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Abstract
Multi-view clustering has gained significant at-
tention for integrating multi-view information in
multimedia applications. With the growing com-
plexity of graph data, multi-view graph clustering
(MVGC) has become increasingly important. Ex-
isting methods primarily use Graph Neural Net-
works (GNNs) to encode structural and feature in-
formation, but applying GNNs within contrastive
learning poses specific challenges, such as inte-
grating graph data with node features and han-
dling both homophilic and heterophilic graphs.
To address these challenges, this paper introduces
Node-Guided Contrastive Encoding (NGCE), a
novel MVGC approach that leverages node fea-
tures to guide embedding generation. NGCE en-
hances compatibility with GNN filtering, effec-
tively integrates homophilic and heterophilic in-
formation, and strengthens contrastive learning
across views. Extensive experiments demonstrate
its robust performance on six homophilic and het-
erophilic multi-view benchmark datasets.

1. Introduction
Multi-view clustering (MVC) is an important unsupervised
learning task in the machine learning community (Li et al.,
2014; Xu et al., 2022; Yin et al., 2020; Tan et al., 2023;
Zhang et al., 2023; Liu et al., 2020; Chao et al., 2024; Guo
& Ye, 2019; Zhang et al., 2024; Liu et al., 2019; Wu et al.,
2020). It is designed to integrate diverse and complemen-
tary information across multiple views for clustering(Ke
et al., 2024; Huang et al., 2021; Ren et al., 2024a; Wu et al.,
2024; Ren et al., 2024b). Recent advances in unsupervised
learning for graph data have increasingly emphasized the
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distinction between the data associated with the ego node
and that of its edges, which delineate relationships with
neighboring nodes (Tang et al., 2022; Xiao et al., 2022;
Chen et al., 2022). However, some methods overly em-
phasize edge and neighborhood data, often neglecting the
intrinsic information of the ego node. This imbalance has
led to suboptimal performance on certain datasets, some-
times even underperforming compared to Multi-Layer Per-
ceptrons (MLPs) (Tang et al., 2022; Xiao et al., 2022). On
the other hand, some approaches rely heavily on the ego
node’s attributes to maintain model performance after multi-
ple layers of processing in Graph Neural Networks (GNNs).
While this preserves some robustness, it limits the ability
to leverage contextual information from neighboring nodes,
leading to subpar results on specific datasets (Chen et al.,
2022).

In the realm of graph contrastive learning for multi-view
graph clustering (MVGC), capturing node differences and
diversity within graphs plays a crucial role in designing
effective contrastive learning methodologies (Hassani &
Khasahmadi, 2020). Traditional approaches have largely re-
lied on the homophily assumption (McPherson et al., 2001),
but more recent studies have begun to explore the effective-
ness of these methods in the context of heterophilic graphs.
For example, COMPLETER (Contrastive Prediction for In-
complete Multi-view Clustering) (Lin et al., 2021) has been
introduced for heterophilic graphs. It integrates reconstruc-
tion, cross-view contrastive learning, and cross-view dual
prediction to simultaneously achieve data recovery and con-
sistency learning for incomplete multi-view data. (Hassani
& Khasahmadi, 2020) proposes contrastive multi-view rep-
resentation learning on graphs (MVGRL) by performing rep-
resentation learning by contrasting two diffusion matrices
transformed from the adjacency matrix. HGRL (Chen et al.,
2022) leverages the preservation of original node features
and the capturing of non-local neighbors to enhance node
representations on heterophilic graphs. GREET (Liu et al.,
2023) distinguishes between homophilic and heterophilic
edges, employing low-pass and high-pass filters to seize the
corresponding information. Building upon generation meth-
ods, DSSL (Xiao et al., 2022) decouples diverse patterns in
local neighborhood distribution to capture both homophilic
and heterophilic information. NWR-GAE (Tang et al.,
2022) underscores the significance of topological structure

1



Multi-View Graph Clustering via Node-Guided Contrastive Encoding

within graphs, reconstructing neighborhoods based on local
structure and features. MUSE (Yuan et al., 2023) innovates
by creating two subviews on the original view, applying an
information fusion controller for view utilization.

However, these methodologies either lack efficacy in het-
erophilic graphs or underperform in homophilic scenarios.
We attribute this limitation to an explicit differentiation
between homophilic and heterophilic information through
decoupling or view reconstruction, or an overemphasis on
one aspect over the other. This leads to an inadequate in-
teraction between homophilic and heterophilic information
during contrastive analysis. A more natural approach would
be to integrate both aspects within a unified representation
framework, raising the key question: How can we encode
both types of information without compromising either?

Our approach involves guiding view feature encoding with
node features, followed by adaptive weighting that accounts
for graph homophily and joint information aggregation us-
ing a similarity matrix derived from refined node embed-
dings. Recognizing the strengths of traditional GNNs in
graph structure mining, as well as the challenges posed by
GNN transformations, we propose encoding the original
graph structure with GNNs while integrating node features
to adapt representations for traditional GNNs. This ap-
proach eliminates the need to explicitly distinguish between
homophilic and heterophilic graph components. We begin
by constructing a node correlation matrix and employing
pseudo-labeling to quantify the homophily of the original
adjacency matrix, thereby allocating weights to selectively
preserve original structural information. Additionally, we
introduce a random mask to the original node feature in-
formation, generating an additively noisy feature matrix.
Subsequently, we leverage GNNs’ message passing and
neighborhood aggregation mechanisms to recover the noisy
features, with a contrastive loss applied between the re-
covered and original feature representations. Finally, we
utilize inter-view contrastive learning to foster complemen-
tary learning across views. The main contributions of this
paper can be summarized as follows.

