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ABSTRACT

When and how can an attention mechanism learn to selectively attend to infor-
mative tokens, thereby enabling detection of weak, rare, and sparsely located
features? We address these questions theoretically in a sparse-token classifica-
tion model in which positive samples embed a weak signal vector in a randomly
chosen subset of tokens, whereas negative samples are pure noise. For a sim-
ple single-layer attention classifier, we show that in the long-sequence limit it
can, in principle, achieve vanishing test error when the signal strength grows only
logarithmically in the sequence length L, whereas linear classifiers require v/
scaling. Moving from representational power to learnability, we study training
at finite L in a high-dimensional regime, where sample size and embedding di-
mension grow proportionally. We prove that just two gradient updates suffice for
the query weight vector of the attention classifier to acquire a nontrivial align-
ment with the hidden signal, inducing an attention map that selectively amplifies
informative tokens. We further derive an exact asymptotic expression for the test
error of the trained attention-based classifier, and quantify its capacity—the largest
dataset size that is typically perfectly separable—thereby explaining the advantage
of adaptive token selection over nonadaptive linear baselines.

Attention-based architectures (Vaswani et al., 2017) have proven in recent years to be a major driver
of progress in a wide spectrum of learning tasks, ranging from language processing (Kenton &
Toutanova, 2019; Brown et al., |2020) to computer vision (Dosovitskiy et al.| 2021). A core strength
of these models is the ability of attention layers to dynamically weigh the importance of different in-
put tokens, enabling the model to selectively focus on the most relevant information. This flexibility
makes transformers particularly effective at capturing subtle patterns and features within complex,
high-dimensional data, even when such information is dispersed throughout the input sequence.
Despite the ubiquity of attention-based models in contemporary deep learning practice, a rigorous
theoretical understanding of their working mechanism is still in its early stages. A large body of
theoretical works has focused on understanding the benefits of attention in simple solvable models,
e.g. (Geshkovski et al.,2023; |Ahn et al.,|2023; |[Von Oswald et al., 2023; [Edelman et al.,[2022; |Hahn),
2020; Bordelon et al.| 2024} Bietti et al., 2023} Maulen-Soto et al.| 2025)), with particular focus de-
voted to single-layer architectures. Recently, a line of studies has demonstrated the advantages of
attention-based architectures for sparse token regression tasks—settings where labels depend only
on a small subset of input tokens (Oymak et al.| 2023} Marion et al.| [ 2024;Sanford et al., 2023} Wang
et al., 2024; Mousavi-Hosseini et al., 2025; Zhang et al.| [2025; |Ren et al., 2024). In such tasks, at-
tention mechanisms dynamically identify and prioritize the relevant tokens, significantly enhancing
learning efficiency. In contrast, fully-connected architectures require exponentially more samples
(Mousavi-Hosseini et al.,2025) or neurons (Sanford et al.,[2023) as the input sequence length grows.
In many applications, however, the sparsity of informative features is frequently compounded by ad-
ditional challenges, notably the weakness and rarity of the underlying signals. For example, cancer
diagnosis from computed tomography scans involves detecting lesions — features that are typically
subtle (weakness), appear in varying locations (sparsity), and occur infrequently (rarity). All these
characteristics significantly complicate the detection problem. Motivated by scenarios of this kind,
we examine a statistical classification problem in which positive samples contain weak signals em-
bedded within a small, randomly selected subset of tokens. We analyze the capacity of a single
attention layer to learn to adaptively identify and enhance these sparse, weak, and potentially rare
signals. Specifically, our main contributions are as follows:
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* In the limit of large sequence length L, we show that an attention model can detect signals
that are exponentially weaker in L than those detectable by non-adaptive linear classifiers.

* Moving from representational power to learnability, we study training at finite L and
derive an exact characterization—down to explicit constants—of the test error for the
attention model after two gradient updates, followed by full optimization of the last-layer
weights, in the limit of high-dimensional token embeddings with proportionally large
sample size. These sharp asymptotic results quantify precisely how the test error depends
on the number of samples, the sequence length, and the signal strength.

* Our analysis demonstrates that merely two gradient steps suffice for the attention model to
develop meaningful internal representations. Consequently, the classifier can dynamically
identify and selectively focus on the relevant subset of signal-bearing tokens—effectively
amplifying the signal-to-noise ratio—and outperform linear classifiers.

* To provide a complementary perspective on the advantage of attention, we characterize the
capacity of the attention model, defined as the maximal dataset size that can be perfectly fit
with high probability, and compare it with the corresponding capacity of linear classifiers.

Related works

Theoretical analysis of transformers and attention models. The expressivity of attention-based
architectures has been extensively studied in recent literature. [Fu et al.| (2024) established that a
single multi-head attention layer with fixed weights can represent a broad class of permutation-
invariant functions. [Edelman et al.| (2022) observed that the statistical capacity of bounded-norm
attention models scales only logarithmically with sequence length, suggesting a strong inductive
bias toward sparse functions dependent on only a subset of input tokens.

Sparse token regression/classification tasks. A special class of sparse functions is studied in
further detail by Sanford et al. (2023)), who consider a sequence-to-sequence task on length L
sequences, where outputs correspond to the average of a dynamically selected subset of R < L to-
kens. Whereas fully-connected architectures require 2(L) hidden units to represent such functions,
attention models only need Q(R) and can provably learn the task via gradient-based training on the
population risk (Wang et al., [2024)). Complementing these findings, Mousavi-Hosseini et al.| (2025))
establish corresponding results demonstrating significant separations in terms of sample complexity.
Similarly, [Marion et al.| (2024); Duranthon et al.| (2025) prove that a softmax attention layer can
learn a single-token regression up to Bayes-optimal error, whereas linear attention fails, and linear
regression on flattened samples performs poorly due to its inability to adapt to dynamic sparsity. Ad-
ditionally, recent work by Zhang et al.[(2025) analyzes a sparse classification task where the relevant
token locations are fixed across samples. Closer to our work, Oymak et al.| (2023) study a related
classification task with the same model as the one considered here, and prove that it reaches a good
accuracy after three steps of gradient descent, outperforming linear regression with average-pooling.
Our current work builds upon and significantly extends this line of research along multiple fronts.
On the technical level, we crucially extend the analysis of sparse token tasks to arbitrary convex
losses beyond the square loss which is considered in prior works (Marion et al., [2024; Mousavi-
Hosseini et al., 2025; Wang et al., 2024; |Oymak et al.| 2023)). Our extension importantly includes
classical loss functions such as the logistic loss, of particular relevance for classification tasks.
Furthermore, while most theoretical works have focused on studying the challenges posed by
signal sparsity, we further address the often concurrent hurdles of signal rarity and weakness. We
demonstrate that attention mechanisms can adaptively address all three challenges by dynamically
selecting informative tokens and amplifying their signals. In these respects, our manuscript provides
a fully rigorous and encompassing analysis of empirical risk minimization in a classification setting.

1 PROBLEM SETUP

Sparse token classification We consider a binary classification task on L x d covariates, seen as
sequences of L tokens embedded in d dimensions. Positive samples contain a weak signal added to
a random subset of tokens; negative samples do not display the signal. The learning task consists of
discriminating samples with the signal from those devoid thereof. In a similar spirit to the sparse-
token regression/classification problems studied in (Sanford et al., 2023; Oymak et al., 2023; Wang
et al.| 2024} [Marion et al.,[2024; Mousavi-Hosseini et al.| [2025), the difficulty of the task lies in the
fact that the location of the signal varies from sample to sample — consequently, any successful
classifier must dynamically detect and attend to the relevant tokens. Formally, let D = { X;, y;},. [n]
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be the training data where each sample X; € RZ*? has rows representing token embeddings, and
the labels y; € {—1, 41} are such that P(y; = 1) =: w € (0, 1). We assume that the token matrices
{X,;}ie[n] are independent and drawn from one of two probability distributions. Specifically, for
negative samples (namely given y; = —1),

Xi =2, )

where Z; € RE*4 is a matrix whose entries are i.i.d. standard normal random variables. In contrast,
for positive samples (y; = 1),
X; =0vg" + Z;, 2)

where & is a fixed signal vector with ||| = 1, § > 0 is the parameter indicating the sig-
nal strength, and v; is a random binary-valued vector indicating the location of the hidden fea-

tures: v; = [lier, ... lre Ri]T. R; denotes the subset of tokens that contain the signal,
and is assumed to have fixed cardinality |R;] = R € N. The law of v; is thus supported on
{z € {0,1}F : 3", 2, = R}, and we furthermore assume its marginals p; = P(v; = 1) for j € [L]
to satisfy [|p|| < ¢R/VI for some constant C' > 0. This assumption essentially requires that the
distribution is sufficiently spread out across tokens, and is not localized on any privileged tokens —
thereby making its detection particularly challenging. In particular, when the law of the non-zero
elements of v is the uniform distribution on all subsets of [L], ||p|| = #/vZ. Therefore, an algorithm
with the capacity to generalize on the task must be able to adaptively identify the subset R, contain-
ing the signal, if the sample is positive, in addition to learning the signal vector £. The latter point is
further rendered non-trivial by the observation that in (2)), the signal part fv;¢ T is of norm O(6VR),

which is considerably weaker than the background noise term || Z;||= O(v/Ld) when d and/or L are
large — thereby making the signal hard to detect. Note that this scaling differs from that considered
in (Marion et al., |2024)) where both terms are comparable in size — a regime corresponding to a
more easily detectable signal in the limit of large dimension d.

Intuitively, the data distribution (2) could be interpreted as a simple model of a vision task, where
each token corresponds to a patch of an input image (e.g. a computed tomography scan), and where
the location of the feature £ signals the presence of a certain pattern (e.g. a lesion) at the correspond-
ing position. This pattern is sparse (R < L), weak (||6v¢"|| < ||Z]|), and potentially rare (small
7). The data distribution and task is similar in spirit to that considered in (Oymak et al., |2023)),
with however two important differences. While in (Oymak et al., [2023) the signal is present in all
samples, in the current work the signal is totally absent from negative samples, posing the additional
challenge of rarity. In addition, the relevant tokens R; are devoid of any noise in (Oymak et al.,
2023) and contain only the clean signal. On the other hand, in () the weak signal ¢ is corrupted by
the additive noise Z;, posing the challenge of signal weakness.

1.1 TWO LINEAR CLASSIFIER BASELINES

We first introduce two simple linear classifiers that will serve as reference models, providing bench-
marks against which the attention model—specified in the next subsection—will be evaluated.
Vectorized linear classifier — The first baseline flattens each matrix-valued input X; € R“*? into
an Ld-dimensional feature vector vec(X;) = [(X})T...(X#)T]T, which is then fed to a linear
classifier. Explicitly, the classifier is

vee (X) = sign((w, free(X)) +b)  where fuee(X) = vec(X), w € RY4 b e R, 3)

w,b

As noted in (Marion et al., 2024), the location of the signal within the vector would then be shifting
from sample to sample due to the randomness of ?; — making it challenging for this vectorized
linear classifier to pinpoint the relevant features.

Pooled linear classifiers— A possible remedy would be to instead average the input along its first
dimension, rather than flattening it. More precisely, the classifier becomes

00. . 1
Lg,bl(X) = sign({w, fpoo1(X)) +b) where fpoo(X) = 7 Z X* weR4 (G))
ke[L]

While such an average-pooling featurization bypasses the challenge of dynamically shifting signal
positions, it introduces another complication. Specifically, after averaging, the norm of the signal
term ||1 vi¢"/L|| = O(R/L) can become significantly weaker compared to the background noise

term ||17 Zi/L|| = O(\/d/L), especially when R is small and L is large. In other words, the
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averaging procedure effectively reduces the signal-to-noise ratio. These intuitions will be made
precise in the following section by Theorem |I| and Proposition [I} which show that a large signal
strength 6 is needed to counteract these limitations, in order for linear classifiers to generalize.

1.2 AN ATTENTION MODEL

Ideally, to remedy the issue of signal dilution suffered by the pooled linear classifier, a non-uniform,
sample-dependent reweighting of the tokens should instead be deployed, selectively placing more
weights on tokens that embed the signal. As we will discuss and formalize, such a reweighting
can be readily implemented by an attention-based mechanism. This intuition motivates the principal
model analyzed in this work: a single-layer attention-based architecture designed to tackle the sparse
token classification task. Specifically, we consider the model

Agwb(X) = sign({fo(X), w) +b), with  f,(X) = X "softmax(3Xq). 6)

This attention model A, ., ; is parameterized by two trainable weight vectors ¢, w € R and a train-
able scalar bias b € R. In (3), the parameter § represents the inverse temperature of the softmax
activation. The formulation (5)) is a simplified attention model widely studied in theoretical contexts
(see, e.g., (Oymak et al|, 2023; |[Marion et al., 2024)), in which the representation f,(X) can be
viewed as analogous to the [CLS] token used for classification and readout in transformer archi-
tectures (Kenton & Toutanoval [2019). A detailed discussion connecting this simplified model with
standard self-attention architectures can be found in (Marion et al., [2024; [Tarzanagh et al., 2023)).
Dynamic reweighting and signal amplification— An important feature of the model (5) is that the
weight vector w acts not directly on the raw input X, but instead on the attention-based feature:

eB(XF.a) E
fq(X): Z Z eﬂ(xl,@X ’ (6)
ke[L] &y

where each token X" is reweighted according to the scores (X "), Crucially, in contrast to the
naive average-pooling (@) discussed in subsection (which corresponds to the special case of
q = 04), the attention scores dynamically adapt to the input tokens. Therefore, in principle, the
attention mechanism can allocate greater weight to tokens containing the signal &, thus mitigating
the diminished signal-to-noise ratio described following {@). Such improvement occurs when the
internal attention parameter ¢ aligns non-trivially with the signal vector ; this alignment increases
the inner product (X*, ¢) and consequently enhances the attention weights (6]) for the signal-bearing
tokens. In Section [3| we formalize and rigorously prove this intuitive mechanism.

2 OPTIMAL TEST ERRORS IN THE LIMIT OF LONG SEQUENCES

Before analyzing how effectively the attention model (3)) and the two baseline linear classifiers
and (@) perform when trained on the sparse classification task described in Section[I] it is instructive
to first determine the conditions under which these models can, in principle, learn the task. In this
section, we examine the optimal test error of the considered hypothesis classes, measuring their
intrinsic ability to represent the sparse classification problem. Formally, the optimal test error for
any predictor gy (X ) parametrized by some finite-dimensional parameters W is defined as follows:

gty:est [m = 15[1; gtest [QW] where gtest [QW} = ]P)X,y [QW (X> 7& y] . (7)

The optimal test error corresponds to the smallest misclassification error achievable by the classifier,
provided its parameters W are selected optimally. Concretely, for the vectorized and pooled linear
classifiers defined herein, W is given by (w, b) € RY4 xR and (w, b) € R x R respectively whereas
for the attention model one has W = (w, q,b) € R? x R? x R. In this section, we view 6, R as
sequences depending on L, and focus on the L — oo regime.

Proposition 1. Suppose that the limit SNR := limy,_, ., OB/VT exists. Then, the optimal test error
of the pooled linear classifier {@) satisfies

0 if SNR = oo,
Llim Erg P = (1 — m)®(b*) + 7®(—b* — SNR) if SNR € (0, 00) . 8)
o min(7, 1 — ) if SNR=0
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In the above display, b* = —55F — sii log(1/m — 1) and ®(-) is the cumulative distribution

function of the standard normal distribution.

We note that a similar result appears in (Oymak et al., |2023) (Appendix A) for the pooled classifier,
but for a different data distribution, and without a trainable bias.

Theorem 1. Suppose that the limit SNR := limj,_. o % exists. Then the optimal error of the
vectorized classifier (3)) satisfies

e e [0 if SNR = oo,
A Eeen L] = {min(w,l —7) if SNR=0 ©

and liminfy,_, o EL,[LV°] > 0 if SNR € (0, 00).

The proofs of Proposition |l|and Theorem (1| are detailed in Appendix

[] Concretely, to generalize perfectly on sparse signals R = ©(1), both the pooled and vectorized
linear classifiers require a strong signal strength § = Q(v/L).

If the signal is weaker, namely § = o(v/L),
the model performs no better that the naive predictor that always outputs the majority label and
Eie = min(m, 1 — 7). In the case where SNR € (0,00), Theorem |[I| shows that the optimal
test error is bounded away from zero by a strictly positive number. In sharp contrast to the linear
classifiers, the attention model can perfectly classify data with a much smaller signal strength:

Theorem 2. Consider the attention model A given in (). In the limit L — oo with R = ©(1),
suppose that the signal strength 0 satisfies liminfy_, . 6/log L > 0. Then, one has £, [A] = 0.

The proof of Theorem 2] can be found in Appendix [C} A direct consequence of Theorem 2]is that a
significantly milder signal strength of order § = log L suffices for the attention model (3)) to perfectly
learn the sparse token classification task—provided it employs optimal parameters ¢, w, b.

. Similar results appear in (Oymak et al.,2023) on the optimal error in a related task, but are
restricted to a simpler noiseless case (Z; = 0). While Theorems and and Proposition paint a
clear separation between the attention model and the two linear baselines in terms of representation
power and oracle test errors, they leave the question of learnability largely open. Furthermore,
this clear-cut distinction, which happens in the large-L limit, becomes less pronounced when the
sequence length L is finite. Thus, a more nuanced analysis of the training at finite sample complexity
and sequence length is warranted. This is the objective of the following section.

