

000 001 002 003 004 005 HIGH-DIMENSIONAL ANALYSIS OF SINGLE-LAYER 006 ATTENTION FOR SPARSE-TOKEN CLASSIFICATION 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028

ABSTRACT

029 When and how can an attention mechanism learn to selectively attend to infor-
030 mative tokens, thereby enabling detection of weak, rare, and sparsely located
031 features? We address these questions theoretically in a sparse-token classifica-
032 tion model in which positive samples embed a weak signal vector in a randomly
033 chosen subset of tokens, whereas negative samples are pure noise. For a sim-
034 ple single-layer attention classifier, we show that in the long-sequence limit it
035 can, in principle, achieve vanishing test error when the signal strength grows only
036 logarithmically in the sequence length L , whereas linear classifiers require \sqrt{L}
037 scaling. Moving from representational power to learnability, we study training
038 at finite L in a high-dimensional regime, where sample size and embedding di-
039 mension grow proportionally. We prove that just two gradient updates suffice for
040 the query weight vector of the attention classifier to acquire a nontrivial align-
041 ment with the hidden signal, inducing an attention map that selectively amplifies
042 informative tokens. We further derive an exact asymptotic expression for the test
043 error of the trained attention-based classifier, and quantify its capacity—the largest
044 dataset size that is typically perfectly separable—thereby explaining the advantage
045 of adaptive token selection over nonadaptive linear baselines.
046
047

048 Attention-based architectures (Vaswani et al., 2017) have proven in recent years to be a major driver
049 of progress in a wide spectrum of learning tasks, ranging from language processing (Kenton &
050 Toutanova, 2019; Brown et al., 2020) to computer vision (Dosovitskiy et al., 2021). A core strength
051 of these models is the ability of attention layers to dynamically weigh the importance of different in-
052 put tokens, enabling the model to selectively focus on the most relevant information. This flexibility
053 makes transformers particularly effective at capturing subtle patterns and features within complex,
054 high-dimensional data, even when such information is dispersed throughout the input sequence.
055 Despite the ubiquity of attention-based models in contemporary deep learning practice, a rigorous
056 theoretical understanding of their working mechanism is still in its early stages. A large body of
057 theoretical works has focused on understanding the benefits of attention in simple solvable models,
058 e.g. (Geshkovski et al., 2023; Ahn et al., 2023; Von Oswald et al., 2023; Edelman et al., 2022; Hahn,
059 2020; Bordelon et al., 2024; Bietti et al., 2023; Maulen-Soto et al., 2025), with particular focus de-
060 voted to single-layer architectures. Recently, a line of studies has demonstrated the advantages of
061 attention-based architectures for *sparse* token regression tasks—settings where labels depend only
062 on a small subset of input tokens (Oymak et al., 2023; Marion et al., 2024; Sanford et al., 2023; Wang
063 et al., 2024; Mousavi-Hosseini et al., 2025; Zhang et al., 2025; Ren et al., 2024). In such tasks, at-
064 tention mechanisms dynamically identify and prioritize the relevant tokens, significantly enhancing
065 learning efficiency. In contrast, fully-connected architectures require exponentially more samples
066 (Mousavi-Hosseini et al., 2025) or neurons (Sanford et al., 2023) as the input sequence length grows.
067 In many applications, however, the *sparsity* of informative features is frequently compounded by ad-
068 ditional challenges, notably the *weakness* and *rarity* of the underlying signals. For example, cancer
069 diagnosis from computed tomography scans involves detecting lesions — features that are typically
070 subtle (weakness), appear in varying locations (sparsity), and occur infrequently (rarity). All these
071 characteristics significantly complicate the detection problem. Motivated by scenarios of this kind,
072 we examine a statistical classification problem in which positive samples contain weak signals em-
073 bedded within a small, randomly selected subset of tokens. We analyze the capacity of a single
074 attention layer to learn to adaptively identify and enhance these sparse, weak, and potentially rare
075 signals. Specifically, our **main contributions** are as follows:
076
077

- In the limit of large sequence length L , we show that an attention model can detect signals that are exponentially weaker in L than those detectable by non-adaptive linear classifiers.
- Moving from representational power to learnability, we study training at finite L and derive an exact characterization—down to explicit constants—of the test error for the attention model after two gradient updates, followed by full optimization of the last-layer weights, in the limit of high-dimensional token embeddings with proportionally large sample size. These sharp asymptotic results quantify precisely how the test error depends on the number of samples, the sequence length, and the signal strength.
- Our analysis demonstrates that merely two gradient steps suffice for the attention model to develop meaningful internal representations. Consequently, the classifier can dynamically identify and selectively focus on the relevant subset of signal-bearing tokens—effectively amplifying the signal-to-noise ratio—and outperform linear classifiers.
- To provide a complementary perspective on the advantage of attention, we characterize the capacity of the attention model, defined as the maximal dataset size that can be perfectly fit with high probability, and compare it with the corresponding capacity of linear classifiers.

Related works

Theoretical analysis of transformers and attention models. The expressivity of attention-based architectures has been extensively studied in recent literature. Fu et al. (2024) established that a single multi-head attention layer with fixed weights can represent a broad class of permutation-invariant functions. Edelman et al. (2022) observed that the statistical capacity of bounded-norm attention models scales only logarithmically with sequence length, suggesting a strong inductive bias toward sparse functions dependent on only a subset of input tokens.

Sparse token regression/classification tasks. A special class of sparse functions is studied in further detail by Sanford et al. (2023), who consider a sequence-to-sequence task on length L sequences, where outputs correspond to the average of a dynamically selected subset of $R < L$ tokens. Whereas fully-connected architectures require $\Omega(L)$ hidden units to represent such functions, attention models only need $\Omega(R)$ and can provably learn the task via gradient-based training on the population risk (Wang et al., 2024). Complementing these findings, Mousavi-Hosseini et al. (2025) establish corresponding results demonstrating significant separations in terms of sample complexity. Similarly, Marion et al. (2024); Duranthon et al. (2025) prove that a softmax attention layer can learn a single-token regression up to Bayes-optimal error, whereas linear attention fails, and linear regression on flattened samples performs poorly due to its inability to adapt to dynamic sparsity. Additionally, recent work by Zhang et al. (2025) analyzes a sparse classification task where the relevant token locations are fixed across samples. Closer to our work, Oymak et al. (2023) study a related classification task with the same model as the one considered here, and prove that it reaches a good accuracy after three steps of gradient descent, outperforming linear regression with average-pooling. Our current work builds upon and significantly extends this line of research along multiple fronts. On the technical level, we crucially extend the analysis of sparse token tasks to *arbitrary* convex losses beyond the square loss which is considered in prior works (Marion et al., 2024; Mousavi-Hosseini et al., 2025; Wang et al., 2024; Oymak et al., 2023). Our extension importantly includes classical loss functions such as the logistic loss, of particular relevance for classification tasks. Furthermore, while most theoretical works have focused on studying the challenges posed by signal sparsity, we further address the often concurrent hurdles of signal rarity and weakness. We demonstrate that attention mechanisms can adaptively address all three challenges by dynamically selecting informative tokens and amplifying their signals. In these respects, our manuscript provides a fully rigorous and encompassing analysis of empirical risk minimization in a classification setting.

1 PROBLEM SETUP

Sparse token classification We consider a binary classification task on $L \times d$ covariates, seen as sequences of L tokens embedded in d dimensions. Positive samples contain a weak signal added to a random subset of tokens; negative samples do not display the signal. The learning task consists of discriminating samples with the signal from those devoid thereof. In a similar spirit to the sparse-token regression/classification problems studied in (Sanford et al., 2023; Oymak et al., 2023; Wang et al., 2024; Marion et al., 2024; Mousavi-Hosseini et al., 2025), the difficulty of the task lies in the fact that the location of the signal varies from sample to sample — consequently, any successful classifier must dynamically detect and attend to the relevant tokens. Formally, let $\mathcal{D} = \{X_i, y_i\}_{i \in [n]}$

