben Arous et al., 2022; Abbe et al., 2022; 2023; Bietti et al., 2025; Dandi et al.,
2024; Bruna & Hsu, 2025). Results with anisotropic inputs are more limited: some works consider
spiked covariances and rely on preconditioned methods (Ba et al., 2023), while others treat a broader
but weaker anisotropic regime that does not include power-law spectra (Goldt et al., 2020; Braun
et al., 2025). By contrast, we analyze the unpreconditioned gradient flow in a strongly anisotropic
regime and show that anisotropy destroys the finite-dimensional closure of the dynamics, leading to
an infinite hierarchy whose Duhamel–Volterra reduction yields explicit scaling laws.

1.3 NOTATIONS

We use ∥·∥ and ⟨·, ·⟩ to denote the Euclidean norm and scalar product, respectively. When applied
to a matrix, ∥·∥ refers to the operator norm. Any positive definite matrix Q induces a scalar product
defined by ⟨x, y⟩Q = x⊤Qy. The Frobenius norm of a matrix A is denoted by ∥A∥F . The d × d
identity matrix is represented by Id. The (d − 1)-dimensional unit sphere is denoted by Sd−1. We
use the notation an ≲ bn (or an ≳ bn) for sequences (an)n≥1 and (bn)n≥1 if there exists a constant
C > 0 such that an ≤ Cbn (or an ≥ Cbn) for all n. If the inequalities hold only for sufficiently
large n, we write an = O(bn) (or an = Ω(bn)). We denote by C∞

b (R≥0; ℓ
2) the Banach space of

bounded and infinitely differentiable functions from R≥0 to ℓ2 := {(xn)n≥0 :
∑

x2
n < ∞}, the

Hilbert space of square summable sequences. We write ∗ for convolution, and for a function f we
denote by f̂ its Laplace transform.

2 PROBLEM SETUP

Data distribution. By orthogonal invariance of the Gaussian distribution, we may assume without
loss of generality that the covariance matrix is diagonal: Q = diag(λ1, . . . , λd) ∈ Rd×d. We assume
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a power-law spectrum,

λi =
i−a∑d
j=1 j

−a
, a > 1,

so that tr(Q) = 1. This assumption reflects the slow, heavy-tailed eigenvalue decay observed in
many empirical covariance spectra (e.g., images, text embeddings, kernel features). From a theo-
retical perspective, the exponent a provides a simple parametrization of anisotropy: it controls the
balance between a few dominant directions and a long tail of weak ones. It is widely used as a
canonical model for scaling laws in learning dynamics. We consider the phase retrieval setting

y = ⟨x,w⋆⟩2 + ξ, x ∼ N (0, Q),

where the target weights are generated by w⋆ = u
∥Q1/2u∥ , u ∼ N (0, Id). This construction ensures

that ∥Q1/2w⋆∥ = 1. For numerical experiments, we sometimes adopt the alternative normalization
∥w⋆∥2 = d, so that all curves start from the same baseline when comparing different decay expo-
nents a; both normalizations are of constant order in expectation. The noise term ξ ∼ N (0, σ2) is
independent of x. Since our analysis focuses on the population dynamics, label noise only shifts the
loss by a constant and can be set to zero without loss of generality.

Model. We consider estimators of the form ⟨x,w⟩2 for w ∈ Rd and the population loss used to
train our model

L(w) = Ex

[(
(x⊤w)2 − (x⊤w⋆)2

)2]
.

However, under anisotropy, this loss can be misleading: a vector w that aligns with w⋆ only along
the directions corresponding to the largest eigenvalues may still achieve a small loss. To evaluate
how well w actually recovers the signal direction, a more natural metric is the MSE defined as

MSE(w,w⋆) =
1

d
min

{
∥w − w⋆∥2, ∥w + w⋆∥2

}
.

Optimization. The learner maintains a weight vector w(t) ∈ Rd, initialized uniformly at random
on the unit sphere Sd−1. Its evolution follows the gradient flow dynamics

ẇ(t) = −∇wL(w(t))

which can be viewed as the continuous-time counterpart of gradient descent.

3 LOSS GEOMETRY AND EVOLUTION OF SUMMARY STATISTICS

In this section, we describe the main characteristics of the loss landscape and establish ODEs to
describe the evolution of the key summary statistics. The proofs are in the appendix, Section A.
For convenience, we introduce the following notations: s := ∥w∥2Q = w⊤Qw, s⋆ := ∥w⋆∥2Q, and
u := ⟨w,w⋆⟩Q = w⊤Qw⋆.

3.1 LOSS SIMPLIFICATION

Although the loss is defined on a d-dimensional parameter space, it depends only on two summary
statistics: ∥w∥2Q and ⟨w,w⋆⟩2Q. This dimensional reduction makes the geometry of the loss land-
scape transparent, as captured in the following proposition.

Proposition 1. Let x ∼ N (0, Q) ∈ Rd, where Q ∈ Rd×d is a symmetric positive definite diagonal
matrix. Let w,w⋆ ∈ Rd. The population loss can be rewritten as

L(w) = 3∥w∥4Q + 3∥w⋆∥4Q − 4⟨w,w⋆⟩2Q − 2∥w∥2Q · ∥w⋆∥2Q = 3s2 + 3s2⋆ − 4u2 − 2s⋆s

Next, we compute the population gradient and characterize the critical points.
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3.2 GRADIENT, HESSIAN, AND CRITICAL POINTS

Proposition 2. The population gradient and Hessian of the loss L are given by

∇L(w) = 12sQw − 4s⋆Qw − 8uQw⋆, (3.1)

∇2L(w) = 24(Qw)(Qw)⊤ + (12s− 4s⋆)Q− 8(Qw⋆)(Qw⋆)⊤. (3.2)

The set of critical points is {0, w⋆, −w⋆} ∪ {w : (u, s) = (0, s⋆/3)}. Among them, 0 is a strict
local maximum, ±w⋆ are strict global minima, and every w with (u, s) = (0, s⋆/3) is a saddle
point.
Remark 1. The loss landscape contains no spurious local minima: the only minima are the global
optima ±w⋆. At the same time, the origin is a strict local maximum, and the remaining critical
points are saddles. Nevertheless, the dynamics exhibit a long plateau phase. At initialization, one
typically has u(0) ≈ d−1/2 ≈ 0. In this low-correlation regime, the gradient is small, so the iterates
take a long time to escape. Even after leaving this regime, convergence remains slower than in the
isotropic case.
Remark 2. The anisotropic gradient flow can be viewed as a Q-preconditioned version of the
isotropic flow. Under the reparametrization z = Q1/2w, define the isotropic loss LI(z) =
L(Q−1/2z). By the chain rule, ż(t) = −Q∇LI(z(t)). Thus, while the critical points coincide
with those in the isotropic case, the dynamics differ substantially due to the preconditioning by Q.

3.3 INFINITE-DIMENSIONAL STRUCTURE OF GRADIENT FLOW

As shown in Proposition 1, the loss depends only on the summary statistics u(t) and s(t). Control-
ling these two quantities already yields a faithful description of the loss trajectory.

A crucial distinction, however, arises between the isotropic and anisotropic settings. In the isotropic
case (Q = I), the dynamics of the loss can be expressed entirely in terms of two scalars: the signal
overlap u(t) and the energy s(t). This leads to a closed, two-dimensional ODE system.

In contrast, as soon as Q ̸= I , the situation changes qualitatively. Proposition 3 shows that the
evolution of u(t) and s(t) necessarily involves higher-order weighted overlaps,

s(k)(t) := ∥w(t)∥2Qk , s
(k)
⋆ := ∥w⋆∥2Qk , u(k)(t) := ⟨w(t), w⋆⟩Qk ,

with the conventions s = s(1)(t), u = u(1)(t), and s⋆ = s
(1)
⋆ = 1.

The resulting system is an infinite hierarchy of coupled ODEs. Unlike the isotropic case, no finite-
dimensional closure exists: the time derivative of order-k statistics depends on order-(k+1) statis-
tics, and so on. Understanding the anisotropic dynamics thus requires working with this infinite-
dimensional structure.
Proposition 3. The gradient flow dynamics satisfy

ẇi(t) = 4λi

(
s⋆ − 3s(t)

)
wi(t) + 8λiu(t)w

⋆
i , i = 1, . . . , d, (3.3)

ṡ(k)(t) = 8 (s⋆ − 3s(t)) s(k+1)(t) + 16u(t)u(k+1)(t), (3.4)

u̇(k)(t) = 4 (s⋆ − 3s(t))u(k+1)(t) + 8u(t) s
(k+1)
⋆ . (3.5)

In particular, setting k = 1 recovers the dynamics of s(t) and u(t).

3.4 THREE-PHASE STRUCTURE OF THE DYNAMICS

The system of ODEs from Proposition 3 involves higher-order moments, preventing a closed-form
analysis as in the isotropic case. To guide our theory, we first examine the empirical evolution of the
key observables u(t) and s(t); see Figure 2. The trajectories display a three-phase structure:

(i) Phase I: Escape from mediocrity, s(t) ≈ 0 (t ≤ T1). The dynamics begin near w(0) ≈ 0,
with no correlation to the signal. During this “warm-up” stage, the correlation u(t) escapes
exponentially from zero and reaches a small but fixed constant u(T1) = δ > 0. The over-
all MSE, however, remains essentially unchanged, since only a few easy directions—those
aligned with large eigenvalues—have been learned so far.
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(ii) Phase II: Convergence u(t), s(t) → 1 (T1 ≤ t < T2). Here, the signal alignment strengthens
and the summary statistics u(t), s(t) approach their limiting values. Two distinct episodes
appear:

• (IIa) Transition (T1 ≤ t ≤ T ′
1). The energy s(t) crosses the critical threshold 1/3 and

stays above it.
• (IIb) Asymptotic convergence (T ′

1 < t < T2). Both u(t) and s(t) approach 1, but conver-
gence is slower than in the isotropic case (see Section E), reflecting the difficulty of learning
directions corresponding to small eigenvalues of Q (also see Section E.4).

(iii) Phase III: Spectral-tail learning u(t), s(t) ≈ 1 (t > T2). After u(t) and s(t) have essen-
tially stabilized, the MSE continues to decrease as the flow progressively learns directions
associated with the small eigenvalues of Q.

This empirical decomposition provides a roadmap for the analysis: by isolating each phase, the
infinite-dimensional system becomes amenable to tractable approximations.

Figure 2: Evolution of the MSE, u(t) and s(t) under population gradient descent (log-log scale).
Parameters: a = 2, d = 1000, η = 10−2, T = 107, ε = 0.05.

4 MAIN RESULTS: THREE-PHASE GRADIENT FLOW DYNAMICS

The experiments in Section 3.4 revealed a characteristic trajectory with three successive phases: (i)
escape from mediocrity, (ii) convergence of the summary statistics, and (iii) spectral-tail learning.
We now show that this qualitative picture admits a rigorous derivation from the gradient flow equa-
tions. The following theorems make precise the stopping times, plateau behavior, and tail-driven
decay observed empirically.

4.1 PHASE I–II: ESCAPE AND APPROXIMATE CONVERGENCE OF THE SUMMARY STATISTICS

The next theorem formalizes escape and approximate convergence, under initialization conditions
whose full statement is deferred to Appendix B (see Assumption A1).

Theorem 1 (Phases I and II). For d sufficiently large, let ε ≳ d−(a−1)/2. Under mild conditions on
initialization (e.g. s(0) ≍ d−1/2), there exist stopping times T1 = O(log d), T ′

1 = T1 + O(1), and
T2 = T ′

1 +O(ε−2a/(a−1) log(1/ε)) such that:
(i) There exists a constant δ > 0 such that |u(T1)|, s(T1), |u(2)(T1)| ≥ δ, and the sign of

u(2)(T1) agrees with that of u(T1).
(ii) There exists a constant s0 > 0 such that s(t) > 1/3 + s0 for all t ≥ T ′

1.

6
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Figure 3: Evolution of the correlation u(t) for different exponent a (d = 1000, η = 10−3).

(iii) At time T2, both statistics are close to their limits: |u(T2)|, s(T2) ∈ [ 1− ε, 1 ].
Remark 3. Several features of the theorem are worth noting.

• Sign symmetry. The sign of u(t) is fixed at initialization; w.l.o.g. one may assume it positive by
replacing w⋆ with −w⋆.

• Anisotropic vs. isotropic. In isotropic models s(0) directly controls early growth and convergence
is relatively fast; in the anisotropic setting, the Volterra reduction shows that escape depends in-
stead on a linear functional of the initialization (via residual/resolvent calculus), and convergence
after escape is tail–controlled and slower.

• Accuracy vs. time. For ε ≳ d−(a−1)/2 stabilization occurs within O(ε−2a/(a−1) log(1/ε)), while
demanding ε ≪ d−(a−1)/2 leads to even higher time costs (see Phase III analysis).

Remark 4. The analysis of Phase I reveals that the u(t) grows exponentially at a rate depending
on a: the convergence is faster when a is large (see Proposition 9 in the appendix, and Figure 3 for
a numerical illustration).

4.2 SPECTRAL-TAIL LEARNING AND PHASE III

While Phases I–II describe the evolution of summary statistics (u, s), these quantities do not capture
how the estimator w(t) approaches the ground truth entrywise. The mean squared error

MSE(t) = 1
d

d∑
i=1

(wi(t)− w⋆
i )

2

is the natural measure of recovery: it is the quantity plotted in Fig. 1, and its log–log decay rates
yield the scaling laws highlighted in the introduction. Moreover, the MSE aggregates contributions
from all eigen-directions, making it the right observable to expose the effect of the spectral tail.

Up to time T2, while the summary statistics are still converging, the MSE shows almost no decrease
and stays essentially at its initial level. The following proposition captures this plateau behavior.

Proposition 4. Let σ2
⋆ = 1

d

∑d
i=1(w

⋆
i )

2. Under the assumptions of Theorem 1 we have∣∣∣MSE(T2)− σ2
⋆

∣∣∣ ≲
(ε−a

d

)1/3
+
( log d

d

)1/3
.

After T2, progress is governed by coordinates aligned with the smallest eigenvalues. Let ei(t) =
wi(t) − w⋆

i be the coordinate error and define πi = ei(T2)
2/
∑

j ej(T2)
2. The weighted average

7
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Ŝd(τ) =
∑

i πie
−16λiτ describes the spectral decay of the error, while the uniform benchmark

Sd(τ) = d−1
∑

i e
−16λiτ admits explicit asymptotics. We also set s(2)⋆ = 1

d

∑
i λ

2
i (w

⋆
i )

2, Hd,a =∑d
j=1 j

−a, βd = 16/Hd,a, and xd = (βdτ)
1/a.