3 PRECISE ASYMPTOTIC ANALYSIS OF THE LEARNING

In what follows, we turn our attention to the study of the training of the three models on finite
datasets, aiming to precisely characterize the learning behavior of the attention model (3] and the
two linear classifiers (3) and @) in this regime. Such exact characterizations become tractable
in the high-dimensional embedding limit, as demonstrated by a growing body of literature on
high-dimensional attention mechanisms (Rende et al., 2024} (Cui et al., 20244} [Troiani et al., 2025;
Tiberi et al.| [2024; |Cuil, 2025}, |[Erba et al., [2024; Duranthon et al., [2025). We adopt in the remainder
of this manuscript the following high-dimensional, finite-length scaling regime:

Assumption 1 (High-dimensional, finite-length limit). We consider the limit of large embedding
dimension d and comparably large number of samples n, namely d,n — oo with fixed ratio o =
n/d = O(1). The chosen scaling n ~ d is such that the detection of the weak signal £ from the back-
ground Z is statistically possible (Lesieur et al.| |2015), yet non-trivial. Meanwhile, the sequence
length L, signal strength 0, and sparsity R, along with all other parameters, remain finite and fixed.

Training procedure We now turn to the learning process. The attention model (3 can be trained
to solve the sparse token classification task defined in subsection (1| by performing empirical risk
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minimization over the dataset D = {X;, y;} formulated as follows:

i€[n]’
. A
g,w,b e argmlnRD(q,w b), with RD q,w,b) = Z 0({fy(X),w) + byy)+ 5||w||2 (10)
aw;b Xy)ED

Here, ¢ : R x {—1,1} — R is a loss function that is convex with respect to its first argument (for
example, the logistic loss £(z, y) = log(1 + exp(—yz)) or the quadratic loss £(z,y) = 5(z — y)?).
The empirical risk (I0) also includes a ridge regularization of strength A. Notably, compared to
prior studies on sparse token tasks (Sanford et al., 2023 [Wang et al., 2024; Mousavi-Hosseini et al.,
2025; Marion et al., |2024; |(Oymak et al., 2023), our setting extends beyond the squared loss to
general convex loss functions. A natural approach to solving the non-convex optimization problem
(T0) is to run gradient descent on the set of trainable parameters g, w, b. In fact, as demonstrated
below, just two gradient steps are sufficient for the query weights ¢ to achieve an alignment with the
signal £. This alignment enables the attention model (B) to develop internal representations capable
of effectively identifying and amplifying the hidden signal. Specifically, we consider the following
training procedure:

1. Imitialization — Consider a partition of the training data D = Dy U D; into two disjoint sets of
sizes ng and ny = n — ng respectively. We assume g = 70/d = ©(1), and ay = "1/a = O(1).
Initialize the weights of the attention model (B)) as w(®) = ¢(®) = 04, b(®) = 0.

2. First gradient step on b, g, w — Perform a first gradient step on each of the trainable parameters
on the risk Rp, (¢, w, b), using the training set Dy with learning rates 7, Ngs Tho-

3. Second gradient step on ¢ — Note that after a first step, ¢(!) remains zero. For the attention
model (@) to develop a non-trivial internal representation parametrized by ¢ # 04, a second
gradient step on g is thus needed, on the risk Rop, (¢, w, b).

4. Full training of w, b — Having developed a meaningful internal representation parametrized by
¢‘?), the readout weight w and bias b are finally fully updated by empirical risk minimization on
the retained data Dy :

W, b = argmin Rp, (¢@,w,b). (11)

w,b

The performance of the trained model Aq(2> «.i 1s measured by its its training loss and test error
Evain = R, (42,0, D), Erest = Py [Agen (X)) #1] (12)

The primary purpose of the dataset partitioning performed in step 1—splitting the data into two sub-
sets, used respectively for steps 2—3 and step 4—is to simplify the subsequent analysis of step 4. This
partitioning ensures statistical independence between the learned query weights ¢(?) and the dataset
D;. Adopting a more practical viewpoint, Dy can also be viewed as a pre-training dataset used to
train the query weights ¢, which can then be frozen as the model is deployed on other datasets, with
only the readout and bias w, b being fine-tuned. Similar stage-wise training protocols with sample
splitting have previously been analyzed in the context of two-layer neural networks (Ba et al.| 2022}
Moniri et al., 2023} [Cui et al., 2024b; |Dand1 et al., 2024; |2023)), demonstrating how even a single
gradient step on the first-layer weights can yield meaningful internal network features. Analogously,
in our setting, two gradient steps on the query weights g are already sufficient for the attention model
to develop informative internal representations. For transformer models, similar few-step analyses
were conducted for instance in (Bietti et al.| 2024} |Oymak et al., [2023), however without the final
step of full empirical risk minimization. This final optimization of the output weight w can be taken
as an analog to transfer learning, thus lending to more practical insights for real training procedures.

We are now in a position to present our main technical results: a precise characterization of the test
error (12) achieved by the attention model (3)), trained using the four-stage procedure detailed in
subsection [3] In the following sections, we first analyze step 3—demonstrating precisely how the
query weights ¢(?) develop an alignment with the signal &, resulting in nontrivial attention weight-
ings. We then examine how this learned attention mechanism leads to an improvement in the test
error (12)), as compared to the baseline linear classifiers (@) and (3) at the conclusion of step 4.

Characterization of the attention weights after two gradient steps The first technical result
characterizes how, at the end of step 3 (see subsection , the query weights ¢ = ¢(® develop a
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Figure 1: Test (left) and train (middle) errors achieved by the attention model (5)) and the pooled (@)
and vectorized (@) classifiers, for L = 10, R = 1,7 = 0.5,0 = 5, A = 107, 1 g0 = 0.1, g = a1,
trained with the square loss, as a function of the normalized number of samples «;. Solid lines
correspond to the theoretical characterizations of Theorem[d] Dots represent numerical experiments
in dimension d = 1000. Error bars represent one standard deviation over 8 trials. (right) Training
loss Eirain for the attention model (green), and the pooled (red) and vectorized (blue) linear classifiers,
as a function of the sample complexity a;. L = 2, R = 1,0 = 2,7 = 0.3. The attention model
has a unit norm query weight ¢ with alignment v = 0.99 with the signal £. Dots correspond to
numerical simulations in dimension d = 2000; error bars represent one standard deviation over 20
trials. Dashed lines: theoretical prediction of the separability thresholds, as given in Conjecture|[I]

non-zero alignment with the signal vector £. As will be discussed in a subsequent subsection, this
alignment allows the attention model (3)) to develop internal representation adapted to the task.

Theorem 3 (Characterization of the query weights ¢(?) after two gradient steps). In the asymptotic
limit of Assumption |1} ||¢®|| and (¢'?),€) converge in probability to deterministic limits, whose
expressions are given in Appendix@]

Theorem [3] precisely characterize the parameters of the attention model (3 at the conclusion of
step 3 of the training procedure described in subsection [3] The detailed proof of Theorem [3] is
provided in Appendix [D] A direct consequence of Theorem [3] is that the alignment between the
query weights after two gradient steps ¢(® and the signal &, as captured by the cosine similarity
(@®,8) /114, tends rapidly in absolute value to its maximal value of 1 as the sample complexity g
is increased, at a 1/a, rate. This observation is formalized in the following Corollary.

Corollary 1 (Cosine similarity). In the asymptotic limit of Assumption [l| the cosine similarity
(@, /14® | converges in probability to a limit s.

its absolute value admits the expansion |sq| = 1 — C/ag 4+ 0 (Y/ao) . The expression of the
constant C'is detailed in Appendix|[D]

Characterization of final test and training errors Having described steps 1 — 3 of the training
procedure we now focus on step 4, where given ¢(?), the readout weights w and the bias b are fully
trained on the held-out data batch D;. We note that once q is fixed, the empirical risk minimization
(11I) amounts to training a linear model with weights w, b on the high-dimensional non-linear fea-
tures f, 2 (X) (6). While the behavior of such linear classifiers is in general very well understood
in the asymptotic limit of Assumption E] (Candes & Sur 20205 Liang & Sur, [2022; Montanari et al.}
2019; Mat et al., 2019; [Loureiro et al.l 2021; [Mignacco et al., 2020a), such works very often build
on the assumption of simple (e.g. Gaussian mixture) data distributions. In the present case however,
the features f,(2)(X) possess a highly non-trivial distribution, as they result from the non-linear
attention mechanism. Fortunately, the softmax acts only on the low-dimensional projection g € R”
of the tokens along the query weights ¢(?), which can be handled separately. The idea of the proof,
detailed in Appendix [E] proceeds from this observation. The final results are succinctly summarized
in the following theorem, while the full technical statement is deferred to Appendix [E]

Theorem 4 (Test and training errors after step 4). The test error and training loss associated to the
empirical risk minimization (L1)) converge in probability in the limit of Assumption|[l|to deterministic
limits Evest|A] and Eirain[A], whose expression are deferred for clarity to Appendix|E]

Theorem 4] provides an exact characterization—precise down to explicit constants—of the test error
attained by the attention model (@), trained according to the procedure described in subsection
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within the high-dimensional limit specified by Assumption [I] The resulting expression is formu-
lated in terms of a small set of scalar summary statistics, which are determined as solutions to a
system of self-consistent equations. While the latter still possess a rather intricate form, they can
considerably simplify in some simple cases, yielding valuable insights. We detail such an instance
in the following, for the case of a square loss in the ridgeless limit. Let us remark that while (Oymak
et al] 2023) also provide error bounds for a three-gradient-steps protocol, Theorem [] offers tight
error characterizations, exact down to explicit constants. While the same work also reports sharp
characterizations (Theorem 8) for the special case of the square loss, those results are restricted to a
much simpler learning protocol that involves neither gradient steps nor empirical risk minimization,
and that necessitates further oracle information on the set of relevant tokens.

Baseline classifiers — Having characterized the test error and training loss of the attention model,
we now turn to the case of the two linear classifiers LZOZ)I, LZOZI, whose parameters w, b are trained
on the dataset D; through the empirical risk minimization

W, b € argmin Rop, (w,b), with Rp, (w,b) = g £(( w) +byy) + gHwHQ, (13)
w,b
’ (Xy )ED

where f € {fpool; fvec}, and £ is an arbitrary strictly convex loss function. As for the attention
model, a tight characterization can be reached for the associated test error and training loss, leverag-
ing the observation that the distribution of the features fyec(X), fpoo1 (X ) are in fact simple Gaussian
mixtures with respectively (IL%) + 1 and 2 isotropic clusters. The test error and training loss of gen-
eralized linear classifiers in the high-dimensional limit of Assumption |1 for such data distribution
has been characterized in prior works (Mignacco et al., [2020a}; [Loureiro et al., 2021). We briefly
summarize the corresponding results below.

Theorem 5 (Errors for the linear classifiers). [(Loureiro et al. |2021))] In the asymptotic limit of
Assumption [1| the test error and training loss for the pooled (resp. vectorized) linear classifier
converge in probability to limits Eyain[LP°] and Eiest[LP°°] (resp. Ervain[LVC] and Erest [LV]).

We defer the precise exposition of the expressions of Eiain[LYeC], Erest[LV°] to Appendix [Fl For
completeness, and to help readers connect and compare the proofs of Theorems [5] and ] we also
present in the same Appendix an alternate sketch of proof using the same leave-one-out approach as
that leveraged in the proof of Theorem 4]

Comparison of the three models — The theoretical predictions for the training and test errors
from Theorem [ and [5}—for both the attention model (3 and the linear baselines {@)([@)—are com-
pared with numerical simulations in dimension d = 1000 in Fig.[T} demonstrating excellent agree-
ment. The figure clearly illustrates how the learned attention mechanism leads to superior test per-
formance compared to the linear classifiers, which lack this adaptive representation capability.

To garner further quantitative insights from the technical results of TheoremE] and 5] let us focus on
the particular case of a quadratic loss function £(z,y) = 1/2(y — )2, in the limit of vanishing regu-
larization A = 0T. In this setting, the characterizations of Theorems {4} I andlcon51derably simplify,
revealing further insights, which we describe in the following Corollary.

Corollary 2 (Ridgeless quadratic loss). For a quadratic loss function ((z,y) = 1/2(y — 2)?, and
A = 0, the asymptotic limits Erest[A], Erest [LPOC!], and Evest[LVC] characterized in Theorems 4| and
tend to their a; — oo limits EZ[A] and E2,[LP°°) = £, [LV¢] at a rate 1/as .

A number of interesting conclusions can be garnered from Corollary [2| First, all three test errors
tend to their respective cr; — oo limit at the same 1/a, rate, as the sample complexity « is in-
creased. Furthermore, the two linear classifiers LP°°!, L¥*° tend to a common limit £, [L]. This
finding somewhat echoes the intuition from Theorem |1} which already suggested that both models
share similar oracle — and thus plausibly infinite sample complexity— behaviors. Lastly, one may
naturally wonder which of the limiting test errors £33, [A], £53,[L] is lower — in particular, whether
the attention model always achieves a lower error provided it is given sufficient data. The answer
is more nuanced, and crucially depends on the alignment s, (see Corollary E[) between the query
weights ¢(?) and the signal & achieved after step 3 of the training protocol. As shown in Fig. in
Appendix [E] £, [A] > €22 [L] can hold in some settings for s, sufficiently small. In simple words,
when the query weights have insufficiently aligned with the signal — e.g. as a result of insufficient
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data oy or bad choice of the hyperparameters 7,, , —, the attention suffers from a misaligned internal
representation, and achieves a worse error than the simpler linear classifiers. For moderate and large
sq on the other hand, £2%, [A] < €% [L] and the attention profits from the advantage of the dynamical
reweighting implemented by its internal representation.

Capacity — The previous subsection compared the three models in terms of their test errors. We
adopt in this subsection a complementary perspective, and analyze the capacity a* of the models

Ay b Ly "and Lye5, defined as the (normalized) maximal number of training samples that can
typically be fitted by the models to vanishing training loss. More formally, let § € {A, LP°°! Lvec}
be one of the three models, and let &yyain[§] (1) designate the asymptotic training loss characterized
in Theorems [4] and [5] in the limit of vanishing regularization A — 0, for the logistic loss £(y, z) =

log(1 + exp(—yz)). The capacity of the model ¥ is then formally defined as

045 = Supazo{gtrain[g](a) = 0} (14)
For a < ag, the training set is small enough so that it can with high probability be perfectly sep-
arated by the model and &;.in[§](a) = 0. At large sample complexities o > az, such perfect

classification becomes typically impossible, resulting in a positive training loss Eyain[9](c) > 0.
The capacity of a model captures how easily it can classify samples from a given data distribution,
with a higher capacity thus intuitively reflecting a higher adequacy of the model to the task. An
analytical expression for the capacity can be extracted from the characterizations of the training loss
Etrain provided by Theorems @] and 5] which we report in the following Conjecture.

Conjecture 1. The capacities of the models LP°!, Ve, A2 ,p admit the following expressions:

2
* L(l - S ) * 1
Qyec= 1MaX — )y Qp= Iax oo cZuty(btegmgteeme) ’
56[071]7@({ {w@'(b+9—\/%s+u>+(177r)<l>'(ufb)} u?du mgq,me,by |:cj 0f<I>'( z— fz aToe™e )quu:|
(15)
* o Lo . . .. )
and oo = ®ec/L. The expectation in the expression of a bears on y, c., c¢, cq whose joint law is

detailed in Lemmall| and depends in particular on <q(2), £).

The derivation of the expressions is detailed in Appendix [H] Because they involve some heuris-
tic step, we state the result as a conjecture. The capacity of linear classifiers has been studied in a
rich line of prior works, e.g. (Candes & Sur, [2020; Mignacco et al., 2020a; |Loureiro et al.| 2021},
impulsed by the seminal work of (Cover, 2006), albeit no analytical expressions have been to our
awareness reported for the data distribution considered in the present work. Such results are on
the other hand scarce for attention-based models. Conjecture [T| contributes to bridging this gap, by
reporting an analytical expression for the capacity of the simple attention model considered in the
present work. The theoretical predictions (I5) are plotted in Fig.[I] where they are overlayed upon
numerical evaluations of the training loss &iyajn, for the three models, revealing good agreement. In
the probed setting, .. > o > a;ool, the attention model displays a higher capacity than the pooled
classifier, while the higher capacity of the vectorized classifier can be explained from its operating
in a L—times higher dimensional space. As we discussed above, this higher capacity of the attention
model intuitively hints at a better suitability to the considered data distribution. Finally, we note that
this ordering can vary depending on the parameters of the problem, and crucially on the alignment
54 achieved by the attention model between its query weights ¢ and the signal &, as characterized
in Corollary I} We discuss in Appendix [Hhow a small s, —resulting, for instance, from insufficient
pretraining data cp or bad choice of hyperparameters 7,,;, — can result in the attention having a
lower capacity than the pooled classifier, namely a; < a7,. This echoes a similar observation at
the level of the test error made in the previous subsection, and discussed in Appendix [E]



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

————— Reused data | 0.4 0.4+
0.3 —— New data

0.3

= 0.3
b:)‘L’ 0.2 1
0.2

0.2
0.1 0.1

0 1 2 3 0 1 2 3 0 1 2 3
(261 ay az

Figure 2: Simulated test errors achieved by the models {./\/l]}f:0 forL=10,R=3,7=0.5,0 =
3,and A = 1072, trained on square loss using Adam optimizer (pre-training stage) before freezing
inner model weights and optimizing readout weights (fine-tuning stage). Error after 2 epochs (left,
middle) and 100 epochs (right) of pretraining are shown. Comparison between reusing pretraining
data versus generating new data for finetuning (as in subsection [3)) is also shown (left). Curves
represent numerical experiments in dimension d = 500; error bars show one standard deviation over
8 trials.

For comparison, we consider three models that build upon the attention model (@) which we refer to
as M. For weight matrices Wg, Wi, Wy € R4 let Q = XWq, K = XWg,V = XWy,, and
define the attention weights A = softmax (QK T /v/a). Akin to the classical self-attention mechanism
considered in the seminal work [Vaswani et al]] (2017), let M; and M3, be the models with outputs:

L
My: f(X) = 1 SO(AV) —— sign((£(X),w) +0), (16)

" output
1=1

My h(X)=¢(Wif(X)+c) — sign((h(X),w) +b),
output
where ¢ = ReLU and (W}, ¢, w, b) are learnable weights. For a final comparison, we also consider
a multi-head, multi-layer attention model M3 (4 heads and 2 layers) with linear activation and final
output defined analogously to (T6).