108 be the training data where each sample $X_i \in \mathbb{R}^{L \times d}$ has rows representing token embeddings, and
 109 the labels $y_i \in \{-1, +1\}$ are such that $\mathbb{P}(y_i = 1) =: \pi \in (0, 1)$. We assume that the token matrices
 110 $\{X_i\}_{i \in [n]}$ are independent and drawn from one of two probability distributions. Specifically, for
 111 negative samples (namely given $y_i = -1$),

$$112 \quad X_i = Z_i, \quad (1)$$

113 where $Z_i \in \mathbb{R}^{L \times d}$ is a matrix whose entries are i.i.d. standard normal random variables. In contrast,
 114 for positive samples ($y_i = 1$),

$$115 \quad X_i = \theta v_i \xi^\top + Z_i, \quad (2)$$

116 where ξ is a fixed signal vector with $\|\xi\| = 1$, $\theta > 0$ is the parameter indicating the signal
 117 strength, and v_i is a random binary-valued vector indicating the location of the hidden
 118 features: $v_i = [\mathbb{1}_{1 \in R_i} \dots \mathbb{1}_{L \in R_i}]^\top$. R_i denotes the subset of tokens that contain the signal,
 119 and is assumed to have fixed cardinality $|R_i| = R \in \mathbb{N}$. The law of v_i is thus supported on
 120 $\{x \in \{0, 1\}^L : \sum_\ell x_\ell = R\}$, and we furthermore assume its marginals $p_j = \mathbb{P}(v_j = 1)$ for $j \in [L]$
 121 to satisfy $\|p\| \leq CR/\sqrt{L}$ for some constant $C > 0$. This assumption essentially requires that the
 122 distribution is sufficiently spread out across tokens, and is not localized on any privileged tokens —
 123 thereby making its detection particularly challenging. In particular, when the law of the non-zero
 124 elements of v is the uniform distribution on all subsets of $[L]$, $\|p\| = R/\sqrt{L}$. Therefore, an algorithm
 125 with the capacity to generalize on the task must be able to adaptively identify the subset R_i containing
 126 the signal, if the sample is positive, in addition to learning the signal vector ξ . The latter point is
 127 further rendered non-trivial by the observation that in (2), the signal part $\theta v_i \xi^\top$ is of norm $\mathcal{O}(\theta\sqrt{R})$,
 128 which is considerably weaker than the background noise term $\|Z_i\| = \mathcal{O}(\sqrt{Ld})$ when d and/or L are
 129 large — thereby making the signal hard to detect. Note that this scaling differs from that considered
 130 in (Marion et al., 2024) where both terms are comparable in size — a regime corresponding to a
 131 more easily detectable signal in the limit of large dimension d .

132 Intuitively, the data distribution (2) could be interpreted as a simple model of a vision task, where
 133 each token corresponds to a patch of an input image (e.g. a computed tomography scan), and where
 134 the location of the feature ξ signals the presence of a certain pattern (e.g. a lesion) at the corresponding
 135 position. This pattern is sparse ($R < L$), weak ($\|\theta v_i \xi^\top\| \ll \|Z_i\|$), and potentially rare (small
 136 π). The data distribution and task is similar in spirit to that considered in (Oymak et al., 2023),
 137 with however two important differences. While in (Oymak et al., 2023) the signal is present in all
 138 samples, in the current work the signal is totally absent from negative samples, posing the additional
 139 challenge of rarity. In addition, the relevant tokens R_i are devoid of any noise in (Oymak et al.,
 140 2023) and contain only the clean signal. On the other hand, in (2) the weak signal ξ is corrupted by
 141 the additive noise Z_i , posing the challenge of signal weakness.

142 1.1 TWO LINEAR CLASSIFIER BASELINES

144 We first introduce two simple linear classifiers that will serve as reference models, providing benchmarks
 145 against which the attention model—specified in the next subsection—will be evaluated.

146 **Vectorized linear classifier** — The first baseline flattens each matrix-valued input $X_i \in \mathbb{R}^{L \times d}$ into
 147 an Ld -dimensional feature vector $\text{vec}(X_i) = [(X_i^1)^\top \dots (X_i^L)^\top]^\top$, which is then fed to a linear
 148 classifier. Explicitly, the classifier is

$$149 \quad \mathcal{L}_{w,b}^{\text{vec}}(X) = \text{sign}(\langle w, f_{\text{vec}}(X) \rangle + b) \quad \text{where } f_{\text{vec}}(X) = \text{vec}(X), w \in \mathbb{R}^{Ld}, b \in \mathbb{R}. \quad (3)$$

151 As noted in (Marion et al., 2024), the location of the signal within the vector would then be shifting
 152 from sample to sample due to the randomness of R_i — making it challenging for this vectorized
 153 linear classifier to pinpoint the relevant features.

154 **Pooled linear classifiers** — A possible remedy would be to instead average the input along its first
 155 dimension, rather than flattening it. More precisely, the classifier becomes

$$156 \quad \mathcal{L}_{w,b}^{\text{pool}}(X) = \text{sign}(\langle w, f_{\text{pool}}(X) \rangle + b) \quad \text{where } f_{\text{pool}}(X) = \frac{1}{L} \sum_{k \in [L]} X^k, w \in \mathbb{R}^d. \quad (4)$$

159 While such an average-pooling featurization bypasses the challenge of dynamically shifting signal
 160 positions, it introduces another complication. Specifically, after averaging, the norm of the signal
 161 term $\|\mathbb{1}_L^\top v_i \xi^\top / L\| = \mathcal{O}(R/L)$ can become significantly weaker compared to the background noise
 term $\|\mathbb{1}_L^\top Z_i / L\| = \mathcal{O}(\sqrt{d/L})$, especially when R is small and L is large. In other words, the

162 averaging procedure effectively reduces the signal-to-noise ratio. These intuitions will be made
 163 precise in the following section by Theorem 1 and Proposition 1, which show that a large signal
 164 strength θ is needed to counteract these limitations, in order for linear classifiers to generalize.
 165

166 **1.2 AN ATTENTION MODEL**
 167

168 Ideally, to remedy the issue of signal dilution suffered by the pooled linear classifier, a non-uniform,
 169 sample-dependent reweighting of the tokens should instead be deployed, selectively placing more
 170 weights on tokens that embed the signal. As we will discuss and formalize, such a reweighting
 171 can be readily implemented by an attention-based mechanism. This intuition motivates the principal
 172 model analyzed in this work: a single-layer attention-based architecture designed to tackle the sparse
 173 token classification task. Specifically, we consider the model

$$174 \quad A_{q,w,b}(X) = \text{sign}(\langle f_q(X), w \rangle + b), \quad \text{with} \quad f_q(X) = X^\top \text{softmax}(\beta X q). \quad (5)$$

175 This attention model $A_{q,w,b}$ is parameterized by two trainable weight vectors $q, w \in \mathbb{R}^d$ and a trainable
 176 scalar bias $b \in \mathbb{R}$. In (5), the parameter β represents the inverse temperature of the softmax
 177 activation. The formulation (5) is a simplified attention model widely studied in theoretical contexts
 178 (see, e.g., (Oymak et al., 2023; Marion et al., 2024)), in which the representation $f_q(X)$ can be
 179 viewed as analogous to the [CLS] token used for classification and readout in transformer archi-
 180 tectures (Kenton & Toutanova, 2019). A detailed discussion connecting this simplified model with
 181 standard self-attention architectures can be found in (Marion et al., 2024; Tarzanagh et al., 2023).

182 **Dynamic reweighting and signal amplification**— An important feature of the model (5) is that the
 183 weight vector w acts not directly on the raw input X , but instead on the attention-based feature:

$$184 \quad f_q(X) = \sum_{k \in [L]} \frac{e^{\beta \langle X^k, q \rangle}}{\sum_{\ell \in [L]} e^{\beta \langle X^\ell, q \rangle}} X^k, \quad (6)$$

185 where each token X^k is reweighted according to the scores $e^{\beta \langle X^k, q \rangle}$. Crucially, in contrast to the
 186 naive average-pooling (4) discussed in subsection 1.1 (which corresponds to the special case of
 187 $q = 0_d$), the attention scores dynamically adapt to the input tokens. Therefore, in principle, the
 188 attention mechanism can allocate greater weight to tokens containing the signal ξ , thus mitigating
 189 the diminished signal-to-noise ratio described following (4). Such improvement occurs when the
 190 internal attention parameter q aligns non-trivially with the signal vector ξ ; this alignment increases
 191 the inner product $\langle X^k, q \rangle$ and consequently enhances the attention weights (6) for the signal-bearing
 192 tokens. In Section 3 we formalize and rigorously prove this intuitive mechanism.

193 **2 OPTIMAL TEST ERRORS IN THE LIMIT OF LONG SEQUENCES**
 194

195 Before analyzing how effectively the attention model (5) and the two baseline linear classifiers (3)
 196 and (4) perform when *trained* on the sparse classification task described in Section 1, it is instructive
 197 to first determine the conditions under which these models can, in principle, learn the task. In this
 198 section, we examine the *optimal test error* of the considered hypothesis classes, measuring their
 199 intrinsic ability to represent the sparse classification problem. Formally, the optimal test error for
 200 any predictor $\hat{y}_W(X)$ parametrized by some finite-dimensional parameters W is defined as follows:

$$201 \quad \mathcal{E}_{\text{test}}^*[\hat{y}] := \inf_W \mathcal{E}_{\text{test}}[\hat{y}_W] \quad \text{where} \quad \mathcal{E}_{\text{test}}[\hat{y}_W] := \mathbb{P}_{X,y}[\hat{y}_W(X) \neq y]. \quad (7)$$

202 The optimal test error corresponds to the smallest misclassification error achievable by the classifier,
 203 provided its parameters W are selected optimally. Concretely, for the vectorized and pooled linear
 204 classifiers defined herein, W is given by $(w, b) \in \mathbb{R}^{Ld} \times \mathbb{R}$ and $(w, b) \in \mathbb{R}^d \times \mathbb{R}$ respectively whereas
 205 for the attention model one has $W = (w, q, b) \in \mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}$. In this section, we view θ, R as
 206 sequences depending on L , and focus on the $L \rightarrow \infty$ regime.