Theorem 2 (Phase III: spectral-tail learning). Under the assumptions of Theorem 1, the MSE satis-
fies for every τ ≥ 0,

MSE(T2 + τ) =
(
1 +O(ε)

)
MSE(T2) Ŝd(τ) +O

(
ε2τ2 1

d s
(2)
⋆

)
. (4.1)

Moreover, Ŝd(τ) ≤ C Sd(τ) for some C > 0, and Sd(τ) admits the asymptotics

Sd(τ) =


1− 16

d τ +O( τ
2

d ), βdτ ≪ 1,

1− Γ(1− 1
a )

xd

d + o(xd

d ), 1 ≪ xd ≪ d,

≤ exp(−βdτ d
−a), xd ≳ d.

Thus, the plateau persists until T2, after which the MSE decays at a rate controlled by the spectral
tail. The exponent a determines the slope of this decay on log–log scales, accounting for the scaling
laws observed in Fig. 1.

5 PROOF OUTLINE

We briefly sketch the main ingredients of our analysis, deferring complete proofs to the appendix:
Section B (Phase I), Section C (Phase II), and Section D (Phase III).

5.1 PHASE I: ESCAPE FROM MEDIOCRITY

In the anisotropic setting, the summary statistics (u, s) do not form a closed system; instead, they
are coupled to an infinite hierarchy of correlations. Our strategy is to lift the dynamics to an infinite-
dimensional space, solve the system there, and then project back to obtain a closed Volterra repre-
sentation for u(t), which we can analyze directly.

Step 1: Infinite-dimensional formulation. The core difficulty is the infinite hierarchy of coupled
correlations. To tame it, we collect them into the vector U(t) = (u(1)(t), u(2)(t), . . . )⊤ ∈ H :=
C∞

b (R≥0; ℓ
2). Let B be the right-shift operator on sequences, defined by (Bx)k := xk+1 and let

S := (Bs∞⋆ ) e⊤1 be a rank one operator with s∞⋆ = (s
(1)
⋆ , s

(2)
⋆ , . . . )⊤ ∈ ℓ2 and e1 = (1, 0, 0, . . . )⊤.

Then the correlation dynamics (3.5) collapse into the compact operator form

U̇(t) =
(
4
(
1− 3s(t)

)
B + 8S

)
U(t). (5.1)

This is the key structural observation: the entire infinite system is generated by the shift operator B
plus a rank-one perturbation S. Applying Duhamel’s formula yields the following representation.
Lemma 1. The unique solution U ∈ C∞

b (R≥0; ℓ
2) of (5.1) satisfies, for all t ≥ 0,

U(t) = e 4BΘ(t) U0 + 8

∫ t

0

e 4B (Θ(t)−Θ(τ)) (Bs∞⋆ )u(1)(τ) dτ, (5.2)

where u(1)(τ) := ⟨e1, U(τ)⟩ = u(t), and Θ(t) :=
∫ t

0
(1− 3s(τ)) dτ.

Step 2: Reduction to a Volterra equation. Let δ > 0 be arbitrarily small, and let T1 denote the
stopping time such that s(t) ≤ δ for all t ≤ T1. On this time interval we may approximate Θ(t) ≈ t.
Projecting the representation (5.2) onto e1 then yields the Volterra equation

u(t) = a0(t) + 8

∫ t

0

K(t− τ)u(τ) dτ, (5.3)

where
a0(t) =

∑
i

wi(0)w
⋆
i λi e

4λit, K(t) =
∑
i

(w⋆
i )

2λ2
i e

4λit.
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Applying the Laplace transform gives û(p) = â0(p)

1−8K̂(p)
. The growth of u(t) is therefore gov-

erned by the rightmost pole of û(p) (see Section B and Chapter VII of Gripenberg et al. (1990)).
Computing K̂(p) and solving the equation 1 = 8K̂(p) yields the following.

Lemma 2 (Exponential growth rate). The correlation u(t) grows at rate eρtruet, where ρtrue > 4λ1

is the unique positive solution of

1− 8K̂(ρ) = 0.

Step 3: Control of the higher-order correlations. A similar analysis shows that the influence of
all higher-order terms is dominated by the leading mode u(t). Without loss of generality, we assume
that u(t) grows positively (the case of negative growth is analogous). The key point is that at time
T1, the second correlation u(2)(T1) has the same sign as u(T1), a fact that will be critical in the
analysis of Phase IIa.

Proposition 5 (Control of higher-order correlations). For all k ≥ 1 and all t ∈ [0, T1], we have

−λk
1

√
log d
d e4λ1t + 8 s

(k)
⋆

∫ t

0

u(τ) dτ ≤ u(k)(t) ≤ λk
1

√
log d
d e4λ1t + λ k−1

1

(
u(t)− u(0)

)
.

(5.4)
In particular, for d sufficiently large there exists a constant c1 > 0 such that u(2)(T1) ≥ c1.

5.2 PHASE II: CONVERGENCE OF SUMMARY STATISTICS

Since the proof techniques differ, we separate the analysis of Phase IIa and Phase IIb.

5.2.1 ANALYSIS OF PHASE IIA

The first step is to show that s(t), which at time T1 is still small (s(T1) = δ′2), must increase up to
the critical threshold 1/3. Indeed, from

ṡ(t) = 8
(
1− 3s(t)

)
s(2)(t) + 16u(t)u(2)(t),

both terms on the right-hand side are positive whenever s(t) ≤ 1/3, so s(t) is driven upward and
crosses 1/3 in finite time.

The second step establishes stability beyond the threshold: once s(t) has passed 1/3, it cannot fall
back below. Close to the boundary, the positive contribution 16u(t)u(2)(t) dominates the negative
drift from the first term. A careful comparison shows that s(t) remains uniformly above 1/3+ δ for
some constant δ > 0. The detailed proof of these two points is given in Section C.1.

5.2.2 ANALYSIS OF PHASE IIB

We now study the error ∆(t) := 1− u(t) ≥ 0 for t ≥ T ′
1 through the Volterra equation

∆(t) = bΘ(t) +

∫ t

T ′
1

KΘ(t, τ)∆(τ) dτ,

where the source term bΘ is detailed in Appendix C.2. Since after T ′
1 we have Θ(t) − Θ(τ) ≤

−s0(t− τ), the kernel KΘ is decreasing, so the integral contribution diminishes over time.

To control the positive part of bΘ, we split the spectrum at a cutoff λc: directions with λi < λc form
the tail, which is small but slow to learn, while λi ≥ λc form the head, easier but requiring more
training time when λc is small. Balancing these two effects yields the following result.

Proposition 6. Let ε ≳ d−
a−1
2 , and set

T2(ε) = T ′
1 +

C

4s0
ε
− 2a

a−1 log
1

ε
,

with C > 0 sufficiently large. Then ∆(T2) ≤ ε.

9
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Remark 5. The condition ε ≳ d−
a−1
2 prevents ε from being too small. Otherwise the required time

becomes much larger; for instance, ε = d−1 already forces T ≳ da. Note that the exponent 2a
a−1

decreases as a increases, so T2(ε) is shorter for faster spectral decay. Intuitively, for larger a, the
lighter tail means fewer small eigenvalues to learn, so the error contracts more rapidly. In contrast,
for a close to 1 the heavy tail creates many slow directions, delaying convergence. This trend is
confirmed numerically in Section E.

5.3 PHASE III: SPECTRAL-TAIL LEARNING AND THE SCALING LAW

After T2, both u(t) and s(t) are close to one, so the coordinate dynamics reduce to

ẇi(t) ≈ 8λi

(
w⋆

i − wi(t)
)
,

whose solution shows exponential relaxation of each wi toward w⋆
i . The resulting MSE is a weighted

spectral average Ŝd(τ); under the heuristic πi ≈ d−1, this reduces to the benchmark Sd(τ), whose
asymptotics follow from classical sum–integral comparisons and reveal distinct decay regimes. The
approximation error is controlled by a Duhamel (variation-of-constants) representation, together
with Phase IIb bounds on 1− u(t) and 1− s(t). A Grönwall argument shows that these corrections
remain small, so the full trajectory closely tracks the idealized one. Altogether, this yields the scaling
law of Theorem 2, see Section E.1 for an illustration of the approximation.

6 DISCUSSION

Summary. We analyzed the gradient flow dynamics of anisotropic phase retrieval. Unlike the
isotropic case, which reduces to a two-dimensional ODE, the anisotropic setting induces an infinite
hierarchy of coupled equations. Our main contribution is to render this structure tractable via a
Duhamel–Volterra reduction, revealing a three-phase trajectory: (i) escape from mediocrity, (ii)
convergence of summary statistics, and (iii) spectral-tail learning driven by small eigenvalues. This
decomposition leads to explicit scaling laws, validated empirically.

Limitations. Our analysis assumes Gaussian inputs with a power-law spectrum, simplifying the
theory, but this may not be essential for the three-phase phenomenon. In addition, our quantitative
results apply only in the gradient flow limit; extending them to discrete-time SGD remains an open
problem.

Future directions. Several extensions are natural. On the theoretical side, deriving scaling laws
for discrete-time SGD, analyzing finite-sample effects, and relaxing distributional assumptions
would strengthen the link to practice. On the modeling side, extending beyond quadratic nonlin-
earities to more general single- and multi-index models could reveal new scaling regimes. More
broadly, our findings raise the question of whether analogous phase decompositions and scaling
laws govern the training dynamics of wider neural networks, potentially offering a bridge between
nonlinear regression models and deep learning theory.

Large Language Model Usage. Large language models were used to assist with light editing and
organization of the manuscript and to refactor plotting code. All technical content, experiments, and
conclusions are the authors’ own; all model-assisted text and code were reviewed and revised by the
authors prior to submission.
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The appendix is organized as follows. Section A contains the proofs of the results stated in Section 3.
Section B provides the detailed analysis of Phase I, followed by the analysis of Phase II in Section C
and Phase III in Section D. Finally, Section E presents additional numerical experiments.

A PROOF OF SECTION 3

This section provides the proofs of the results stated in Section 3.
Proposition 1. Let x ∼ N (0, Q) ∈ Rd, where Q ∈ Rd×d is a symmetric positive definite diagonal
matrix. Let w,w⋆ ∈ Rd. The population loss can be rewritten as

L(w) = 3∥w∥4Q + 3∥w⋆∥4Q − 4⟨w,w⋆⟩2Q − 2∥w∥2Q · ∥w⋆∥2Q = 3s2 + 3s2⋆ − 4u2 − 2s⋆s

Proof. Expanding the loss gives

L(w) = E
[
(x⊤w)4

]
+ E

[
(x⊤w⋆)4

]
− 2E

[
(x⊤w)2(x⊤w⋆)2

]
.

Step 1. Fourth moment of a Gaussian linear form. Since x ∼ N (0, Q), the scalar x⊤w is
Gaussian with variance w⊤Qw = ∥w∥2Q. Its fourth moment is

E
[
(x⊤w)4

]
= 3 (w⊤Qw)2 = 3∥w∥4Q.

By the same reasoning,
E
[
(x⊤w⋆)4

]
= 3∥w⋆∥4Q.

Step 2. Mixed fourth moment. Expanding the product gives

(x⊤w)2(x⊤w⋆)2 =
∑
i,j,k,ℓ

xixjxkxℓ wiwjw
⋆
kw

⋆
ℓ .

For Gaussian x, Wick’s formula expresses the fourth moment as a sum over pairings:

E[xixjxkxℓ] = E[xixj ]E[xkxℓ] + E[xixk]E[xjxℓ] + E[xixℓ]E[xjxk].

Since Q = diag(λ1, . . . , λd), E[xixj ] = λiδij .

Evaluating the three pairings:

- Pairing (i, j)(k, ℓ) contributes∑
i,k

λiλk w
2
i (w

⋆
k)

2 = ∥w∥2Q · ∥w⋆∥2Q.

- Pairing (i, k)(j, ℓ) contributes∑
i,j

λiλj wiwjw
⋆
iw

⋆
j =

(∑
i

λiwiw
⋆
i

)2
= ⟨w,w⋆⟩2Q.

- Pairing (i, ℓ)(j, k) contributes the same quantity

⟨w,w⋆⟩2Q.

Summing up,
E
[
(x⊤w)2(x⊤w⋆)2

]
= ∥w∥2Q · ∥w⋆∥2Q + 2⟨w,w⋆⟩2Q.

Step 3. Final expression. Putting everything together,

L(w) = 3∥w∥4Q + 3∥w⋆∥4Q − 2
(
∥w∥2Q · ∥w⋆∥2Q + 2⟨w,w⋆⟩2Q

)
= 3∥w∥4Q + 3∥w⋆∥4Q − 2∥w∥2Q · ∥w⋆∥2Q − 4⟨w,w⋆⟩2Q.
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Proposition 2. The population gradient and Hessian of the loss L are given by

∇L(w) = 12sQw − 4s⋆Qw − 8uQw⋆, (3.1)

∇2L(w) = 24(Qw)(Qw)⊤ + (12s− 4s⋆)Q− 8(Qw⋆)(Qw⋆)⊤. (3.2)

The set of critical points is {0, w⋆, −w⋆} ∪ {w : (u, s) = (0, s⋆/3)}. Among them, 0 is a strict
local maximum, ±w⋆ are strict global minima, and every w with (u, s) = (0, s⋆/3) is a saddle
point.

Proof. The proof proceeds in three steps: computing the gradient, identifying the critical points, and
classifying them via the Hessian.

Gradient. To compute the gradient, we use the closed-form expression L(w) = 3s2 + 3(s⋆)
2 −

2ss⋆ − 4u2, apply the chain rule and use ∇s = 2Qw and ∇u = Qw⋆ to get

∇L(w) = 6s∇s− 2s⋆∇s− 8u∇u = (12s− 4s⋆)Qw − 8uQw⋆,

which is (3.1).

Critical points. Setting ∇L(w) = 0 and using Q ≻ 0 leads to

(12s− 4s⋆)w − 8uw⋆ = 0.

– Case 1: If 12s − 4s⋆ ̸= 0, then w must lie in spanw⋆. Write w = αw⋆; then s = α2s⋆ and
u = αs⋆. Substituting gives

(12α2 − 4)αw⋆ = 8αw⋆ ⇐⇒ 12α3 − 12α = 0 ⇐⇒ α ∈ {0,±1}.

Hence, we obtain the critical points 0 and ±w⋆.

– Case 2: If 12s−4s⋆ = 0, then necessarily s = s⋆/3. The gradient condition reduces to −8uw⋆ =
0, i.e. u = 0. Thus every w with (u, s) = (0, s⋆/3) is a critical point.