We plot in Fig.[] the learning curves of these different models. We employ mini-batch Adam
(Kingma & Ba] 2013) instead of full-batch gradient descent, and vary the number of pretraining
epochs. Fig.]2| (left) shows that using dataset D; for the training of w, b, as we considered in
yields the same behavior as reusing the dataset Dy employed in the first pretraining steps. Qualita-
tively, in all probed settings the test curves for the model M have a strong likeness to the analytic
curves provided in Fig.[[] One has remarkable similarity in the shape and scale of the loss curves
of the more complex models to the one examined herein, even after 100 epochs of pretraining. For
instance, the double-descent phenomenon of Fig.[T] remains present. As a point of contrast, when
using only 2 epochs of pretraining, M out-performs the other models (Fig.[2} middle), which may
be attributed to the much larger parameter spaces being optimized over by more complex models.
Unsurprisingly, this observation flips with more pretraining (Fig.[]} right).

Conclusion — We study the sparse token classification task of detecting a sparse, weak, and
rare signal embedded in sequential data. For long sequences, we rigorously establish a clear
performance separation between linear and attention-based classifiers, showing that attention-based
models require significantly weaker signals to achieve perfect generalization. For finite sequences,
we provide a sharp analysis of the learning for a simple attention model in a high-dimensional
limit. Specifically, our study demonstrates how merely two gradient steps suffice for the attention
mechanism to learn meaningful internal representations, enabling the model to dynamically identify
and focus on tokens containing the relevant signal. Moreover, we derive a sharp characterization of
the resulting test error, quantifying precisely the performance gain achieved by the attention model
relative to the linear classifier baselines. Finally, we put these results in perspective by analyzing
the capacity of the three models.

10
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A AUXILIARY RESULTS

Throughout this appendix, for two random variables X and Y, we write

x9y

to mean that the two random variables are equal in distribution. For example, as is used often in our
derivations, given a matrix G € R™*™ with i.i.d. A'(0, 1) entries, an independent Gaussian vector
g ~ N(0, I;,), and another independent random vector u € R™, a basic fact is

Gu'? ullg.
Moreover, for two (possibly random) sequences (a,,) and (b, ), we write
a, < b,
if lim,,—,o0|an — by| = 0, where the convergence may be taken in the almost-sure or in-probability
sense depending on the context.

We first present a statistically equivalent representation of the feature vector f,(X) in the attention
model defined in (6).

13
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Lemma 1. Let g € R” and z € R? be two independent random vectors with i.i.d. standard normal
entries. Define two probability vectors

sv = softmax(B(llalg + (0.960))  and s i=softmax(Blal). (1)
We have
A0ty =+13 @ B g0, e o o2,
and
f0| (= -1y @ g,
where
R

is the orthogonal projection onto the subspace orthogonal to q.

Proof. By the rotational invariance of the isotropic Gaussian distributions, we can write

T ~
729 7pL (18)
llqll !

where Z is an independent copy of Z. The result is straightforward after inserting the representation
(T8) into (6], which provides

@ (94" | > '
fq(X)’ {y=+1} = <ﬂ(é|| + ZP,IJ‘ + GUET) softmax (B|qllg + BOv(g,&))

@ (9,549
Il

(80,540 + |54 ]| Py-=.

In the above, we have used the facts that P;-q = 04 and Zsy @ Is+]lg- The signal-less case (for
y = —1) follows analogously. O

The following result gives a simplified form for the test error that is valid for any ¢,w € R and
b € R. It will be used in the proofs of Theorems[2]and 4]

Lemma 2. Let
(g, w) /
H1 = Wa H2 = <£,U}>, H3 = ||U)||2 - /j‘%

The test error is

fo= 1) B [ (L reom [p ()|

where s, and s_ are the two vectors defined in (I7), and ®(-) is the cumulative distribution function
of a standard normal distribution.

Proof. By (B).
Etest 1= (1 —m)P ((fq(X)aw> +b>0 ‘ y= —1) + 7P (<fq(X)7w> +b<0 ‘ Yy = +1) .

The result then follows from the statistical representations given by Lemma T} [
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B PROOFS OF PROPOSITION [I] AND THEOREM [I]

Proof of Proposition I]

Notice that the pooled classifier corresponds to setting ¢ = 0 in the attention model (6) and we have

o0+ 6@ U2y, BEERE

for z ~ N(0,1). Absorbing the factor —v/L/||w|| by redefining the variable b, we obtain

. o . OR(w,§
gtest[y] = weﬂl{{}fbeR (1 — 7T)]P (Z > b) + WIP <Z + |11)<”\/) < b)
_ . B pOR
= pe[fllr,llf],belR (1-mP(z>b)+ 7P (z NiA < b>

=inf (1-mP(z>0b)+aP z+@<b
= ber i T VL
. OR

Set ¢, = 9R/vT and Denote g, (b) = (1 — m)®(—b) + n®(b — £1) the function over which the
infimum is taken in (T9). For any L, g, admits the derivative

b2
— a2 é2
g5, (b) = e\/ﬁ {—1 ot 7Te_2L+ZLb} . (20)

We assume without loss of generality that £;, > 0 since the asymptotic test error shall remain the
same for when £;, — 0 as L — oo. We have that the derivative g7 (b) is zero at

. 1
by = 5 (o —Yeulog (v~ ), @n
where it switches sign from negative to positive. Therefore, the infimum in is attained at b} and
Erest[9] = (1 = m)@(=b1) + 7®(bL, — {1)

—(1—m)d (—; (0r, — /e log (7/1 ﬂ))) e (; (01, — 2oy Tog (/1 — x)) — 4L> .
22)

Inspecting (22)), by continuity of ® we immediately see that when ¢ = oo one has limy,_, o g [9] =

0 and when ¢ € (0,00) we obtain the corresponding expression in the statement of Theorem ] l
Notice that for ¢ = 0,

—o00, ™>1—m
lim =2/ log(7h-x)=qo00, w<l—m
L—o0
0, =1/
and so, again examining 22)), it follows that under this regime limj, o Efg[§] = min(m, 1 —
). O
Proof of Theorem[]]

Before dividing into the two separate cases of Theorem @ we begin with a simplification of the
optimal test error. Writing w = (wy, ..., wy,) with w, € R%, we have

L
(vee(X),w) +b = [[w]|z + 1,210 Y ve(we, &) +b
/=1

15



Under review as a conference paper at ICLR 2026

for z ~ N(0,1). Absorbing ||w|| into b gives

L
Eiali] = _jint (1—W>P(Z>b>+ﬂp<z+ezve<w’§><b>
{=1

weRLd heR [lw]|

L
= inf (1-mP(z>0b)+7P <z+02w<w5,§> <b>

SLd—1peR
we ,oe =1

= inf (1-mP(z>b)+7P(z+6(v,a) <Db) (23)
aesdflmRi,beR

The last line follows as any optimal w will be of the form w, = a4 for 1 < ¢ < L where a; > 0
and ||a|]| = 1.

With the representation for £, [9] given in (23)), we now establish the separate results of the theo-
rem.

1. Recalling the assumption
R
lpll = O <\FL> where p; = P(v; =1) for j e [L], (24)

there exists C' > 0 such that ||p|| < C(R/vL) for all L > 1. To begin, defining the
random variable u = (v, a) and the decreasing function f;(x) = ®(—z — b), notice that
(23) is equivalent to

inf (1 —m)®(b) + 7E[fp(u)]. (25)
aeSI-1NRY ,beR

where the dependence on a persists through u and the expectation is taken with respect to
u.

We first show that if £* = oo, one has £, [J] — 0as L — oo. To this end, consider a
“flat” solution @ = !/vI - 11, and notice that this gives u = E[u] = ¢&/vZ. Thus, we have

Eu[fo(w)] = fo(PR/VL) = ©(—OR/VL —b).
Taking b = —9R /2T, we have

L—oo

Erest[9] < (1 = m)@(=0R/2VE) + m®(—0F/2vT) —— 0.
Next, we show that £, [§] — min(m, 1 — ) if £* = 0. Observe that for v > 0,

Eu[fo(w)] = Eu[fo(u)lfusk)]
z fo(k)P(u < k)

> fu(k) <1 - E?) (26)

where the second and third inequalities above are due to the monotonicity of f;, and
Markov’s inequality respectively. Note that

Efu] = 0(p, a) < 0p|| < %Rz

by our delocalization assumption. Setting vy, = (C9R/ﬁ)1/ 2 from @ and @ we have
Eleld] > inf (1= m)®(b) + 7®(—vp —b)(1 ).

L—oo

Since ®(—vy, — b)(1 — v,) —— ®(—b) uniformly in b € R, we have

liLminf Erogt[9] > lim inf (inf (1-=m)®() +7P(—vr —b)(1 — VL)) 27

L—oo \beR
= grelﬂg (1—=m)®() + 7P(-d) (28)
= min(7,1 — 7). (29)

16



Under review as a conference paper at ICLR 2026

On the other hand,

*

limsup £ [9] < min(m, 1 —7)
L—oo

as the upper bound above can be achieved by setting the original weight vector w = 04.

This establishes that limy,_,o £ [§] = 0 when ¢* = 0. Finally, we consider the case
where ¢* € (0, 00). Setting & = max(u, —b), we have
E[fo(u)] = E[fo(u)] > fo(E[u]) = @(-E[a] - b) (30)

where the first inequality is due to the monotonicity of f;, and the second comes is by
Jensen’s inequality seeing that f;(x) is convex for > —b. This provides a lower bound

Erest ] = inf (1 —m)®(b) + m®(-E[u] - b)
a€SI=1NRY beR
where we remark that E[a] depends on both a and b. Defining g(b) = —E[a] — b, one
notices that g is concave, piecewise linear, and non-increasing. As E[u] < 6||p||, one finds
that the function
- —0llpll, b<0
b =
0 ={ i b, 130
is a minorant for g(b) and so
Erest] 2 (1 = m)®(b) + 7 (g(b)) (€2))
m®(=0pl), b<0
> . 2
_{(1—ﬂ)/2, b>0 (32)

Applying the delocalization bound on ||p|| then yields the lower bound
.. % ra . 1—m .
liminf &, [9] > min [ ——, 7®(—C¢*) ) >0
L—o0 2

where C' > 0 was such that ||p|| < ¢R/vZ. This completes the proof for the first set of
assumptions of Theorem [I]

2. We now turn the the uniformity assumptions, namely when 7 = 1/2 and v has a uniform
distribution on its support. Setting G(a, b) to be the objective function of (23) and

g(b, 1) = 1/2d(—b) + 1oB(b — 1)

for t > 0, observe that E[g(b,u)] = G(a,b) where we again recall that v depends on a.
Following the same minimization over b in the proof of Proposition |1} we see that

, _O(-tp)
infg(bt) = —5—
and so
Eest[U] = inf G(a,b) > inf M > inf W
a€s4-1NRL beR aesiirRY 2 westoings 2

where the last inequality follows from Jensen’s inequality as ®(—zx) is convex for > 0.
By monotonicity of ®(—(-)) and since the choice a = 1/vL - 11, maximizes E[u], we have

o s 2A=L/2)
gtest[y} > +

where ¢, = 9R/\/L. Here, one notices that the right-hand-side corresponds to the optimal
test error found for the pooled classifier in when m = 1/2. Notably, the above is
indeed an equality which is seen by evaluating G as the previously considered values (a, b).
Hence, the uniformity assumptions reduce the optimal test error for the vectorized classifier
to those of the pooled classifier. One then obtains an analogous result to (9).

17
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C PROOF OF THEOREM 2]

We detail in this Appendix the proof of Theorem[2} The proof builds on the following intermediary
proposition, which gives a sufficient condition for vanishing test error, when the query weights q are
constrained in norm.

Proposition 2. Consider the attention model A (5). For 7 > 0, let TB? = {z € R? : ||z|| <
T}, we consider the optimal test error Efg [A, 7] = inf e pa yyerd per Etest[Aq,w,b), restraining the
minimization on q to vectors of norm less than or equal to 7. In the limit L — oo, R = O(1),
allowing the signal 0 to depend on L, suppose that
GePr?
lim
L—oo

Then, the attention model A achieves an optimal test error of Ei [A] = 0.

— 00 (33)

Proof. We remind that from Lemma 2] for any ¢, w, b the test error can be expressed as

EveelAgus] =(1 — TP (||pr|| Is <| |>< >> G34)
(,9)

llqll

+ap (7wl (s) = vs)lew)) . 09)

where

s = softmax(f[lqllg) and s, = softmax(8(|lqllg + (¢, £)6v)),
Pt =15—qq" /{g,q), and z ~ N(0,1) is independent of g ~ N(0, I1.). The probability IP bears
jointly over the random variables v, g, z. To derive an upper bound on the optimal test error, we can
consider the special case ¢ = 7&, w = £. The expression of the test error then simplifies to

Erest[Aquwp] =(1 —mP (0 < b+ (g,5-)) + 7P (0 < —=b—(g,54) — (fv,s4)).  (36)
Note that

3 gieﬁng‘ 5 52,2 L

i€lL] Te T tUp*
lg,5-) = S ePryi - 822 1 ' (37
i€[L] ¢ T A
‘We have introduced the random Variables
2 2.2
Z P9 _ Le™F Z giePT9 — LBre™
2= i€[L] 2y = i€[L] (38)

VL ’ VL
From the central limit theorem, 21, zo converge in distribution to standard Gaussian variables. By
the same token, one can rewrite

S| 0eP7o 8272
C——B+*—A4+pBre 2 + =2
(g, 55+ Ov) = —= = I, (39)

Bro_1 B2+2 1
ETA +e 2 4+ ﬁZl
introducing the random variables
A=) el B=> ge'. (40)
i€[R] i€[R]

Using the change of variables b = — 87 — b/v/T allows to reach

Erest[Are e, —pr—ijvz] = (1 = m)P <<9, s-)— BT > \%) + P <<g +6v,s4) — BT < \/bz>

(41)
=(1-7)P %% 42)
+ %21
Bro oBTO
€ A+ l(B BTA)+227[37'21 -
+ 7P VL <bl. 43)

7eﬂ72_1A+€ 2 +ﬁz1

18
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Let € > 0. We first focus on the first term, which one can bound as

_ _ N 2,2
P ;272&>b <]P’<22—5ml>b(eﬁ2 —1>>+P(|Zl|>\/i)~ (44)
e 2 +%Z1

Let M = /2erfc(1 — ¢/s), and let

21 g 252 (20 — 1))

by PP erfc(l — ¢/8). (45)
—1+4+e 2
and
by = \/2 (14 8272 — 2B272eP°7% (26577 — 1))erfe(l — /). (46)

We now fix b = max(i)l, 52) Let L; be such that for L > L,

~ 2,2
e b(eﬁTfl) €
]P’<225721>b<621))§1® + =,
2 ( 8

1+ 3272 — 2327257 (2eF77° — 1))

(47)

P(|z1| > M) < 2—2<I>(M)+§. (48)

The existence of such L, is guaranteed by the convergence in distribution of 27, 25 to joint normal
Gaussian variables. Then for any L > max(M, Ly),

P f;& >b| << (49)
e 2 + Lzl 2
VL
Turning to the other term,
BTO BTeo
0-—A+ “—=L(B - BTA)+ 20 — B2y . -
P VL P VL e <b| <P(zg — frz1 < =b) + P(|21] > VL)
S Ate T + %21
(50)
26( 52272 + 1) eﬁTele
e —
+PlA< N ‘FL
0 VL VL (BT +¥/VL)
(S
Let Lo be such that for L > Lo,
- 522 [~) €
P<22ﬂ721>b(e2 1))§1<I> + =,
\/2 (14 8272 — 2827257 (257 — 1)) ) 8
(52)
P(|z1| > M) < 272<I>(M)+§. (53)
Finally,
26(652272 1) - T p 25(6132272 F1)+ eﬁrsil\/g
PA< gL <P (A< g +P(|B| > Vo).
07 — < (BT +b/VI) 07 — 7 (BT +B/VI)
(54)
Now, note that
0 BTo o oo
eL Lo o — 6 22 0 (55)
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From Markov’s inequality,

P(|B| > V) < E[B])

(56)
Vo
Let L3 be such that for all L > Lg,
P(IB| > V0) < é (57)
Finally, let us introduce the shorthand
2b( )+ =1V
eBTo BTB 1 f ‘ (58)
0 — L (Br + )

Remark that h — 0 as L — oco. Let L4 be such that for L < Ly, h < 1. Using Mill’s inequality,

—_

1 log h?