207 **Proposition 1.** *Suppose that the limit $\text{SNR} := \lim_{L \rightarrow \infty} \theta R / \sqrt{L}$ exists. Then, the optimal test error
 208 of the pooled linear classifier (4) satisfies*

$$209 \quad \lim_{L \rightarrow \infty} \mathcal{E}_{\text{test}}^*[\mathbb{L}^{\text{pool}}] = \begin{cases} 0 & \text{if } \text{SNR} = \infty, \\ (1 - \pi)\Phi(b^*) + \pi\Phi(-b^* - \text{SNR}) & \text{if } \text{SNR} \in (0, \infty), \\ \min(\pi, 1 - \pi) & \text{if } \text{SNR} = 0 \end{cases} \quad (8)$$

216 In the above display, $b^* = -\frac{\text{SNR}}{2} - \frac{1}{\text{SNR}} \log(1/\pi - 1)$ and $\Phi(\cdot)$ is the cumulative distribution
 217 function of the standard normal distribution.

219 We note that a similar result appears in (Oymak et al., 2023) (Appendix A) for the pooled classifier,
 220 but for a different data distribution, and without a trainable bias.

221 **Theorem 1.** Suppose that the limit $\text{SNR} := \lim_{L \rightarrow \infty} \frac{\theta R}{\sqrt{L}}$ exists. Then the optimal error of the
 222 vectorized classifier (3) satisfies

$$\lim_{L \rightarrow \infty} \mathcal{E}_{\text{test}}^*[\mathbf{L}^{\text{vec}}] = \begin{cases} 0 & \text{if } \text{SNR} = \infty, \\ \min(\pi, 1 - \pi) & \text{if } \text{SNR} = 0 \end{cases} \quad (9)$$

227 and $\liminf_{L \rightarrow \infty} \mathcal{E}_{\text{test}}^*[\mathbf{L}^{\text{vec}}] > 0$ if $\text{SNR} \in (0, \infty)$.

229 The proofs of Proposition 1 and Theorem 1 are detailed in Appendix B. Note that since the pooled
 230 classifier can be viewed as a particular realization of the vectorized classifier with tied weights, the
 231 optimal error of the former (Proposition 1) upper bounds the optimal error of the latter (Theorem
 232 1). Concretely, to generalize perfectly on sparse signals $R = \Theta(1)$, both the pooled and vectorized
 233 linear classifiers require a strong signal strength $\theta = \Omega(\sqrt{L})$. In this regime, the optimal weights
 234 of the pooled (resp. vectorized) classifier are proportional to the signal ξ (resp. to a concatenation
 235 of ξ L times), and allow for vanishing test error. If the signal is weaker, namely $\theta = o(\sqrt{L})$,
 236 the model performs no better than the naive predictor that always outputs the majority label and
 237 $\mathcal{E}_{\text{test}}^* = \min(\pi, 1 - \pi)$. In the case where $\text{SNR} \in (0, \infty)$, Theorem 1 shows that the optimal
 238 test error is bounded away from zero by a strictly positive number. In sharp contrast to the linear
 239 classifiers, the attention model can perfectly classify data with a much smaller signal strength:

240 **Theorem 2.** Consider the attention model A given in (5). In the limit $L \rightarrow \infty$ with $R = \Theta(1)$,
 241 suppose that the signal strength θ satisfies $\liminf_{L \rightarrow \infty} \theta / \log L > 0$. Then, one has $\mathcal{E}_{\text{test}}^*[\mathbf{A}] = 0$.

242 The proof of Theorem 2 can be found in Appendix C. A direct consequence of Theorem 2 is that a
 243 significantly milder signal strength of order $\theta = \log L$ suffices for the attention model (5) to perfectly
 244 learn the sparse token classification task—provided it employs optimal parameters q, w, b . Similarly
 245 to the linear classifiers, perfect classification is in particular achieved for weights q, ξ colinear to the
 246 signal ξ . Similar results appear in (Oymak et al., 2023) on the optimal error in a related task, but are
 247 restricted to a simpler noiseless case ($Z_i = 0$). While Theorems 1 and 2, and Proposition 1, paint a
 248 clear separation between the attention model and the two linear baselines in terms of representation
 249 power and oracle test errors, they leave the question of learnability largely open. Furthermore,
 250 this clear-cut distinction, which happens in the large- L limit, becomes less pronounced when the
 251 sequence length L is finite. Thus, a more nuanced analysis of the training at finite sample complexity
 252 and sequence length is warranted. This is the objective of the following section.

254 3 PRECISE ASYMPTOTIC ANALYSIS OF THE LEARNING

256 In what follows, we turn our attention to the study of the training of the three models on finite
 257 datasets, aiming to precisely characterize the learning behavior of the attention model (5) and the
 258 two linear classifiers (3) and (4) in this regime. Such exact characterizations become tractable
 259 in the high-dimensional embedding limit, as demonstrated by a growing body of literature on
 260 high-dimensional attention mechanisms (Rende et al., 2024; Cui et al., 2024a; Troiani et al., 2025;
 261 Tiberi et al., 2024; Cui, 2025; Erba et al., 2024; Duranthon et al., 2025). We adopt in the remainder
 262 of this manuscript the following high-dimensional, finite-length scaling regime:

263 **Assumption 1** (High-dimensional, finite-length limit). We consider the limit of large embedding
 264 dimension d and comparably large number of samples n , namely $d, n \rightarrow \infty$ with fixed ratio $\alpha =$
 265 $n/d = \Theta(1)$. The chosen scaling $n \sim d$ is such that the detection of the weak signal ξ from the back-
 266 ground Z is statistically possible (Lesieur et al., 2015), yet non-trivial. Meanwhile, the sequence
 267 length L , signal strength θ , and sparsity R , along with all other parameters, remain finite and fixed.

268 **Training procedure** We now turn to the learning process. The attention model (5) can be trained
 269 to solve the sparse token classification task defined in subsection 1 by performing empirical risk

270 minimization over the dataset $\mathcal{D} = \{X_i, y_i\}_{i \in [n]}$, formulated as follows:
 271

$$272 \hat{q}, \hat{w}, \hat{b} \in \operatorname{argmin}_{q, w, b} \hat{\mathcal{R}}_{\mathcal{D}}(q, w, b), \text{ with } \hat{\mathcal{R}}_{\mathcal{D}}(q, w, b) = \frac{1}{n} \sum_{(X, y) \in \mathcal{D}} \ell(\langle f_q(X), w \rangle + b; y) + \frac{\lambda}{2} \|w\|^2. \quad (10)$$

275 Here, $\ell : \mathbb{R} \times \{-1, 1\} \rightarrow \mathbb{R}$ is a loss function that is convex with respect to its first argument (for
 276 example, the logistic loss $\ell(z, y) = \log(1 + \exp(-yz))$ or the quadratic loss $\ell(z, y) = \frac{1}{2}(z - y)^2$).
 277 The empirical risk (10) also includes a ridge regularization of strength λ . Notably, compared to
 278 prior studies on sparse token tasks (Sanford et al., 2023; Wang et al., 2024; Mousavi-Hosseini et al.,
 279 2025; Marion et al., 2024; Oymak et al., 2023), our setting extends beyond the squared loss to
 280 general convex loss functions. A natural approach to solving the non-convex optimization problem
 281 (10) is to run gradient descent on the set of trainable parameters q, w, b . In fact, as demonstrated
 282 below, just *two* gradient steps are sufficient for the query weights q to achieve an alignment with the
 283 signal ξ . This alignment enables the attention model (5) to develop internal representations capable
 284 of effectively identifying and amplifying the hidden signal. Specifically, we consider the following
 285 training procedure:

- 286 **1. Initialization** — Consider a partition of the training data $\mathcal{D} = \mathcal{D}_0 \cup \mathcal{D}_1$ into two disjoint sets of
 287 sizes n_0 and $n_1 = n - n_0$ respectively. We assume $\alpha_0 = n_0/d = \Theta(1)$, and $\alpha_1 = n_1/d = \Theta(1)$.
 288 Initialize the weights of the attention model (5) as $w^{(0)} = q^{(0)} = 0_d$, $b^{(0)} = 0$.
- 289 **2. First gradient step on b, q, w** — Perform a first gradient step on each of the trainable parameters
 290 on the risk $\hat{\mathcal{R}}_{\mathcal{D}_0}(q, w, b)$, using the training set \mathcal{D}_0 with learning rates η_b, η_q, η_w .
- 291 **3. Second gradient step on q** — Note that after a first step, $q^{(1)}$ remains zero. For the attention
 292 model (5) to develop a non-trivial internal representation parametrized by $q \neq 0_d$, a second
 293 gradient step on q is thus needed, on the risk $\hat{\mathcal{R}}_{\mathcal{D}_0}(q, w, b)$.
- 294 **4. Full training of w, b** — Having developed a meaningful internal representation parametrized by
 295 $q^{(2)}$, the readout weight w and bias b are finally fully updated by empirical risk minimization on
 296 the retained data \mathcal{D}_1 :

$$297 \hat{w}, \hat{b} = \operatorname{argmin}_{w, b} \hat{\mathcal{R}}_{\mathcal{D}_1}(q^{(2)}, w, b). \quad (11)$$