• We propose NGCE, a novel contrastive learning model
for homophilic and heterophilic graphs. To the best of
our knowledge, NGCE is the first graph contrastive
learning method guided by the principle that ho-
mophilic and heterophilic information in graph data
should not be isolated, but rather processed within a
unified node-guided framework to preserve its interac-
tive essence in MVGC.

• We develop an effective joint process for MVGC that
integrates several key components: an edge and node
embedding similarity matrix sensitive to graph ho-
mophily, a contrastive learning-guided graph encoding
mechanism driven by the recovery of noise-enhanced

node features, and a contrastive fusion mechanism
across views. Together, these elements form a compre-
hensive process for node-guided multi-view co-coding.

• We conduct extensive experiments on six homophilic
and heterophilic benchmark datasets to evaluate the
performance of NGCE. Our results show that the pro-
posed NGCE adeptly accommodates both homophilic
and heterophilic datasets within the multi-view graph
clustering domain, achieving state-of-the-art perfor-
mance metrics.

2. Related Work
2.1. Multi-View Graph Clustering

With the rapid progress of GNNs, there has been a growing
interest among researchers in leveraging graph structural
information for multi-view clustering (MVGC). By combin-
ing with graph convolutional encoders, MVGC aims to learn
the graph’s underlying semantic information and divide the
nodes into different clusters. In recent years, a plethora of
methods addressing MVGC have surfaced. O2MAC (Fan
et al., 2020) can be credited as a pioneer in applying GNNs
to MVGC. Their approach involves encoding multi-view
graphs into a lower-dimensional space using a single-view
graph convolutional encoder and a multi-view graph struc-
ture decoder. Building on this foundation, (Cheng et al.,
2020) introduces a novel design of two-pathway graph en-
coders, facilitating the mapping of graph embedding fea-
tures and the acquisition of view-consistent information.
Meanwhile, (Hassani & Khasahmadi, 2020) proposes an in-
novative GNN-based solution specifically tailored for multi-
view self-supervised learning, aiming to acquire both node
and graph-level representations. In a similar vein, (Pan
& Kang, 2021) applies contrastive learning techniques to
unearth shared geometric and semantic patterns, enhanc-
ing the learning of a consensus graph. (Xia et al., 2022b)
takes a systematic approach, exploring cluster structures
through a graph convolutional encoder trained to learn the
self-expression coefficient matrix. However, a common
challenge across these methods lies in their high sensitivity
to the homophily of graphs. In other words, when these
models are applied to graphs exhibiting strong heterophily,
their effectiveness may fall short of expectations.

2.2. Contrastive Learning

Contrastive learning has garnered considerable attention in
the realm of unsupervised learning, showcasing remarkable
performance across a multitude of tasks, particularly on
images (Hjelm et al., 2018; Chen et al., 2020b; Grill et al.,
2020; Zbontar et al., 2021; Zhong et al., 2021; Yang et al.,
2024) and graphs (Velickovic et al., 2019; You et al., 2020;
Zhu et al., 2020; Xia et al., 2022a; Bielak et al., 2022; Hu
et al., 2021). The underlying principle involves maximizing
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the similarity among positive pairs while minimizing the
distance between negative pairs, as outlined by (Hadsell
et al., 2006). In general, positive pairs consist of augmented
versions of the same instance, while pairs involving differ-
ent instances are considered negatives. Various loss func-
tions have been introduced for this purpose, including the
triplet loss (Chopra et al., 2005), noise contrastive estima-
tion (NCE) loss (Gutmann & Hyvärinen, 2010), and normal-
ized temperature-scaled cross-entropy loss (NT-Xent) (Chen
et al., 2020a). Presently, numerous research endeavors lever-
age contrastive learning methods in the realm of clustering
tasks, significantly contributing to the progress of clustering
and unsupervised representation learning. (Zhong et al.,
2020) suggests converting the maximization of mutual in-
formation into minimizing contrast loss, resulting in notable
enhancements when applying contrast learning to diminish
within-class variability. However, it fails to accommodate
the prevalent graph data. (Hassani & Khasahmadi, 2020)
proposes contrastive multi-view representation learning on
graphs (MVGRL) by performing representation learning
by contrasting two diffusion matrices transformed from the
adjacency matrix. However, it relies heavily on data aug-
mentation techniques and primarily utilizes graph structure
information, specifically the adjacency matrix. We lever-
age node feature information to guide graph-contrastive en-
coding, thereby obtaining enhanced graph representations,
harmonizing homophilic and heterophilic information in
MVGC, and preserving their interactive essence.

3. Method
As shown in Fig. 1, the proposed approach consists of two
components: i) Node-Guided Contrastive Encoding Mod-
ule: This module introduces an innovative encoding strategy
that achieves graph joint encoding across different views,
guided by the node’s original features. This approach com-
prises two key modules: an adaptive weighted sum based
on similarity graphs and contrastive learning, implemented
after reconstructing node features through GNN under the
influence of additive noise. The former is tailored to inte-
grate node features into the joint encoding output adaptively,
whereas the latter aims to guide the encoding process by
enabling the joint encoding to exhibit restorative proper-
ties that are based on the noise-augmented original node
features. This process is designed to ensure that the in-
tegrity of homophilic and heterophilic information exchange
within the graph data is preserved, thereby yielding a univer-
sally applicable output encoding; ii) Cross-View Contrast
Module: To enhance the learning of view consistency and
complementarity, we adapt the centroids of clusters and
the k-nearest neighbor samples as additional positive and
negative samples, respectively, significantly improving the
efficacy of view integration.

3.1. Node-Guided Contrastive Encoding Module

3.1.1. GRAPH JOINT PROCESS

To enhance the proposed framework’s capability for effec-
tive neighborhood integration, it is critical to ensure that
a substantial portion of nodes adjacent to the encoded em-
beddings share the same class as the node in focus since
the original node features will be unavailable for later pro-
cessing. Considering that nodes within the same category
have comparable feature vectors due to identical labels, our
methodology prioritizes exploiting this feature similarity for
joint graph encoding that combines edge and node relation-
ships.