A<h) <P(P9 <« h)< —— ¢ aat?
P( ) <P(e ) < 5 J?|10g}”6

(59)

The right hand side tends to 0: let Ly be such that for all L < Ls, it is smaller than /8. In conclusion,
summarizing, for any L > max(M, L1, Lo.Ls, L4.Ls),

0<&L4AT]LSE A .
test[ 77'] > Ctest Tf’&\/2(1+ﬁ27_272527-2e/3272(2€B27271))erfc(175/8) max@’W) <€
(60)
Thus,
Efel Al 2725 0. (61)
O
This concludes the proof of Proposition[2] We now prove Theorem [2]
Proof. Suppose
0
lim inf log L > 0. (62)
There then exist C' > 0, Lo, such that for all L > Lg, 6§ > C'log L. Then, setting
1
= — 63
=65 (63)
observe that
0 BTO o
C > Clog VL 12 . (64)
VI
From proposition
* * L—oo
0 < ElAl < EalA 7] —0 (65)
O
D PROOF OF THEOREM 3]
Output Weights and Bias. Bl
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Theorem 3 (Characterization of the query weights ¢(?) after two gradient steps). Ler w) b
be the readout weights and bias of the attention model A ) at the end of step 2 of the training
procedure detailed in subsection B} In the asymptotic limit of Assumption[l] the summary statistics

b,

\w?|| and (w', &) converge in probability to deterministic limits, given by
p(H ﬁ C(Omy (2w — 1), (66)
while
w P ) 1 2 (1) P L OTR
lw' ]| —— v1 == nwC )] — + (0R/L)2, (W', &) ——— ~9 :=1n,C(¢) . (67)
d— o0 (l()L d—o0 L

Similarly, let ¢®) denote the query weights at the end of step 3. The summary statistics Hq(2) | and
<q<2) , &) converge in probability to the limits

‘|q<2>|‘—>15 g7 [(L—l)yf(([4—'1)Ef+%>+92(}i* 22) (+3 E4 4242 B (L-1)B1 ) +0%3 (R— 1) QE‘ZZFA (68)
and 3
(€q%) ﬁ v = —’“TZ [(L—1)E, +6*(R — R*/L)E] . (69)

Here, E1, Ey, F)3, E4 are constants whose expressions are given in the proof.
For this bias, the Law of Large Numbers yields

m__M ‘
b oo 2 hi(0,0.0)

’L‘Sno

b P
= LNT o B o2 — 1
o gno Oy (€)m( )

since E[y] = P(y = 1) — P(y = —1) = 27 — 1. Now, decomposing the noise Z; by

.
S; —
Z; = [ zT] eRY U; e R 5 €RY,
%

and setting

Y1
S=[s1 --:sp)] and y=|:[,
Yn
we have
(O} A T
w = ; hi(0,0,0)X," 1
AN
D ) ”T“’ (\/ZSy +3 1 935)
’iS’nO
Sy  mOR¢
= C(0) e —2= + 70
Om(—=7=+"7) (70)

where one applies the Law of Large Numbers for the last line above. Using the representation of
(70), we obtain

(w(l),§> 2 Y2
d— oo

since (&, Sy)/no ~ N(0, ;-), and

S 2
0] = (e [ 1]

+ (mOR/L)2 —L s 4
d— oo
as (Sy, Sy)/no ~ x3-
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Query Weights. Setting
¢ = hu(0,w pM) and A, =X (I1-11T/L)X,

we have

M4
¢ = -7 > cudw. (71)

n
0 H<ng

It will become clear that we require only the first and second moments of c¢,, conditional on y,, to
characterize ||g|| and (g, §) for large ny and d. Specifically, set

E1=E[c,), Ey=E[culy=1], Es=E[c}], Es=E[c|y=1]. (72)
Concretely, c,, is given by
d
Cu = $£<Z7yu)|z:mu (73)

where
my, = (w, X 1/L) + b1
——

T
To find the distribution of m,,, we write
C(O)nw

1y _ @1 — T
UJ( ) = 'U)_,u + AH’ A/t - n()L <y/t7X}L 1>7 (74)

where w(_ll is obtained from all samples except u and is therefore independent of X,. Substitut-

ing (74) gives the exact identity
my = (Tp, w(fb + (T, Ap) +bM
—_————  ——

noise term self term
o e 1% 10P T /5 _
= C(g) oL 17 Yp + C(ﬁ) noL <$#, Srest> + C(@m@” 1)7

with Syest := > it ijjTl (independent of X,). The above representations lends to the following
conditional distributions:

my

2,2
{yu=—-1} ~N <C(5)nb(2w _p - G0 OO nw’>

« al?

1 R\ OO
mo | =413~ (O @m -1+ Cloma (5 + T ) ). a9

From the above, we see that marginally m,, is Gaussian mixture. Knowing the distributions m,, |y,
and y,, facilitates the computation of E, ..., E4. This can easily be done to machine precision —
such as via Gauss—Hermite quadrature as an example.

Returning to another piece of (71)), set b, := 1, - (2117 /V/L —I1)v)[2.) € RE~! and decompose
the Gaussian noise U,, by

Ui=19. Vi, gu€RY V, e RI¥L72
We then decompose the feature gradient A, by
Ay =U U] +0*(R- 1y, 1y — R* 1y, 1 /L)EE" + 0UbE" + 060 UL
= gugy + ViV + (R 1y, oy = B 1y, 1y /L)EET
+0\R 1oy — B2 1ymn /L (9,67 +9))
= gu9, + V.V, +0°h2eET +0h, (9,8 + &g,
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for
hy = [|bull = 1y, =13 VR — R?/L.
Now, set
C1 h1
G=lg - g €R”", e=|1|, h=|:|,
Cn hy,

and let A, := diag(z) € R¥*¥ for x € R¥ k € N. Observe that

n L-2
3 e = 3 VA
pn=1 7j=1

. . iid
where — abusing notation — V; ~

V € R¥™ and V has i.i.d. NV(0,1) entries. Making a final
decomposition of the noise:

G- |9 = |2 Gs, s €R™, Gy, V, € RMX471
GI I VuT ) sy Us 9 us Yu )

we obtain

g8
g = _Ta ZCMAM w®

nol n<ng
— WP aaGT+ VAYT 462 (Z h,%c,t> €T +0GALcET + (0GALce )T | wV
noL N——
L L — 2 ind. copies K
@ 18 g [ e | Ghgo+ VAG, | 400D Ghpe
noL N——
L — 2 ind. copies
=+ (9”“’(1) ||CTAhgs + ‘92(£Tw(1)) Z Cnhi> f]
w
_ngB H ~ -
- T 7 w@) Y1 GAcgs + VAC'US + 0. Y2 - GAhC
’/loL N——

L — 2ind. copies
+ (9 e Apgs + 6%y Zc“hi> 5] .
7

. P
Since niOcTAth = 0as ng — 0o, we have

1
¢? = 7% —Hy | 71 (GAegs +  VADs )+ 07 -GApe | +6% -7 (R— R?/L) - By -£

) ——

L — 2 ind. copies N
M
- ran-g
Therefore ,
B

(€.4?) = M2 (M +N)
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and

¢@] < % /MTM +2NETM + N2.

By rotational invariance of the isotropic Gaussian, we may take £ to be the first standard basis vector
in the following derivations. We then have,

@ 1 w®T

¢TM = Yo GAgs  +0-y2 - GAye
N——

L — 1 ind. copies

1o [lw®]

1 WTGA
=— w7 GAG, +0- J2 W7 GO
no S—— 71 o

L — 1ind. copies —_—

1
= — o w11)gIAcgs

X(L*l)’)/QEl

This gives us the alignment

(€,q) ﬁ _77<I§72 [(L—1)E1 +6*(R— R*/L)Ey] =

as claimed.

Finally, to compute the magnitude of q(2), all that remains is to determine M " M. We have,

a) 1 N - 2 -
MTMY o2 ST AV VA, + = 0z - ¢ ARG GALG,
"o 1<i,j<L—1 i
2 1
+ =5 0y ¢ AR GT VAD,  +— 0293 ¢ MG GApe
N——

np - ) np
L — 2ind. copies

Examining each term separately, note that by repeated application of the Law of Large Numbers we
obtain the following:

L—1
1 1 1
— At > BAYT VA, = ~ A Y B AY T ViAGD;, + —~ A Y B AV VA,
0 1<i,j<L—1 0 i=1 0 i#j
1 1 - -
= (L —1)y%- <2( TAcvs) —2 A V., V Acts + — (L — 2)((vZAcvs)2))
g g g
(-t (@-n 52+ 2).
2 T T ~ 2 T T ~
— Onyzc ApG GAgs + — 012 c ApG VAo, <0,
ng ng SN——
L — 2ind. copies
and

1 A 2 T
— - 02,7% . CTA},GTGA}L (d) 92 2, || hc” . 919
ng o o
E
=6%73-(R— R%/L)- 34

Putting all the terms together, we obtain
Tas - 2 2, Es 2 2 2 Ey
M'M =< (L—1)i- (L—l)-E1+E +972~(R—R/L)-;
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Figure 3: Cosine similarity between the signal ¢ and the query weights ¢(*) (blue) and readout
weights w(!) (red) after step 3 of the training for L = 10,R = 3,7 = 0.2,0 = 6,n = 0.5,
and logistic loss ¢, as a function of the normalized number of samples . Solid lines: theoretical

prediction of Theorem 3] Dots: numerical experiments in dimension d = 1000. Error bars represent
one standard deviation over 10 trials.

and so
5 E =
a2 =" -1z (-0 B4 B) poag (r-roymy 2
o «
1/2
+2N(L—1) -7y E;+N?| |

where we recall that
N=6%7-(R—R*/L)- Es.

This completes the precise characterization of the magnitude and £-alignment of the query vector
q® where the definitions for the relevant constants F, ..., E4 are found in (72), (73), and (73).

D.1 LARGE oy BEHAVIOR

To conclude this appendix, we discuss the asymptotic behavior of the cosine similarities
(W, &) /lw®|, @®,€)/)1¢®| of the attention weights w, ¢ after one or two gradient step with the
signal vector &, in the limit of large sample complexity ag > 1. As we summarized in Corol-
lary |1) in the main text, the cosine similarities rapidly approach 1 in absolute value as the sample
complexity « is increased. We give here the full technical statement.

Corollary 1 (Large o asymptotics). Let w"), ¢ be the readout weights and query weights of the
attention model A () at the end of step 3 of the training procedure detailed in subsection[3} In the
asymptotic limit of Assumption|l| the cosine similarities (w™,€)/|lw ™|, (¢®,€)/14®| converge in

probability to deterministic limits s, s from Theorem 9
When then further taking the limit g — 00, these limits admit the following asymptotic expansions
L? 1
w=1l-— — 76
s 2a9(mOR)? To <a0> (76)
sql =1 — 7
Sql=1——
1 2040

Il (G 4 (1= m)G)? + (L — D(m(GT)* + (1 - m)(G*)?) + (R - B)(GT)’

(L= 1)aG + (1 — m)G> + 02(R — 2)G)”
(78)

+0(1) (79)
Qo

We denoted
202
GY = 4 (C(f)nb(%r -1+ %, 1) , G>® =0 (C(l)m(2r —1),-1). (80)
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The sign of s4 is on the other hand given by that of

—[(L=1)+6°R(1 — B/L)| 7GT — (1 — m)G>°. @81

Proof. The proof of Corollary [T|follows straightforwardly from a ag — oo expansion of the expres-
sions of Theorem 3] O

Corollary [1] establishes how the weights of the attention model recover the signal vector & when
provided with sufficient data, at a rate of 1/a,. The sign is given by an intricate but explicit condition
(8T) on all the parameters in the problem ¢, 7, 8, R, L, 1, ., and can in certain cases be negative —
signaling that the query vector ¢ detrimentally anti-aligns with the signal &. In order to avoid such
a scenario, the condition (81)) can offer some guideline for choosing the hyperparameters 7, 1, £.
For example, for the logistic loss £(y, z) = log(1 + exp(—yz)), when m < 1/2 (resp. m > 1/2),
choosing 7, sufficiently large (resp. negative) ensures s, > 0, namely that the query weights q®
properly align with £ when « grows.

E PROOF OF THEOREM [4]

In this Appendix, we detail the proof of Theorem ] which we summarized in the main text. We now
present the full technical statement.

Theorem 4 (Test errors after step 4). Let q denote the query weights after step 3 of the training

procedure and W, b be the minimizers of the empirical risk at step 4. We denote v = (q, &).
In the asymptotic limit of Assumption[l) the associated test error Exest converges in probability

to
o (bt tg5-)m o (Zb=(0v, 542 — (g, 54)m 7
| s— ||

palls+l
1
with |13 = [1/2 +1/1—42 (,u% + p3 — 2'yu1u2) - uﬂ * .The description of the joint law of the finite-

gtest[A] = (]- - W)]Eg,s+,s_ +7r]Eg,s+,s_

(82)

dimensional random variables g, s ,s_ € R" is given in Lemma The scalar statistics IA), W1, o, V
are defined as the unique solutions of the following variational problem:

. ) A 1 v - i
, o, b= , ey b a1 . 83
1, i, b = argmin Ppqr e, 0) + 5 [1q ] {7 1} e (83)
In the above display,
* A
¢(Uqa e b) = Eczchvc£7zay [(z" + Cqlbq + Cepre + b, y)] + §V2a (84)

where ¢, cq, ce are scalar random variables whose joint law is detailed in Lemma E] and z ~

N(0,1). Finally,
5 1 {z* (z* — czuz)} I { 2 (2%)c?

v = II':‘:cz CqsC —=E _
yCq,CE52,Y 2 Cz,Cq,C¢,2,Y 1 ( 5%\ -2
AX 2 1+£/(z*)cx

] + A (85
a1 X

We used the shorthand z* := PrOXczXe(-+cqpq+c5ug+b,y)(CZVZ)- Finally, the training loss Eirain
converges in probability to the minimizer of the right hand side of (83).

Leveraging the equivalence between the attention model with zero query weights Ao, ., 5 (or, equiv-
alently, vanishing softmax inverse temperature 5 = 0) with the pooled classifier Lgogl, a similar
characterization for the latter can directly be deduced, as summarized in Theorem [3

pool
Lo.b

Corollary 3 (Test error and training loss of L, °;"). The training loss and test error if the pooled

linear classifier L2} ! (@) trained on the empirical minimization (13) converge i probability to limits

Etrain[LP?°, Etest [LPO°Y), whose expressions fan be read from Theorem if one sets 3 = 0.

26



Under review as a conference paper at ICLR 2026

E.1 NOTATIONS AND ASSUMPTIONS

We take the following definition from Karoui (2018)).
Definition 1. Let

X =(X,(u):neNuel,), Y =(Yo(u):neNuel,) (86)

be two families of nonnegative random variables, where U,, is a possibly n-dependent parameter
set. We write X, = Or, (Y,,) if

sup E[| X, (u)|*] = O( sup E[[Yn(u)|"])
ueUy, ueUy,

where “O” refers to the classical big O-notation. That is, for two deterministic sequences (ay,),
(bn), we say an, = O(by,) if there exists some C' > 0 such that a,, < Cb,, for all n sufficiently large.

We make the following assumptions on the loss function ¢ (with the first argument denoted z):

(A1) {is non-negative.

(A2) {is convex in its first argument.

(A3) £ € C*inits first argument.

(A4) ¢ has bounded second—fourth derivatives.

(A5) /is coercive, i.e.,
lim £(z;—1)+4(z;1) = 0.
|z| =00
Remark 2. The above assumptions are satisfied for many natural choices of loss functions such as
the quadratic loss, Huber loss, and logistic loss.

Remark 3. Having a bounded second derivative immediately implies the existence of a quadratic
majorant of { since for any z € R, a second-order Taylor expansion yields

1 /1
|l
£(z) = £(0) + £'(0)z + / (1 —t)0"(tz)z2dt < £(0) +£'(0)z + %z%
0
E.2 EMPIRICAL RISK MINIMIZATION
In what follows, we study the following learning problem:
min 57 ((fiw) 4 b + 5 ol )
/u))b nl e[ ] (3] ’yl 2 )
K3 n1

where £(z; y) is a loss function that is convex with respect to z. Let w* be the optimal weight vector
and b* be the optimal bias for (87). Our goal is to characterize the following quantities:

=g w), g ={Ewt),  v=||Prw, (88)

and b*, where Pq%g denotes the projection onto the space orthogonal to ¢ and £. Having b*, p1, po,
and v will provide for a full characterization of the test error due to Lemma[2]
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Remark 4. Recall we have assumed that ||€|| = 1 and at no loss of generality we also take ||q|| = 1,
absorbing ||q|| into B. Moreover, as a reminder, v = (£, q). It is easy to check that for y # +1,

-1
1. 1 v Hq
and that

-1
1
L s o I A R Lt

for a weight vector w with
Mg = <Q7w>7 He = <£aw>

From Lemma we can rewrite the feature vectors { f;} as
fi = cqiq + ce il + 2Py,

where {cg;, c¢i, ¢z}, arescalar random variables that are independent of the isotropic Gaussian
vectors {z; }i<n,. We write the joint law of ¢ ;, ce i, . ; as

P+(Cq,C§,CZ)7 lfyl 1

CairCeiyCoi ™~ . .
0.4 %o Tzt {P(cq,c§,cz), ify; = —1

The exact specification of the joint distributions are given in Lemmal([l] Specifically,

7lIs+ 120 [ER
Pi(cg,ce,cz) : cg =(9,84) — —m—, ce = (0v,84) + ——, c, = ||s
+( qs &€ ) q <g +> W 3 < +> W H +||
(89)
_ ’Y”S_HZO Cr = HS_”ZO CZ — HS_” (90)

P—(CQaC£7CZ): C(I:<g’5—> B e E— T /s
V1—~2 V1—~2

With this new decomposition of the feature vectors, the empirical risk minimization of splits
into (i) a three scalar variable problem of /14, f1¢ and b, governing the ¢, £ plane and a bias, and (ii)
a (d — 2)-dimensional sub-problem determining the orthogonal component to span{q, £ }. The next
display formalizes this sequential optimization problem:

. A 1 417"
ml?b¢d(ﬂqaﬂﬁvb)+§[ﬂq us][ 7} {“"}7

Kt v 1 e
where
. 1 A 9
Ga(kq, pe,b) = min - > ez izio®) + cqitia + ceipe + biwi) + Sl OD
i€[n1]

and {z; }i<n, is a collection of (d — 2)-dimensional, isotropic, normal random vectors.

Henceforth, our goal is to characterize the asymptotic limit of ¢(pg, f1¢, b) and v? = ||z*||?, where
x* denotes the optimal solution to (9I). Since z* is a stationary point, we must have

¥ = —% Z U ({Caiziy, @) + Cqiftq + Ceifte + b3 yi)(Czi2).
i€[na]
Thus,
1
niA

v = [|lz*|? = — D U((Caizina®) + Cqiig + ceipe + biyi)(czizinat).  (92)

i€[n1]

In the following, we will denote

€; 1= Cq,iftqg + Ceifte + b, Ci(u+ €)== L(u+ €;9i). (93)

to elicit parallels between our derivations and those present in [Karoui (2018). For simplicity of
notation, we further write

Ji=czi%
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E.3 LEAVE-ONE-OUT: DETERMINISTIC ANALYSIS

The key probabilistic structure in our problem is that different feature vectors are independent. This
naturally prompts us to consider a leave-one-out analysis. We first need to introduce some notation.
From this point forward z is in R?~2. Let

@ = min Fj(a) = min - 37 G((ox) + e+ Slel? g = argmin F ()
1 i€[n1] ®
* . * . 1 r A 2 * . *
Do = mn Fd,\i(x) = min ny Zéj(<fjax> +€5) + 5\\55” Tg)\i — argmin Fd,\i(x)
i ‘
denote the optimal values and the optimizing solutions of the original optimization problem and its

leave-one-out version, respectively. Going forward, we will often omit the d-dependence of these
quantities to alleviate the notation.