Hessian. Differentiating (3.1), and recalling that ∇s = 2Qw and ∇u = Qw⋆, we obtain

∇2L(w) = 24 (Qw)(Qw)⊤ + (12s− 4s⋆)Q− 8 (Qw⋆)(Qw⋆)⊤,

which is (3.2).

Characterization of the critical points. At w = 0 (so s = 0, u = 0),

∇2L(0) = −4s⋆Q− 8 (Qw⋆)(Qw⋆)⊤,

which is strictly negative definite since Q ≻ 0 and the rank-one term is negative semidefinite. Thus
w = 0 is a strict local maximum since L(0) > L(±w⋆) = 0.

At w = ±w⋆ (so s = s⋆, u = ±s⋆),

∇2L(±w⋆) = 24 (Qw⋆)(Qw⋆)⊤+(12s⋆−4s⋆)Q−8 (Qw⋆)(Qw⋆)⊤ = 16 (Qw⋆)(Qw⋆)⊤+8s⋆Q ≻ 0,

hence both ±w⋆ are strict local (and, by the loss formula, global) minima.

Finally, for any w with (u, s) = (0, s⋆/3), the Hessian reduces to

∇2L(w) = 24(Qw)(Qw)⊤ − 8(Qw⋆)(Qw⋆)⊤.

Since Q ≻ 0, w⋆ ̸= 0, and w⊤Qw⋆ = 0, s = w⊤Qw = 1
3s⋆ = 1

3 (w
⋆)⊤Qw⋆, we have

w⊤∇2L(w)w = w⊤[24Qww⊤Q− 8Qw⋆(w⋆)⊤Q]w = 24(w⊤Qw)2 = 8[(w⋆)⊤Qw⋆]2 > 0,

(w⋆)⊤∇2L(w)w⋆ = (w⋆)⊤[24Qww⊤Q− 8Qw⋆(w⋆)⊤Q](w⋆) = −8[(w⋆)⊤Qw⋆]2 < 0.

It follows that ∇2L(w) must necessarily have both positive and negative directions. Thus, this
critical point is a saddle.
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Proposition 3. The gradient flow dynamics satisfy

ẇi(t) = 4λi

(
s⋆ − 3s(t)

)
wi(t) + 8λiu(t)w

⋆
i , i = 1, . . . , d, (3.3)

ṡ(k)(t) = 8 (s⋆ − 3s(t)) s(k+1)(t) + 16u(t)u(k+1)(t), (3.4)

u̇(k)(t) = 4 (s⋆ − 3s(t))u(k+1)(t) + 8u(t) s
(k+1)
⋆ . (3.5)

In particular, setting k = 1 recovers the dynamics of s(t) and u(t).

Proof. We first derive the component-wise ODE, then deduce the dynamics for the summary
statistics s(t) and u(t). Recall from the previous computation that the population gradient flow
ẇ(t) = −∇L(w(t)) satisfies

ẇ(t) = 4(s⋆ − 3s)Qw + 8uQw⋆. (A.1)

Component-wise dynamics. With Q = diag(λ1, . . . , λd), taking the i-th coordinate in (A.1)
yields

ẇi(t) = 4(s⋆ − 3s)λi wi(t) + 8uλi w
⋆
i .

Dynamics for s(t). Differentiate s(t) = w(t)⊤Qw(t) along the flow:

ṡ(t) = 2 ẇ(t)⊤Qw(t).

Using (A.1) and defining

s(2)(t) := w(t)⊤Q2w(t), u(2)(t) := w(t)⊤Q2w⋆,

we obtain
ṡ(t) = 8(s⋆ − 3s) s(2)(t) + 16uu(2)(t).

Dynamics for u(t). Differentiate u(t) = w(t)⊤Qw⋆:

u̇(t) = ẇ(t)⊤Qw⋆.

Using (A.1) and letting s
(2)
⋆ := w⋆⊤Q2w⋆, we get

u̇(t) = 4(s⋆ − 3s)u(2)(t) + 8u s
(2)
⋆ .

These identities establish the stated ODEs for s(t) and u(t).

Higher-order moments. The same computation applies to s(k)(t) = w(t)⊤Qkw(t) and u(k)(t) =
w(t)⊤Qkw⋆, leading to

ṡ(k)(t) = 8(s⋆ − 3s(t)) s(k+1)(t) + 16u(t)u(k+1)(t),

u̇(k)(t) = 4(s⋆ − 3s(t))u(k+1)(t) + 8u(t) s
(k+1)
⋆ .

B ANALYSIS OF PHASE I: ESCAPING MEDIOCRITY

In this section, we provide the detailed proofs for the analysis of Phase I outlined in Section 5.1. We
begin by formalizing the infinite-dimensional ODE in a suitable Banach space (Section B.1). We
then derive a closed-form solution (Section B.2), show that u(t) satisfies a Volterra integral equation
by projection (Section B.3), and analyze its asymptotic behavior. Finally, we study higher-order
correlation terms (Section B.4), showing that their dynamics are primarily driven by u(t).
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B.1 STEP 0: PRELIMINARIES ON BANACH-VALUED ODES

Before entering the main steps of the proof, we formalize the Banach space on which the ODE (B.9)
is defined. Throughout the following, L(w) refers to the loss function in Proposition 1. Recall that
we define U(t) = (u(1)(t), u(2)(t), . . . )⊤, where u(k)(t) = w(t)⊤Qkw⋆. We show that

U ∈ H := C∞
b (R≥0; ℓ

2),

where ℓ2 = {(ak)k≥1 :
∑∞

k=1 a
2
k < ∞} is the Hilbert space of square-summable sequences. Thus

U is a bounded, smooth ℓ2-valued function on R≥0.
Lemma 3 (Coercivity of the loss). The loss function L in Proposition 1 is coercive, that is
lim∥w∥→∞ L(w) = ∞.

Proof. By the Cauchy-Schwarz inequality

L(w) = 3∥w∥4Q + 3∥w⋆∥4Q − 4⟨w,w⋆⟩2Q − 2∥w∥2Q||w⋆||2Q
≥ 3∥w∥4Q + 3∥w⋆∥4Q − 6∥w∥2Q||w⋆||2Q = 3(||w||2Q − ||w⋆||2Q)2,

from which it clearly follows that lim∥w∥→∞ L(w) = ∞.

Lemma 4 (Local Lipschitz continuity of the gradient). Consider the function Z : Rd 7→ Rd defined
by

Z(w) = 3||w||2QQw − ||w∗||2QQw − 2(w⊤Qw∗)Qw∗. (B.1)

For all w1, w2 ∈ Rd,

||Z(w1)− Z(w2)|| ≤ 3||Q||2||w1 − w2||
[
(||w1||+ ||w2||)||w1||+ ||w2||2 + ||w∗||2

]
. (B.2)

In particular, for ||w1|| ≤ M , ||w2|| ≤ M , with M > 0,

||Z(w1)− Z(w2)|| ≤ 3(3M2 + ||w∗||2)||Q||2||w1 − w2||. (B.3)

Proof.

||Z(w1)− Z(w2)||
≤ 3|| ||w1||2QQw1 − ||w2||2QQw2||+ ||w∗||2Q||Qw1 −Qw2||+ 2||(w1 − w2)

⊤Qw∗Qw∗||
≤ 3| ||w1||2Q − ||w2||2Q| ||Qw1||+ 3||w2||2Q||Qw1 −Qw2||
+ ||w∗||2Q||Q|| ||w1 − w2||+ 2||w1 − w2|| ||Qw∗||2

≤ 3||w1 − w2||Q[||w1||Q + ||w2||Q] ||Qw1||+ 3||w2||2Q||Q|| ||w1 − w2||
+ ||w∗||2Q||Q|| ||w1 − w2||+ 2||w1 − w2|| ||Qw∗||2

= ||w1 − w2||[3(||w1||+ ||w2||)||Q||2||w1||+ 3||w2||2||Q||2 + ||w∗||2Q||Q||+ 2||Qw∗||2]
≤ 3||Q||2||w1 − w2||[(||w1||+ ||w2||)||w1||+ ||w2||2 + ||w∗||2].

We recall the classical Picard-Lindelöf Theorem for the existence and uniqueness of the solution of
the initial value problem

ẋ = f(t, x), x(t0) = x0, (B.4)

where f ∈ C(U ;Rd), U ⊂ Rd+1 is an open subset, and (t0, x0) ∈ U , see e.g. Teschl (2012)
(Theorem 2.2, Lemma 2.3).
Theorem 3 (Picard-Lindelöf). Let f ∈ Ck(U ;Rd), k ≥ 0, where U ⊂ Rd+1 is an open subset
and (t0, x0) ∈ U . Assume that f is locally Lipschitz continuous in the second argument, uniformly
with respect to the first argument, i.e. ∀V ⊂ U , V compact, ∃L = L(V ) > 0 such that

||f(t, x1)− f(t, x2)|| ≤ L||x1 − x2||, ∀(t, x1), (t, x2) ∈ V. (B.5)

Then there exists ϵ > 0 such that the initial value problem (B.4) possesses a unique solution x∗(t) ∈
Ck+1(I;Rd), where I = [t0 − ϵ, t0 + ϵ].
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Lemma 5 (Well-posedness of the gradient flow). The gradient flow on R× Rd{
ẇ(t) = −∇L(w(t)),
w(0) = w0 ∈ Rd (B.6)

has a unique solution w ∈ C∞
b (R≥0;Rd) ∀w0 ∈ Rd.

Proof. By Lemma 4, the gradient ∇wL(w) is locally Lipschitz on Rd, thus by Picard-Lindelöf
Theorem there exists a unique local solution w ∈ C∞(I;Rd) on I = [−ϵ, ϵ] for some ϵ > 0, since
L ∈ C∞(Rd+1;Rd). The interval I can in fact be extended to all of R. By differentiating L(w(t))
we have, by the chain rule,

dL(w(t))
dt

= (ẇ(t))⊤∇L(w(t)) = −∥∇L(w(t))∥2 ≤ 0.

Thus L(w(t)) is decreasing along the flow w(t) and therefore w(t) always lies in the level set
Lw0

(L) = {w ∈ Rd : L(w) ≤ L(w0)}. Since L(w) is coercive by Lemma 3, Lw0
(L) must

necessarily be bounded. Thus Picard-Lindelöf Theorem can be repeatedly applied to extend I to all
of R≥0. Since L(w) is bounded below by zero, the limit limt→∞ L(w(t)) necessarily exists. Let
BRd(0,M) be the smallest ball in Rd, centered at the origin, such that Lw0(L) ⊂ BRd(0,M), then
||w(t)|| ≤ M ∀t ≥ 0. Thus w(t) ∈ C∞

b (R≥0;Rd).

Lemma 6. Let w be the unique global solution of the gradient flow (B.6). Define U : R≥0 → R∞

by U(t) = (u(1)(t), u(2)(t), . . . )⊤, where u(k)(t) = w(t)⊤Qkw⋆. Then U ∈ C∞
b (R≥0; ℓ

2).

Proof. By the assumption that tr(Q) = 1 and λ1 ≥ · · · ≥ λd > 0, we have ||Q|| = λ1 < 1. For
each fixed t, we have

∞∑
k=1

|u(k)(t)|2 =

∞∑
k=1

(w(t)⊤Qkw⋆)2 ≤ ||w(t)||2||w⋆||2
∞∑
k=1

||Qk||2

≤ ||w(t)||2||w⋆||2
∞∑
k=1

||Q||2k = ||w(t)||2||w⋆||2 ||Q||2

1− ||Q||2
< ∞.

Since w is bounded, for each fixed t, we thus have U(t) ∈ ℓ2, and

||U ||∞ = sup
t≥0

||U(t)|| ≤ ||w||∞||w⋆|| ||Q||√
1− ||Q||2

.

As w is bounded and smooth, so is U , hence U ∈ C∞
b (R≥0; ℓ

2).

B.2 STEP 1: INFINITE-DIMENSIONAL ODE FOR THE MOMENT SYSTEM

Contrary to the isotropic setting where the dynamics only depend on two ODEs involving u(t) and
s(t), in the anisotropic setting, higher order correlations u(k) and s(k) appear. We first derive ODEs
for higher-order correlation terms and then solve the infinite-dimensional ODE system.

Differentiating u(k)(t) = w(t)⊤Qkw⋆ along (3.1) gives, for k ≥ 1,

u̇(k)(t) = 4
(
s⋆ − 3s(t)

)
u(k+1)(t) + 8u(t)s

(k+1)
⋆ . (B.7)

Using the normalization s⋆ = 1, we obtain

u̇(k)(t) = 4
(
1− 3s(t)

)
u(k+1)(t) + 8u(t)s

(k+1)
⋆ . (B.8)

Infinite-dimensional ODE. Let U(t) = (u(1)(t), u(2)(t), . . . )⊤ ∈ R∞. By Lemma 6, we have
U ∈ H = C∞

b (R≥0; ℓ
2). Consider B : ℓ2 → ℓ2, the right-shift operator on sequences in ℓ2, defined

by (Bx)k := xk+1 for x = (xk)k∈N ∈ ℓ2. Let S := (Bs∞⋆ ) e⊤1 : ℓ2 → ℓ2 be a rank one operator
with s∞⋆ = (s

(1)
⋆ , s

(2)
⋆ , . . . )⊤ ∈ ℓ2, Bs∞⋆ = (s

(2)
⋆ , s

(3)
⋆ , . . . )⊤ ∈ ℓ2 and e1 = (1, 0, 0, . . . )⊤ is

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

the first basis vector in the canonical orthonormal basis for ℓ2. Then (B.8) admits the equivalent
formulation

U̇(t) =
(
4
(
1− 3s(t)

)
B + 8S

)
U(t). (B.9)

This is an infinite-dimensional ODE, with U belonging to the Banach space C∞
b (R≥0; ℓ

2) of smooth,
bounded functions with values in the Hilbert space ℓ2. In the following, we seek to solve (B.9).

We recall that on a Banach space B, with L(B) denoting the Banach space of bounded linear opera-
tors on B, the exponential operator eA is well-defined ∀A ∈ L(B), with

eA =

∞∑
k=0

Ak

k!
: L(B) → L(B), (B.10)

||eA|| ≤
∞∑
k=0

||A||k

k!
= e||A|| < ∞. (B.11)

Lemma 7 (Shift exponential). For any θ ∈ R and x ∈ ℓ2,(
eθBx

)
k

=

∞∑
m=0

θm

m!
xk+m. (B.12)

Proof. Because B is bounded on ℓ2 with ∥B∥ ≤ 1, the exponential series for eθB converges in
operator norm for every θ ∈ R, and (B.12) follows from Bmx having coordinates (Bmx)k =
xk+m.