299 The performance of the trained model $A_{q^{(2)}, \hat{w}, \hat{b}}$ is measured by its its training loss and test error
 300

$$301 \mathcal{E}_{\text{train}} = \hat{\mathcal{R}}_{\mathcal{D}_1}(q^{(2)}, \hat{w}, \hat{b}), \quad \mathcal{E}_{\text{test}} = \mathbb{P}_{X, y} \left[A_{q^{(2)}, \hat{w}, \hat{b}}(X) \neq y \right]. \quad (12)$$

303 The primary purpose of the dataset partitioning performed in step 1—splitting the data into two sub-
 304 sets, used respectively for steps 2–3 and step 4—is to simplify the subsequent analysis of step 4. This
 305 partitioning ensures statistical independence between the learned query weights $q^{(2)}$ and the dataset
 306 \mathcal{D}_1 . Adopting a more practical viewpoint, \mathcal{D}_0 can also be viewed as a *pre-training* dataset used to
 307 train the query weights q , which can then be frozen as the model is deployed on other datasets, with
 308 only the readout and bias w, b being fine-tuned. Similar stage-wise training protocols with sample
 309 splitting have previously been analyzed in the context of two-layer neural networks (Ba et al., 2022;
 310 Moniri et al., 2023; Cui et al., 2024b; Dandi et al., 2024; 2023), demonstrating how even a single
 311 gradient step on the first-layer weights can yield meaningful internal network features. Analogously,
 312 in our setting, two gradient steps on the query weights q are already sufficient for the attention model
 313 to develop informative internal representations. For transformer models, similar few-step analyses
 314 were conducted for instance in (Bietti et al., 2024; Oymak et al., 2023), however without the final
 315 step of full empirical risk minimization. This final optimization of the output weight w can be taken
 316 as an analog to transfer learning, thus lending to more practical insights for real training procedures.

316 We are now in a position to present our main technical results: a precise characterization of the test
 317 error (12) achieved by the attention model (5), trained using the four-stage procedure detailed in
 318 subsection 3. In the following sections, we first analyze step 3—demonstrating precisely how the
 319 query weights $q^{(2)}$ develop an alignment with the signal ξ , resulting in nontrivial attention weight-
 320 ings. We then examine how this learned attention mechanism leads to an improvement in the test
 321 error (12), as compared to the baseline linear classifiers (4) and (3) at the conclusion of step 4.

322 **Characterization of the attention weights after two gradient steps** The first technical result
 323 characterizes how, at the end of step 3 (see subsection 3), the query weights $q = q^{(2)}$ develop a

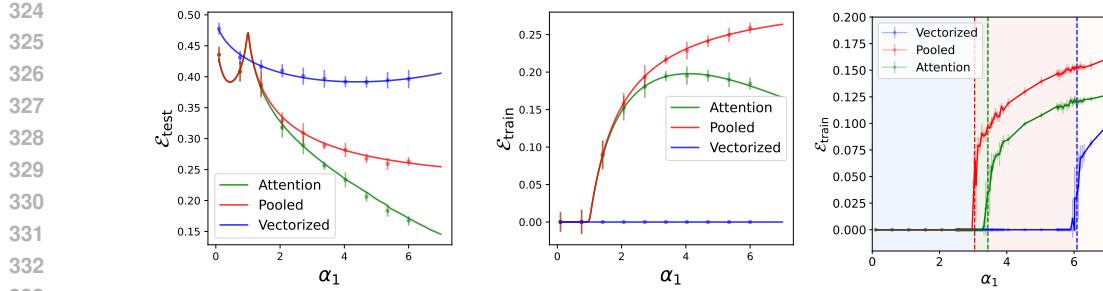


Figure 1: Test (**left**) and train (**middle**) errors achieved by the attention model (5) and the pooled (4) and vectorized (3) classifiers, for $L = 10, R = 1, \pi = 0.5, \theta = 5, \lambda = 10^{-5}, \eta_{b,q,w} = 0.1, \alpha_0 = \alpha_1$, trained with the square loss, as a function of the normalized number of samples α_1 . Solid lines correspond to the theoretical characterizations of Theorem 4. Dots represent numerical experiments in dimension $d = 1000$. Error bars represent one standard deviation over 8 trials. (**right**) Training loss $\mathcal{E}_{\text{train}}$ for the attention model (green), and the pooled (red) and vectorized (blue) linear classifiers, as a function of the sample complexity α_1 . $L = 2, R = 1, \theta = 2, \pi = 0.3$. The attention model has a unit norm query weight q with alignment $\gamma = 0.99$ with the signal ξ . Dots correspond to numerical simulations in dimension $d = 2000$; error bars represent one standard deviation over 20 trials. Dashed lines: theoretical prediction of the separability thresholds, as given in Conjecture 1.

non-zero alignment with the signal vector ξ . As will be discussed in a subsequent subsection, this alignment allows the attention model (5) to develop internal representation adapted to the task.

Theorem 3 (Characterization of the query weights $q^{(2)}$ after two gradient steps). *In the asymptotic limit of Assumption 1, $\|q^{(2)}\|$ and $\langle q^{(2)}, \xi \rangle$ converge in probability to deterministic limits, whose expressions are given in Appendix D.*

Theorem 3 precisely characterize the parameters of the attention model (5) at the conclusion of step 3 of the training procedure described in subsection 3. The detailed proof of Theorem 3 is provided in Appendix D. A direct consequence of Theorem 3 is that the alignment between the query weights after two gradient steps $q^{(2)}$ and the signal ξ , as captured by the cosine similarity $\langle q^{(2)}, \xi \rangle / \|q^{(2)}\|$, tends rapidly in absolute value to its maximal value of 1 as the sample complexity α_0 is increased, at a $1/\alpha_0$ rate. This observation is formalized in the following Corollary.

Corollary 1 (Cosine similarity). *In the asymptotic limit of Assumption 1, the cosine similarity $\langle q^{(2)}, \xi \rangle / \|q^{(2)}\|$ converges in probability to a limit s_q . If furthermore the right-hand side of (69) is non zero, its absolute value admits the expansion $|s_q| = 1 - C/\alpha_0 + o(1/\alpha_0)$. The expression of the constant C is detailed in Appendix D.*

Characterization of final test and training errors Having described steps 1 – 3 of the training procedure 3, we now focus on step 4, where given $q^{(2)}$, the readout weights w and the bias b are fully trained on the held-out data batch \mathcal{D}_1 . We note that once q is fixed, the empirical risk minimization (11) amounts to training a linear model with weights w, b on the high-dimensional non-linear features $f_{q^{(2)}}(X)$ (6). While the behavior of such linear classifiers is in general very well understood in the asymptotic limit of Assumption 1 (Candès & Sur, 2020; Liang & Sur, 2022; Montanari et al., 2019; Mai et al., 2019; Loureiro et al., 2021; Mignacco et al., 2020a), such works very often build on the assumption of simple (e.g. Gaussian mixture) data distributions. In the present case however, the features $f_{q^{(2)}}(X)$ possess a highly non-trivial distribution, as they result from the non-linear attention mechanism. Fortunately, the softmax acts only on the low-dimensional projection $g \in \mathbb{R}^L$ of the tokens along the query weights $q^{(2)}$, which can be handled separately. The idea of the proof, detailed in Appendix E, proceeds from this observation. The final results are succinctly summarized in the following theorem, while the full technical statement is deferred to Appendix E.

Theorem 4 (Test and training errors after step 4). *The test error and training loss associated to the empirical risk minimization (11) converge in probability in the limit of Assumption 1 to deterministic limits $\mathcal{E}_{\text{test}}[\mathcal{A}]$ and $\mathcal{E}_{\text{train}}[\mathcal{A}]$, whose expression are deferred for clarity to Appendix E.*

Theorem 4 provides an exact characterization—precise down to explicit constants—of the test error attained by the attention model (5), trained according to the procedure described in subsection 3,

378 within the high-dimensional limit specified by Assumption 1. The resulting expression is formulated
 379 in terms of a small set of scalar summary statistics, which are determined as solutions to a
 380 system of self-consistent equations. While the latter still possess a rather intricate form, they can
 381 considerably simplify in some simple cases, yielding valuable insights. We detail such an instance
 382 in the following, for the case of a square loss in the ridgeless limit. Let us remark that while (Oymak
 383 et al., 2023) also provide error bounds for a three-gradient-steps protocol, Theorem 4 offers tight
 384 error characterizations, exact down to explicit constants. While the same work also reports sharp
 385 characterizations (Theorem 8) for the special case of the square loss, those results are restricted to a
 386 much simpler learning protocol that involves neither gradient steps nor empirical risk minimization,
 387 and that necessitates further oracle information on the set of relevant tokens.