E.3.1 LEAVE-ONE-OUT ANALYSIS

A key step in the following consists in constructing a close approximation Z; of x*, with simpler
distributional properties. To that end, we introduce the surrogate optimization problem:

&)d,i = @;’\i + min ﬁdﬁi(sc), Tjq = argmin ﬁdyi(m)
r T

where

~ 1 z 1 " *

Fasle) i= { () + 50 = af) TG0 = 21} o)

n1 2
and .
Hyi= - DU at) + ) ] + AT
J#i

is the (leave-one-out) Hessian matrix. Heuristically, this surrogate problem may be viewed as a
quadratic approximation of ®* in the vicinity of xil It is straightforward to verify the following

lemma.

Lemma 3. Ler M;(x;~y) denote the Moreau envelope of {;(x), i.e.,
| (2 = 2)?
i\ L3 = 4 .
M, (z;79) min (2) + 5
and let

_ 2
PI‘OXZ‘(I’;’}/) = argmin ﬁl(z) + @272)
z Y

be the corresponding proximal operator. Then it holds that

Fio=(fi, %) + & = Prox; (7,\i; Vi), 95)
where T \; = (fi, ay;) + € and
1
vi=—fi H i (96)
ni
Moreover,
~ N 1, 1z
T =al, — az;(ri)H\il fi (97)
and

T * 1 r3 *
i =Py + ;lMi(<fiax\i>)-
Remark 5. Let © = Prox(c; 7). It is often convenient to recall the following identity:

Tr—cC

=0. (98)
v

() +
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E.3.2 ON THE BOUNDEDNESS OF ¢

A key technical difference with the closely related analysis of [Karoui| (2018]) lies in the assumption
made therein that ¢’ is bounded. We would like the present results to hold for the quadratic loss in
particular, which does not satisfy this assumption. The following lemma bridges this gap by showing
how the optimizer of the inner problem using loss ¢ coincides, with large probability, with that of a
modified loss with bounded first derivative.

Definition 2. Given I > 0, we define the clipped loss aip (-, y) : R — R as follows:

1. Laip € Cand convex
2. Leip(2) = U(r) for z € [—1,1]
3. Letting M = sup,¢(_ p |¢'(2)], we require that ||€y; ||oc < 2M

4. we further require that £, < £.

The construction given for £}, in definition E] can be achieved in the following manner. Consider

the “bump function”
1 .
b(t) = {exp (“H’))’ if£€(0.1)

0, else

and, fixing a ¢ > 0, define  : R — [0, 1] by

0, z<IT
(z=1)/¢ d
n(z) = § P ze LI+,
1, z>1T+1

Note that € C'°® with bounded derivatives of all orders. Now, consider the left and right linear
extensions of ¢,

Lo(2) = (D) + 0 (~D)(z+ 1),  Li(z) = LI+ ()=~ ),

which allow us to define £;;, as the piecewise function

L_ (Z)7 R )

(L =n(=2))(z) + n(=2)L-(2), z€ (=1~
Laip(2) = < £(z), ze[-I,1]

(1 =n(2))l(z) +n(2)L+(2), ze (L, I+)

L. (2), z>IT+.

The prescribed properties of definition 2] are then easily verified from basic calculus.
Lemma 4 (Clipped loss derivative). Recall that

* M 1 r )\
¥ = argmmlnnf Z G((fi,x) +€) + 5”33” 99)

1 i€[n1]

Fora given 6 € (0,1), let

2 2 2
R = JE[U(ey)], 1= (1+m),/21og;“+1+\/ug+<“q17_+7‘§) + [b] + VL

(100)
where € ~ cqiq + cepie + b. Define
. .1 = A
T3, = arg min - Z Loip,i ((fi,x) + &) + §||x|| (101)
v i€[nq]
Then, with probability at least 1 — 6,
¥ =z (102)

clip®

"Four times differentiable with continuous and bounded derivatives.
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Proof. The strategy consists in controlling the supremum sup; ¢/, [r<P| of the residuals 5P

]: =
z* [¢* — c,vZ]. Since by construction [|£;,[lc < CpolyLog(ni), one can apply the results of

Karoui| (2018) to the clipped problem, showing that
[P < | Proxenp (060 fi) + €6, 70)] + 60 < gl [ 04ll + 00 + e (103)

using the contractivity of the proximal operator. We used the shorthand g; = <I:lip,\i Jtio il fZ>

Note that from Karoui (2018), 6 := sup, |[ré™® — Proxaip (27, \i,fi> + €, m) =
OL, (M\/‘%Wl)). From the identity Fdipy\i(m:hp’\i) < Faip,\i(0), one can bound
N 2
i nill® < 50 ;ecnp@;yj) <R 441, (104)

» we have [|z%, il <

with 6 = Oy, (m). Using the identity [v1+xz — 1] < |z

N

R+ 6], Summarizing,
sup 7§ P| < (sup |gi|)(R + [6@)) + 80 + sup |e,]. (105)
For n; large enough, from Markov’s inequality,

P > 1] < g P[|6®] > 1] < (106)

D >

We now need to control the term sup; |¢;|. From (89), for any given and fixed ¢, j14, b and remem-
bering ||s+|| < 1, one can bound

lei] < acllgilln + belz0.i| + ce (107)

with

ac = |tql, be = , ce = |b| + VL62. (108)

¥ 1

We remind that all entries of g € RE, alongside with zg, are normal-distributed. Then, for any h,
using an union bound

P {Sup|ei| > /a2 +bgh+ce} <Y p [a€||gi||1 +be|zo] > /a2 +bgh] . (109)
¢ 1€[n1]
Examining more closely the summand P[a.||g;||1 + be|20,:| > h], one has

P [aengiHl + belzo4| > Va2 + bzh} < Z P [aeslgi,l + -+ bespy120, > Va2 + bgh]

se{—1,4+1}L+1
(110)

from a coarse union bound, remarking that the left hand side appears in the right hand side sum.
Now that one has ridden of the absolute value, observe that each term in the summand is distributed
as N (0, \/a? + b?). Thus,

_1p2
Pr [qu|6¢ > \/ag—kbfh—kce] < 2L+1n1%. 111)
In particular, for h = \/2log n4,
1
Pr {sgp les] > /a2 +b2y/2logn; + ce] < QLHW' (112)

Let us again suppose n; is large enough so that this probability is smaller than ¢ /.

31



Under review as a conference paper at ICLR 2026

Thus, for n; large enough, the probability of the complementary event of A = {§() < 1} N
{6@ < 1} N {sup, e;| < /a2 +b2/2Togn, + c.} is bounded as P[A] < ¢/2. Now, for any
t > 24 /a2 +b2y/2logny + c.

. r t— 5
clip )
P[Slz}plm- | >t <P _sgp\gz\ > AT @] 5(2)J (113)
[ t — 0 — sup, |&] 1
<P i AN A — 114
< _{sgpg|> R 0] } }+2 (114)
t—1-— 24+ 02,/21 c )
<P [sup g > (Ve + bev2logm +e) |, 8 (115)
i R+1 2
t—1— (/a2 +b2/2logny + c) 5
< S Pllg e 0 2 116
< _Z llg | > o1 +5 (116)
1€[n1]
. (t—l—(«/a?{»b?\/m#»ce))z
3 T+ 0
where the last line follows by Mill’s inequality. In particular,
i 2
I[”lsup7“;-:111’|>(1—|—9%)\/210gZl—&—1—1—\/ozz—i—bg\/Zlognl—l—c6 < 4. (118)

The last step of the proof comes from the simple observation that with probability at least 1 — ¢, for
all ¢ € [n1], £;(r;) = Laiip,;(r;), and so under this event we have

— () = & (s
At = > ti(ry) = o > Laipi(ri). (119)

i€[n1] i€[nq]

Therefore, x* satisfies the stationarity condition for the clipped problem. By uniqueness of the
minimizer xzhp, we have

(120)

in this event. O

A consequence of Lemma |4 is that one can assume, without loss of generality up to an event of
probability §, that the first derivative £’ is bounded. More precisely,

[€']lsc = O (polyLog(ny)) . (121)

This enables in particular the borrowing of a number of results from |[Karoui (2018), where such an
assumption is leveraged. Henceforth, we worth under the (1 — ¢)-probability event where z* =
7, and work strictly with the clipped loss £ciip, however we omit notation and simply write £ for
simplicity.

E.3.3 CONCENTRATION RESULTS

We first introduce and recall several quantities of importance in this section. For 4,j € [nq], we
write

ri = (fi,x) + e, Ti0=(f;, ) + e, TiNi = <Jgja$tz> + €.

The following lemma establishes that the introduced surrogate estimator Z; constitutes a good ap-
proximation of the full minimizer * as well as further concentration results.

Lemma 5 (Approximation by surrogate estimator). We have, for any k,

.~ olyLog(n .~ 1
sup ||z* — ;|| = Oy, (pyg(ﬂ) and  sup ||x\Z —T;|| = O, <\/7”71> , (122)

i€[nq] ni i€[ny
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Moreover,

Var(|*||2) = O (W) . (123)
1

Furthermore, at the level of the residuals, one has the bounds

5 polyLog(n1)
sup |r; — 7| = Op, ( (124)
i€[n1] valsl

Proof. The proof follows directly from Lemmas C.2, Theorem C.6 and Proposition C.7 of |Karoui
(2018). The statement on the residuals corresponds to Theorem 2.2 of the same work. O

The lemma thus shows that the squared norm |z*||? concentrates. We denote in the following by
v? := E [||#*]|?] its limiting value. The statement on the residual can be further complemented by
the following lemma, which covers the off-diagonal terms.

Lemma 6. We further have

Z(Tj _ fj’i)2 =0y, <I)()1WW> ’ (125)

— ni
JFi

where we write 75 ; = (f;, %) + ¢;.

Proof. From the definition of Z;, one has

—AZ; = —Axy; + (Hy — MD(@ —2y;) + nilé’(fi)fi (126)

_ nil ;(5”(m)(fj,i —Fp) O+ nile'(fi) 7 (127)

Subtracting the stationarity condition for x*,
AT~ 8 = n% Z(é’(rj) — ' (Fpa) (P = Fne) = £ (Fpa)) f + nil(f'(m) — (7)) fi

. (128)
Thus for k # @
Ak = ) = 2o S r3) = ) 5 = i) = OO B+ - (€)= €GN )
- (129)

The last term can be controlled as
1 7 olyLog(n
L)~ )i )| < 1670, (PEOE) (130)
nq n
using the Lemmal[5] We focus on the first term now. Note that
- - - - - T3y, \/- -
i) (T = ) + € (Fpna) = € (Fp) = 500 ) (s = 7na)? (131)

for some 7; € (7;4,7;\;), from a Taylor expansion. Thus, from another application of the mean
value theorem

. . . N B . 1 - .
C(ry) =) (Fhe — Tjna) — O (Fpna) = £7(35) (15 — 756) + 55(3) (%) (Fji — Tpa)® (132)

for some §; € (r;,7;;). Let us introduce the vectors §,c € R"~1, defined for k # i as

Ok = (T — Thi), (133)
1 ~ ~
Ek = T (6(3)(7‘j)(7:j7i - ":j\i)2<fj7 fk> (134)
ny =
J#ik
1 1 Pz
+ 2—2“” (Fr) (Fri — i) 2| fll? + — (€ (i) = €/(72)) (i, fk>> (135)
nq ni
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and the diagonal matrix A € R(m=1)*("=1) with diagonal elements A;; = ¢”'(3;) for j # i. Then,

1 .
—\o = n—F\iFTiAé +e (136)
1
where F\; € R("=1*4 has rows {f;},2i. This implies
1 - (1 1 o
§=— (F\Z—FTiA + /\Inl_l) e=—A2 (AzF\ZF\ZAz + A, 1) A= 2e. (137)
ny ni
But
/1 . -1 o -1 1
1A% (S APRGFTAY 0L,y ) AT = (o ARRGRAY + AL, )< 5 038
using the fact that similar matrices share the same operator norm. Thus
1
61} < S llell- (139)
On ¢ — We now turn our attention to . Using the closed-form expression for 7 ; — 7\; from
Lemmal[3l
5 LS O () (7 — ) ) (140)
" Jj#ik
= in >SNy el Foa)? FTHG ) H (141)
Jj#ik
- N TED | S O Fo BT | o (142)
- m JsJk/Jj \i J?
Jj#ik
< Ao )HH 1Y €O 143
\i Ji g k>fjf ” ( )
Jj#ik
polyLog(n1) T
< 2)\20 (n% [ E\ ik DF i - (144)

In the last step, we denoted D the diagonal matrix with elements D;; = () (7;)(f;, fi). Further-
more,

IF G kDF okl < TRaklPIDI = [ FavellID] (145)
< Oy, (polyLog(n1)n1)[[€®) |« sup (£, i)l = Or, (polyLog(n1)n1) (146)
J7F

Using the fact that the maximum of n; independent standard Gaussians is Oy, (polyLog(n1)).
Thus,

5 0) 730 = PG i) = 0, (PR )

21;&” ny

The remaining two terms of €, can be shown to be Oy, (PolyLog(n1) /n, ) and so

lexl < O, (W) (148)
Finally,

191 < O, (P, (149
which concludes the proof. O
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Lemma 7 (On ;). We have

1 1
su i —Ch 0] e where = —tr[HY. (150)
s =t = O (=) =l
We called
1 o
= 2 GG+ (151)
J€[n1]
the full Hessian.
Proof. This follows from Corollary D.7 and Lemma E.4 in |Karoui| (2018)). O
Lemma 8 (®* concentrates). We have
lyL
Var[®*] = O (poyog(nﬂ) (152)
i
Proof. Appealing to the Efron-Stein lemma, we have
Var[@*] < S E [(F*(x*) - F\i(a:@))ﬂ (153)

i€[ni]
The summand can be controlled as
B[(F ()~ Aute )] < 28| () - Autel) | + BRG] asy
We first control the second term.
%E [i(ri)*] < 1%2(6() + 1C15E [r7]) - (155)

As we will later show in Remark@ the moments of r; are indeed bounded, making the right hand-
side O(pelyLog(n1)/n?). Note that the current result is not used to reach Remark [6] so there is no
circular argument. We finally examine the first term. By the mean value theorem,

Jr
F*(a%) — R (af,) = < NG, f2+>\7\l,m x\> (156)
by

where 7°; belongs to the (unordered) interval (7;,7;\;). We now show that both terms in the scalar
product are small. First, we will use the fact that the first term is close to F\i(xii), which is by
definition of xi , vanishing. More precisely,

* i 1 3 * i
[ ST SRR o A RIS Sl e
i Vi
< fZHf”Hoolm il + 5 Hx —zyl (158)
J#i
polyLog(n1)
= —_— ). 15
Or, ( N (159)
Since 7; € (7,75,\4)s
. 8 polyLog(n1)
|75 = Tl < Irj = Tinil = O, (TM (160)

from Theorem 2.2 of |Karoui| (2018). From Theorem 2.2. and Lemma C.2 of |[Karoui (2018)), we
further have [|z* — o, || = Op, (Polvlos(m1)/ /7). Therefore, from Cauchy-Schwartz,

1
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Putting everything together,

/% « olyLog(n
E[(F*(a%) - Rulat))?] =0 (p vLosl 1)) (162)
1
and
lyL
Var[®*] = O <poyog(n1)> (163)
ni
from the Efron-Stein inequality, concluding the proof. O

Lemma 9 (x concentrates). Recall x = 1/n, tr[H ~]. The following concentration result holds:

Var[x] = O (W) . (164)

Proof. From the Efron-Stein lemma,

Varlx] < > E[(x —x)°] (165)

1€[n1]

where x\; = 1/ny tr[H \i 11, We recall

1 L
H\; = o Z ell(rj\i)fjij + ALy, . (166)
b
Let us further decompose
E[(x = x\i)?] < 2E [(x = x:)?] +2E [(xi — x\0)°] (167)
defining
- 1 1
Y= - trlHy Y, H; = - — N ) Ff] A+ M, (168)
J#i

We first focus on E [(x — x:)?].