Initially, we employ autoencoders to distill and refine the
feature vectors of nodes within the graph:

Zn = fn(σ(X; θn)), (1)

Xn
pred = gn(σ(Zn;φn)), (2)

where, for the n-th view, Zn refers to the node embeddings,
θn and φn refers to the encoder and decoder’s learnable
parameters that are unshared, respectively, X refers to the
original node features, while σ(·) refers to the activation
function.

Subsequently, to uncover node correlations, we evaluate
the cosine similarity between node features, leading to the
formulation of the correlation matrix Sn for the n-th view:

Sn = Sim(Zn,ZnT), (3)

where the function Sim(·, ·) refers to cosine similarity in
vector space.

Using Sn as the basis for encoding the graph does improve
its homophily to some extent. However, focusing solely on
node features while ignoring the inherent structural aspects
of the graph may not optimally serve the encoding goals.
Therefore, we argue for a strategic inclusion of the struc-
tural nuances of the original graph in our encoding efforts
to ensure an increased level of homophily. Considering that
the higher homophily degree indicates that the similarity
information on the graph is dominant, and vice versa for
the dissimilarity information, this involves the development
of an adaptive graph encoding strategy where we aim to
evaluate and weigh the degree of homophily of the original
graph. Naturally, we utilize the homophily degree to assign
weights to Ân and Sn. However, the homophily degree of a
given graph is difficult to measure due to the lack of true la-
bels in the unsupervised scenario. Thus, we propose to learn
the pseudo-label information (Arazo et al., 2020) using the
consensus embedding H of Eq. (12) of the last iteration, and
use the pseudo-label information and adjacency relationship
information to approximate the homophily weight ωn for
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Figure 1. The illustration of NGCE graph clustering framework. The inputs to each view are the node feature matrix X and the adjacency
matrix A of views. The output of the framework is the consensus embedding H, after which H is used as input for K-means clustering.
Dashed arrows represent the backward propagation.

the n-th view:

ωn =

∑
i,j(A

n
i,j ⊙ ȲiȲ

T
j − Ii,j)∑

i,j(A
n
i,j − Ii,j)

, (4)

where, ωn refers to the weight reflective of the homophily
degree from the preceding iteration, with ⊙ indicating the
Hadamard product. Ȳ ∈ {0, 1}N×c representing the one-
hot encoded pseudo labels from the clustering of the consen-
sus embedding H, where N refers to the number of nodes
and c refers to the number of clusters. I refers to the identity
matrix.

Ultimately, this leads to graph joint encoded embeddings
that integrate both the homophily assessment and the origi-
nal structural framework:

Ân = Sn + ωnAn, (5)

In order to guide the autoencoder fn(·), we apply recon-
struction loss on Xn

pred and X as follows:

Ln
Rec = l(gn(Xn

pred;X)

= l(gn(σ(fn(σ(X; θn));φn));X),
(6)

where l(·; ·) denotes loss function.

3.1.2. NODE-GUIDED CONTRASTIVE ENCODING

Furthermore, we design the node-guided optimization pro-
cess, aiming to harness the true features of nodes to steer
the encoding phase within the joint process. Inspired by the
Denoising Autoencoder (DAE) (Vincent et al., 2008) and
GraphMAE (Hou et al., 2022), we replaced the encoder
and decoder in DAE with parameter-free GNNs. In this
adaptation, node features are treated as denoising coding
objects, which facilitates the training of the node-guided
graph embedding Â. In this process, Â works analogous to
the parameters of the encoder and decoder.

More precisely, we actively encourage the post-encoding
aggregation procedure, guided by the encoded graph, to
exhibit restorative capabilities towards the original features
after noise is masked. This strategy, as substantiated by sub-
sequent experimental validations, proves to be compatible
with both homophilic and heterophilic graph data. Through
such a design, we not only maintain the interaction between
homophilic and heterophilic information within the graph
data but also guide an effective excavation of this infor-
mation. This methodology underscores the importance of
preserving the intrinsic data structure while facilitating a
nuanced representation of the graph data, accommodating
both similarity and diversity within the graph structure.
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We first add a random mask as noise to the original matrix X
of node features. In practice, we randomly drop some node
features in the graph with a probability of pc by adding a
random mask as noise to the original matrix X. Specifically,
we sample a binary masking matrix E ∈ {0, 1}N×d from
the Bernoulli distribution with a probability of (1− pc), i.e.,
eij ∼ Bernoulli (1− pc), i, j ∈ {1, · · · , N}, and perform
element-wise multiplication with the node features matrix:

X̃ = X⊙E, (7)

where ⊙ denotes the Hadamard product, X represents the
original node features and X̃ refers to the node features with
random mask (noisy features).

Then, we utilize GCN’s neighborhood aggregation mecha-
nism to recover the feature information following the addi-
tion of noise, which can be represented from X → X̃ →
X

n
, where X

n
= GCN(Ân, X̃) refers to the node features

recovered by the aggregation mechanism of parameter-free
GCN: X

n
= GCN(Ân, X̃), which can be formulated as:

H(0) = X̃,

H(l+1) = σ

(
D− 1

2 ÂD− 1
2H(l)

)
+ X̃,

(8)

where H(l) refers to the output of l-th layer while D refers
to the degree matrix of Â. Residual connections have been
integrated to avoid potential gradient problems. The depth
of our GCN is defined in terms of order, which is set as a
fixed hyperparameter in our framework. We force the n-th
view’s recovered node features matrix X

n
to be equal to the

original node features X as formulated:

Ln
C1 =

1

N2

∑
(X

n −X)2 =
1

N2

∑
i

∑
j

(X
n

ij −Xij)
2

=
1

N2

∑
i

∑
j

((X
n

ij − X̃ij)− (Xij − X̃ij))
2

=
1

N2
(
∑
i

∑
j

I1ij(X
n

ij − X̃ij)
2

+
∑
i

∑
j

I0ij(X
n

ij −Xij)
2),

(9)
where, the I0ij and I1ij functions work as indicators, with the
former being 1 when Eij = 1 and 0 otherwise, and the latter
vice versa. Specifically, in Eq. (9), the first term minimizes
the agreement between the reconstructed node features and
the features of the masked nodes in the encoder graph, since
there is no valid information correlation in these nodes;
the second term drives the GCN with graph joint encoding
embeddings to retain critical unmasked node information.