388 **Baseline classifiers** — Having characterized the test error and training loss of the attention model,
 389 we now turn to the case of the two linear classifiers $L_{w,b}^{\text{pool}}, L_{w,b}^{\text{vec}}$, whose parameters w, b are trained
 390 on the dataset \mathcal{D}_1 through the empirical risk minimization
 391

$$392 \hat{w}, \hat{b} \in \underset{w,b}{\operatorname{argmin}} \hat{\mathcal{R}}_{\mathcal{D}_1}(w,b), \text{ with } \hat{\mathcal{R}}_{\mathcal{D}_1}(w,b) = \frac{1}{n} \sum_{(X,y) \in \mathcal{D}} \ell(\langle f(X), w \rangle + b; y) + \frac{\lambda}{2} \|w\|^2, \quad (13)$$

395 where $f \in \{f_{\text{pool}}, f_{\text{vec}}\}$, and ℓ is an arbitrary strictly convex loss function. As for the attention
 396 model, a tight characterization can be reached for the associated test error and training loss, leverag-
 397 ing the observation that the distribution of the features $f_{\text{vec}}(X), f_{\text{pool}}(X)$ are in fact simple Gaussian
 398 mixtures with respectively $\binom{L}{R} + 1$ and 2 isotropic clusters. The test error and training loss of gen-
 399 eralized linear classifiers in the high-dimensional limit of Assumption 1 for such data distribution
 400 has been characterized in prior works (Mignacco et al., 2020a; Loureiro et al., 2021). We briefly
 401 summarize the corresponding results below.

402 **Theorem 5** (Errors for the linear classifiers). *[(Loureiro et al., 2021)] In the asymptotic limit of
 403 Assumption 1, the test error and training loss for the pooled (resp. vectorized) linear classifier
 404 converge in probability to limits $\mathcal{E}_{\text{train}}[L^{\text{pool}}]$ and $\mathcal{E}_{\text{test}}[L^{\text{pool}}]$ (resp. $\mathcal{E}_{\text{train}}[L^{\text{vec}}]$ and $\mathcal{E}_{\text{test}}[L^{\text{vec}}]$).*

405 We defer the precise exposition of the expressions of $\mathcal{E}_{\text{train}}[L^{\text{vec}}], \mathcal{E}_{\text{test}}[L^{\text{vec}}]$ to Appendix F. For
 406 completeness, and to help readers connect and compare the proofs of Theorems 5 and 4, we also
 407 present in the same Appendix an alternate sketch of proof using the same leave-one-out approach as
 408 that leveraged in the proof of Theorem 4.

410 **Comparison of the three models** — The theoretical predictions for the training and test errors
 411 from Theorem 4 and 5—for both the attention model (5) and the linear baselines (4)(3)—are com-
 412 pared with numerical simulations in dimension $d = 1000$ in Fig. 1, demonstrating excellent agree-
 413 ment. The figure clearly illustrates how the learned attention mechanism leads to superior test per-
 414 formance compared to the linear classifiers, which lack this adaptive representation capability.

415 To garner further quantitative insights from the technical results of Theorem 4 and 5, let us focus on
 416 the particular case of a quadratic loss function $\ell(z, y) = 1/2(y - z)^2$, in the limit of vanishing regu-
 417 larization $\lambda = 0^+$. In this setting, the characterizations of Theorems 4 and 5 considerably simplify,
 418 revealing further insights, which we describe in the following Corollary.

419 **Corollary 2** (Ridgeless quadratic loss). *For a quadratic loss function $\ell(z, y) = 1/2(y - z)^2$, and
 420 $\lambda = 0$, the asymptotic limits $\mathcal{E}_{\text{test}}[A], \mathcal{E}_{\text{test}}[L^{\text{pool}}]$, and $\mathcal{E}_{\text{test}}[L^{\text{vec}}]$ characterized in Theorems 4 and 5
 421 tend to their $\alpha_1 \rightarrow \infty$ limits $\mathcal{E}_{\text{test}}^{\infty}[A]$ and $\mathcal{E}_{\text{test}}^{\infty}[L^{\text{pool}}] = \mathcal{E}_{\text{test}}^{\infty}[L^{\text{vec}}]$ at a rate $1/\alpha_1$.*

422 A number of interesting conclusions can be garnered from Corollary 2. First, all three test errors
 423 tend to their respective $\alpha_1 \rightarrow \infty$ limit at the same $1/\alpha_1$ rate, as the sample complexity α_1 is in-
 424 creased. Furthermore, the two linear classifiers $L^{\text{pool}}, L^{\text{vec}}$ tend to a common limit $\mathcal{E}_{\text{test}}^{\infty}[L]$. This
 425 finding somewhat echoes the intuition from Theorem 1, which already suggested that both models
 426 share similar oracle — and thus plausibly infinite sample complexity— behaviors. Lastly, one may
 427 naturally wonder which of the limiting test errors $\mathcal{E}_{\text{test}}^{\infty}[A], \mathcal{E}_{\text{test}}^{\infty}[L]$ is lower – in particular, whether
 428 the attention model always achieves a lower error provided it is given sufficient data. The answer
 429 is more nuanced, and crucially depends on the alignment s_q (see Corollary 1) between the query
 430 weights $q^{(2)}$ and the signal ξ achieved after step 3 of the training protocol. As shown in Fig. 5 in
 431 Appendix E, $\mathcal{E}_{\text{test}}^{\infty}[A] > \mathcal{E}_{\text{test}}^{\infty}[L]$ can hold in some settings for s_q sufficiently small. In simple words,
 432 when the query weights have insufficiently aligned with the signal – e.g. as a result of insufficient

432 data α_0 or bad choice of the hyperparameters $\eta_{w,b}$ –, the attention suffers from a misaligned internal
 433 representation, and achieves a worse error than the simpler linear classifiers. For moderate and large
 434 s_q on the other hand, $\mathcal{E}_{\text{test}}^{\infty}[\mathbf{A}] < \mathcal{E}_{\text{test}}^{\infty}[\mathbf{L}]$ and the attention profits from the advantage of the dynamical
 435 reweighting implemented by its internal representation.

437 **Capacity —** The previous subsection compared the three models in terms of their test errors. We
 438 adopt in this subsection a complementary perspective, and analyze the *capacity* α^* of the models
 439 $\mathbf{A}_{q^{(2)},w,b}$, $\mathbf{L}_{w,b}^{\text{pool}}$ and $\mathbf{L}_{w,b}^{\text{vec}}$, defined as the (normalized) maximal number of training samples that can
 440 typically be fitted by the models to vanishing training loss. More formally, let $\hat{y} \in \{\mathbf{A}, \mathbf{L}^{\text{pool}}, \mathbf{L}^{\text{vec}}\}$
 441 be one of the three models, and let $\mathcal{E}_{\text{train}}[\hat{y}](\alpha_1)$ designate the asymptotic training loss characterized
 442 in Theorems 4 and 5, in the limit of vanishing regularization $\lambda \rightarrow 0$, for the logistic loss $\ell(y, z) =$
 443 $\log(1 + \exp(-yz))$. The *capacity* of the model \hat{y} is then formally defined as

$$\alpha_{\hat{y}}^* = \sup_{\alpha \geq 0} \{\mathcal{E}_{\text{train}}[\hat{y}](\alpha) = 0\} \quad (14)$$

446 For $\alpha < \alpha_{\hat{y}}^*$, the training set is small enough so that it can with high probability be perfectly sep-
 447 arated by the model and $\mathcal{E}_{\text{train}}[\hat{y}](\alpha) = 0$. At large sample complexities $\alpha > \alpha_{\hat{y}}^*$, such perfect
 448 classification becomes typically impossible, resulting in a positive training loss $\mathcal{E}_{\text{train}}[\hat{y}](\alpha) > 0$.
 449 The capacity of a model captures how easily it can classify samples from a given data distribution,
 450 with a higher capacity thus intuitively reflecting a higher adequacy of the model to the task. An
 451 analytical expression for the capacity can be extracted from the characterizations of the training loss
 452 $\mathcal{E}_{\text{train}}$ provided by Theorems 4 and 5, which we report in the following Conjecture.

453 **Conjecture 1.** *The capacities of the models \mathbf{L}^{pool} , \mathbf{L}^{vec} , $\mathbf{A}_{q^{(2)},w,b}$ admit the following expressions:*

$$\alpha_{\text{vec}}^* = \max_{s \in [0,1], b} \frac{L(1-s^2)}{\int_0^\infty [\pi\Phi'(\mathbf{b} + \frac{\theta_R}{\sqrt{L}}s + u) + (1-\pi)\Phi'(u - \mathbf{b})]u^2 du}, \quad \alpha_{\mathbf{A}}^* = \max_{m_q, m_\xi, b} \frac{1}{\mathbb{E} \left[c_z^2 \int_0^\infty \Phi' \left(\frac{c_z^2 u + y(b + c_q m_q + c_\xi m_\xi)}{c_z} \right) u^2 du \right]}. \quad (15)$$

458 and $\alpha_{\text{pool}}^* = \alpha_{\text{vec}}^*/L$. The expectation in the expression of $\alpha_{\mathbf{A}}^*$ bears on y, c_z, c_ξ, c_q whose joint law is
 459 detailed in Lemma 1, and depends in particular on $\langle q^{(2)}, \xi \rangle$.