X = Xi= nil tr[H(H; — H)H[') (169)
TH lH 1 T 1
= LS ey - e Al DI g
ni o ni ny
fTHYHf fTHH
= Z“’) ry = ) T+ f”( IO U )
b m m

where we used the mean value theorem and 7; € (r;,7; ;). Thus,

N 1 [1€"]] copolyLog(n1)
— x| < —|{6, 0] 172
-l < 60+ 0, (BT (172)
we introduce the vectors 6, o € R™ ~! with elements
05 = (rj = 75.) (173)
o S HAHT
0; = g(s)(rj)ﬂn—lj_ (174)

The latter can be controlled as ||o|| = Oy, (y/nipolyLog(ny)) while from Lemma [7} ||| =
Or, (polyLog(n1)/ m1)). Thus, the Cauchy-Schwarz inequality implies

i IyL
X — Xil = O, (po Y nolg(nl)> . (175)
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We now examine E [(X; — x\;)?]. From a Taylor expansion,

1 fTH'H ' f;
G- =— > S B Ui
Xi — X\i _TL1 j¢l€ (7”]\ )( T]\l) " (176)
FIHG T
0 (5)(7 0 — )P (177)
2TL1 o nq

for some 3; € (7 ;,7;\;). From Lemma C.4 of Karoui|(2018), |7*; ; — ;| = O, (PolyLos(n1)/ /n7),
from which it follows that the second term is Oy, (PelyLos(n1) /n,). The objective is now to approxi-
mate H; in the first term by the f;— independent Hessian H \i» to unravel all statistical dependencies
on f, The correction is

FHGHT = H

o ;5 i) (i = i) — (178)
< ||€(3)Hoosup|7“]i - rj\q\— Z [F2 H |H; ' — \;1|| (179)
< 169 sup - ]\A—A—jij 11" |, - | (180)
But
[1Hi — Hyil| = ||* D @) Fre = ) i f] (£)(F0 = Fpa) [ I1Bll - (181)
b

where i\i is the empirical covariance of the features, excluding the :—th. Putting everything to-
gether yields

S HGHET -H olyLog(n
= LS 17— i) 2 UREEN O <pyg<1>> (182)
i m ny

Thus, going back to the original objective,

- - 2
Y o f‘TH?fj polyLog(n
-] =B | R AN (PR B e I [N <2(1)>

JFi " "
(183)
Leveraging the closed-form expression of 7; ; — 7;\;, the first term can be written as
_ fT 7-2]6
5T \i 7J
E Tvz Zé _]\l f H\l flT
L g
1
f 2
- Jo1z
<E[C(0)" ] Eyy, I— Z (3 j\l H fill'Ey [g']| (184)

L ki

using Minkovski’s inequality; g ~ A(0,1) in the expression above. Note that, introducing the
vector h € R™ ~1 with elements h; = € (7, ;) [ H i fmi

1 (3) FTHG T,
IIHQ;W’( )= o

\ﬁw—uhwugw§ BIEGL (8s)

.
An?
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But || F\;|| = Or, (y/nipolyLog(n)), and
fTHG S
ni

1] < vare® s sup

1 .
<16 | supl| f5]|* = O, (polyLog(n1)/n1).
AV ki
(186)

Thus,

_ 2
fT i f N 1 polyLog(n
BN Zé i) [ H! fzﬂi\l =0 <]E [¢'(7:.0)"]? pyan(1)> '
L g 1
(187)

1
To complete the proof, we need control of E [Z’ (77“)4] *, which is provided by the proof of Lemma
(7), where we established that ¢'(7; ;) = O, (1). O

E.3.4 LIMITING RESIDUAL DISTRIBUTIONS

It now remains to ascertain the law of 7, which we describe in the following lemma.

Lemma 10 (Limiting distribution of 7;\;). The leave-one-out residual admit the simple representa-
tion

. polyLog(n1)
iNi =€ tcivZ+0 — Y 188
T\ e—i—cﬁu—i—Lz( \/a ( )
with Z ~ N(0,1) independently from €;, c ;.
Proof. We have
Ti\i — € = <ﬁ7£\i/”$\iH> [E2Nl (189)

and Z := % <ﬁ, ﬂﬂ\z‘/\|z\i\|> ~ N(0, 1). Furthermore, from the proof of proposition C.7 of [Karoui
(2018},

olyLog(n
ol = o[+ 0, (P2E)) (190
lyL lyL
::ﬂ+0b<mwwﬁmﬂ>+oh(mw”%mﬂ> (191)
VALS! ni
lyL
_ 2o, (W) . (192)
Therefore,
polyLog(ny) polyLog(ny)
=1+ 0L, | ——F—=— | =v+0L, | ——— 193
il V\/ + 00, ( N v+O0r, ) (193)
using the inequality [/1 + x — 1| < |z| in the last step. Finally,
lyL
B[22 (ol - )] =& (ol - )] = 0 (PR (194)
n
in other words
olyLog(n
Z (I =) = 0, (PHEEL). (19%)
O
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Lemma 11 (Limiting distribution of 7; ;). Setting x5 := E[x], we have

polyLog(n1) )

196
N (196)

Tiq = Prox(e; + CziVZ; Ci,z‘XE) +Or, (

Proof. Let us introduce the shorthands 6, = 73\; — €; — c.;vZ and §y, = ; — czyiE [x]. From
Lemmal|3]

|f“ — Prox(e; + ¢, ivZ; CEZE [X])| (197)

= |Pr0X(6i + iV Z + Oy; cgﬂ.E [x] + 6y) — Prox(e; + ¢, ;v Z; ciiE [X])‘ (198)
1 o(r

- 5, + G (199)

L+ e x0(F) " 1+ ey ()
using the two-variable mean value theorem, and eliciting the derivatives of the proximal function.
7, X are on the line between the points (7\; — €; + c.;vZ + oy, ci’iE [x] + 0y) and (7p; — € +
civZ,c? E[x]). From Lemma 8, = Oy, (polyLog(n1)/ /m7). For the second term

' Y2,

()
—— < |10 200
1—1—62’1-)'(5”(7‘) X‘| = H ” ‘ x| ( )
But
polyLog(nq)
Ol < lvi — ez Lilx —EX]| =0, | —————=—— 201
501 < i = 2]+ il ~ B = O,y (222E Qo
One thus reaches
2 (7) polyLog(nq)
——06, =0 —_— . 202
= O (P -
Putting everything together, one thus reaches that
~ polyLog(n;) )
7 — Prox(e; + ¢ 4VZ;c§iE =0 ( . (203)
2, ( 7 Z51 s [X]) Lo \/TTl

O

Remark 6 (Second moment of r;). The second moment E [rf] of the responses is O(1), for any
xS [nl]

Proof. Fix any i € [n]. The moment E [r?] can be controlled as

E [r?] < 2E [(r; — 7)?] + 2E [77] (204)
lyL
< 2E [Prox(ei +c.ivZ; ciiE [X])Q} +0 <poynog(nl)> (205)
1
lyL
<UE[@+ 30727 40 (PHU) — o). (206)
1
[
E.3.5 COMPUTING THE EXPECTATIONS
Self-consistent equation on v —
Lemma 12. The expected squared norm v%, := E [||*||?] satisfies
1 1
vE = *XEZJJ,G,CZ [¢' (Prox(e; + c.vpZ;cixp) + €,y) Prox(e; + cvpZ; cixe)] + O <nl> ,
(207)

where 7 is a random variable distributed as 7;, given y = y;.
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Proof. Using the stationarity condition,

* 1 / N
—rt = > bi(ri)fi (208)
i€[n1]
Thus,
o1 o (g )
—At = > E(ri)(ri — €)] (209)
i€[n1]
Since
|0 (ri) (ri =€) = Gi(F) (Fi — €)| < [[1€]|oo + (16 |oo (€] + [ra[)] [ — 74 (210

From Cauchy-Schwartz’s inequality and Lemmal[3]

- 1z polyLog(n
B o+ 16 s sl + 1] s = 50 < B [Q1€ e+ 147l + 1)) 0 (BB

N
@211)

The boundedness of the first expectation follows from Remark [6] and the existence of the second
moment of ¢; follows from the proof of Lemma] Thus

- lyLog(n1)
= S )i —e) = — S U7 i+01<p0 . 212
zéz:m ‘ zez[:m] o ) " \/771 ( :

We now appeal to Lemma to elicit the second term. Let ; = 7i,i — Di, using the shorthand
= Prox(e; + ¢, ;vZ;c? ,E[x]). Then,

'Yz l

|€/( (T =€) — 4 (pi)(pi — )| = Ell(pZ) (pi + 6 —€) +£/(pl>6z

3 (213)
< 1loo [32 + 28l (Jesl + 241 ZD)] + 11l @14)

Using Cauchy-Schwartz’s inequality, and the fact that §; = Oy, (polyLog(n1)/ /m7) from Lemma
the term in square brackets is Op,, (PolyLog(n1)/ /m7). Thus,

1) (7 — ) — £ (pi) (s — n:oh(mmﬁﬁm”) @15)
and
— Z () (ri — ) (216)

ze[n1]

= — Z 0 (Prox(e; + ¢, ivZ;; 2 JE X)) (Prox(e; + ¢ ivZi; 2 JEX]) —e) (217)

L i€[n1]
lyL
+ 0L, (poy Og("1)>. (218)
Vi
Taking expectation,
1 1
V2 = _XEZ’y’G [é' (Prox(ei +c.vZ; ciE X)) + e,y) Prox(e; + c,vZ; ciIE [X])] +0 (\ﬁ) ,
ni
(219)
which completes the proof. O
Remark 7. Note that alternatively, v% may be expressed as
2 1 E Prox (6 + c,vZ; CEXE) [Prox (6 + c,vpZ; csz) — CZZ/EZ] 0 1 '
g AXE c VAL
(220)

by applying ©8) to Lemma|I2}
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Self-consistent equation for y —
Lemma 13. Recall x = 1/n, tr[H '] and xg = E[x]. We have

'(P + c.vpZ;2xE) y)c? 1 lyL
Axe +E (Prox (e + e:vpZ; Ex) s y)Exr =—+0 polyLog(m) (221)
14+ 0" (Prox (e + c,vpZ; 2XE) ; Y)C2XE « N
Proof. By the construction of the Hessian matrix H, we have
—ZH YD) T+ HT =1
It follows that
// £T 1 —
nQZe r)f H i+ A= =
Applying the matrix inversion lemma then gives us
]- E;/(’/‘i) §1X1 1
it AN VTERAAY Ny —
Z L+ € (ri)c2 i Xi TAX=g
where 1
Ni=—z H; 'z
ni
and 1
H; = Zﬁez O (ri) fifh + A
We note that ¥ is close to 1/n; tr H. py 1. To formalize this intuition, introduce
1 _ polyLog(nq)
; —zH = Un, tr[HZY 4+ O ( , (222)
X\i = \ [na tr \i ] L N
the last equality following from Lemma G.3 of | Karoui|(2018). But
1
= |—z H7'(H\; — H)H 223
| X\z| n Z ( \i — ) \é ( )
< 350 Zﬂ D) (s = i) i (224)

Vi

1 polyLog(nq)
< FOLk(l)OLk (polyLog(nl))?I;I? lrj —rini| = OL, <\/TT1 . (225)

The derivation mirrors the steps of Lemma[9] and the last bound follows from Theorem 2.2 of Karoui
(2018)). Thus,

o1 polyLog(n1)
; = — tr[H 0] — . 226
XZ ny I'[ \7 ] + Ly ( \/771 ( )
Now in trace form, we approximate 1/n, tr[H, ;'] back by 1/n, tr[H;']. This can be done along the
exact same lines as the previous approximatlon finally yielding
Lo 1 polyLog(n1)
i=—t O, | ——————— ). 227
Xi= o r[H7Y + ( NG (227)
We now show that y; is close to x:
Xi —xI = ;Itr[ Y(H — H)H™| (228)
= Ié”(n)lltr[H ViR H ) (229)
S lyLog(n1)
< LN H AP = O, ([0 Y R0E) 230
< I ol A = O, (1671 P (230)
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Furthermore, we can also approximate ¢/ (r;) ~ £ (#;). More precisely,

- olyLog(n
0" (1) — "(7)| = Op, (”g(?))”mpyn:g(l)) (231)
Thus,
E/»/ T 62 ‘Al' 6’-’ 7:1 62 ; lyL
i (,/ ) z,zzx - % (/ )~ Z,’L;( OL;‘. poly Og(nl) (232)
1+ 7 (W)%@Xi 1+ Ei’(ri)cz}ix /ny
Observe that further
BN HEEEN | £ (x = E[X) o)
L+ 0/ (F)2 x 1+ (7)) B[N (1+€(Fi)c Z,iE[ DL+ (75)e2 i x)
lyLog(n1)
< |||, Oy, P08 234
< 10, (ZE ) 234)
using the concentration of x, see Lemma[?], and that 0 < ¢, ; < 1. Summarizing,
0 (ri)e? X ()2 E lvL
7 (,/ ) z,zQX (/, ) 212 [ ] + 0 , poly Og(nl) ) (235)
L+ () xi 1+ 0(F)c ER N

Finally, let 5 = 7. — pi» using the shorthand p; = Prox(e; + ¢, ;vZ; ¢ ,E[x]). One can control

» Yz Z

47 (7i)e2 B [x] £} (pi)ez B [x]
L+ /()2 EN] 1+ 6/(p)e2 B[

)

1 N
< 6|4 (236)

>

using x < !/x. From Lemma|l1] ; = Op,(polyLog(n)/ /7). Putting all intermediary results
together, and taking the expectation, it holds that

0" (Prox; (c,veZ; c? y)c? 1 ly L
(Prox; (c-vp ZX2E) y) | e — Lo (et )
1+ 0" (Prox; (c.vEZ;2XE) ;Y)2XE o N
proving the lemma. U

E.3.6 LAST STEPS

We begin by defining the constants v and x as solutions of the following self-consistent equations:

1 “[2* — vl
p2 = L |FE el (238)
AX c2
0" (z%5y)e2x 1
ZA Ay = — 23
[1+€,,(z*;y)ch A= (239)

where
Z* = Prox (e +c.vZ; ch) .

and take for granted that v and x exist uniquely. We further assume the regularity conditions for the
map (Mqvuﬁa b) = (Va X)
Assumption 3. The map (jq, p1¢,b) — (v, x) is continuous and

(ve,xE) = (V,Xx)

as ny — 0o, where the convergence holds uniformly over (4, pie, b) in any compact set.

Define the asymptotic inner objective function by

N A
¢A(Mq7l’[/€’b> = Ecz7cqvcﬁvzvy[£<z + E;y)] + 51/2
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where we recall that € = pgcq + pece + c2z + b, z ~ N(0, 1) independent of ¢, c¢, and c.. Let

e i .f A I~ - Hq
G = ug}gbgd(uq,uf,b)y 9alkgs e, 0) = dalpg, pe,0) + 5 g el {w 1} ¢

(240)
and

. A 1 v !
Ga:= mlnbgA(/ijauﬁvb)a gA(,qunuévb) = ¢A(/1'qa;u'£7b) + 5 [:uq :U’ﬁ] |:fy 1:| |:/:Z:|

HgsHe,

(241)
so that G denotes our original optimization problem and G 4 is the surrogate problem where the
random n4-dependent function ¢ has been replaced by ¢ 4. In establishing the result of Theorem [
it remains to establish the asymptotic equivalence between G and G 4. We begin with the follow-
ing brief result which establishes the sufficiency in considering minimization of g4 and g4 over a
compact set in R3,

Lemma 14. Let v = ({14, pte, b) and set

v} = argmin gq4(v), vy = argminga(v).
vER3 vER3

For 6 € (0,1), there exists a compact set V := V(§) C R3, not depending on d (equivalently on
nq), such that

vy, v €V
for all d € N, with probability exceeding 1 — 6.

Proof. 1f a function h : RP — R is coercive, in the sense that

lim h(z) = 4oo,

[lz||—o0
then h has bounded level sets

levp(c) :={z € R : h(z) < ¢} forceR.

To show that g 4 is coercive note that if ||v|| — oo, but ||(1tq, ¢ )|| remains bounded, then necessarily
|b| — oo and (A3) implies g4 — oco. If indeed ||(pq,pe)|| — oo, then due to the quadratic
regularization term

Qpq, ) = g [1g  pre] B ﬂl [ZZ]

we have

lim gA (/~an He, b) = 0.
[1Ceq e ) [ —00

since £ > 0, and so g4 is indeed coercive. Moreover, the map v — (v, x) is continuous by Assump-
tion[3] and so ¢ 4 is continuous in v by continuity of £ and the proximal operator. It then follows that
g is continuous in v and so, having established coercivity, its level sets are closed and bounded,
hence compact. From similar observations and reasoning, we see that gq4(v) is also continuous.
Since {(€;, ;) }i>1 are sub-Gaussian and £ has a quadratic majorant by Remark 3} {£(e;; ;) }i>1 are
sub-exponential and so by Bernstein’s Inequality (Vershynin, 2018, Theorem 2.8.1), for any x > 0
sufficently large,

1 2
eas) — . < —
P " E ez yi) — Ell(e9)]| >k 2exp (—Ck*nq)

i€[n1]

where C > 0 is an absolute constant. Therefore, taking « > 0 large so that
an ~12exp (—Ck2ny) < 6, by a union bound, one can ensure that for

= () | X flews) ~ Bltten)] < g

n1>1 i€[n1]
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P(Q5) > 1 — . In the remainder of the proof, we work on the event {25. Letting A,;, > 0 denote
the smallest eigenvalue of the positive definite matrix in ¢ (ftq, pte ), we have

AAmiH * * *
5 (g 1) I” < 9a(v3) < Elle,y)] + 5 =: Bo

where we write the optimal solution by v); = (u; > Bé > b%). The first inequality above is due to

9a(v) > Q(tq, pte) whereas the second follows from gq4(vY) < g4(0). Thus, we find that the first
two components of v); are bounded uniformly (independent of d) — in particular

260
>\)\min

1(ttg,a> 1, a) | < =: Bo

Moreover, as
ga(v) > E[l(e,y)] — k = o0
as |b| — oo for fixed (fq, f1¢) by (A3), there exists By > 0 — independent of d — such that

inf 9a(fig, p1e,b) > Bo + 1
(g 1) I<Bo, |b|>B; ( @ He )

Hence, on 25, the minimizer v}; of g4 lies in the set

U = {(ng; pe, 0) : || (g, pe)ll < Bo, [b] < Bu}

which is compact by continuity of g4 and importantly does not depend on d. Therefore, taking
B = max(ga(0), Bo + 1), having previously established the level-compactness of g4, we have that

V:=UUlevgy, (B)
is compact and contains v% and v}; for all d € N. O

The compactness yielded by the above lemma is an important fact that will be carried in the subse-
quent results. Notably, we remark that all preliminaries that have been established hereunto involv-
ing O(by,) errors terms for some sequence (b,,) hold uniformly over the above defined set V. To see
why, simply recall the meaning of writing a,, = O(b,,) is to infer the existence of an n-independent
constant C' > 0 such that

for n sufficiently large. Revisiting our previous results, one can check that, given a sequence a,,(v)
parameterized by v € V), the map v — C(v), namely the map from the parameter to the order-
defining constant, is continuous. This turns out to be a simple consequences of the continuous of the
loss ¢. Therefore, sup,,¢y, C(v) < o0, and, as stated, all previous results hold uniformly over v € V.