In other words, given the variation component as X
n

ij−X̃ij ,

we can reformulate the loss function such that:

Ln
C1 =

1

N2
(
∑
i

∑
j

I1ij(X
n

ij − X̃ij)
2

+
∑
i

∑
j

I0ij((X
n

ij − X̃ij)−Xij)
2),

(10)

where the first term minimizes the change in features when
node features are preserved, while the second term forces
nodes to conform to their original features when node fea-
tures are not preserved, essentially establishing an adaptive
mechanism for selecting positive and negative samples. This
involves selecting unpreserved features as positive samples
and the variation component of preserved features them-
selves as negative samples.

For the n-th view, considering the dimensionality of node-
guided graph embedding Ân is excessively large for cross-
view fusion processes, we employ parameter-free GCNs
once as a dimensionality reduction mechanism. This pro-
cess results in compressed representations hn that are di-
mensionally aligned with node features Zn:

hn = GCN(Ân,Zn), (11)

we obtain node-guided joint embeddings hn for the n-th
view.

3.2. Cross-View Contrast Module

In the context of multi-view tasks, it is acknowledged that
distinct views offer varying levels of information, charac-
terized by both consistency and complementarity (Jia et al.,
2020; Wu et al., 2019). Initially, we obtain node-guided
embeddings hn for n-th view. To optimally leverage this
diverse yet complementary information across views, our
approach aims to synthesize a consensus embedding rich
in information by amalgamating the node-guided joint em-
beddings hn from each individual view (Jia et al., 2022).
Acknowledging the differential informational value across
views necessitates the implementation of a weighting mech-
anism, predicated on an assessment of each view’s infor-
mational quality. This approach is designed to ensure that
contributions from various views to the overarching con-
sensus embedding are proportionate to their evaluated sig-
nificance. In essence, a view’s embedding that exhibits a
high degree of similarity to the consensus embedding H is
deemed to possess significant information, thereby warrant-
ing a higher weight allocation, and the inverse applies for
lesser similarity. The consensus embedding H is derived as
follows:

H =

V∑
n=1

ωn
hh

n, (12)

where ωn
h represents the weight allocated to the node-guided
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joint embeddings of the n-th view, determined through:

ωn
h = (

evan

max (eva1, eva2, · · · , evaV )
)ρ. (13)

This weight, ωn
h, is deduced from an evaluation function

designed to measure the congruence between the consen-
sus embedding H and each view’s embedding hn, i.e.,
evan = evaluation(hn,H). The hyperparameter ρ fa-
cilitates the modulation of view weights, either enhancing
or diminishing their impact. To culminate, the consensus
embedding H undergoes k-means clustering to ascertain
the clustering outcomes.

Inspired by the methodologies outlined in (Yuan et al., 2023;
Hassani & Khasahmadi, 2020), we refine the joint node rep-
resentation H by integrating a contrastive loss component.
This component aims to further enhance the learning of
view complementarity reflected in H. We employ a vari-
ant of NT-Xent loss (Chen et al., 2020a) as our contrastive
learning loss function. Crucially, for an embedding hi of
node i within the consensus embedding H, we select the
embeddings of its Nknn nearest neighbor nodes within H
as positive samples. For the selection of negative samples,
we adopt a method inspired by that described in (Chao
et al., 2024). Specifically, after a predetermined number of
training epochs, once the cluster centers are considered suf-
ficiently stable to represent high-confidence and disparate
class prototypes, we opt for representations from cluster
centers of different classes (Ck where k ̸= ci), which are
identified from H in the previous iteration and represent
high-confidence, disparate class prototypes. This process
can be formulated as follows:

LC2 =−A1[t≥T1]

N∑
i=1

log

(
Nknn∑
m=1

eS(hi,pi,m)
/

(Nknn∑
m=1

eS(hi,pi,m) +

c∑
k=1

1[k ̸=ci]e
S(hi,Ck)

))
,

(14)
where hi refers to the feature of node i within the consensus
embedding H. pi,m refers to the feature representation of
the m-th nearest neighbor of node i, drawn from P (hi),
which denotes the set of Nknn nearest neighbors of hi in H.
Nknn indicates the number of nearest neighbors selected,
which is fixed at 20 in our implementation. S(·, ·) denotes
the cosine similarity function. N refers to the total number
of nodes, while c represents the total number of clusters. A
denotes the loss coefficient, and we have empirically set its
value to 1

N(c−1) based on experimental results. The indica-
tor function 1[·] yields a value of 1 if the condition specified
in [·] is met, and 0 otherwise. Herein, t denotes the cur-
rent training epoch and T1 is a predefined hyperparameter;
this loss component is thereby activated only when t ≥ T1.
Ck represents the cluster center for the k-th class, and ci

Datasets Clusters Nodes Features Graphs (hr)

ACM 3 3025 1870 G1(0.82),G2(0.64)
DBLP 4 4057 334 G1(0.80),G2(0.67),G3(0.32)
IMDB 3 4780 1232 G1(0.48),G2(0.62),G3(0.40)

Texas 5 183 1703 G1(0.09),G2(0.09)
Chameleon 5 2277 2325 G1(0.23),G2(0.23)
Wisconsin 5 251 1703 G1(0.19),G2(0.19)

Table 1. The statistics information of the six graph datasets. (hr)
refers to the homophily rate calculated by true labels.

indicates the class assigned to node i. Both Ck and ci are
derived from the k-means clustering result applied to H
from a previous iteration.