Proposition 7. Define the function Θ : R≥0 → R by

Θ(t) :=

∫ t

0

(1− 3s(τ)) dτ. (B.13)

The initial value problem on ℓ2

U̇(t) =
(
4
(
1− 3s(t)

)
B + 8S

)
U(t), U(0) = U0 ∈ ℓ2, (B.14)

has a unique solution U ∈ C∞
b (R≥0; ℓ

2), satisfying, ∀t ≥ 0,

U(t) = e 4BΘ(t) U0 + 8

∫ t

0

e 4B (Θ(t)−Θ(τ)) S U(τ) dτ. (5.2)

Equivalently, since S = (Bs∞⋆ ) e⊤1 , (5.2) can be written as

U(t) = e 4BΘ(t) U0 + 8

∫ t

0

e 4B (Θ(t)−Θ(τ)) (Bs∞⋆ )u(1)(τ) dτ,

where u(1)(τ) := ⟨e1, U(τ)⟩.

To prove Proposition 7, we apply the following result on ODEs in Banach space.
Theorem 4 (Pazy (2012), Theorem 5.1). Let B be a Banach space. Assume that A(t) : B → B is a
bounded linear operator ∀t ∈ [0, T ], 0 ≤ T < ∞, and that the map t → A(t) is continuous in the
uniform operator topology, with maxt∈[0,T ] ||A(t)|| < ∞. Then ∀u0 ∈ B, the initial value problem{

du
dt = A(t)u(t), 0 ≤ t0 ≤ t ≤ T < ∞,
u(t0) = u0 ∈ B. (B.15)

has a unique solution u ∈ C1([t0, T ];B).

Proof of Proposition 7. Let a : R≥0 → R be defined by a(t) = 1 − 3s(t) = 1 − 3w(t)⊤Qw(t).
Since w ∈ C∞

b (R≥0;Rd) by Lemma 5, we have s ∈ C∞
b (R≥0;R), a ∈ C∞

b (R≥0;R), with

|a(t)| ≤ 1 + 3||Q|| ||w(t)||2, ||a||∞ ≤ 1 + 3||Q|| ||w||2∞,

|a(t1)− a(t2)| = 3|(w(t1)⊤Qw(t1)− w(t2)
⊤Qw(t2)|

≤ 3||Q|| ||w(t1)− w(t2)|| [||w(t1)||+ ||w(t2)||].
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Let A : R≥0 → L(ℓ2) be defined by A(t) = 4a(t)B + 8S, then A(t) : ℓ2 → ℓ2 is a bounded linear
operator ∀t ≥ 0, with

||A(t)|| ≤ 4||B|| (1 + 3||Q|| ||w(t)||2) + 8||S||
||A||∞ ≤ 4||B|| (1 + 3||Q|| ||w||2∞) + 8||S||,

||A(t1)−A(t2)|| ≤ 12||B|| ||Q|| ||w(t1)− w(t2)|| [||w(t1)||+ ||w(t2)||]
≤ 24||B|| ||Q|| ||w||∞||w(t1)− w(t2)||.

Thus A(t) is continuous in the uniform operator topology and supt≥0 ||A(t)|| < ∞. By Theorem 4,
the initial value problem (B.14) has a unique solution U ∈ C1([0, T ]; ℓ2), ∀0 < T < ∞. Since s(t)
is smooth, it follows immediately that U ∈ C∞([0, T ]; ℓ2), ∀0 < T < ∞. Consider the following
function U : R≥0 → ℓ2 satisfying

U(t) = e 4BΘ(t) U0 + 8

∫ t

0

e 4B (Θ(t)−Θ(τ)) S U(τ) dτ

= e 4BΘ(t) U0 + 8e 4BΘ(t)

∫ t

0

e− 4BΘ(τ) S U(τ) dτ,

where we recall that Θ(t) =
∫ ⊤
0

a(τ) dτ =
∫ ⊤
0
(1 − 3s(τ)) dτ , with Θ̇(t) = a(t). Differentiating

U(t) on both sides gives, via the product rule,

U̇(t) = 4 a(t)B e 4BΘ(t) U0 + 32 a(t)B e 4BΘ(t)

∫ t

0

e− 4BΘ(τ) S U(τ) dτ + 8S U(t)

= 4 a(t)B U(t) + 8S U(t),

which is precisely the differential equation in (B.14). Since a ∈ C∞
b (R≥0;R), it follows that

U ∈ C∞(R≥0; ℓ
2). Therefore, the unicity of solution implies that U must be the unique solution of

(B.14) and we must have U ∈ C∞
b (R≥0; ℓ

2).

B.3 STEP 2: VOLTERRA REDUCTION

Taking the first coordinate of (5.2) yields a Volterra equation for u(t) = u(1)(t).

Proposition 8 (Volterra equation). Define

aΘ(t) :=
(
e 4BΘ(t)U(0)

)
1
=
∑
m≥0

(4Θ(t))m

m!
u(1+m)(0), (B.16)

KΘ(t) :=
(
e 4BΘ(t)Bs∞⋆

)
1
=
∑
m≥0

(4Θ(t))m

m!
s
(2+m)
⋆ . (B.17)

Then u satisfies

u(t) = aΘ(t) + 8

∫ t

0

KΘ(t− τ)u(τ) dτ. (B.18)

Moreover,

aΘ(t) =
∑
i

wi(0)w
⋆
i λi e

4λiΘ(t), KΘ(t) =
∑
i

(w⋆
i )

2λ2
i e

4λiΘ(t). (B.19)

Proof. Equation (B.18) is the first coordinate of (5.2). The spectral forms follow by expanding
u(1+m)(0) =

∑
i λ

1+m
i wi(0)w

⋆
i and s

(2+m)
⋆ =

∑
i(w

⋆
i )

2λ2+m
i and summing the exponential series.

To analyze the growth of u(t), we employ the Laplace transform together with residue calculus;
see (Gripenberg et al., 1990, Chapters 2, 3, and 7) for a detailed exposition. We first illustrate the
method in the ideal case Θ(t) = t, and then explain how the analysis extends to the approximated
case.
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B.3.1 IDEAL CASE: Θ(t) = t

Fix b > 0 (e.g. b = 4 if Θ(t) = t) and consider the scalar Volterra equation of the second kind

αb(t) = aΘ(t) + 8

∫ t

0

Kb(t− s)αb(s) ds, Kb(t) =
∑
i≥1

(w⋆
i )

2λ2
i e

bλit, t ≥ 0, (B.20)

where λ1 = maxi λi, and the series defining Kb (hence K̂b) converges for ℜs > bλ1. Define

Db(s) := 1− 8 K̂b(s) = 1− 8
∑
i≥1

(w⋆
i )

2λ2
i

s− bλi
, ℜs > bλ1.

Lemma 8. There is a unique real ρ(b) > bλ1 such that

Db(ρ(b)) = 0 ⇐⇒ 1 = 8
∑
i≥1

(w⋆
i )

2λ2
i

ρ(b)− bλi
. (B.21)

Moreover, the function b 7→ ρ(b) is strictly increasing and continuous.

Proof. We first note that for a fixed b, Fb(ρ) := 8 K̂b(s) is strictly decreasing in ρ ∈ (bλ1,∞). If
b2 > b1, then ρ−b2λi < ρ−b1λi, hence Fb2(ρ) > Fb1(ρ) ∀ρ ∈ (b2λ1,∞). Evaluating at ρ = ρ(b1)
gives 1 = Fb2(ρ(b2)) = Fb1(ρ(b1)) < Fb2(ρ(b1)), so, since Fb2 is strictly decreasing in ρ, we have
ρ(b2) > ρ(b1). Continuity follows from dominated convergence applied to Fb(ρ) (for ρ bounded
away from bλ1) and the continuity of the inverse graph of strictly decreasing functions.

Proposition 9. Fix b > 0 and let ρ(b) > bλ1 be the unique real zero of Db(s) = 1 −
8
∑d

i=1(w
⋆
i )

2λ2
i /(s− bλi). Set δb := ρ(b)− bλ1 > 0. Then, for all t ≥ 0,

αb(t) =
c(b)√
d
eρ(b)t

(
1 + o(1)

)
, (B.22)

where the (dimension-free) constant

c(b) =

√
d âΘ(ρ(b))

D′
b(ρ(b))

satisfies 0 < c(b) ≤ 8 (s
(2)
⋆ )3/2

δb
.

In particular, if âΘ(ρ(b)) > 0, then c(b) > 0.

Proof. The proof consists in solving the Volterra equation in the Laplace domain, and then applying
Laplace inversion together with residue calculus to characterize the solution in the original domain.

Step 1: Laplace inversion. For Re s > bλ1 we have

α̂b(s) =
âΘ(s)

Db(s)
, âΘ(s) =

d∑
i=1

λi wi(0)w
⋆
i

s− bλi
.

By Bromwich inversion, for any σR > ρ(b),

αb(t) =
1

2πi

∫ σR+i∞

σR−i∞
est

âΘ(s)

Db(s)
ds.

Step 2: Contour shift and residue extraction. Fix σ∗ ∈ (bλ1, ρ(b)) and T > 0. Consider the
rectangle with vertices σR ± iT and σ∗ ± iT . The only singularity of estâΘ(s)/Db(s) in the strip
{σ∗ < Re s < σR} is the simple pole at s = ρ(b) (zeros of Db are real and interlace the poles bλi).
Introduce the notation

δb := ρ(b)− bλ1 > 0

for the gap between the top pole and the dominant zero. On the horizontal edges s = x ± iT with
x ∈ [σ∗, σR], using u(0) = cd−1/2 we obtain

|âΘ(s)| ≤
∑
i

|λiwi(0)w
⋆
i |

|x− bλi ± iT |
≤ 1

T

∑
i

|λiwi(0)w
⋆
i | ≤

c

T
√
d
.
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Since Db is continuous and nonvanishing on the compact strip, infx∈[σ∗,σR], |y|=T |Db(x+ iy)| ≥
c∗ > 0. Therefore the horizontal contributions are O(T−1) and vanish as T → ∞. By the residue
theorem, we obtain the exact identity (valid for all t ≥ 0):

αb(t) =
âΘ(ρ(b))

D′
b(ρ(b))

eρ(b)t +Rσ∗(t), Rσ∗(t) :=
1

2πi

∫ σ∗+i∞

σ∗−i∞
est

âΘ(s)

Db(s)
ds. (B.23)

Step 3: Coefficient bound. Let vi := λi/(ρ(b) − bλi). By Cauchy–Schwarz and ∥w(0)∥2 =

d−1/2,

|âΘ(ρ(b))| =
∣∣∣∑

i

wi(0)w
⋆
i vi

∣∣∣ ≤ ∥w(0)∥2
(∑

i

(w⋆
i )

2v2i

)1/2
≤ 1√

d
· 1
δb

(∑
i

(w⋆
i )

2λ2
i

)1/2
=

√
s
(2)
⋆

δb
√
d
.

Next,

D′
b(ρ(b)) = 8

∑
i

(w⋆
i )

2λ2
i

(ρ(b)− bλi)2
≥ 1

8
∑

i(w
⋆
i )

2λ2
i

=
1

8s
(2)
⋆

,

where we used 1 = 8
∑

i(w
⋆
i )

2λ2
i /(ρ(b)− bλi) and Cauchy–Schwarz. Hence∣∣∣ âΘ(ρ(b))

D′
b(ρ(b))

∣∣∣ ≤ 8(s
(2)
⋆ )3/2

δb
√
d

. (B.24)

Step 4: Remainder bound on Re s = σ∗. For s = σ∗ + iy,

ReDb(s) = 1− 8 Re K̂b(s) ≥ 1− 8 K̂b(σ∗) = Fb(σ∗)− 1, Fb(ρ) := 8
∑
i

(w⋆
i )

2λ2
i

ρ− bλi
.

Since Fb is decreasing and convex on (bλ1,∞) and Fb(ρ(b)) = 1,

Fb(σ∗)− 1 ≥ (ρ(b)− σ∗) |F ′
b(ρ(b))| =

ρ(b)−σ∗
8 D′

b(ρ(b)) ≥
ρ(b)− σ∗

64 s
(2)
⋆

.

Therefore

inf
y∈R

|Db(σ∗ + iy)| ≥ ρ(b)− σ∗

64 s
(2)
⋆

.

Moreover, by Cauchy–Schwarz in i,

|âΘ(σ∗ + iy)| =
∣∣∣∑

i

wi(0)w
⋆
i

λi

σ∗ − bλi + iy

∣∣∣ ≤ 1√
d

(∑
i

(w⋆
i )

2 λ2
i

(σ∗ − bλi)2 + y2

)1/2

.

Using σ∗−bλi ≥ σ∗−bλ1 = δb/2, and the standard integral
∫
R[(a

2+y2)−1/2(A2+y2)−1/2] dy ≤
π/

√
aA, one obtains

|Rσ∗(t)| ≤ C(s
(2)
⋆ , b)√

d (ρ(b)− σ∗)
eσ∗t, C(s

(2)
⋆ , b) = O

( (s(2)⋆ )3/2

δb

)
.

With the midpoint choice σ∗ = ρ(b)− δb/2,
|Rσ∗(t)|

|âΘ(ρ(b))/D′
b(ρ(b))| eρ(b)t

≲ e−(δb/2) t. (B.25)

Step 5: Uniformity for t = O(log d). From the relation,

1 = 8

d∑
i=1

(w⋆
i )

2λ2
i

ρ(b)− bλi
≥ 8(w⋆

1)
2λ2

1

ρ(b)− bλ1
=

8(w⋆
1)

2λ2
1

δb
,

so δb ≥ 8(w⋆
1)

2λ2
1. If (w⋆

1)
2λ2

1 ≥ κΘ > 0, then δb ≥ δΘ := 8κΘ, a constant independent of d.
Taking t = c log d in (B.25) yields

|Rσ∗(t)|
|C1| eρ(b)t

≲ d−cδΘ/2 → 0.

Combining with (B.24) gives the claim with c(b) =
√
d âΘ(ρ(b))/D

′
b(ρ(b)) and 0 < c(b) ≤

8(s
(2)
⋆ )3/2/δb.
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B.3.2 GENERAL CASE

The ideal case Θ(t) = t served as a benchmark where the growth rate and coefficient could be
computed explicitly. In the general case, Θ(t) is only an approximation of t, and the kernel KΘ

becomes a perturbation of the ideal one. The key point is to show that the dominant pole of the
Laplace transform is stable under this perturbation, so that the same exponential growth persists up
to a small shift in the rate and coefficient.
Proposition 10. Denote by ρ(4) > 4λ1 the unique real zero of F4 on (4λ1,∞). Write F (p) :=

1− 8 K̂Θ(p) and let ρtrue be the rightmost real zero of F . Then:

i) |ρtrue − ρ(4)| ≤ C δ.

ii) Let c(δ) =
√
d âΘ(ρtrue)/F

′(ρtrue). We have |c(δ)| ≲ (s
(2)
⋆ )3/2/(ρtrue − 4λ1). and

u(t) =
c(δ)√

d
eρtruet

(
1 + o(1)

)
.