461 The derivation of the expressions (15) is detailed in Appendix H. Because they involve some heuris-
 462 tic step, we state the result as a conjecture. The capacity of linear classifiers has been studied in a
 463 rich line of prior works, e.g. (Candès & Sur, 2020; Mignacco et al., 2020a; Loureiro et al., 2021),
 464 impelled by the seminal work of (Cover, 2006), albeit no analytical expressions have been to our
 465 awareness reported for the data distribution considered in the present work. Such results are on
 466 the other hand scarce for attention-based models. Conjecture 1 contributes to bridging this gap, by
 467 reporting an analytical expression for the capacity of the simple attention model considered in the
 468 present work. The theoretical predictions (15) are plotted in Fig. 1, where they are overlayed upon
 469 numerical evaluations of the training loss $\mathcal{E}_{\text{train}}$, for the three models, revealing good agreement. In
 470 the probed setting, $\alpha_{\text{vec}}^* > \alpha_{\mathbf{A}}^* > \alpha_{\text{pool}}^*$, the attention model displays a higher capacity than the pooled
 471 classifier, while the higher capacity of the vectorized classifier can be explained from its operating
 472 in a L -times higher dimensional space. As we discussed above, this higher capacity of the attention
 473 model intuitively hints at a better suitability to the considered data distribution. Finally, we note that
 474 this ordering can vary depending on the parameters of the problem, and crucially on the alignment
 475 s_q achieved by the attention model between its query weights $q^{(2)}$ and the signal ξ , as characterized
 476 in Corollary 1. We discuss in Appendix H how a small s_q – resulting, for instance, from insufficient
 477 pretraining data α_0 or bad choice of hyperparameters $\eta_{w,b}$ – can result in the attention having a
 478 lower capacity than the pooled classifier, namely $\alpha_{\mathbf{A}}^* < \alpha_{\text{pool}}^*$. This echoes a similar observation at
 479 the level of the test error made in the previous subsection, and discussed in Appendix E.

4 IMPARTING TO MORE RECOGNIZABLE ARCHITECTURES

482 We considered so far the simple attention model in (5) and the training procedure described in sub-
 483 section 3 to provide for a tractable analysis. In this last section, we provide some synthetic numerical
 484 experiments evidencing the parallels between our setup and more complex attention mechanisms.

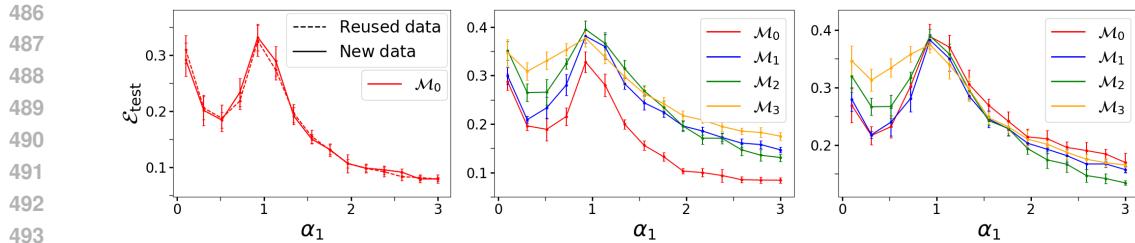


Figure 2: Simulated test errors achieved by the models $\{\mathcal{M}_i\}_{i=0}^3$ for $L = 10$, $R = 3$, $\pi = 0.5$, $\theta = 3$, and $\lambda = 10^{-2}$, trained on square loss using Adam optimizer (pre-training stage) before freezing inner model weights and optimizing readout weights (fine-tuning stage). Error after 2 epochs (**left**), 100 epochs (**middle**) and 100 epochs (**right**) of pretraining are shown. Comparison between reusing pretraining data versus generating new data for finetuning (as in subsection 3) is also shown (**left**). Curves represent numerical experiments in dimension $d = 500$; error bars show one standard deviation over 8 trials.

For comparison, we consider three models that build upon the attention model (5) which we refer to as \mathcal{M}_0 . For weight matrices $W_Q, W_K, W_V \in \mathbb{R}^{d \times d}$, let $Q = XW_Q$, $K = XW_K$, $V = XW_V$, and define the attention weights $A = \text{softmax}(QK^\top/\sqrt{d})$. Akin to the classical self-attention mechanism considered in the seminal work Vaswani et al. (2017), let \mathcal{M}_1 and \mathcal{M}_2 be the models with outputs:

$$\mathcal{M}_1 : \quad f(X) = \frac{1}{L} \sum_{i=1}^L (AV)_i \xrightarrow{\text{output}} \text{sign}(\langle f(X), w \rangle + b), \quad (16)$$

$$\mathcal{M}_2 : \quad h(X) = \phi(W_h f(X) + c) \xrightarrow{\text{output}} \text{sign}(\langle h(X), w \rangle + b),$$

where $\phi = \text{ReLU}$ and (W_h, c, w, b) are learnable weights. For a final comparison, we also consider a multi-head, multi-layer attention model \mathcal{M}_3 (4 heads and 2 layers) with linear activation and final output defined analogously to (16).

We plot in Fig. 2 the learning curves of these different models. We employ mini-batch Adam (Kingma & Ba, 2015) instead of full-batch gradient descent, and vary the number of pretraining epochs. Fig. 2 (**left**) shows that using dataset \mathcal{D}_1 for the training of w, b , as we considered in 3, yields the same behavior as reusing the dataset \mathcal{D}_0 employed in the first pretraining steps. Qualitatively, in all probed settings the test curves for the model \mathcal{M}_0 have a strong likeness to the analytic curves provided in Fig. 1. One has remarkable similarity in the shape and scale of the loss curves of the more complex models to the one examined herein, even after 100 epochs of pretraining. For instance, the double-descent phenomenon of Fig. 1 remains present. As a point of contrast, when using only 2 epochs of pretraining, \mathcal{M}_0 out-performs the other models (Fig. 2, **middle**), which may be attributed to the much larger parameter spaces being optimized over by more complex models. Unsurprisingly, this observation flips with more pretraining (Fig. 2, **right**).

Conclusion — We study the sparse token classification task of detecting a sparse, weak, and rare signal embedded in sequential data. For long sequences, we rigorously establish a clear performance separation between linear and attention-based classifiers, showing that attention-based models require significantly weaker signals to achieve perfect generalization. For finite sequences, we provide a sharp analysis of the learning for a simple attention model in a high-dimensional limit. Specifically, our study demonstrates how merely two gradient steps suffice for the attention mechanism to learn meaningful internal representations, enabling the model to dynamically identify and focus on tokens containing the relevant signal. Moreover, we derive a sharp characterization of the resulting test error, quantifying precisely the performance gain achieved by the attention model relative to the linear classifier baselines. Finally, we put these results in perspective by analyzing the capacity of the three models.