3.3. Model Optimization

Learning from previous deep clustering studies (Ren et al.,
2025), we design the overall optimization objective for
NGCE, which can be formulated as:

Ltotal = LC + LRec

=

V∑
n=1

Ln
C1 + Ln

C2 + Ln
Rec.

(15)

Ltotal can be divided into two main sections: unsupervised
node embedding learning and contrastive learning. The
unsupervised node embedding learning component LRec

drives the optimization of refined node features Z. The
contrastive learning component LC includes the loss func-
tions LC1 and LC2. In the former, we apply noisy masks
as perturbations to node features to drive the optimization
of node-guided graph embedding Â, while in the latter, we
utilize contrastive learning based on cluster centroids to op-
timize cross-view consensus embedding H. For the sake of
cross-dataset robustness and simplicity in hyperparameter
tuning, we omitted the weight of the loss term.

4. Experiments
4.1. Experimental Setup

4.1.1. DATASETS.

We used six MVG datasets. The homophilous graph datasets
include: ACM (Fan et al., 2020), DBLP (Fan et al., 2020)
and IMDB (Fan et al., 2020). The heterophilous graph
datasets include: Texas, Chameleon (Rozemberczki et al.,
2021) and Wisconsin (Pei et al., 2020). In the appendix, we
provide details and sources of the datasets.

Table 1 summarizes the statistics of these six datasets. The
top half of the table shows the statistics information for the
homophilous graph datasets and the bottom half shows the
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Methods ACM (hr 0.82 & 0.64) DBLP (hr 0.80 & 0.67 & 0.32) IMDB (hr 0.48 & 0.62 & 0.40)
NMI% ARI% ACC% F1% NMI% ARI% ACC% F1% NMI% ARI% ACC% F1%

VGAE (2016) 49.1 54.4 82.2 82.3 69.3 74.1 88.6 87.4 0.4 0.9 44.2 35.7
DAEGC (2019) 63.8 70.1 89.0 88.9 30.8 33.4 66.5 65.6 0.6 1.0 37.9 35.3
AGE (2020) 73.5 78.9 92.4 92.4 45.0 47.6 75.3 74.6 4.4 4.6 43.2 42.2
O2MAC (2020) 69.2 73.9 90.4 90.5 72.9 77.8 90.7 90.1 0.3 0.2 40.2 35.4
MvAGC (2020) 67.4 72.1 89.8 89.9 77.2 82.8 92.8 92.3 1.3 -1.8 48.5 28.2
AGCN (2021) 68.4 74.2 90.6 90.6 39.7 42.5 73.3 72.8 0.3 1.4 54.5 31.1
MCGC (2021) 71.3 76.3 91.5 91.6 83.0 77.5 93.0 92.5 5.2 10.3 58.3 38.8
DCRN (2022) 71.6 77.6 91.9 91.9 49.0 53.6 79.7 79.3 0.2 0.1 53.4 25.5
DuaLGR (2023) 73.2 79.4 92.7 92.7 75.5 81.7 92.4 91.8 6.2 12.5 52.0 44.7
CMGEC (2023) 69.1 72.3 90.9 90.7 72.4 78.6 91.0 90.4 5.1 4.7 48.4 51.0
BMGC (2024) 78.4 83.3 94.1 94.2 80.1 85.4 94.0 93.6 5.5 4.9 44.1 40.7
SMVC (2024) 72.4 78.0 92.3 92.0 76.1 81.6 92.4 92.0 8.0 7.2 41.3 37.2
VGMGC (2025) 76.3 81.9 93.6 93.6 78.3 83.7 93.2 92.7 0.8 3.2 52.6 32.8
NGCE (ours) 80.5 85.0 94.7 94.8 79.1 84.0 93.3 92.8 5.6 12.7 54.6 43.4

Table 2. The results of clustering on homophilous graph datasets. We express all evaluative metrics as percentages. The best and runner-up
results are highlighted with bold and underline, respectively.

Methods Texas (hr 0.09 & 0.09) Chameleon (hr 0.23 & 0.23) Wisconsin (hr 0.19 & 0.19)
NMI% ARI% ACC% F1% NMI% ARI% ACC% F1% NMI% ARI% ACC% F1%

VGAE (2016) 12.7 21.7 55.3 29.5 15.1 12.4 35.4 29.6 10.5 13.7 49.3 34.1
DAEGC (2019) 6.4 2.6 31.7 25.0 9.1 5.6 32.2 31.2 10.6 3.4 32.7 28.3
AGE (2020) 7.5 7.3 36.6 36.6 8.6 7.6 32.4 32.4 9.3 1.3 31.1 31.1
O2MAC (2020) 8.7 14.6 46.7 29.1 12.3 8.9 33.5 28.6 11.0 8.9 40.0 27.9
MvAGC (2020) 5.4 1.1 54.3 19.8 10.8 3.3 29.2 24.3 8.1 4.8 47.7 20.6
AGCN (2021) 15.4 18.1 61.8 43.0 6.7 6.1 32.5 20.4 6.4 6.8 49.8 24.9
MCGC (2021) 12.7 12.9 51.9 32.5 9.5 5.9 30.0 19.1 12.9 5.9 51.8 30.7
DCRN (2022) 10.7 15.1 55.2 27.6 8.7 5.7 30.9 21.9 10.8 16.0 50.2 34.1
DuaLGR (2023) 32.6 26.0 54.3 46.4 19.5 16.0 41.1 37.7 34.1 28.8 56.4 47.1
BMGC (2024) 29.1 15.8 42.5 38.3 9.4 5.9 30.8 30.7 34.0 24.3 51.5 40.8
VGMGC (2025) 35.4 26.0 55.2 46.9 22.4 13.4 40.1 39.5 41.6 34.8 56.6 49.6
NGCE (ours) 47.8 54.9 77.6 46.2 22.6 19.3 42.2 38.4 46.8 46.4 73.7 47.2