Proof. Let ∆K := KΘ −K be the difference between the ideal kernel and the true one.

Step 1: Pointwise kernel perturbation. Since (1− 3δ)t ≤ Θ(t) ≤ t and ex − 1 ≤ x for x ≤ 0,∣∣e4λiΘ(t) − e4λit
∣∣ ≤ 4λi (t−Θ(t)) e4λit ≤ 12δ λi t e

4λit.

Multiplying by (w⋆
i )

2λ2
i and summing,

|∆K(t)| ≤ 12λ1 δ tK(t) (t ≥ 0). (B.26)

Step 2: Laplace control of the perturbation. For ℜp > 4λ1,

∆̂K(p) =

∫ ∞

0

e−pt ∆K(t) dt,
∣∣∣∆̂K(p)

∣∣∣ ≤
∫ ∞

0

e−(ℜp)t |∆K(t)| dt.

Using (B.26) and differentiating under the integral sign (dominated by tK(t)e−(ℜp)t),∣∣∣∆̂K(p)
∣∣∣ ≤ 12λ1 δ

∫ ∞

0

t e−ptK(t) dt = − 12λ1 δ K̂
′(p).

Hence, for F (p) = 1− 8K̂Θ(p) = 1− 8(K̂(p) + ∆̂K(p)),

|F (p)− F4(p)| = 8
∣∣∣∆̂K(p)

∣∣∣ ≤ 96λ1 δ
(
−K̂ ′(p)

)
, ℜp > 4λ1. (B.27)

Step 3: Unicity of the dominant zero. Let p0 = ρ(4); then F ′
4(p0) = −8K̂ ′(p0) =: c0 > 0 and

F4 is strictly increasing on (4λ1,∞). By continuity, pick r > 0 such that on I := [p0 − r, p0 + r]

F ′
4(p) ≥ c0/2, M1 := sup

p∈I
(−K̂ ′(p)) < ∞. (B.28)

From (B.27),
sup
p∈I

|F (p)− F4(p)| ≤ 96λ1 M1 δ =: εδ.

Choose δΘ small such that εδ ≤ (c0/4)r for all δ ∈ (0, δΘ]. Then

F (p0+r) ≥ F4(p0+r)−εδ ≥ (c0/4)r > 0, F (p0−r) ≤ F4(p0−r)+εδ ≤ −(c0/4)r < 0.

Because F ′(p) = −8 K̂Θ

′
(p) = 8

∫∞
0

te−ptKΘ(t) dt > 0 on (4λ1,∞), there is a unique zero
ρtrue ∈ (p0 − r, p0 + r) and it is the rightmost one. Moreover,

|ρtrue − ρ(4)| ≤ εδ
c0/2

≲ δ,

proving i).
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Step 4: Contour decomposition and leading coefficient. Bromwich inversion and a contour shift
to ℜp = σ∗ ∈ (4λ1, ρtrue) give the exact identity

u(t) =
âΘ(ρtrue)

F ′(ρtrue)
eρtruet +

1

2πi

∫ σ∗+i∞

σ∗−i∞
ept

âΘ(p)

F (p)
dp, (B.29)

since the only singularity crossed is the simple pole at p = ρtrue. For the coefficient, by Cauchy–
Schwarz with vi = λi/(ρtrue − 4λi) and ∥w(0)∥2 = d−1/2,

|âΘ(ρtrue)| =
∣∣∣∑

i

wi(0)w
⋆
i vi

∣∣∣ ≤ 1√
d

(∑
i

(w⋆
i )

2v2i

)1/2

≤ 1√
d
·

√
s
(2)
⋆

ρtrue − 4λ1
.

Further, F ′(ρtrue) = 8
∫∞
0

te−ρtruetKΘ(t) dt > 0, and continuity from the ideal case implies
F ′(ρtrue) ≥ 1

16 s
(2)
⋆

for all small δ. Therefore, under Assumption A1

∣∣∣ âΘ(ρtrue)
F ′(ρtrue)

∣∣∣ ≲
(s

(2)
⋆ )3/2√

d (ρtrue − 4λ1)
. (B.30)

Step 5: Vertical-line remainder. On ℜp = σ∗, monotonicity/convexity and F ′(ρtrue) > 0 yield
a uniform gap infy |F (σ∗ + iy)| ≳ ρtrue − σ∗. Also,

|âΘ(σ∗ + iy)| ≤ 1√
d

(∑
i

(w⋆
i )

2 λ2
i

(σ∗ − 4λi)2 + y2

)1/2

.

Estimating the integral in (B.29) by Cauchy–Schwarz in y and using
∫
R

dy
(a2+y2) = π/a and∫

R

dy√
a2 + y2

√
A2 + y2

≤ π/
√
aA,

we obtain ∣∣∣ 1

2πi

∫ σ∗+i∞

σ∗−i∞
ept

âΘ(p)

F (p)
dp
∣∣∣︸ ︷︷ ︸

R

≲
1√
d
· eσ∗t

ρtrue − σ∗
.

Choose the midpoint σ∗ = ρtrue −∆/2 with ∆ := ρtrue − 4λ1. Then

R ≲
1√
d
e(ρtrue−∆/2)t.

Step 6: Conclusion. From the ideal dispersion relation,

1 = 8
∑
i

(w⋆
i )

2λ2
i

ρ(4)− 4λi
≥ 8(w⋆

1)
2λ2

1

ρ(4)− 4λ1
⇒ ρ(4)− 4λ1 ≥ 8κΘ.

By i), for small δ the true gap obeys ∆ = ρtrue − 4λ1 ≥ 4κΘ =: ∆Θ > 0. Hence for t = c log d,

R∣∣âΘ(ρtrue)/F ′(ρtrue)
∣∣ eρtruet

≲ e−(∆Θ/2) t = d−c∆Θ/2 → 0.

Putting this with (B.30) yields the stated asymptotic with c(δ) =
√
d âΘ(ρtrue)/F

′(ρtrue), continu-
ous in δ and bounded away from 0 as δ → 0 when âΘ(ρ(4)) > 0.

This proposition motivates our assumption on initialization.

Assumption A1 (Initialization). We assume that u(0) ≍ d−1/2 and âΘ(ρtrue) ≍ d−1/2. Moreover,
we assume that w⋆

1 is of constant order.
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Remark 6 (On the initialization assumption). The assumption in A1 is natural under random ini-
tialization. Indeed, if w(0) ∼ N (0, Id/d) (or uniform on the sphere) independently of w⋆, then
conditionally on w⋆ we have

âΘ(ρtrue) =
∑
i

wi(0)w
⋆
i vi ∼ N

(
0, 1

d

∑
i

(w⋆
i )

2v2i
)
, vi =

λi

ρtrue − 4λi
.

This variance is of order 1/d. Hence âΘ(ρtrue) is of order d−1/2 with large probability, so that the
prefactor in Proposition 10(ii) is indeed nontrivial.

The quantity s(0) also fluctuates on the order d−1/2 for Gaussian initialization, but establishing a
deterministic relation between s(0) and âΘ(ρtrue) is delicate, as the two depend differently on the
spectrum and on w⋆. This explains why A1 is stated as a mild probabilistic assumption rather than
a deterministic condition.

B.4 STEP 3: BOUNDING HIGHER-ORDER STATISTICS AND POSITIVITY OF u(2)

Our goal in this subsection is to show that the second moment u(2)(T1) is strictly positive.

For k ≥ 1, define

(KΘ)k(t) :=
(
e 4BΘ(t)s⋆

)
k

=
∑
m≥0

(4Θ(t))m

m!
s
(k+m)
⋆ , s

(ℓ)
⋆ =

∑
i

(w⋆
i )

2λℓ
i , ℓ ≥ 1.

Lemma 9 (Kernel domination). For all k ≥ 1 and t ∈ [0, T1],

(KΘ)k(t) ≤ λ k−1
1 KΘ(t), KΘ(t) :=

∑
m≥0

(4Θ(t))m

m!
s
(1+m)
⋆ .

Proof. Since Θ(t) ≥ 0 for t ≤ T1, all coefficients (4Θ(t))m

m! are nonnegative. For each m ≥ 0,

s
(k+m)
⋆ =

∑
i

(w⋆
i )

2λk+m
i ≤ λk−1

1

∑
i

(w⋆
i )

2λ1+m
i = λk−1

1 s
(1+m)
⋆ .

Multiplying termwise by the nonnegative coefficients and summing over m yields the claim.

Lemma 10 (Kernel positivity). For all k ≥ 1 and t ∈ [0, T1],

(KΘ)k(t) ≥ s
(k)
⋆ ≥ (w⋆

1)
2λk

1 .

Proof. When Θ(t) ≥ 0, all coefficients (4Θ(t))m

m! in the definition of (KΘ)k(t) are nonnegative. In
particular, the m = 0 term contributes s

(k)
⋆ , so (KΘ)k(t) ≥ s

(k)
⋆ . Finally, s(k)⋆ =

∑
i(w

⋆
i )

2λk
i ≥

(w⋆
1)

2λk
1 .

Proposition 11 (Control of higher-order correlations). For all k ≥ 1 and all t ∈ [0, T1], we have

−λk
1

√
log d
d e4λ1t + 8 s

(k)
⋆

∫ t

0

u(τ) dτ ≤ u(k)(t) ≤ λk
1

√
log d
d e4λ1t + λ k−1

1

(
u(t)− u(0)

)
.

(B.31)
In particular, for d sufficiently large there exists a constant c1 > 0 such that u(2)(T1) ≥ c1.

Proof. Work on [0, T1] where Θ ≥ 0 (so Lemma 10 applies), and recall Lemma 9. We have w.h.p.

|u(k+m)(0)| ≤ λk+m
1

√
log d

d
, for all k ≥ 1, m ≥ 0. (B.32)

By Duhamel’s formula, for each k ≥ 1 and t ∈ [0, T1],

u(k)(t) =
∑
m≥0

(4Θ(t))m

m!
u(k+m)(0) + 8

∫ t

0

(KΘ)k(t− τ)u(τ) dτ.
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From (B.32) and Θ(t) ≤ t, we obtain∣∣∣∑
m≥0

(4Θ(t))m

m!
u(k+m)(0)

∣∣∣ ≤ √
log d

d

∑
m≥0

(4Θ(t)λ1)
m

m!
λk
1

= λk
1

√
log d

d
e4λ1Θ(t)

≤ λk
1

√
log d

d
e4λ1t.

Furthermore, by Lemma 9, we have (KΘ)k ≤ λk−1
1 (KΘ), so∫ t

0

(KΘ)k(t− τ)u(τ) dτ ≤ λk−1
1

(
u(t)− aΘ(t)

)
.

Combining with the homogeneous upper bound yields the right-hand inequality in (B.31).

Lemma 10 gives (KΘ)k(t− τ) ≥ s
(k)
⋆ for τ ∈ [0, t], hence∫ t

0

(KΘ)k(t− τ)u(τ) dτ ≥ s
(k)
⋆

∫ t

0

u(τ) dτ.

Combining with the homogeneous lower bound gives the left-hand inequality in (B.31).

Finally, under the positive growth of α assumed in Step 3 (e.g. α(t) ≥ C√
d
eρt for large t), together

with a rate gap ρ > 4λ1, the integral term 8s
(2)
⋆

∫ T1

0
α dominates the homogeneous remainder

λ2
1

√
log d
d e4λ1T1 = O(

√
log d) for d large enough. Hence, there exists c1 > 0 such that u(2)(T1) ≥

c1.

C ANALYSIS OF PHASE II

In Section C.1, we show that s(t) crosses the threshold 1/3 within O(1) time and remains above
it thereafter. Once s(t) > 1/3, the key quantity Θ(t) appearing in the Volterra equation begins
to decrease and eventually becomes negative. This marks a qualitative shift in the dynamics of
the system. We leverage this change in Section C.2 to derive a convergence rate for the summary
statistics.

C.1 PHASE IIA: CROSSING THE s(t) = 1/3 THRESHOLD AND IRREVERSIBLE GROWTH

Recall that at the end of Phase I, there exists an absolute constant δ > 0 such that

u(T1) > δ, s(T1) ≥ δ, u(2)(T1) > δ.

At a high level, the behavior of s(t) in this regime is governed by a simple mechanism. While
s(t) ≤ 1/3, both terms in (C.1) are nonnegative, so s(t) is pushed upward and necessarily crosses the
threshold 1/3 in finite time. Once s(t) has crossed, the positive mixed term 16u(t)u(2)(t) outweighs
the negative contribution of the first term near the boundary, which prevents s(t) from falling back.
Thus s(t) remains bounded away from 1/3 uniformly after crossing. The next proposition makes
this precise.
Proposition 12 (Crossing and stability beyond the 1/3-threshold). Let T1 be the stopping time from
Theorem 1. There exist constants δ > 0 and C > 0 such that:

1. There exists T ′
1 ∈ [T1, T1 + C] with

s(T ′
1) ≥ 1

3 + δ.

2. For all t ≥ T ′
1,

s(t) ≥ 1
3 + δ.
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Proof. From T1 onward we first prove that u(2)(t) and then u(t) stay strictly positive. While s(t) ≤
1/3, this makes both terms in ṡ nonnegative, so s reaches 1/3 in finite time (Part A). Next, we work
in a thin band [1/3, 1/3 + η], show that for η small enough the drift of s is still uniformly positive,
so s reaches 1/3+η in finite time, and that the vector field points inward at s = 1/3+η, preventing
any return (Part B).

Recall
ṡ(t) = 8

(
1− 3s(t)

)
s(2)(t) + 16u(t)u(2)(t), (C.1)

u̇(t) = 4
(
1− 3s(t)

)
u(2)(t) + 8 s

(2)
⋆ u(t), u̇(2)(t) = 4

(
1− 3s(t)

)
u(3)(t) + 8 s

(3)
⋆ u(t).

(C.2)

Part A: Pre-band positivity and finite-time reach of s = 1/3. Fix τ := t − T1 ≥ 0 and define
ΘT1(τ) := Θ(T1 + τ)−Θ(T1). Writing αi(t) := wi(t)w

⋆
i , we have

α̇i(t) = 4(1− 3s(t))λiαi(t) + 8λi(w
⋆
i )

2u(t).

Multiplying by e−4λiΘ(t) and integrating from T1 to T1 + τ yields

αi(T1 + τ) = e4λiΘT1
(τ)αi(T1) + 8

∫ τ

0

e4λi(ΘT1
(τ)−ΘT1

(s)) λi(w
⋆
i )

2 u(T1 + s) ds.