540 REFERENCES
541

- 542 Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers learn to imple-
543 ment preconditioned gradient descent for in-context learning. *Advances in Neural Information*
544 *Processing Systems*, 36:45614–45650, 2023.
- 545 Luca Arnaboldi, Bruno Loureiro, Ludovic Stephan, Florent Krzakala, and Lenka Zdeborova.
546 Asymptotics of sgd in sequence-single index models and single-layer attention networks. *arXiv*
547 *preprint arXiv:2506.02651*, 2025.
- 548 Jimmy Ba, Murat A Erdogdu, Taiji Suzuki, Zhichao Wang, Denny Wu, and Greg Yang. High-
549 dimensional asymptotics of feature learning: How one gradient step improves the representation.
550 *Advances in Neural Information Processing Systems*, 35:37932–37946, 2022.
- 551 Alberto Bietti, Joan Bruna, and Lucas Pillaud-Vivien. On learning gaussian multi-index models
552 with gradient flow. *arXiv preprint arXiv:2310.19793*, 2023.
- 553 Alberto Bietti, Vivien Cabannes, Diane Bouchacourt, Herve Jegou, and Leon Bottou. Birth of a
554 transformer: A memory viewpoint. *Advances in Neural Information Processing Systems*, 36,
555 2024.
- 556 Blake Bordelon, Hamza Tahir Chaudhry, and Cengiz Pehlevan. Infinite limits of multi-head trans-
557 former dynamics. *arXiv preprint arXiv:2405.15712*, 2024.
- 558 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
559 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
560 few-shot learners, 2020.
- 561 Emmanuel J Candès and Pragya Sur. The phase transition for the existence of the maximum like-
562 lihood estimate in high-dimensional logistic regression. *The Annals of Statistics*, 48(1):27–42,
563 2020.
- 564 Thomas M Cover. Geometrical and statistical properties of systems of linear inequalities with ap-
565 plications in pattern recognition. *IEEE transactions on electronic computers*, 3:326–334, 2006.
- 566 Hugo Cui. High-dimensional learning of narrow neural networks. *Journal of Statistical Mechanics:*
567 *Theory and Experiment*, 2025(2):023402, 2025.
- 568 Hugo Cui, Freya Behrens, Florent Krzakala, and Lenka Zdeborová. A phase transition between
569 positional and semantic learning in a solvable model of dot-product attention. *arXiv preprint*
570 *arXiv:2402.03902*, 2024a.
- 571 Hugo Cui, Luca Pesce, Yatin Dandi, Florent Krzakala, Yue M Lu, Lenka Zdeborová, and Bruno
572 Loureiro. Asymptotics of feature learning in two-layer networks after one gradient-step. *Pro-*
573 , pp. 9662–9695, 2024b.
- 574 Yatin Dandi, Florent Krzakala, Bruno Loureiro, Luca Pesce, and Ludovic Stephan. How two-layer
575 neural networks learn, one (giant) step at a time. *arXiv preprint arXiv:2305.18270*, 2023.
- 576 Yatin Dandi, Luca Pesce, Hugo Cui, Florent Krzakala, Yue M Lu, and Bruno Loureiro. A ran-
577 dom matrix theory perspective on the spectrum of learned features and asymptotic generalization
578 capabilities. *arXiv preprint arXiv:2410.18938*, 2024.
- 579 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
580 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
581 reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
582 scale, 2021.
- 583 Odilon Duranthon, Pierre Marion, Claire Boyer, Bruno Loureiro, and Lenka Zdeborová. Statis-
584 tical advantage of softmax attention: insights from single-location regression. *arXiv preprint*
585 *arXiv:2509.21936*, 2025.
- 586 Benjamin L Edelman, Surbhi Goel, Sham Kakade, and Cyril Zhang. Inductive biases and variable
587 creation in self-attention mechanisms. In *International Conference on Machine Learning*, pp.
588 5793–5831. PMLR, 2022.

- 594 Vittorio Erba, Emanuele Troiani, Luca Biggio, Antoine Maillard, and Lenka Zdeborov. Bilinear
 595 sequence regression: A model for learning from long sequences of high-dimensional tokens.
 596 *arXiv preprint arXiv:2410.18858*, 2024.
- 597 Hengyu Fu, Tianyu Guo, Yu Bai, and Song Mei. What can a single attention layer learn? a study
 598 through the random features lens. *Advances in Neural Information Processing Systems*, 36, 2024.
- 600 Elizabeth Gardner and Bernard Derrida. Optimal storage properties of neural network models.
 601 *Journal of Physics A: Mathematical and general*, 21(1):271, 1988.
- 603 Borjan Geshkovski, Cyril Letrouit, Yury Polyanskiy, and Philippe Rigollet. A mathematical per-
 604 spective on transformers. *arXiv preprint arXiv:2312.10794*, 2023.
- 605 Michael Hahn. Theoretical limitations of self-attention in neural sequence models. *Transactions of*
 606 *the Association for Computational Linguistics*, 8:156–171, 2020.
- 608 Noureddine Karoui. On the impact of predictor geometry on the performance on high-dimensional
 609 ridge-regularized generalized robust regression estimators. *Probability Theory and Related*
 610 *Fields*, 170, 02 2018. doi: 10.1007/s00440-016-0754-9.
- 611 Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. Bert: Pre-training of deep
 612 bidirectional transformers for language understanding, 2019.
- 614 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. 2015.
- 615 Werner Krauth and Marc Mezard. Storage capacity of memory networks with binary couplings.
 616 *Journal de Physique*, 50(20):3057–3066, 1989.
- 618 Thibault Lesieur, Florent Krzakala, and Lenka Zdeborov. Mmse of probabilistic low-rank ma-
 619 trix estimation: Universality with respect to the output channel. In *2015 53rd Annual Allerton*
 620 *Conference on Communication, Control, and Computing (Allerton)*, pp. 680–687. IEEE, 2015.
- 621 Tengyuan Liang and Pragya Sur. A precise high-dimensional asymptotic theory for boosting and
 622 minimum-11-norm interpolated classifiers. *The Annals of Statistics*, 50(3):1669–1695, 2022.
- 624 Bruno Loureiro, Gabriele Sicuro, Cedric Gerbelot, Alessandro Pacco, Florent Krzakala, and Lenka
 625 Zdeborov. Learning gaussian mixtures with generalized linear models: Precise asymptotics in
 626 high-dimensions. *Advances in Neural Information Processing Systems*, 34:10144–10157, 2021.
- 627 Xiaoyi Mai, Zhenyu Liao, and Romain Couillet. A large scale analysis of logistic regression:
 628 Asymptotic performance and new insights. In *ICASSP 2019-2019 IEEE International Confer-
 629 ence on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 3357–3361. IEEE, 2019.
- 631 Pierre Marion, Raphael Berthier, Gerard Biau, and Claire Boyer. Attention layers provably solve
 632 single-location regression. *arXiv preprint arXiv:2410.01537*, 2024.
- 633 Rodrigo Maulen-Soto, Claire Boyer, and Pierre Marion. Attention-based clustering. *arXiv preprint*
 634 *arXiv:2505.13112*, 2025.
- 636 Francesca Mignacco, Florent Krzakala, Yue Lu, Pierfrancesco Urbani, and Lenka Zdeborova. The
 637 role of regularization in classification of high-dimensional noisy Gaussian mixture. In *Inter-
 638 national Conference on Machine Learning*, pp. 6874–6883. PMLR, 2020a.
- 639 Francesca Mignacco, Florent Krzakala, Pierfrancesco Urbani, and Lenka Zdeborov. Dynamical
 640 mean-field theory for stochastic gradient descent in gaussian mixture classification. *Advances in*
 641 *Neural Information Processing Systems*, 33:9540–9550, 2020b.
- 642 Behrad Moniri, Donghwan Lee, Hamed Hassani, and Edgar Dobriban. A theory of non-linear feature
 643 learning with one gradient step in two-layer neural networks. *arXiv preprint arXiv:2310.07891*,
 644 2023.
- 646 Andrea Montanari, Feng Ruan, Youngtak Sohn, and Jun Yan. The generalization error of max-
 647 margin linear classifiers: High-dimensional asymptotics in the overparametrized regime. *arXiv*
 648 *preprint arXiv:1911.01544*, 7, 2019.

- 648 Alireza Mousavi-Hosseini, Clayton Sanford, Denny Wu, and Murat A Erdogdu. When do trans-
 649 formers outperform feedforward and recurrent networks? a statistical perspective. *arXiv preprint*
 650 *arXiv:2503.11272*, 2025.
- 651 Samet Oymak, Ankit Singh Rawat, Mahdi Soltanolkotabi, and Christos Thrampoulidis. On the role
 652 of attention in prompt-tuning. In *International Conference on Machine Learning*, pp. 26724–
 653 26768. PMLR, 2023.
- 654 Yunwei Ren, Zixuan Wang, and Jason D Lee. Learning and transferring sparse contextual bigrams
 655 with linear transformers. *arXiv preprint arXiv:2410.23438*, 2024.
- 656 Riccardo Rende, Federica Gerace, Alessandro Laio, and Sebastian Goldt. Mapping of attention
 657 mechanisms to a generalized potts model. *Physical Review Research*, 6(2):023057, 2024.
- 658 Clayton Sanford, Daniel J Hsu, and Matus Telgarsky. Representational strengths and limitations of
 659 transformers. *Advances in Neural Information Processing Systems*, 36:36677–36707, 2023.
- 660 Davoud Ataee Tarzanagh, Yingcong Li, Christos Thrampoulidis, and Samet Oymak. Transformers
 661 as support vector machines. *arXiv preprint arXiv:2308.16898*, 2023.
- 662 Lorenzo Tiberi, Francesca Mignacco, Kazuki Irie, and Haim Sompolinsky. Dissecting the in-
 663 terplay of attention paths in a statistical mechanics theory of transformers. *arXiv preprint*
 664 *arXiv:2405.15926*, 2024.
- 665 Emanuele Troiani, Hugo Cui, Yatin Dandi, Florent Krzakala, and Lenka Zdeborová. Fundamental
 666 limits of learning in sequence multi-index models and deep attention networks: High-dimensional
 667 asymptotics and sharp thresholds. *arXiv preprint arXiv:2502.00901*, 2025.
- 668 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
 669 Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in Neural Infor-
 670 mation Processing Systems*, 31, 2017.
- 671 Roman Vershynin. *High-Dimensional Probability: An Introduction with Applications in Data Sci-
 672 ence*. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press,
 673 2018.
- 674 Johannes Von Oswald, Eyyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordv-
 675 intsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient
 676 descent. In *International Conference on Machine Learning*, pp. 35151–35174. PMLR, 2023.
- 677 Zixuan Wang, Stanley Wei, Daniel Hsu, and Jason D Lee. Transformers provably learn sparse token
 678 selection while fully-connected nets cannot. *arXiv preprint arXiv:2406.06893*, 2024.
- 679 Chenyang Zhang, Xuran Meng, and Yuan Cao. Transformer learns optimal variable selection in
 680 group-sparse classification. *arXiv preprint arXiv:2504.08638*, 2025.