Table 3. The results of clustering on heterophilous graph datasets. We express all evaluative metrics as percentages. The best and runner-up
results are highlighted in bold and underlined, respectively.

statistics information for the heterophilous graph datasets.

4.1.2. BASELINES.

Several baselines are replicated for comparison with our
model. VGAE (Kipf & Welling, 2016) is a classical single-
view clustering method. O2MAC (Fan et al., 2020) is the
method that learns from both node features and graphs.
MvAGC (Lin & Kang, 2021) and MCGC (Pan & Kang,
2021) are two methods based on graph filters to learn a
consensus graph for clustering. DualGR (Ling et al., 2023)
leverages soft-label and pseudo-label to guide the graph re-
finement and fusion process for clustering. CMGEC (Wang
et al., 2023) utilizes a multi-graph attention fusion encoder
with multi-view mutual information maximization mod-

ule, aiming to encode more complementary information
from multiple views and depict data more comprehensively.
BMGC (Shen et al., 2024) addresses view imbalance in
multi-relational graphs by proposing unsupervised domi-
nant view mining and dual signals guided representation
learning. SMVC (Chen et al., 2024) is a structural deep
multi-view clustering method that integrates top-level ab-
straction with underlying details to jointly optimize cluster
assignments and feature embeddings. VGMGC (Chen et al.,
2025) introduces a variational graph generator to infer a reli-
able consensus graph from multiple graphs, aiming to better
utilize both view-specific and view-common information for
multiview graph clustering. For all baselines, we use results
reported in the original papers or conduct experiments with
their default parameters setting.
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Methods ACM (hr 0.82 & 0.64) Chameleon (hr 0.23 & 0.23)
NMI% ARI% ACC% F1% NMI% ARI% ACC% F1%

NGCE (w/o LRec) 62.4 65.9 86.8 86.9 15.5 11.6 33.0 27.7
NGCE (w/o LC) 75.6 81.3 92.1 92.2 20.4 17.5 39.9 35.9
NGCE (w/o LC1) 79.4 83.9 93.7 93.7 20.7 17.5 40.2 36.4
NGCE (w/o LC2) 77.6 83.1 93.4 93.5 21.4 18.7 41.3 37.2

NGCE (w/o Â) 61.6 67.6 80.5 81.3 10.1 6.6 27.1 20.3
NGCE (w/o Z) 68.3 71.4 89.8 90.9 17.1 15.6 35.1 31.3

NGCE 80.5 85.0 94.7 94.8 22.6 19.3 42.2 38.4

Table 4. The ablation study results of NGCE on ACM and Chameleon. The original results are shown in bold. w/o Â denotes the
replacement of joint process with adjacency matrix A, w/o Z denotes the replacement of refined node features Z with an affinity matrix
built directly form original node features.
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Figure 2. Parameter sensitivity analysis for order in homophilic
graph dataset ACM and heterophilic graph dataset Chameleon.

4.2. Overall Results

Tables 2 and 3 present the results of all compared meth-
ods on homophilous and heterophilous graph datasets, from
which we have the following observations. The experimen-
tal results on the homophilous graph dataset ACM demon-
strate that NGCE is highly competitive with the state-of-the-
art models, with significant improvements in all evaluative
metrics. Moreover, NGCE outperforms other baselines
on heterophilous graph datasets, i.e., Chameleon and Wis-
consin, which are typically challenging for most models.
Our model performs better than the baselines in most of the
evaluation metrics.

4.3. Ablation Studies and Analysis

4.3.1. EFFECT OF EACH LOSS.

To understand the importance of the unsupervised node em-
beddings learning and contrastive learning, we removed
reconstruction loss LRec of the autoencoder and the con-
trastive learning loss LC for the proposed NGCE. Further-
more, for the contrastive learning loss LC , ablation study
were also separately carried out on its components LC1 and
LC2. We removed each loss in homophilic graph dataset
ACM and heterophilic graph dataset Chameleon, respec-
tively, to observe the changes in performance. The experi-
mental results are shown in Table 4. As can be seen, LRec

and LC dominate the total losses in terms of their impact
on model performance. To be more precise, the effects
of LC1 and LC2 on the performance metrics of the model
are remarkably similar. Implementing these components
resulted in an increase in ACC of 1.0% and 1.3% on the
ACM dataset and 2.0% and 1.0% on the Chameleon dataset.
Furthermore, in comparison, LRec has a more significant
impact on the performance metrics than LC , with the ap-
plication of these losses leading to an increase in ACC of
7.9% and 2.6% on the ACM dataset, and 9.1% and 2.2%
on the Chameleon dataset, respectively. Through ablation
studies, we have validated the effectiveness of LC1 and LC2

within the contrastive learning loss LC . This confirms the
efficacy of our dual contrastive learning designs: contrast-
ing the noised node features processed by GCN with their
original node features, and cross-view node-guided joint
embeddings comparisons. These results demonstrate the
effectiveness of including specific contrasting elements to
improve the model’s ability to generate strong and meaning-
ful embeddings, utilizing both intra-view effectiveness and
inter-view complementarity.