Multiplying by λ2
i and summing gives

u(2)(T1 + τ) =
∑
i

λ2
i e

4λiΘT1
(τ)αi(T1)︸ ︷︷ ︸

=: ã
(2)
0 (τ)

+ 8

∫ τ

0

K×(τ − s)u(T1 + s) ds, (C.3)

with
K×(ζ) :=

∑
i

(w⋆
i )

2λ3
i e

4λiΘT1
(ζ) ≥ 0.

On the pre-band interval where s ≤ 1/3, we have ΘT1(τ) ≥ 0, so e4λiΘT1
(τ) ≥ 1. Thus

ã
(2)
0 (τ) ≥

∑
i

λ2
iαi(T1) = u(2)(T1) > 0.

By (C.3) and K× ≥ 0,

u(2)(t) ≥ u(2)(T1) > 0 for all T1 ≤ t ≤ T1/3 := inf{t ≥ T1 : s(t) = 1/3}. (C.4)

While s ≤ 1/3, from (C.2) and (C.4),

u̇(t) ≥ 8s
(2)
⋆ u(t), T1 ≤ t ≤ T1/3,

so u(t) ≥ u(T1)e
8s(2)⋆ (t−T1) > 0 there. Finally, (C.1) gives on {s ≤ 1/3}

ṡ(t) ≥ 16u(t)u(2)(t) ≥ 16u(T1)u
(2)(T1) :=: κΘ > 0.

Hence

T1/3 − T1 ≤
( 13 )− s(T1)

κΘ
≤ 1/3

16u(T1)u(2)(T1)
. (C.5)

Thus s reaches 1/3 in finite time.

Part B: Crossing the band [1/3, 1/3+η] and no return. We record uniform bounds that will be
used in-band. Since Q ⪯ λ1I and ∥w(t)∥ ≤ M ,

0 ≤ s(2)(t) ≤ λ2
1∥w(t)∥2 ≤ Smax

2 , Smax
2 := λ2

1M
2, (C.6)

and 0 ≤ s(t) ≤ Smax with Smax := λ1M
2. By Cauchy–Schwarz,

|u(2)(t)| ≤
√
s(t)

√
s
(3)
⋆ ≤

√
Smax s

(3)
⋆ =: C2, |u(3)(t)| ≤

√
s(2)(t)

√
s
(4)
⋆ ≤

√
Smax
2 s

(4)
⋆ =: C3.

(C.7)
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Fix η ∈ (0, 1/6]. On {1/3 ≤ s ≤ 1/3 + η} we have 1− 3s ∈ [−3η, 0]. From (C.2) and (C.7),

u̇ ≥ −12η C2 + 8s
(2)
⋆ u, u̇(2) ≥ −12η C3 + 8s

(3)
⋆ u.

As in a linear comparison argument, if

η ≤ 2
3

s(2)⋆

C2
u(T1), η ≤ 2

3
s(3)⋆

C3
u(T1), (C.8)

then throughout the band one has u(t) ≥ u(T1) and u(2)(t) ≥ u(2)(T1).

Now, from (C.1), (C.6), and these lower bounds,

ṡ(t) ≥ −24η Smax
2 + 16u(T1)u

(2)(T1).

Choosing
η ≤ min

{
u(T1)u

(2)(T1)
3Smax

2
, 2

3
s(2)⋆

C2
u(T1),

2
3
s(3)⋆

C3
u(T1),

1
6

}
, (C.9)

we get ṡ(t) ≥ 8u(T1)u
(2)(T1) > 0 across the band. Thus s overshoots to 1/3 + η in time at most

η/(8u(T1)u
(2)(T1)), and at any last contact with s = 1/3 + η the same inequality shows ṡ > 0, so

the vector field points inward. Therefore, s cannot return below 1/3 + η.

Together with (C.5), this completes the proof: s reaches 1/3 in finite time, then crosses to 1/3 + η
in finite time, and never falls back below.

C.2 PHASE IIB: APPROXIMATE CONVERGENCE OF THE SUMMARY STATISTICS

After the entrance time T ′
1, the error ∆(t) := 1− u(t) satisfies

∆(t) = bΘ(t) +

∫ t

T ′
1

KΘ(t, τ)∆(τ) dτ, t ≥ T ′
1, (C.10)

with

KΘ(t, τ) =

d∑
i=1

8λ2
i (w

⋆
i )

2 e 4λi

(
Θ(t)−Θ(τ)

)
, hΘ(t) :=

d∑
i=1

λiw
⋆
iwi(T

′
1) e

4λi

(
Θ(t)−Θ(T ′

1)
)
,

bΘ(t) := 1− hΘ(t) −
∫ t

T ′
1

KΘ(t, τ) dτ.

We will repeatedly use the following facts:

(i) 1 ≥ ∆(τ) ≥ 0 and KΘ(t, τ) ≥ 0 for t ≥ τ ≥ T ′
1.

(ii) Θ′(t) = 1− 3s(t) ≤ −s0 < 0, hence e 4λ(Θ(t)−Θ(τ)) ≤ e−4s0λ (t−τ) for t ≥ τ ≥ T ′
1.

The first fact results from Lemma 11.

For a cutoff λc > 0 let

I< := {i : λi < λc}, I≥ := {i : λi ≥ λc}.
Define

T (λc) :=
∑

λi<λc

λi (w
⋆
i )

2, s
(2)
⋆ :=

d∑
i=1

λ2
i (w

⋆
i )

2, s(T ′
1) =

d∑
i=1

λi wi(T
′
1)

2 ≤ 1,

and the head alignment term

S≥(λc) :=
∑

λi≥λc

λi

∣∣w⋆
i wi(T

′
1)
∣∣ ≤

( ∑
λi≥λc

λi (w
⋆
i )

2
)1/2( ∑

λi≥λc

λi wi(T
′
1)

2
)1/2

≤
√

s
(2)
⋆ s(T1).

Proposition 13. For all t ≥ T ′
1 and any cutoff λc > 0,

∆(t) ≤ T (λc) +
√
T (λc) s(T ′

1) + S≥(λc) e
− 4s0 λc (t−T ′

1). (C.11)
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Proof. From the Volterra equation (C.10) and the definition of bΘ,

∆(t) = (1− hΘ(t)) +

∫ t

T ′
1

KΘ(t, τ)
(
∆(τ)− 1

)
dτ.

Since 0 ≤ ∆(τ) and KΘ ≥ 0, the integral is nonpositive. Hence

∆(t) ≤ (1− hΘ(t))+.

Now split the spectrum into I< = {i : λi < λc} and I≥ = {i : λi ≥ λc}. Using Θ(t) ≤ Θ(T ′
1)

and Θ′(t) ≤ −s0, we obtain

(1− hΘ(t))+ ≤
∑
i∈I<

λi(w
⋆
i )

2 +
∑
i∈I<

λi|w⋆
iwi(T

′
1)| +

∑
i∈I≥

λi|w⋆
iwi(T

′
1)| e−4s0λc (t−T ′

1).

The first sum equals T (λc). By Cauchy–Schwarz,∑
i∈I<

λi|w⋆
iwi(T

′
1)| ≤

√
T (λc) s(T ′

1).

The last sum is bounded by S≥(λc)e
−4s0λc (t−T ′

1). Combining these estimates yields (C.11).

Corollary 1 (Time to reach accuracy ε). Fix ε ∈ (0, 1) and choose λε > 0 such that

T (λε) ≤ ε

4
,

√
T (λε) s(T ′

1) ≤ ε

4
⇐⇒ T (λε) ≤ min

{
ε

4
,

ε2

16 s(T ′
1)

}
. (C.12)

Then

T2(ε) := T ′
1 +

1

4s0 λε
log

(
4S≥(λε)

ε

)
(C.13)

satisfies ∆(t) ≤ ε for all t ≥ T2(ε).

Proof. From (C.11) with λc = λε and (C.12),

∆(t) ≤ ε

4
+

ε

4
+ S≥(λε) e

−4s0λε (t−T ′
1) =

ε

2
+ S≥(λε) e

−4s0λε (t−T ′
1).

Choosing t so that the last term is ≤ ε/2 gives (C.13).

Corollary 2 (Power-law spectral tail). Suppose T (λ) ≍ Ctailλ
β as λ ↓ 0 with β = 1− 1

a ∈ (0, 1).
Then

λε ≍
(
min{ε, ε2/s(T ′

1)}
Ctail

)1/β

, T2(ε) ≲ T ′
1 +

1

4s0

( Ctail

min{ε, ε2/s(T ′
1)}

)1/β
log

1

ε
.

In particular, when ε is small and s(T ′
1) ≤ 1, the quadratic condition dominates:

T2(ε) ≲ T ′
1 +

1

4s0
ε− 2/β log

1

ε
= T ′

1 +
1

4s0
ε
− 2a

a−1 log
1

ε
.

C.2.1 TECHNICAL LEMMA

It will be convenient to approximate the discrete measure µd by a continuous reference measure
with density proportional to λ 1−1/a near λ = 0. This approximation is crucial in Phase II, since
the long-time behavior of the kernel KΘ depends only on the small-λ (tail) mass of µd, which in
turn reflects the power-law spectrum assumption. The following proposition shows that, with high
probability, µd has a similar tail behaviour to its continuous counterpart.
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Proposition 14 (Spectral/teacher tail near λ = 0 holds w.h.p.). Let a > 1 and define the spectrum
by λi := i−a/Hd,a, where Hd,a =

∑d
j=1 j

−a. Let w⋆
i

i.i.d.∼ N (0, 1), independent of (λi), and set

µd := 8

d∑
i=1

λi(w
⋆
i )

2 δλi .

Fix constants C⋆ > 1 and ρ ∈ (0, 1), and define the tail scale Λd := C⋆ λd = C⋆ d
−a/Hd,a and the

geometric bins
Bk :=

(
ρk+1Λd, ρ

kΛd

]
, k = 0, 1, . . . ,K,

where K := ⌈log1/ρ(C⋆)⌉ − 1. Then there exist constants C−, C+, c > 0 depending only on
(a, ρ, C⋆) such that, for all sufficiently large d, with probability at least 1− e−cd,

C−

∫
Bk

λ− 1
a dλ ≤ µd(Bk) ≤ C+

∫
Bk

λ− 1
a dλ for all k = 0, 1, . . . ,K. (C.14)

Consequently, with the same probability bound, for every λ ∈ (0,Λd],

µd

(
(0, λ]

)
≍ λ 1− 1

a , (C.15)

and, more generally, for any nonnegative step test function φ(λ) =
∑K

k=0 ak 1Bk
(λ),

C−

∫ Λd

0

λ− 1
a φ(λ) dλ ≤

∫
(0,Λd]

φ(λ)µd(dλ) ≤ C+

∫ Λd

0

λ− 1
a φ(λ) dλ. (C.16)

Proof. We split the proof into several steps.

Step 1: Bin sizes are linear in d. Let Ik := { 1 ≤ i ≤ d : λi ∈ Bk }. Since λi = i−a/Hd,a, the
condition λi ≤ t is equivalent to i ≥ (tHd,a)

−1/a. Thus the counting function

N(t) := #{i : λi ≤ t} = d−
⌈
(tHd,a)

−1/a
⌉
+ 1.

Therefore,

|Ik| = N(ρkΛd)−N(ρk+1Λd) =
⌈
(ρk+1ΛdHd,a)

−1/a
⌉
−
⌈
(ρkΛdHd,a)

−1/a
⌉
.

Using ΛdHd,a = C⋆d
−a gives

|Ik| =
⌈
ρ−(k+1)/aC

−1/a
⋆ d

⌉
−
⌈
ρ−k/aC

−1/a
⋆ d

⌉
.

Hence, for all d large enough,

c1 d ρ
−k/a ≤ |Ik| ≤ c2 d ρ

−k/a (k = 0, 1, . . . ,K), (C.17)

for constants c1, c2 > 0 depending only on (a, ρ, C⋆). Thus |Ik| = Θ(d ρ−k/a), and K is a fixed
constant (independent of d). Note: for the last bin BK , the lower endpoint may fall below λd, but
by definition IK only counts actual indices i ≤ d.

Step 2: Deterministic comparison of
∑

i∈Ik
λi. For i ∈ Ik we have ρk+1Λd < λi ≤ ρkΛd, so

(ρk+1Λd) |Ik| ≤
∑
i∈Ik

λi ≤ (ρkΛd) |Ik|.

On the other hand,∫
Bk

λ− 1
a dλ =

(ρkΛd)
1− 1

a − (ρk+1Λd)
1− 1

a

1− 1
a

=
(1− ρ 1− 1

a

1− 1
a

)
Λ

1− 1
a

d ρ k(1− 1
a ). (C.18)

Since a > 1, the exponent 1−1/a > 0. Using (C.17) and (C.18), there exist constants D−, D+ > 0

(depending only on a, ρ, C⋆ and the bounded factor H−1/a
d,a ∈ [ ζ(a)−1/a, 1 ]) such that

D−

∫
Bk

λ− 1
a dλ ≤

∑
i∈Ik

λi ≤ D+

∫
Bk

λ− 1
a dλ (k = 0, 1, . . . ,K). (C.19)

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Step 3: Concentration for the teacher weights. Let Sk :=
∑

i∈Ik
(w⋆

i )
2. Since Sk ∼ χ2

|Ik| and
|Ik| ≥ c1d by (C.17), the standard χ2 tail bound yields, for any ε ∈ (0, 1),

P
(∣∣Sk − |Ik|

∣∣ > ε|Ik|
)

≤ 2 exp
(
− ε2

4 |Ik|
)

≤ 2 e−c2d.

Since K + 1 is fixed, a union bound gives

P
(
∀k = 0, . . . ,K : (1− ε)|Ik| ≤ Sk ≤ (1 + ε)|Ik|

)
≥ 1− e−cd (C.20)

for some c > 0 independent of d.

Step 4: Comparing µd(Bk) to the bin integral. On the event in (C.20),

8(1− ε)
∑
i∈Ik

λi ≤ µd(Bk) = 8
∑
i∈Ik

λi(w
⋆
i )

2 ≤ 8(1 + ε)
∑
i∈Ik

λi.

Combining with (C.19) proves (C.14) with

C− := 8(1− ε)D−, C+ := 8(1 + ε)D+.

Step 5: Tail. Summing (C.14) over {j ≥ m} where m is the unique index such that λ ∈
(ρm+1Λd, ρ

mΛd], and using the geometric form (C.18), yields

µd

(
(0, λ]

)
≍ Λ

1− 1
a

d ρm(1− 1
a ) ≍ λ 1− 1

a (since ρm ≍ λ/Λd),

which is (C.15). The step-function bound (C.16) follows from linearity, as
∫
(0,Λd]

φdµd =∑
k ak µd(Bk) and the same for the right-hand integrals.