Lemma 15 (Uniform convergence to ¢ 4). We have
sup [E¢q(v) — ¢a(v)] — 0
veV

as d — oo

Proof. Let

2% =€+ Prox(e + c.vpZ; c2xE),
noting that the dependence on n; in 2, comes through the deterministic n;-dependent quantities
xe and vg. Recall that by Assumption (ve,xE) — (v, x) uniformly over V. By continuity of
the proximal operator, applying the continuous mapping theorem together with Slutsky’s theorem
yields convergence of

2, By etz

Note that this convergence holds uniformly over V as the proximal operator is non-expansive (i.e.
Lipschitz). For some 7; lying between r; and r;, and 7; between 7; and z;_, a Taylor expansion

yields
Blou(e)) = - > (E[az;l;yi)] B (P i) (s — 7)) + I (s 3) s — z;)])
i€[n1]
+ %1/125 +0 (\/%)
— Bt + 0 (PR ) 4 2

44



Under review as a conference paper at ICLR 2026

where in the second equality we used ||¢'|| . = O(polyLog(n1)) and applied the upper bound on
|r; — 7| from Lemma|5} and Lemmal(T1]to bound |; — 27, |. Now, for M > 0, decomposing

E[A(=h,59)) = B [60,59)Laces, wy<any | + B (€050 eter, p=any
we have that
E |:€(Z:1 ; y)l{é(zzl;y)SM}} —E V(Z* + € y)l{é(z*;y)gﬂf}}

uniformly over V by the Dominated Convergence Theorem. Uniform convergence of (vg, xg) —
(v, x) yields uniform boundedness in L? of (¢(z}; ;y))n,>1 since £ has bounded second derivative.
Namely,

sup sup E[¢(z} ;)% < o0

veEVY ni1EN

which provides uniform integrability of (£(2}; ;4))n,>1. That is for arbitrary ¢ > 0, there exists
M > 0 for which

supE [E( nl’y)l{f(znlvy >M}} <e
veV

as n; — oo and so, uniformly over V), one has
E [6(z,;9)] = E[(z" + € y)]

Lastly, by Assumption A2, /2 — Av? /2 uniformly over V, which yields the result.

Lemma 16 (Uniform convergence to E¢(v)). We have

P

sup [¢(v) — E[p(v)]] — 0
veY
asd — oo

Proof. We include the parametrization of v in z7(v), F} (v), and other quantities where the param-
eters v = (fiq, i¢, b) were previously fixed and hence omitted in the notation. Note that continuous
differentiability of the map v = (j1q, fte, b) = €((c2,i2i, &) + Cq,iftq + Ceifte + b;y;) carries to the
map v — z;(v) because strong convexity from the regularizer */2||z||? ensures a unique minimizer
and the Implicit Function Theorem provides that the minimizer depends smoothly on v. Thus, the
map v — z(v) is uniformly bounded over V as the set is compact. Then, observe that

A
sup - [|z3(v)||* < Fj(0;v) Z t(€i(v);yi) = O(polyLog(n1))
% 16 1]
by compactness of V and since sup,,,, |e;| = O(polyLog(n1)) by the proof of Lemmal 4} Again,
invoking compactness of V and Lemmalfd] we have that
1 ook
sup ||V, | > 4((fi,xy() | || = O(polyLog(ni))
ve i€[n1]

since by the Implicit Function theorem, d,z%(v) = O(polyLog(n1), and we have that ||¢'||oc =
O(polyLog(ny). Putting these results together, we have that ¢, is Lipschitz on V with a poly-
logarithmic constant which we denote by L,. Namely,

[¢(v) = ¢(w)| < Lallv — wl| = [lv = w]| - O(polyLog(n1))

for v,w € V. Lipschitzness of E¢ follows by linearity of the expectation and thus the centered
process Z = ¢ — E¢ is 2L4-Lipschitz. We finish the proof with a covering-net argument. Fix
e >0, set

€
0g = —
T 4L,
By compactness of V, let v(*), ... v(N4) be points in V such that

V c UM Bs, (v™)
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where B, (v("™)) denotes a ball of radius d, centered at v(™). A standard volume argument shows
that we may take Ny = O(polyLog(n1)) as Ly = O(polyLog(nq) )ﬂ Using the variance bound of
Lemma 8] Chebyshev’s inequality yields

P (12 > £ ) = O(polyLog(m) /m).

for m € [N4]. A union bound then provides

P ( max |Z(v™)] > ;) = O(polyLog(n1)/n1)

m<Ng

as Ny = O(polyLog(n1)). By construction of the cover {v(!) ... vV} for any v € V), there
exists v(") such that -
2] <1260 + 5.

Hence,

P <i§5 lp(v) — E[p(v)]] > 5) <P ( max |Z (™) > 2) -0

as d — oo which concludes the proof. O

The following result marks the grand conclusion of the section and completes the proof of Theorem

Lemma 17. We have
IG—Gal 250 (242)
as d — oo.

Proof. Let v* and v’ be the respective minimizers of g and g4, hiding the d-dependence for nota-

tional ease. Setting
A =supl(v) = ga(v)l,
veE

we have
G—Ga=g") —galvi) <g(vy) —galvy) <A
By symmetry, we obtain
|G —Gal <A

and so the result follows by the triangle inequality in applying Lemma[I5]and Lemma|[I6] O

F PROOF OF THEOREM[3]

Appendix [E] details the asymptotic characterization of the learning of the attention model [6] in
the asymptotic limit of Assumption[I} We now expound the related characterization for the linear

classifier baselines Lpoo1 (@ and L};5 (3), summarized in the main text in Theorem The first part

of the latter for the pooled classifier LpOO (@) was already covered in Corollary I in Appendix @, as
it coincides with a special case of TheoremEjfor the attention model.

We consequently turn to analyzing the learning of the linear classifier acting on the vectorized inputs
Lot (@), described in subsectlon u Formally, let us consider the empirical risk minimization
problem

1 A
w*, b* = argmin — > L((fi, w) + (u(vi), w) + b,y;) + S|lw|*:= argming(h)  (243)
weRLd peRT icn] 2 beER

where we denote f; := vec(Z;) the flattened background term of the inputs, and p(v;) =
Ovec(v;£T). We denote by p, the law of v over {0,1}%, and recall that p,(v = 0z) == 1 — 7
by definition. Note also that in these notations, y = 1 — d, ¢, is a function of v.

*Without loss of generality we may assume V is a closed sphere of radius + > 0 and by (Vershynin, 2018,
Corollary 4.2.13), Ny < (2rd; " 4+ 1)°.
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Proposition 3 (Test error and train loss of the linear classifier on vectorized inputs). The test error
and train loss of the linear classifier acting on the vectorized inputs, described in subsection |(I.1
trained with the empirical risk minimization (243)), concentrate in the asymptotic limit of Assumption

[t

A
Etrain = mbin Ey,v’,z [E(Z* +0, y)] + §V2

b (10 () 4B o (£2020)].

v

For any v € R we noted m(v) = wvimy + -+ + vpmy, where the summary statistics
v, X; {mi bre[r), b are given by the set of self-consistent equations:

_ l s * 2,/ %
my = )\Ey7v/7z [@ (2" +b*,y) (9 v + ” z)}
1
VQ = _XEy,v’,z [el(Z* + b*a y)Z*}

L [ (2" +b*,y)
Y,z

o A
ay T+ 07(z* +b*,y)x] -

where v' ~ py, y=1—20,0,, 2 ~N(0,1), and

b* = argmin E [£(z" +b",y)] + %1/2.
b

We employed the shorthand z* = prox, g4y« . (V2 +m(v")).

)
Note that the data distribution formally coincides with a Gaussian mixture with 2% + 1 isotropic
clusters, and the analysis of logistic regression on such data is covered in |Loureiro et al.|(2021)). In
this appendix, we rather give a more concise derivation in the specific setting considered, leveraging
once more the leave-one-out approach. The following derivation closely follows the steps of the
proof of Theorem[d] detailed in Appendix [E] For the sake of conciseness, we only provide an infor-
mal sketch of the derivation. Before doing so, let us observe that the equations are amenable
to being massaged into a form closer to that of |Loureiro et al.| (2021)); Mignacco et al.| (2020a).

Remark 8. The system of self-consistent equations can also be written as

.1 L 1
X = ;E [1 — PIOX) 4.y 4y (V2 + m(v’))] , X = ik (244)

62 my,
mp = —E[(2* — vz —m(v)v}], my = _ 245
o= Bl Coth = (245)

L | &
2 1 2 2 Eﬁz te kzl i
p? = —E[(z* —m(v) —v2)?], Ve = ~— 246
BT = m() —v2)] (e (246)
Proof. We begin by noting that the derivative of the proximal operator reads
Oprox..,p.y (w 1
Proxse) (@) _ . (247)
O L+ 40" (prox.,e(.y(w))

Therefore,

0 (z* 4+ b*,y)
x =E 24
X L+ 07(2" +b%,y)x 249

and the last equation of (244)) can thus be written as
L 1

- 249
X aA+yx (249)
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Let us now focus on the first equation of (244). We have

0 =Amy + O?E[0/(z* + b*,y)v}] + Mk g [0/ (2" +b*,y)z]
v

. P+ 1)
= my — ;E [(z" —vz— m(v/)vfc] +miE 1+ x0"(z* + b*,y) .
Thus,
my = 1
FTAEX

Finally, starting from the second equation of (244),

2 1 2 —vz—m))? . 2* —vz—m(v))(vz + m(v'
0=\v XE[( (v')?] XE[( () (vz +m(v'))]

E//(z* + b*’y>

L

1 1

=2 — ;E (2" — vz —m(v))?] - 7 kamk +°E [
k=1

1L 1
=M — = ——E[(z" —vz—m(v))’]
X2 aA+x
L
1 A2 2 (2 +b*,y)
—_— E
9W+@;Wﬁ”[Hwmew
Thus
L A I
EV2 -+ el Z mi
L2 — k=1
(A+x)?
Sketch of the derivation — For a given b, let us introduce

o1 A
¢ = argmin-— Z £((f5,w) + (pu(vs), w) +b,y;) + §||w\|2
v j€ln]

1
®\; = argmin-— > L w) + (o), w) +b,y;) + 5w
v j#i

where the Hessian is defined as

1 1"
Hy=— D O fw) + (p(vg),w) + b, yi) (f 4 1) (5 + )T+ Mra
i
Then it holds that

(fi + p(vi), w") = prox, ., ((fi + p(vi), wi;))

where
1 _ _ _
X=_ [fiTH i+ M(Uz‘)TH\iIM(Uz‘) + inTH\ilﬂ(vi)} ~
We used that [|(v;)o(vi) ", | (ve) £7 | < [Lfi fi -
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Figure 4: Train loss (left) and test error (right) of the linear classifier acting on the vectorized
outputs, as discussed in subsection[I.T]of the main text, for L = 3, R = 2,0 = 2,7 = 0.5, A = 0.01.
Solid lines: theoretical characterization of Proposition[3] Dots : numerical simulations in dimension
d = 1000. Error bars indicate one standard deviation over 8 trials.

Probabilistic analysis — In similar fashion to the proof of Theorem |4 one can show that the
parameter Y satisfies self-consistently

L ‘6// *
—=E, yov ﬂ + A\
ax ULz y)X

where z* = prox, (. . (vz + m(v)), with m(v) := (u(v), w*). Using the stationarity condition

W = _i % Z C((fw0") + (uvg), w*) +b,y5) (f; + p(v;))
allows to reach = .
- ~1Eu.: [0/ (2" +b,y)z"]
and
(0) = =3By [+ b)) + L+ )
= 3B |6+ b)) +

where z ~ N(0,1). Finally

. A
o) = E[U(=",y)] + 5v*.
This completes the derivation, but there is one further simplification. Let us introduce the unit
vectors {ex }rer, € R, where the kd + 1 to (k + 1)d-th elements of e;, correspond to 6, with all

components otherwise zero. Note that all these vectors are orthogonal to each other. Then one can

write
u(v) = Z Vg €k

ke[L]
Then, simply, one has

and
m(v) = Z VE Mg
ke([L]
with my := (w,eg). This simplifies the equation for m(v), and yields the characterization of
Proposition

The theoretical predictions for the test and train errors of Proposition 3] are displayed in Fig. ] and
show a good agreement with numerical experiments performed in dimension d = 1000.
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G PROOF OF COROLLARY 2]

The full technical statement of Theorem [4] presented in Appendix [El and of Theorem 5] presented
in Appendix |H, provide a tight asymptotic characterization of learning errors in terms of a small set
of summary statistics, characterized in turn as the solutions of a set of self-consistent equations. For
the case of the square loss £(y, 2) = 1/2(y — 2)?, in the limit of vanishing regularization A\ = 07,
these equations considerably simplify, making it possible to reach closed-form expressions for the
test error in particular. These expressions are summarized in Corollary [2]in the main text. In this
appendix, we provide the full technical statement. For ease of presentation, we break the statement

into three proposition which we derive in succession, respectively for the attention model A, ., 5 (6).

the pooled linear classifier Lfv(jgl (@) and the vectorized linear classifier L}5 (3).

G.1 ATTENTION MODEL

Proposition 4. From Theorem | in the asymptotic limit of Assumption |I| the test error of the
attention model converges in probability to a limit Ewest[A]. For the quadratic loss function ((y, z) =
1p(y — 2)2, this quantity admits a well-defined limit in the limit X\ — 0. This limit admits the
expansion:

Etest [A} = 5&3 [A] (258)
L (b 4gs u\? /. R
I ) (54 (g5 )0 — (5 + (g5 )omo )
L~ (1-nE (259)

o V2T use s ||

<—£M—<ev‘s+>ug°—<g,s+mf° )2

T 67% wS s 11
+ —E 260
a1 l V2m (260)
(_55 — (Ov,51)0p — (g, 54 )0p1 + (b + (Bv, 54 )us° + (g, 8+>M?°)5“3/u§°) (261)
3|l
1
+o () . (262)
aq
The limiting error is
l;OO _ oo
£ Al =(1 = By, o | @ [958 (263)
pells—|
+7Eg s s |® —b> - <9U75;>H2 — (g, 54 )13 . (264)
13 [l s+l
We introduced
13e op1 5
pse | = (I°)~tJ, pz | = (I°)~" [ 6T + 61 | p3° , (265)
where
E [c(ﬂ Ecqce] Elcg) E [yc,]
I = [Elcqee] E [Cg} Elce] | - J* = (;E[ 051]> (266)
Eleg]  Eleg] 1 T
) E [Cgci] E [CqCECE] E [chz 1 E F/ch%
_ 2 2.2 2 _ 2
01 = m E [cqqcz] E cgcs E [cfcz] , 0J= —m IIEE y052cz (267)
E[cec?]  E[cec? E [¢?] [yez]

Finally, we denoted Sj13 = 1/ug° (1/20% + pu§eSuy + puSeoua — Yo — YpSeopy ) — Hi“0m Juge.
We remind that the joint law of ¢, ce, cq is given in Lemma and vy is defined in Theorem
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Sketch of the derivation— In what follows, we consider the case of quadratic loss
1
Uzyy) = 5(995 - 1)2-

In our problem, ¢;(x) = £(x; + €;;y;). We have
Gi(x)=mi+€6 —yi and ol(z)=1
Moreover, for this case, the proximal operator assumes a compact, closed-form expression

gl

Prox;(z;v) = —— + ——
xi(;7) 1+ 1479

(yi — €).

These closed-form expressions allow us to greatly simplify the self-consistent equations appearing
in Theorem[d] Specifically, we can rewrite (85) as

1 2
L =F [1 J:Zéx} T (268)
and 2 ymo)?
c.x\y—e
, E { (14+02x)2]
2

- T
A E |
Let x be the unique solution to (268). In the ridgeless limit (with A — 0%), it is straightforward to
check that 1
lim Ay =— —1, forag < 1.

A—01 aq
and
lim x = x5 fora; > 1
A0+ X Xrldgeless’ 1 ’

where X(iggeless 1S the unique solution to

oy L+ cjx

CZQ),iX ]

We focus on the latter ; > 1 case in the following. In the ridgeless limit, the fixed point equation
for v further simplifies to
E [Cfx(yfe)Q]

(1+c2x)?
c? ’
E [(1+0§X)2}

Then, the function ¢(ftq, fte, b) assumes the simple form

V2:

1 _ A\2
O(Hqs e, b) = SE [(f’ - CZ)X} - (269)

Requiring that the gradients with respect to fi4, f¢, b leads to the following characterization for the
minimizers (i1, ft2, b

I(aq) l,lj; = J(a1) (270)
b
with
E[rix] Blok] [ E [ 24
i) = |E[2% | Elody] B[] | Jen=|E[2% @71)
E 1+c§§x E 1+cfgx E @ E ﬁ )

Note that /(v ) is the Gram matrix of the random variables (cg, c¢, 1) for the inner product (a, b) =
E [2b/1 + ¢2x], and is thus invertible since the random variables are linearly independent
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Large o1 behavior We now study in further detail the regime of large sample complexity a;; > 1.