4.3.2. EFFECT OF EACH COMPONENT.

Since our model is based on the notion of node-guided graph
encoding and consensus embedding encoding, the fusion of
graph in joint process and node representation, along with
the refinement of node features, is a critical component of
NGCE. We conducted ablation studies to evaluate their im-
pact on the performance of NGCE, where we replace graph
joint encoded embeddings Â with adjacency matrix A, re-
fined node features Z with affinity matrix based on original
features X, the results are detailed in Table 4. The results
highlight that omitting either joint processing or node fea-
ture refinement significantly degrades model performance.
Specifically, compared to the baseline model, the ablation
experiments on the ACM dataset resulted in a decrease in
ACC of 14.2% and 4.9%; on the Chameleon dataset, there
was a decrease in ACC of 15.1% and 7.1%. Results high-
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light the importance of refining node features, which leads
to a meaningful representation in the node-guided process
and validates the effectiveness of the strategy involving the
weighted sum of the refined representational node similarity
matrix with the original adjacency matrix.

4.3.3. PARAMETER SENSITIVITY ANALYSIS

The sensitivity analysis for order hyperparameter in ho-
mophilic graph dataset ACM and heterophilic graph dataset
Chameleon is shown in Fig. 2. From the spatial domain
point of view, order controls the aggregation order of the
graph filter. The higher order enables nodes to aggregate
information from more distant ones, while nodes can only
access feature information of closer nodes in lower orders.
As can be seen from Fig. 2, ACC on the ACM dataset ex-
hibits fluctuations around 93% when order is less than 11,
while on the Chameleon dataset ACC remains relatively sta-
ble at around 42% under the same condition. However, for
order values greater than 15, there is a sharp deterioration
in the performance metrics for both datasets, dropping to
around 45.4% for ACM and around 26.1% for Chameleon.

4.3.4. COMPLEXITY ANALYSIS

Let M be the representation of the maximum number of neu-
rons embedded within the hidden layers of the autoencoder,
Z denotes the maximum dimensionality of the embedding
features, T denotes the number of iterations for the outer
loop, and K, V , and N stand for the numbers of clusters,
views, and examples respectively. The K-means and tar-
get distribution computations are performed once per outer
loop iteration. Thus, their contribution to the total com-
plexity will be T ×O(NZK), giving us O(TNZK). The
autoencoder adheres to a complexity of O(TNVM2). The
operation of GNN can be seen as multiplying an N ×N ma-
trix by an N×Z matrix, with a time complexity of O(N2Z)
in an iteration. So, the total time complexity of our method
is O(TN(ZK + VM2 +NZ)). The complexity of NGCE
can be further reduced by methods such as anchor graphs,
but this is beyond the scope of the proposed method.

4.3.5. LIMITATION OF THE PROPOSED METHOD

Despite its demonstrated capabilities, NGCE depends on the
availability of node features. This characteristic inherently
limits its direct applicability to datasets where such features
are sparse or absent. However, we posit that this limitation is
not insurmountable and presents avenues for future investi-
gation. To extend our approach to such scenarios, one poten-
tial strategy involves leveraging random walks to generate
node embeddings. This technique, frequently employed in
established graph embedding methods like DeepWalk (Per-
ozzi et al., 2014), can capture structural information from
the graph, thereby creating feature representations for nodes.

Another promising direction is developing and integrating a
dedicated encoder that learns node features directly from the
graph’s topology. This would allow the model to function
effectively even without pre-defined node attributes, signifi-
cantly broadening its applicability. We plan to explore these
extensions in future work.

5. Conclusion
In this paper, we introduce a novel graph-based contrastive
learning framework for multi-view graph clustering, which
effectively handles both homophily and heterophily in graph
data. We propose that the homophilic and heterophilic in-
formation of graph data should not be separated, but rather
processed within a unified framework to preserve its interac-
tive essence. Consequently, we have developed a multi-view
graph clustering method called Node-Guided Contrastive
Encoding (NGCE). Specifically, NGCE includes a joint pro-
cess that integrates a graph and node embedding similarity
matrix sensitive to the degree of graph homophily, a con-
trastive learning-guided graph encoding mechanism driven
by the degree of recovery of noise-enhanced node features,
and a mechanism for contrastive fusion across views. The
experimental results show that the proposed NGCE adeptly
accommodates both homophilic and heterophilic datasets
within the multi-view graph clustering domain, achieving
state-of-the-art performance metrics.
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A. Details of Experiments
A.1. Metrics

Following previous works, four commonly used metrics, i.e.,
normalized mutual information (NMI), adjusted rand index
(ARI), accuracy (ACC), and F1 scores (F1), are adopted to
evaluate the clustering performance.

A.2. Visualization of learned consensus embedding

To unveil the inherent clustering structure, we have also
employed t-SNE algorithm for the visualization of all six
datasets to depict the distribution of the learned consensus
embedding H. As depicted in Fig. 3, the visual results high-
light that NGCE exhibits an enhanced clustering structure.

A.3. Details of Datasets

The experiments were conducted on six MVG datasets:
ACM, DBLP, IMDB, Texas, Chameleon, and Wisconsin.
Details and sources of the datasets are presented subse-
quently.

• Homophilous graph datasets: ACM is a paper net-
work from the ACM database1 and is composed of two
graphs: the co-paper network and the co-subject net-
work; DBLP is a network sourced from the DBLP
database2, consists of three graphs: co-author, co-
conference, and co-term; IMDB is a movie network
that originates from the IMDB dataset3, including
graphs of both co-actors and co-directors.

• Heterophilous graph datasets: Texas is a webpage
graph from WebKB4; Chameleon is a subset of the
Wikipedia network5; Wisconsin is webpage graph
from WebKB6. Since Texas, Chameleon and Wiscon-
sin are single-view graph data, we copy the graph as
the second view.