The following lemma formally shows that after T ′
1, u(t) and s(t) cannot go above 1. In particular, it

justifies the positivity of ∆(t).

Lemma 11 (Post-alignment barrier and correlation bound). Let Q = diag(λi) ≻ 0 and let w⋆

satisfy ⟨w⋆, Qw⋆⟩ = 1. Consider the population gradient flow for anisotropic phase retrieval with
Gaussian inputs, and define

s(t) := ⟨w(t), Qw(t)⟩, u(t) := ⟨w(t), Qw⋆⟩.

Fix a time t0 (e.g. t0 = T ′
1) such that

0 < u(t0) < 1, s(t0) ≤ 1.

Then:

1. s(t) ≤ 1 for all t ≥ t0 (forward invariance of {s ≤ 1}).

2. 0 < u(t) ≤ 1 for all t ≥ t0, and in fact u(t) < 1 for every finite t ≥ t0 unless w(t0) = w⋆.

Proof. Work with the Q-inner product ⟨x, y⟩Q := ⟨x,Qy⟩. Decompose w into its Q-orthogonal
parts:

w = uw⋆ + z, ⟨z,Qw⋆⟩ = 0.

Then
s = ⟨w,Qw⟩ = u2 + ∥z∥2Q, ∥z∥2Q = s− u2 ≥ 0. (C.21)

Claim 0 (pre-boundary: u < 1). Since s(t0) ≤ 1, Cauchy–Schwarz in ⟨·, ·⟩Q gives

u(t0) = ⟨w(t0), Qw⋆⟩ ≤ ∥w(t0)∥Q ∥w⋆∥Q =
√
s(t0) ≤ 1,

and by assumption u(t0) > 0; hence 0 < u(t0) < 1. Moreover, as long as s(t) < 1, the same
inequality implies u(t) ≤

√
s(t) < 1. Thus before any potential first time when s could reach the

boundary 1, we indeed have u(t) < 1.

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Claim 1 (uniform drift for s ≥ 1). Recall that

ṡ = 8(1− 3s) s(2) + 16uu(2).

Using λmin⟨z,Qz⟩ ≤ s(2) and (C.21), when s ≥ 1 we have 1− 3s ≤ −2, hence

ṡ ≤ 8(1−3s) s(2) ≤ −16 s(2) ≤ −16λmin ⟨z,Qz⟩ = −16λmin ∥z∥2Q = −16λmin (s−u2).
(C.22)

Claim 2 (no upward crossing at s = 1). Let t1 > t0 be a first time with s(t1) = 1 and s(t) < 1
for t < t1 (if no such t1 exists, we are done). By the discussion in Claim 0, we then have u(t−1 ) ≤√

s(t−1 ) < 1, hence u(t1) ≤ 1 by continuity. By definition of first hitting, there exists ε > 0 with
s(t) ≥ 1 for all t ∈ [t1, t1 + ε), so (C.22) applies on (t1, t1 + ε). Taking the right Dini derivative
and using continuity of s− u2,

D+s(t1) := lim sup
h↓0

s(t1 + h)− s(t1)

h
≤ −16λmin lim

t↓t1

(
s(t)−u(t)2

)
= −16λmin (1−u(t1)

2) ≤ 0.

Thus the vector field is inward-pointing (nonpositive) at the boundary, which contradicts an upward
crossing from s < 1 to s > 1 at t1. Hence s(t) ≤ 1 for all t ≥ t0.

Claim 3 (u ≤ 1 and strictness). For all t, Cauchy–Schwarz gives

|u(t)| ≤ ∥w(t)∥Q ∥w⋆∥Q =
√

s(t) ≤ 1,

so 0 < u(t) ≤ 1 for t ≥ t0 (positivity after T ′
1 follows from the Volterra positivity in Phase I).

Finally, unless w(t0) = w⋆, the real-analytic gradient flow reaches the minimizer only as t → ∞,
so u(t) < 1 for all finite t ≥ t0.

Next, we show u(t) and s(t) → 1.

Lemma 12 (Convergence of s(t) and u(t)). As t → ∞,

s(t) → 1, u(t) → 1.

Proof. By Lemma 5, the trajectory w(t) is bounded, hence precompact in Rd. Moreover,

L̇(t) = −∥∇L(w(t))∥2 ≤ 0,

so L(w(t)) is nonincreasing and convergent. Phase IIa yields forward invariance of the region
{s > 1

3}: there exists T ′
1 ≥ 0 such that s(t) > 1

3 for all t ≥ T ′
1.

By LaSalle’s invariance principle, the ω-limit set

Ω :=
{
ω : ∃ tn → ∞ with w(tn) → ω

}
is nonempty, compact, invariant, and contained in the largest invariant subset of {∇L = 0} ∩ {s ≥
1
3}. By the critical-point characterization in Section 3 (Proposition 2), every critical point with s > 1

3

is of the form w = ±w⋆, under the normalization
∑

i λi(w
⋆
i )

2 = 1. In particular, all such critical
points satisfy s = 1 and u = ±1.

Hence for any ω ∈ Ω we must have (s(ω), u(ω)) ∈ {(1, 1), (1,−1)}. Since s(·), u(·) are continu-
ous, it follows that

s(tn) → 1, u(tn) → ±1

for every sequence tn → ∞ with w(tn) → ω. Phase I guarantees u(T ′
1) > 0, and positivity is

forward-invariant (via the Volterra representation after T ′
1), so u(t) > 0 for all t ≥ T ′

1. Therefore,
every limit point must satisfy u(ω) = +1. Thus (s(t), u(t)) → (1, 1) as t → ∞.

Finally, if s(t) or u(t) did not converge, there would exist ε > 0 and a sequence tn → ∞ such
that either |s(tn) − 1| ≥ ε or |u(tn) − 1| ≥ ε. By precompactness, we may extract a subsequence
w(tnk

) → ω ∈ Ω, but then (s(tnk
), u(tnk

)) → (1, 1), a contradiction. Hence s(t) → 1 and
u(t) → 1.
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D PHASE III: SCALING LAWS

We first show in Section D.1 that the MSE does not change significantly from initialization. In
Section D.2, we then characterize its decay for t ≥ T2.

D.1 STABILITY OF THE MSE FOR t ≤ T2

Proposition 4. Let σ2
⋆ = 1

d

∑d
i=1(w

⋆
i )

2. Under the assumptions of Theorem 1 we have∣∣∣MSE(T2)− σ2
⋆

∣∣∣ ≲
(ε−a

d

)1/3
+
( log d

d

)1/3
.

Proof. Step 1: Variation of constants. For each coordinate i,

ẇi(t) = 4λi

(
1− 3s(t)

)
wi(t) + 8λi u(t)w

⋆
i , Θ(t) :=

∫ t

0

(1− 3s(τ)) dτ.

By Duhamel’s formula, for all t ≥ 0,

wi(t) = e4λiΘ(t)wi(0) + 8λiw
⋆
i

∫ t

0

e4λi(Θ(t)−Θ(τ)) u(τ) dτ. (D.1)

Step 2: Phase clocks and the key split. Let T ′
1 be the first time s(t) = 1

3 . Then Θ increases on
[0, T ′

1] and decreases on [T ′
1,∞). Define

Θmax := Θ(T ′
1), Λ(t) := Θmax −Θ(t), t ≥ T ′

1.

Fix t ≥ T ′
1. Splitting the integral in (D.1) at T ′

1 and changing variables to Θ on each side, and using
0 ≤ u ≤ 1, we obtain the bound∫ t

0

e4λi(Θ(t)−Θ(τ)) dτ ≤ C

(
1− e−4λiΘmax

λi
+

1− e−4λiΛ(t)

λi

)
, (D.2)

where C = C(δ, s0). This refines earlier estimates by accounting for the change of sign in Θ(t) −
Θ(τ) across phases.

Step 3: Frontier at T2 and inactive bound. At time T2, fix ζ ∈ (0, 1] and define the index sets

Iζ(T2) := { i : 4λi Λ(T2) ≥ ζ }, Ic
ζ (T2) := [d] \ Iζ(T2).

For i ∈ Ic
ζ (T2), 4λiΛ(T2) ≤ ζ, so 1 − e−4λiΛ(T2) ≤ 4λiΛ(T2). Combining (D.1) and (D.2), and

after absorbing constants,

|wi(T2)| ≤ e4λiΘ(T2)|wi(0)|+ 8λi|w⋆
i | · C

(
1−e−4λiΘmax

λi
+ 4Λ(T2)

)
≤ eζ |wi(0)|+ C ′ζ |w⋆

i |.
(D.3)

Step 4: Active correlation and energy. On Iζ(T2), λi ≥ ζ/(4Λ(T2)). Applying the weighted
Cauchy–Schwarz inequality

∑
i |xiyi| ≤ (

∑
x2
i /λi)

1/2(
∑

λiy
2
i )

1/2, we get∑
i∈Iζ(T2)

|w⋆
i | |wi(T2)| ≤

( ∑
i∈Iζ(T2)

(w⋆
i )

2

λi

)1/2( ∑
i∈Iζ(T2)

λi wi(T2)
2
)1/2

≤
√

4Λ(T2)
ζ

√
d σ2

⋆

√
s(T2).

Hence the active correlation contribution satisfies

2

d

∣∣∣ ∑
i∈Iζ(T2)

w⋆
iwi(T2)

∣∣∣ ≲

√
Λ(T2)

ζ d
. (D.4)

Similarly, for the active energy,

1

d

∑
i∈Iζ(T2)

wi(T2)
2 ≤ 1

d λmin(Iζ(T2))

∑
i∈Iζ(T2)

λi wi(T2)
2 ≤ 4Λ(T2)

ζ d
s(T2) ≲

Λ(T2)

ζ d
, (D.5)
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since s(T2) ≤ 1.

Step 5: Inactive correlation and energy. From (D.3) and Cauchy–Schwarz, and using ∥w⋆∥22 =
d σ2

⋆,∑
i∈Ic

ζ(T2)

|w⋆
i | |wi(T2)| ≤ ∥w⋆∥2

( ∑
i∈Ic

ζ(T2)

wi(T2)
2
)1/2

≤
√

d σ2
⋆

(
2e2ζ∥w(0)∥22+8ζ2 d σ2

⋆

)1/2
.

Therefore,
2

d

∑
i∈Ic

ζ(T2)

|w⋆
i | |wi(T2)| ≲ ζ + d−1/2. (D.6)

Moreover,
1

d

∑
i∈Ic

ζ(T2)

wi(T2)
2 ≤ 2e2ζ

d
∥w(0)∥22 + 8ζ2 σ2

⋆ ≲ ζ2 + d−1. (D.7)

Step 6: Combination and optimization. Since

MSE(T2)− σ2
⋆ = −2

d

∑
i

w⋆
iwi(T2) +

1

d

∑
i

wi(T2)
2,

combining (D.4)–(D.7) yields∣∣∣MSE(T2)− σ2
⋆

∣∣∣ ≲
√

Λ(T2)
ζ d + Λ(T2)

ζ d︸ ︷︷ ︸
active

+ ζ + ζ2︸ ︷︷ ︸
inactive

+ d−1/2. (D.8)

The right-hand side is minimized (up to constants) by taking

ζ⋆ ≍
(Λ(T2)

d

)1/3
∧ 1,

which balances the active and inactive contributions. For this choice,√
Λ(T2)

ζ⋆d
≍ Λ(T2)

ζ⋆d
≍ ζ⋆ ≍

(Λ(T2)

d

)1/3
.

Therefore, ∣∣∣MSE(T2)− σ2
⋆

∣∣∣ ≲
(Λ(T2)

d

)1/3
+ d−1/2.

Finally, the Phase IIb analysis (via the Volterra–renewal argument) gives 1 − u(t) ≍ Λ(t)−1/a. At
t = T2, 1− u(T2) = ε, hence Λ(T2) ≍ ε−a. Substituting into the above bound gives∣∣∣MSE(T2)− σ2

⋆

∣∣∣ ≲
(ε−a

d

)1/3
+ d−1/2.

Adding the Phase I “plateau” contribution (log d/d)1/3 yields the stated result.

D.2 EVOLUTION OF THE MSE FOR t ≥ T2

We first analyze the idealized dynamics where u ≡ s ≡ 1 (Section D.2.1), and then control the
approximation error in Section D.2.2.

D.2.1 IDEAL CASE WHERE u ≡ s ≡ 1

We begin by studying the evolution of the MSE under the idealization u ≡ s ≡ 1.

Lemma 13. In the post-T2 idealization (s ≡ u ≡ 1), the coordinate errors ei(t) := wi(t) − w⋆
i

evolve as
ei(T2 + τ) = ei(T2) e

−8λiτ (τ ≥ 0).
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Consequently,

MSE(T2 + τ) =
1

d

d∑
i=1

ei(T2)
2 e−16λiτ = MSE(T2) Ŝd(τ),

where the normalized spectral mixing curve is

Ŝd(τ) :=

d∑
i=1

πi e
−16λiτ , πi :=

ei(T2)
2∑d

j=1 ej(T2)2
,

d∑
i=1

πi = 1.

Proof. Setting s ≡ u ≡ 1 in the gradient flow gives

ẇ(t) = −8Q
(
w(t)− w⋆

)
.

Defining e(t) = w(t) − w⋆ yields ė(t) = −8Qe(t). Since Q is diagonal with entries (λi), each
coordinate satisfies ėi(t) = −8λiei(t), hence

ei(T2 + τ) = ei(T2)e
−8λiτ .

Squaring and averaging proves the formula for the MSE. Factoring MSE(T2) defines the weights
πi, and the claim follows.

Since Ŝd depends on the (random) weights πi, we introduce the proxy

Sd(τ) :=
1

d

d∑
i=1

e−βdτ i−a

, βd = 16Ld,

which corresponds to uniform weights. The next result shows that this is a valid approximation.

Proposition 15. There exists a constant C < ∞, independent of d, such that

∥π∥∞ ≤ C

d
, and Ŝd(τ) ≤ C Sd(τ).

Proof. From Proposition 4, maxi |ei(T2)| = O(1) while MSE(T2) ≥ c > 0 with high probability,
hence

d∑
j=1

ej(T2)
2 ≍ d.

Therefore πi = ei(T2)
2/
∑

j ej(T2)
2 = O(1/d) uniformly, giving ∥π∥∞ ≤ C/d. The second

inequality follows directly.

We now analyze the asymptotics of Sd(τ).

Proposition 16 (Asymptotics of the spectral average). Let a > 1 and set xd := (βdτ)
1/a. Then

Sd(τ) satisfies:

1. Early time (βdτ ≪ 1):

Sd(τ) = 1− βdτ

d

d∑
i=1

i−a +
(βdτ)

2

2d

d∑
i=1

i−2a +O
( (βdτ)

3

d

)
.