In this limit,
1 1
= i 272

=z ela) o7

while

2 1 E[dy—e*)] +O< 1

— . 273
o El@P ) @7

aq

Note that the limit 2 ~2=>% ( implies that for large sample complexity, the readout weights lie in
the span of £, q. We denote € = c,uf° + ceps5° + b, with

pre
| = (1)1 (274)
bOO
where
E [c7] ch& Cq E [yc,]
I = | E [cqce] IE 05 J> = (IE [ycd) . (275)
E [Cq] 2r—1
The corresponding residual test error is then s1mply given by adapting to obtain
[e% [e’e) boo 5
Erest = Ey =(1 — m)Ey, 5455 l ( i g||3 | )] e
b — (0 %
By, . = (Ov, s = (g, s4)i ) | 277)
w5 lls |

1
with £2§8° = [1/1 -2 ((15°)2 + (15°)% — 2yp5°ps°) — (15°)?] . We now turn to ascertaining the
leading correction. We introduce

241 M1 6“1 1
pa | = ps® | +— [dp2| +o <> , (278)
) \ie) o \sb a
with
o %%
pg | = (1)~ (6T + 61 | k5°] ], (279)
ob b
where we denote
. E [cﬁcﬁ] E [ngégg] E [chg] 1 E F;cqc%
ol = oI E[egeec?] E|EeZ| Elee] |, dJ= B[] IIEE yeec (280)
E [cyc?] E [cec? E [¢2] [ye?] .-

Finally, let us denote dpz = 1/ug® (1202 + pu§eSuy + puSo0pa — YusoSua — YusCouy) — Hi“0m fuge.
Then, the following asymptotic correction holds:

Stest = gtoezt (281)
L (54 g s Hu \? ~ ~
1 (1-mE e_i( ST ) (5b+ (9,s-)0p1 — (b + <g,8—>u‘f°)5”3/u§°) (282)
+ —{0 -7
o V2 pse s ||

7;( 6% —(0v,5 1 Y uS® — (9,51 ) g >2
+ WE e pg sl (=6b—(0v,5)8pg—(g,51)5u1+(°+(0v,5 )u3°+(g,5 1) n§*)dng/ng®)
V2 wSo s 11

(283)

+o (1> . (284)
aq
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G.2 POOLED CLASSIFIER

Proposition 5. From TheoremH) in the asymptotic limit of Assumption[l] the test error of the pooled
classifier model converges in probability to a limit Ewst[LP°%Y]. For the quadratic loss function
Uy, z) = Y2(y — 2)?, this quantity admits a well-defined limit in the limit X — 0. This limit admits
the expansion:

71(%—1—”;\?2(1—”))2
e’ Fmtiem <27r —1-7X%(1 - 77)) v?
(

o Lpool __ oo Lpool —(1—
gt t[ ] Et [ ] ( ’/T) 2\/% 27TX(1—7T)

est

P 2
1 (_ om—14mX2(1—7)
2
e

Frxtt=m ) 2r — 1+ 7X%(1—7m)\ 2 1
— 2
N ( 2nX(1— ) ) e O (a) (280)

+

The limiting error is

_1_ 201 B 2y
gtiost[l-pom]:(l—ﬂ')q)<2ﬂ- 1-—7Xx2(1 W)) W¢)<_27T 1+ 7X%2(1 —7)

2rX(1 —m) 2rX(1—m) ) - (28D

We denoted the signal-to-noise ratio X = 9R/\T.

Sketch of derivation — We remind that the pooled classifier corresponds to setting the softmax
inverse temperature in the attention model to zero, namely 5 = 0. In this limit, the joint distribution
of the parameters s, s_, ¢, ¢¢, ¢4 detailed in (89) simplify to

_ _liL Cq 1 1 - _i
S <C£—5y,19LR) N<02’L(1—72) [—7 1]) “= VT (288)

Then, the limiting summary statistics ©5°, us°, b> are given by p3° = yus® and

TX24+1 X H3 VI X
< X 1 ) ( b > - (27T—1> (289)

ie.
S
The residual error then reads
Erot =(1 =)@ (%) +(1—m)® (W) (292)

B 21 — 1 — 7 X%(1 — 7) 21 — 1+ 7X2%(1 —7)
_(1—7r)<1>( A1) >+7r<1><— R0 =1) ) (293)

We used the identity

+h
E, [q) (a : g)} =Eyy [l abgicgso] = P (\/bzaﬁ> . (294)

Finally observe that I = @/1 + oI, J = @/1 + aJ>°. As a consequence,

p1 p°
p | = 03 (295)
b b
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Figure 5: (left) Residual error £, in the a; — oo limit as a function of the alignment v =
(q,€&) between the attention query weights and the signal vector, for the attention model (blue)
and the linear classifiers (dashed red), trained with the quadratic loss at vanishing regularization.
L =5 R=1,0 =3,7m = 0.75. Solid lines correspond to the theoretical characterizations
and (292). Dots correspond to numerical simulations in dimension d = 100, and large number
of samples n = 10°, averaged over 10 trials, with error bars representing one standard deviation.

and
L 2o (5°)? STy
2= (1+0% —2b(2m — 1) + 2 (1 + 7 &%) + 2Xm(b— 1) %= 296
=( -1+ Y 1 niet) 4 20— )L (2%6)
7 7 (15°)? 2 P g
L 1+ =202 — 1) + 22 (1 4+ 7X%) 4+ 2X7(b— 1) =
ps =1 =723’ + 5 — = VL (297)
201, V1= 2u
1
‘o () . (298)
g

It follows that the leading order correction to the test error reads

Erest =Ereat (299)
7% (2«—217{—);7(21(5(;)—”))2 2 2
7(17ﬂ_)6 <27r17TX (17r)> v (300)
202r 21X (1 — ) (15°)2
_%<_%W>2 o — 1+ 7X2%(1 2 1
_HTe ( m—14+7X%( —7r)> v +o(>. 301
2v/2r 2rX (1 — ) (1s°)? o

Comparison with the attention model We contrast in Fig.[5] the residual errors £, achieved in
the limit of large sample complexity c; >> 1 by the attention-based and linear classifiers. As we
detail in Appendix[F the vectorized and pooled linear classifiers share identical residual test errors.
Interestingly, for a small alignment y between the attention query weights ¢ and the signal vector &,
the attention model performs worse than the linear classifiers, as the discrepancy between ¢, £ can
cause the model to spuriously privilege tokens devoid of signal.

G.3 VECTORIZED CLASSIFIER
Proposition 6. From TheoremH) in the asymptotic limit of Assumption[l] the test error of the pooled

classifier model converges in probability to a limit Ewest[LP°%Y]. For the quadratic loss function
Uy, 2) = 12(y — 2)?, this quantity admits a well-defined limit in the limit \ — 0. This limit admits
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the expansion:

pool oo [1 pool _%<_’Y_%)2 b 4 X _%(%)2 b

thSt[L ] :5test[|‘ ] + g7 Vo 2(v>°)3 —(1-m)= Nerd 2(v>0)3 (302)
2 o2 22(1p* o - L 1
’ ( e 4 (6°)? —2(2n—1)b ) o +o (041> ) (303)
with
X (m—1) \° 21 — 1 —7(1 — m) X2
00)\2 oo

= —""_ b>* = . 304
) (1—1—71'(1—77)/1’2) ’ 1+7(1l —m)Ax? (304)

The limiting error is

00 11 pool] 21 — 1 — 7 X%(1 —7) 2 — 14+ 7X2%(1 —7)
esll) = (- me (P m U0 g (L2 LRI oy

We denoted the signal-to-noise ratio X = 9R/\/T.

Sketch of derivation — For the quadratic loss and vanishing regularization, the fixed point equa-
tions of Proposition 3] simplify to
0%p(1 — b*
_ . p( ) (306)
1+62p(1+ (L —1)p)
1+ 6%p+ 6%(L — 1)pp — 62 Lp*(1 — b*)? 62Lp*(1 — b*)?
I o (2 )pp P*( ) 2p( ) i (307)
1+ 6%p(1+ (L - 1)p) (11 6%(1+ (L - 1)p))
— 2x(27 — 1)b* + (b*)*x (308)
L
= 309
X=2"7 (309)

where p = % and

R(R-1)m b*:1+(27r—2)A

L(L—1)p’ A—02Lp?’ (319)

p = 0R>2

We used a shorthand A := 1 + 6?p(1 + (L — 1)p). These expression are amenable to being more
compactly rewritten, introducing the X introduced in Theorem [l We remind that in the current
setting, X’ admits the compact expression

OR
X =— 311
VI GIb
The self-consistent equations then simplify to
. (2r —2)(1 + 7 X?)
b*=1 312
+ 1+7(1 —m)A? (312)
1 7X2%(1 —b%)
_ 313
R 1+7Xx2 (313)
14+ 7X2 —72x2(1 - b*)  72x2%(1 —b*)?
2 _ —2x (21 — 1)b* + (b*)?x. 314
reX 1+7AX2 + (1+7Xx2)2 X(2m = 1)b" + (07) X (314)
a; = 00, X = O(1),; > L regime — Following a similar derivation as the ones detailed in
the previous subsections, the test error is found to admit the large a; residual
oo b b
gtest = 71'@ —X — Vf.o + (]. — 7(')@ yf.o (315)
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with
(Y2 = X1 -b)?2 [ 2nX(m—1) \? 316)
o (1+7x2)2 \l+r(l-maz)
boo_1+(27r—2)(1+7r?(2)_27r—1—7r(1—7r)X2 317)
- I+7(1-ma&2  14+7(l-m)&x2
and the asymptotic expansion
1 b \2 1(b°\2
ema(-¥—i=) b 4 Xv° e-2(8=)" poo
Erest = —(1- 318
test test+{7r NG 2(v>)3 ( ) Var  2(v>)3 (318)
20,y L 1
(e e e ) o — (319)
147X aq a1

Remark 9 (Comparison with the pooled model). Note that the residual error £, can be explicitly
expressed as

(320)

(27 —2)(1 + 7 X?) 21 — 14+ 7X%(1 — )
=1 —md o} .
e = (1= 7) ( 2 X (1 — ) 2 X (1 — )
This incidentally corresponds to the residual error achieved by the pooled classifier trained with

ridgeless quadratic loss 292), since for the considered data distribution X = X = OR/VL. We
also furthermore have a similar correspondence at the level of the summary statistics, namely b>° =

b>°, V> = 15 /T, where b, 15° JVE are defined for the pooled model in (290). Furthermore, the
leading order corrections are related by a simple factor L:

Erestyector ~ st _ 1 +o(1). (321

gtest,pool - gt?ec;t

Note that a consequence of Remark [9]is that in the & — oo limit, for ridgeless regression with a
quadractic loss, the pooled and vectorized models converge to the same solution, in the sense that
the weights of the vectorized model correspond to that of the pooled model stacked L times. Both
models furthermore yield the same limiting test error. Let us also comment that |/Arnaboldi et al.
(2025) also observe a similar speed up between related flattened and pooled models learning from
sequential data, in a related task, in terms of weak recovery time. The result of Remark@] instead
bears on the coefficient of the leading asymptotic correction in terms of sample complexity.

Remark 10. We note that the joint limit a1, L — oc0,b = o/ = O(1),X = O(1) can also be
analyzed, and is simply given by equations (312) setting

X=1— (322)

Study of the a; — oo residual error We now examine the behaviour of the residual error £33,
with the signal-to-noise ratio X'. We first examine the case X — oc. In this limit,

b>® = —1+o0(1), (1V™)? = % +o0 <;2> (323)

The residual error then decays to zero as

2

2 e‘XT
Eraat < \/; — (324)

In the opposite limit of small signal X — 0,
b =21 — 14 o(1), (=) =472 (1 — m)? X% + o(X?). (325)
Then
o X—=0 .
Egp —— min(m, 1 —m). (326)

These limiting errors stand in coherence with Theorem
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Figure 6: Separability thresholds for the attention model (green), and the pooled (red) and vectorized
(blue) linear classifiers, as given in Conjectures [2} [3] and [2] as a function of the sequence length L
(left) and the attention query/signal cosine similarity v (right). Left: 6 = 2,7 = 0.3, = 1, and
R = 1is kept fixed while L is increased. Right: § = 2,7 = 0.3, L = 2, R = 1 and + is varied.

H DERIVATION OF CONJECTURE/[I]

As a corollary of Theorem ] we derive in the appendix the capacity of the three considered models,
namely the largest number of samples that can typically be perfectly classified, up to vanishing
training error. The corresponding separability threshold was characterized in the seminal work of
Cover| (2006)), and revisited in many later works, e.g. |(Gardner & Derrida) (1988); [Krauth & Mézard
(1989); |Candes & Sur| (2020); [Mignacco et al.| (2020a). Note that at the level of the representations
Fvec(+)s fq(+), fpooi (), the capacity intuitively reflects how well the representations separate positive
and negative samples in feature space, with a larger separability thresholds signaling more markedly
separated classes.

Definition 3 (Separability threshold). Consider the empirical risk minimization problem (1)) for the
attention model, or the related problem for the linear classifier models, with logistic loss ¢(z;y) =
log(1 + €7Y#) and vanishing regularization A = 0%. As stated in Theorem |} the training loss
converges in probability in the considered asymptotic limit to a limit Eyy,in. We define the separability
threshold o* of the model as

a* =sup {a > 0| Eyain = 0}. (327)

A closed-form characterization of the separability threshold a* can be heuristically derived from
Theorem ] for each of the three models. We first provide the characterization for the vectorized
classifier.

Conjecture 2 (Separability threshold for the vectorized classifier). The separability threshold for
the vectorized classifier is equal to

L(1—s?
Al = serﬁ)al}i; ) ( ) (328)
T [ [7® (b4 Xs+u) + (1 —7)P (u—b)]uidu
0

We have used the shorthand X = 9R/\/T.

Proof. First note that the following identity follows from Proposition[3] and most conveniently seen
from the rewriting of Remark [8}

L o .
v — Hjm2 =7E [0'(2" +b,y)%] X* (329)

for any given b. We assume that the loss function is of the form £(z,y) = /(yz), and satisfies
lim, , ¢(z) = 0, while being convex. We assume ¢ to be decreasing, with a monotonically in-

creasing and negative derivative satisfying lim,_,, ¢'(z) = 0. We denote K = — lim,_, _, ¢'(2),
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which we assume to be finite. Note that all those assumptions are satisfied in particular by the logis-
tic loss function. We again assumed all token locations are symmetric, leading to a solution my = m
for all k € [L]. Introducing the cosine similarity s = vZm/ov € [0, 1], and the normalized quantities

v = X/u, b = b/, and introducing the random variable v = ¢ ((z* + b)y)
1— %= %72113 [u2] . (330)

But z* — 6,1 Rm — vz + xyu = 0 by definition of the proximal operator, and z* = y¢~!(u) — b,
while z ~ A/(0, 1). Furthermore, u € (—x,0) Thus

E [uz} 2/0 -7r<I> (Zl(u) —b— Rm Xu) +(1-m <£71(u)+b+xu>‘| udu

12 1%
(331)
AN ()
:—2/ 7r<I><V—b—Xs+’yu)+(1—7r)(I><V+b+7u> udu.
o (332)

Following Mignacco et al.| (2020b) we aim to determine the necessary conditions on « such that
there exists a solution satisfying v = 0o,y = oo — which should hold for a solution achieving zero
training loss. We conjecture the following limit

lim +°E [v®] = 2/ [7® (—b— Xs —u)+ (1 —m)® (b —u)] udu (333)
Y V=00
0
= / [1® (b + Xs +u) + (1 — 1) (u—b)]u’du (334)

0

where we remind that @’ is simply a standard Gaussian density. Then, a necessary condition for the
existence of a solution with v = 0o,y = oo is the existence of an s € [0, 1] so that

2
o = L1 = 57) (335)

[7®" (b+ Xs+u)+ (1 —m)P (u—b)]uzdu

O

Note that the pooled classifier can be mapped to a special case of the vectorized classifier, formally
evaluating the expression for the vectorized classifier for L, R — 1,0 — 9R//I. Leveraging this
connection yields the following conjecture.

Conjecture 3 (Separability threshold for the pooled classifier). The separability threshold for the
pooled classifier is equal to
1—s2 *
O‘;ool = éﬂ)alx ( i ) = avec. (336)
s s

Le ?[WI)’ b+ Xs+u)+ (1 —m)P (u—b)|udu
0

Finally, a similar characterization can be conjectured from Theorem [ for the attention model.

Conjecture 4 (Separability threshold for the attention model). The separability threshold for the
pooled classifier is equal to

N 1
ap = Inax
A mg,me,b E 3 OO(I), c2uty(btegmgtceme) 24
vescecy |6 ) u*du
0

(337)

Cz
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Figure 7: Parameters , v involved in the derivation of Conjecture[l} for the attention model trained
with the logistic loss, as a function of the regularization A. The curves correspond to numerical

experiments in dimension d = 1000, averaged over 3 trials. The problem parameters are L =
2,R=1,0=2,7=0.3.

Proof. The derivation proceeds in close likeness to that for the vectorized classifiers. First observe
that from Theorem 4} the following identity holds:

V2 = ax’E [20 (2" + cqpq + cepie + b,y)?] (338)

Introducing the normalized quantities v = X/v, b = b/u, my = #a /v, m¢ = #¢ /v, and introducing the
random variable u = ¢'((2* + cqpiq + cepie + b)y), this identity can be compactly rewritten as

1 =ay’E [2u?]. (339)

But 2* — c,vz + ¢2xyu = 0 by definition of the proximal operator, and 2* = yffl (u) —b—cqptqg —
cepue, while z ~ N(0,1). Thus

E [c2u?] = —2 /0 E |20 <Z"(u) - i(b — Caq — %M )) udu] . (340)
D Then,
%Ligloo Y’E [2u?] =2 /Ooo E {CZCI) <czu _ybo anc:q — C§m5)> udu}
- /OOO E |:C‘Z‘I>' <Czu _yb- Cq”clq - CEmf)) u2du] . (341
which concludes the derivation. O

The theoretical prediction of Conjectures [2} [3] and [] are contrasted with numerical experiments in
Fig.[I] revealing a good agreement with the point where the training error — defined as the fraction of
misclassified training samples — ceases to be zero. Note interestingly that the separability thresholds
Qec pool fOI the vectorized and pooled classifiers are related by a factor L. The latter can be ratio-

nalized by the fact that the vectorized classifiers operates in R, while the pooled classifier acts on
the smaller space R?. Moreover, observe that while the threshold o’y for the attention model lies
for large query/signal alignment y above o, ), it becomes smaller for small values of ~y (see Fig@,
right). This temptingly suggests the intuitive interpretation that when the internal representation
of the attention is misaligned with the signal, the attention model displays a smaller capacity than
the simple pooled linear classifier. This conclusion echoes a similar observation at the level of the

residual errors, see the discussion of Fig.[5|and its discussion in Appendix
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