B. Algorithm
The proposed NGCE model is summarized in Algorithm 1.
Algorithm 1 presents a comprehensive breakdown of the
code flow.

C. Preliminaries
In this section, we introduce a brief background of multi-
view graph clustering and GCNs.

1https://dl.acm.org/
2https://dblp.uni-trier.de/
3https://www.imdb.com/
4http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-

11/www/wwkb
5https://github.com/benedekrozemberczki/MUSAE/
6http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-

11/www/wwkb

Algorithm 1 Multi-View Graph Clustering via Node-
Guided Contrastive Encoding (NGCE)
Input: The adjacency matrices {An}Vn=1 and node feature

matrices {Xn}Vn=1

Initialization phase
Apply the k-means algorithm to original node feature
matrices {Xn}Vn=1 for the pseudo label matrix Ȳ of the
first iteration Train phase
while not reaching the maximum iterations or not reach-
ing exit condition do

for n in 1, 2, . . . , V do
Calculate Zn and Xn

pred based on Eq. (3) and (4)
Calculate Sn based on Eq. (5)
If it is the first iteration do

Calculate ωn based on Eq. (6) with pseudo label
matrix ȲT from Initialization phase

else do
Calculate ωn based on Eq. (6) with pseudo label

matrix Ȳ from last iteration
Calculate Ân and X̃n based on Eq. (7) and (9)
Calculate X

n
by X

n
= GCN(Â, X̃) based on

Eq. (10)
Calculate hn and ωn

h based on Eq. (13) and (16)
end for
Update H based on Eq. (15)
for v in 1, 2, . . . , V do

Update Ȳ with H base on k-means
end for

end while
Output: Consensus embedding H

In the task of multi-view graph clustering, the objective is
to group a set of n nodes into k clusters. To achieve this,
we utilize G = (V, E) to denote a graph. Here, V represents
the nodes set, and the set of all nodes belonging to class i is
represented as Vi, with N = |V|, and E ⊆ V ×V represents
the edge set with selfloops. The feature matrix for the nodes
is denoted as X ∈ RN×d, and the symmetric adjacency
matrix of the graph G is represented by A ∈ RN×N , with
elements aij = 1 indicating the presence of an edge between
node i and node j, and aij = 0 otherwise. Additionally, we
define the degree matrix of A as Dii =

∑
j a

n
ij , enabling

the normalization of each view’s A to Ã = (D)−1A. The
normalized graph Laplacian matrix is defined as L̃ = I− Ã,
with I representing the identity matrix.

The Graph Convolutional Networks (GCNs) leverages the
principle of spectral graph theory to facilitate learning on
graph-structured data. The core of this method is the utiliza-
tion of the normalized graph Laplacian matrix to capture the
graph’s structural information. The GCNs operates by prop-
agating node features across the graph’s structure, thereby
enabling each node to aggregate features from its neighbors,

13



Multi-View Graph Clustering via Node-Guided Contrastive Encoding

(a) ACM (b) Chameleon (c) DBLP

(d) IMDB (e) Texas (f) Wisconsin

Figure 3. Visualization of learned consensus embedding H in all six datasets.

(a) epoch=200 (b) epoch=400 (c) epoch=600

(d) epoch=800 (e) epoch=250 (f) epoch=500

(g) epoch=750 (h) epoch=1000

Figure 4. Visualization of learned consensus embedding H in the ACM dataset (Figure 4(a), 4(b), 4(c) and 4(d)) and DBLP dataset
(Figure 4(e), 4(f), 4(g) and 4(h)) across epochs. At the start of the training stage, the embedded features are non-separable. As the
training progresses, the clustering structures of the embedded features become more apparent while their centroids gradually separate.

effectively capturing both local and global graph structure. In this paper, we use GCN without learnable parameters :

H(l+1) = σ

(
D− 1

2 ÃD− 1
2H(l)

)
, (16)
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Notations Meaning

G G = (V, E), graph with node set V and edge set E .

X X ∈ RN×d, the feature matrix of the nodes.

c The number of clusters.

A A ∈ RN×N , the adjacency matrix with self-loop.

D(n) Degree matrix in GCN.

I Identity matrix.

N N = |V|, the number of nodes.

d The dimension of original node features.

V The number of views.

fn(·), gn(·) The encoder and decoder in the autoencoders.

dl Dimension of the distilled node embeddings.

dh Hidden layer dimension of the autoencoder.

nl The number of hidden layers.

Zn Distilled and refined node embeddings from fn(·).
Xn

pred Output of the decoder gn(·).
Sn Node correlation matrix for the n-th view.

S(·, ·), Sim(·, ·) Cosine similarity.

ωn Homophily wight for the n-th view.

Ȳ Ȳ ∈ {0, 1}N×c, one-hot encoded pseudo labels.

Ân Graph joint encoded embeddings for the n-th view.

E E ∈ {0, 1}N×d, binary random masking matrix.

pc Probability of Bernoulli distribution of random mask.

X̃ Node features with random mask (noisy features).

X
n

Recovered node features matrix for the n-th view.

H(l) Output of l-th layer GCN.

order Depth of GCN in NGCE.

hn Node-guided joint embeddings of the n-th view.

1[·], I0ij , I1ij Indicator function.

⊙ Hadamard product.

Ck Cluster center for the k-th class of H.

ci The Class assigned to node i in Ȳ.

H Consensus embedding.

ρ Cross-view weight modulation parameter

ωn
h Cross-view fusion wight allocated to hn.

evan Function to measure congruence between H and hn.

Ln
Rec Reconstruction loss on Xn

pred and X of the n-th view.

LC1, LC2 Contrastive learning loss.

η Learning rate.

λwd Weight decay regularization parameter.

Table 5. Overall notations.
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