Under trace normalization Ld = 1/Hd,a this simplifies to

Sd(τ) = 1− 16
d τ +O

(
τ2

d

)
.

2. Mesoscopic window (1 ≪ xd ≪ d):

Sd(τ) = 1− Γ
(
1− 1

a

)xd

d
+ o
(xd

d

)
.
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3. Late time (xd ≳ d):
Sd(τ) ≤ exp

(
−βdτ d

−a
)
.

Proof. (i) For z ∈ [0, 1], e−z = 1 − z + z2/2 + R3(z) with |R3(z)| ≤ z3/6. If βdτ ≪ 1, all
zi = βdτi

−a are small, and averaging the expansion over i = 1, . . . , d yields the stated series.

(ii) Writing

1− Sd(τ) =
1

d

d∑
i=1

(
1− e−(xd/i)

a)
,

and defining gx(t) = 1− e−(x/t)a , we have∫ ∞

0

gx(t) dt =

∫ ∞

0

(
1− e−(x/t)a

)
dt = xΓ

(
1− 1

a

)
,

by the substitution y = (x/t)a. Since gx is monotone decreasing in t,∫ d

1

gx(t) dt ≤
d∑

i=1

gx(i) ≤ gx(1) +

∫ d

1

gx(t) dt.

Thus
d∑

i=1

gx(i) = xΓ(1− 1/a) +O(1) +O(xad1−a).

Dividing by d proves the expansion for 1 ≪ xd ≪ d.

(iii) For i ≤ d, i−a ≥ d−a, hence e−βdτi
−a ≤ e−βdτd

−a

. Averaging over i gives the bound.

Corollary 3. For all τ ≥ 0,

MSE(T2 + τ) = MSE(T2) Ŝd(τ) ≤ CMSE(T2)Sd(τ).

D.2.2 HANDLING THE APPROXIMATION TERM

Let δs(t) = 1− s(t) and δu(t) = 1− u(t). We will first show that the convergence approximation
remains of order ε after T2.
Lemma 14. Assume Phase IIb yields, at time T2,

|δs(T2)|+ |δu(T2)| ≤ ε. (D.9)

Then there exists a constant C > 0 and ε0 > 0 such that, if ε ≤ ε0, then for all τ ≥ 0,

|δs(T2 + τ)|+ |δu(T2 + τ)| ≤ C ε. (D.10)

Proof. Write τ = t− T2. After T2, the full flow satisfies

ẇ(t) = −8Qw(t) + (8δu(t)− 12δs(t))Qw⋆ − 12 δs(t)Qw(t).

This is a linear time-varying system. Its mild form (variation of constants) is

w(T2+τ) = e−8Qτw(T2)+

∫ τ

0

e−8Q(τ−s)
[
(8δu−12δs)(T2+s)Qw⋆−12 δs(T2+s)Qw(T2+s)

]
ds.

(D.11)
Set

A(τ) := e−8Qτw(T2), B(τ) :=

∫ τ

0

e−8Q(τ−s)
[
(8δu−12δs)(T2+s)Qw⋆−12 δs(T2+s)Qw(T2+s)

]
ds,

so that w(T2 + τ) = A(τ) + B(τ). We can interpret A(τ) as the term giving the dynamics in the
ideal case, and B(τ) as a perturbation term.

Step 1. (Uniform semigroup bounds). Since Q ≻ 0,∫ ∞

0

e−8QrQdr =
1

8
I,

∫ ∞

0

Q1/2e−8QrQdr =
1

8
Q1/2.
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Hence for any bounded h and any vector v,∥∥∥∫ τ

0

e−8Q(τ−s)h(s)Qv ds
∥∥∥
2
≤ 1

8∥h∥∞∥v∥2, (D.12)∥∥∥Q1/2

∫ τ

0

e−8Q(τ−s)h(s)Qv ds
∥∥∥
2
≤ 1

8∥h∥∞∥Q1/2v∥2. (D.13)

Step 2. (Bounding B(τ)). Let g(s) := 8δu(T2+s)−12δs(T2+s). On [T2, T2+τ ], |g(s)| ≤ 20G(τ)
where

G(τ) := sup
0≤t≤τ

(|δs(T2 + t)|+ |δu(T2 + t)|).

By (D.12)–(D.13),

∥B(τ)∥2 ≤ c1 G(τ), ∥Q1/2B(τ)∥2 ≤ c2 G(τ), (D.14)

for some absolute constants c1, c2.

Step 3. (Comparing with the ideal trajectory). The “ideal” evolution keeps only the base drift:

wideal(T2 + τ) := w⋆ + e−8Qτ (w(T2)− w⋆) = w⋆ + e−8Qτe(T2),

so that

sideal(T2 + τ) = ∥Q1/2wideal(T2 + τ)∥22, uideal(T2 + τ) = ⟨wideal(T2 + τ), Qw⋆⟩.
Because e−8Qτ is a contraction,

|1− sideal(T2 + τ)| ≤ |δs(T2)| ≤ ε, |1− uideal(T2 + τ)| ≤ |δu(T2)| ≤ ε.

Step 4. (Deviations of s and u). From w(T2 + τ) = A(τ) +B(τ),

s(T2 + τ) = ∥Q1/2(A(τ) +B(τ))∥22 = sideal(T2 + τ) + 2⟨Q1/2wideal(T2 + τ), Q1/2B(τ)⟩+ ∥Q1/2B(τ)∥22,
u(T2 + τ) = ⟨A(τ) +B(τ), Qw⋆⟩ = uideal(T2 + τ) + ⟨B(τ), Qw⋆⟩.
Hence,

|δs(T2 + τ)| ≤ ε+ 2 ∥Q1/2B(τ)∥2 + ∥Q1/2B(τ)∥22, (D.15)
|δu(T2 + τ)| ≤ ε+ ∥B(τ)∥2 ∥Qw⋆∥2 ≤ ε+ c3 G(τ), (D.16)

using (D.14).

Step 5. Combining (D.15)–(D.16) and the definition of G(τ) gives

G(τ) ≤ 2ε+ aG(τ) + bG(τ)2, a := 2c2 + c3, b := c22.

Fix M ≥ 3 and set ε0 := min
{
(M − 2)/(2aM), (M − 2)/(2bM2)

}
. If ε ≤ ε0, define τ⋆ :=

sup{τ : G(τ) ≤ Mε}. Then on [0, τ⋆],

G(τ) ≤ 2ε+ aMε+ bM2ε2 ≤ Mε.

By continuity, τ⋆ = ∞, so G(τ) ≤ Mε for all τ . Setting C := M gives

|δs(T2 + τ)|+ |δu(T2 + τ)| ≤ C ε, ∀τ ≥ 0.

Let τ = t− T2(ε) and set

MSEfull(T2 + τ) :=
1

d
∥e(T2 + τ)∥22, MSEideal(T2 + τ) :=

1

d

d∑
i=1

ei(T2)
2 e−16λiτ .

Define ∆e(τ) := efull(T2 + τ) − eideal(T2 + τ). Subtracting the full and ideal flows yields, for
τ ≥ 0,

∆e(τ) =

∫ τ

0

e−8Q(τ−s)
(
−12 δs(T2+s)Q

(
eideal(T2+s)+∆e(s)

)
+
(
8δu−12δs

)
(T2+s)Qw⋆

)
ds.

(D.17)
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Theorem 5. Assume (D.10) holds. There exist absolute constants A,B,C < ∞ such that, for all
τ ≥ 0,∣∣∣MSEfull(T2 + τ)−MSEideal(T2 + τ)

∣∣∣ ≤ Aε
(
MSEideal(T2)−MSEideal(T2 + τ)

)
+ B ε2

1

d

d∑
i=1

(
1− e−8λiτ

)2
(w⋆

i )
2 + C εF (τ),

(D.18)

where F (τ) := sup0≤s≤τ ∥∆e(s)∥2/
√
d. In particular, if ε ≤ ε0 is small enough so that Cε ≤ 1

2 ,
then the feedback term can be absorbed to give∣∣∣MSEfull(T2 + τ)−MSEideal(T2 + τ)

∣∣∣ ≤ A

1− Cε
ε
(
MSEideal(T2)−MSEideal(T2 + τ)

)
(D.19)

+
B

1− Cε
ε2

1

d

d∑
i=1

(
1− e−8λiτ

)2
(w⋆

i )
2, (D.20)

and, e.g., for ε ≤ 1/3, (1− Cε)−1 ≤ 2 (after adjusting C if needed).

Proof. (i) Term with Qeideal. Using eideal(T2 + s) = e−8Qs e(T2) and semigroup commutation,∫ τ

0

e−8Q(τ−s)Qeideal(T2 + s) ds = τ e−8Qτ Qe(T2).

Taking inner product with eideal(T2 + τ) = e−8Qτe(T2), dividing by d, and using xe−x ≤ 1− e−x

with x = 16λiτ ,

2

d

〈
eideal(T2+ τ),

∫ τ

0

e−8Q(τ−s)Qeideal(T2+ s) ds
〉

≤ 1

8

(
MSEideal(T2)−MSEideal(T2+ τ)

)
.

Multiplying by |δs| ≤ ε yields the first term in (D.18) with A = 1
8 .

(ii) Teacher–forcing term. Let

T (τ) :=

∫ τ

0

e−8Q(τ−s)
(
8δu − 12δs

)
(T2 + s)Qw⋆ ds, g(s) := 8δu(T2 + s)− 12δs(T2 + s).

Then |g(s)| ≤ 20ε and

Ti(τ) = λiw
⋆
i

∫ τ

0

g(s) e−8λi(τ−s) ds,
∣∣∣ ∫ τ

0

g(s) e−8λi(τ−s) ds
∣∣∣ ≤ 20ε

1− e−8λiτ

8λi
.

Hence
1

d
∥T (τ)∥22 ≤ 25

4
ε2

1

d

d∑
i=1

(
1− e−8λiτ

)2
(w⋆

i )
2,

which yields the second term in (D.18) with B = 25
4 . The bound is saturating: for small τ , one may

use 1− e−8λiτ ≤ 8λiτ to recover the quadratic behavior

1

d
∥T (τ)∥22 ≤ 400 ε2 τ2

1

d

d∑
i=1

λ2
i (w

⋆
i )

2,

whereas for large τ it saturates at O(ε2) · 1
d

∑
i(w

⋆
i )

2.

(iii) Self–interaction term. Write

S(τ) :=
∫ τ

0

e−8Q(τ−s)
(
− 12 δs(T2 + s)

)
Q∆e(s) ds.

For each coordinate i,

Si(τ) = −12

∫ τ

0

λie
−8λi(τ−s) δs(T2 + s)∆ei(s) ds.
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Using |δs| ≤ ε and the uniform L1 bound
∫∞
0

λie
−8λiu du = 1

8 , Young’s inequality gives
∥S(τ)∥2√

d
≤ 3

2
ε sup

0≤s≤τ

∥∆e(s)∥2√
d

.

Thus the self–interaction contributes a linear feedback term CεF (τ) in (D.18) with C = 3
2 . Ab-

sorbing this term to the left yields (D.19) whenever Cε < 1.

Corollary 4. Under (D.10) and for ε ≤ ε0 small enough,∣∣∣MSEfull(T2+τ)−MSEideal(T2+τ)
∣∣∣ ≤ C1 ε

(
MSEideal(T2)−MSEideal(T2+τ)

)
+ C2

ε2

d
s
(2)
⋆ .

In particular, for each fixed τ the difference is O(ε) relative to the drop of the ideal MSE from T2 to
T2 + τ , plus a negligible O(ε2/d) additive term.

E ADDITIONAL NUMERICAL EXPERIMENTS

E.1 APPROXIMATION ẇi(t) ≈ 8λi(w
⋆
i − wi(t)).

We empirically confirm the approximation used for the Phase III analysis. In Figure 4 we com-
pare the MSE of the population dynamic with the one predicted with the approximation ẇi(t) ≈
8λi(w

⋆
i − wi(t)) where T2 is chosen such that u(T2) = 0.7.

Figure 4: Comparison between MSE obtained from the population dynamic (emp.), and the approx-
imated one used to derive scaling law (th.) (log-log scale). Parameters: d = 1000, η = 0.008, T =
106.

E.2 INFLUENCE OF THE EXPONENT a IN THE DYNAMICS

To illustrate how the spectral profile affects convergence, we report in Figure 5 the trajectories of
the key summary statistics u(t), s(t), and the MSE for different exponent parameter a values. We
fixed d = 1000, the learning rate η = 0.01, and the number of iterations T = 107.

As the spectral decay parameter a increases, the system escapes the mediocrity regime earlier, but
the overall convergence slows down. The reason is that for large a only a few directions carry most
of the signal (those with large eigenvalues), so learning them is enough to trigger rapid macroscopic
alignment. However, achieving full convergence requires capturing the weaker directions in the
spectral tail, which become increasingly difficult to learn as a grows.
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(a) a = 0 (b) a = 0.5

(c) a = 1.5 (d) a = 2.0

Figure 5: Dynamics for different values of the spectral decay parameter a.

E.3 ONLINE SGD

In the main text, we focused on the gradient flow to highlight the phase decomposition. Here, we
complement the analysis with simulations of online SGD, see Figure 6. We track the trajectories of
the key order parameters when training with a small learning rate and without mini-batching. We
used the same parameters as in the previous section, but used empirical gradient and added noise
εt ∼ N (0, 0.05).

(a) a = 0.5 (b) a = 1 (c) a = 1.5

Figure 6: Dynamics of online SGD for different a.

Compared to gradient flow, online SGD exhibits the same qualitative phases, but with additional
noise. This suggests that our theoretical scaling laws are robust to stochastic perturbations intro-
duced by SGD. Moreover, the magnitude of fluctuations increases with the spectral decay parameter
a. Intuitively, when a is large, only a few top directions dominate the signal, so SGD updates
concentrate heavily along these directions, amplifying variance and making the trajectory noisier.

E.4 RATE OF CONVERGENCE OF u(t)

In Figure 7 we plot log(1− u(t)) as a function of log t for a = 1, 1.5 and 4 for inputs in dimension
d = 500, 2000 and 5000.

We observe that the ambient dimension d only starts to affect the dynamics once 1−u(t) has already
become small: larger d makes it harder to learn directions associated with the smallest eigenvalues.
Moreover, increasing a extends the initial phase where d plays essentially no role, since learning is
then dominated by the leading entries of the spectrum.
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(a) a = 1.5 (b) a = 2 (c) a = 4

Figure 7: Convergence rate of 1− u(t) for different a and d (log-log scale).
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