686 A AUXILIARY RESULTS

687 Throughout this appendix, for two random variables X and Y , we write

$$688 X \stackrel{(d)}{=} Y$$

689 to mean that the two random variables are equal in distribution. For example, as is used often in our
 690 derivations, given a matrix $G \in \mathbb{R}^{m \times n}$ with i.i.d. $\mathcal{N}(0, 1)$ entries, an independent Gaussian vector
 691 $g \sim \mathcal{N}(0, I_m)$, and another independent random vector $u \in \mathbb{R}^n$, a basic fact is

$$692 Gu \stackrel{(d)}{=} \|u\|g.$$

693 Moreover, for two (possibly random) sequences (a_n) and (b_n) , we write

$$694 a_n \asymp b_n$$

695 if $\lim_{n \rightarrow \infty} |a_n - b_n| = 0$, where the convergence may be taken in the almost-sure or in-probability
 696 sense depending on the context.

697 We first present a statistically equivalent representation of the feature vector $f_q(X)$ in the attention
 698 model defined in (6).

702 **Lemma 1.** Let $g \in \mathbb{R}^L$ and $z \in \mathbb{R}^d$ be two independent random vectors with i.i.d. standard normal
703 entries. Define two probability vectors
704

$$705 \quad s_+ := \text{softmax}(\beta(\|q\|g + \langle q, \xi \rangle \theta v)) \quad \text{and} \quad s_- := \text{softmax}(\beta\|q\|g). \quad (17)$$

706 We have
707

$$708 \quad f_q(X) \Big| \{y = +1\} \stackrel{(d)}{=} \frac{\langle g, s_+ \rangle q}{\|q\|} + \langle \theta v, s_+ \rangle \xi + \|s_+\| P_q^\perp z,$$

710 and
711

$$712 \quad f_q(X) \Big| \{y = -1\} \stackrel{(d)}{=} \frac{\langle g, s_- \rangle q}{\|q\|} + \|s_-\| P_q^\perp z,$$

714 where
715

$$716 \quad P_q^\perp = I - \frac{qq^\top}{\langle q, q \rangle}$$

718 is the orthogonal projection onto the subspace orthogonal to q .
719

720 *Proof.* By the rotational invariance of the isotropic Gaussian distributions, we can write
721

$$722 \quad Z \stackrel{(d)}{=} \frac{gq^\top}{\|q\|} + \tilde{Z} P_q^\perp, \quad (18)$$

725 where \tilde{Z} is an independent copy of Z . The result is straightforward after inserting the representation
726 (18) into (6), which provides
727

$$728 \quad f_q(X) \Big| \{y = +1\} \stackrel{(d)}{=} \left(\frac{gq^\top}{\|q\|} + \tilde{Z} P_q^\perp + \theta v \xi^\top \right)^\top \text{softmax}(\beta\|q\|g + \beta\theta v \langle q, \xi \rangle) \\ 729 \stackrel{(d)}{=} \frac{\langle g, s_+ \rangle q}{\|q\|} + \langle \theta v, s_+ \rangle \xi + \|s_+\| P_q^\perp z.$$

733 In the above, we have used the facts that $P_q^\perp q = 0_d$ and $\tilde{Z} s_+ \stackrel{(d)}{=} \|s_+\| g$. The signal-less case (for
734 $y = -1$) follows analogously. \square
735

737 The following result gives a simplified form for the test error that is valid for any $q, w \in \mathbb{R}^d$ and
738 $b \in \mathbb{R}$. It will be used in the proofs of Theorems 2 and 4.
739

740 **Lemma 2.** Let

$$741 \quad \mu_1 = \frac{\langle q, w \rangle}{\|q\|}, \quad \mu_2 = \langle \xi, w \rangle, \quad \mu_3 = \sqrt{\|w\|^2 - \mu_1^2}.$$

743 The test error is
744

$$745 \quad \mathcal{E}_{\text{test}} = (1 - \pi) \cdot \mathbb{E}_g \left[\Phi \left(\frac{b + \langle g, s_- \rangle \mu_1}{\mu_3 \|s_-\|} \right) \right] + \pi \cdot \mathbb{E}_g \left[\Phi \left(\frac{-b - \langle \theta v, s_+ \rangle \mu_2 - \langle g, s_+ \rangle \mu_1}{\mu_3 \|s_+\|} \right) \right],$$

748 where s_+ and s_- are the two vectors defined in (17), and $\Phi(\cdot)$ is the cumulative distribution function
749 of a standard normal distribution.

750 *Proof.* By (5),
751

$$752 \quad \mathcal{E}_{\text{test}} := (1 - \pi) \mathbb{P} \left(\langle f_q(X), w \rangle + b > 0 \mid y = -1 \right) + \pi \mathbb{P} \left(\langle f_q(X), w \rangle + b < 0 \mid y = +1 \right).$$

755 The result then follows from the statistical representations given by Lemma 1. \square

756 B PROOFS OF PROPOSITION 1 AND THEOREM 1
757758 **Proof of Proposition 1**
759760 Notice that the pooled classifier corresponds to setting $q = 0$ in the attention model (6) and we have
761

762
$$\langle f_0(X), w \rangle + b \stackrel{(d)}{=} \frac{\|w\|}{\sqrt{L}} z + 1_{\{y=1\}} \frac{\theta R \langle w, \xi \rangle}{L} + b$$

763

764 for $z \sim \mathcal{N}(0, 1)$. Absorbing the factor $-\sqrt{L}/\|w\|$ by redefining the variable b , we obtain
765

766
$$\begin{aligned} \mathcal{E}_{\text{test}}^*[\hat{y}] &= \inf_{w \in \mathbb{R}^d, b \in \mathbb{R}} (1 - \pi) \mathbb{P}(z > b) + \pi \mathbb{P}\left(z + \frac{\theta R \langle w, \xi \rangle}{\|w\| \sqrt{L}} < b\right) \\ 767 &= \inf_{\rho \in [-1, 1], b \in \mathbb{R}} (1 - \pi) \mathbb{P}(z > b) + \pi \mathbb{P}\left(z + \frac{\rho \theta R}{\sqrt{L}} < b\right) \\ 768 &= \inf_{b \in \mathbb{R}} (1 - \pi) \mathbb{P}(z > b) + \pi \mathbb{P}\left(z + \frac{\theta R}{\sqrt{L}} < b\right) \\ 769 &= \inf_{b \in \mathbb{R}} (1 - \pi) \Phi(-b) + \pi \Phi\left(b - \frac{\theta R}{\sqrt{L}}\right). \end{aligned} \quad (19)$$

770

771 Set $\ell_L = \theta R / \sqrt{L}$ and Denote $g_L(b) = (1 - \pi) \Phi(-b) + \pi \Phi(b - \ell_L)$ the function over which the
772 infimum is taken in (19). For any L , g_L admits the derivative
773

774
$$g_L'(b) = \frac{e^{-\frac{b^2}{2}}}{\sqrt{2\pi}} \left[-1 + \pi + \pi e^{-\frac{\ell_L^2}{2} + \ell_L b} \right]. \quad (20)$$

775

776 We assume without loss of generality that $\ell_L > 0$ since the asymptotic test error shall remain the
777 same for when $\ell_L \rightarrow 0$ as $L \rightarrow \infty$. We have that the derivative $g_L'(b)$ is zero at
778

779
$$b_L^* = \frac{1}{2} (\ell_L - 2/\ell_L \log(\pi/1 - \pi)), \quad (21)$$

780

781 where it switches sign from negative to positive. Therefore, the infimum in (19) is attained at b_L^* and
782

783
$$\begin{aligned} \mathcal{E}_{\text{test}}^*[\hat{y}] &= (1 - \pi) \Phi(-b_L^*) + \pi \Phi(b_L^* - \ell_L) \\ 784 &= (1 - \pi) \Phi\left(-\frac{1}{2} (\ell_L - 2/\ell_L \log(\pi/1 - \pi))\right) + \pi \Phi\left(\frac{1}{2} (\ell_L - 2/\ell_L \log(\pi/1 - \pi)) - \ell_L\right). \end{aligned} \quad (22)$$

785

786 Inspecting (22), by continuity of Φ we immediately see that when $\ell = \infty$ one has $\lim_{L \rightarrow \infty} \mathcal{E}_{\text{test}}^*[\hat{y}] = 0$ and when $\ell \in (0, \infty)$ we obtain the corresponding expression in the statement of Theorem 1.
787 Notice that for $\ell = 0$,

788
$$\lim_{L \rightarrow \infty} -2/\ell_L \log(\pi/1 - \pi) = \begin{cases} -\infty, & \pi > 1 - \pi \\ \infty, & \pi < 1 - \pi \\ 0, & \pi = 1/2 \end{cases}$$

789

790 and so, again examining (22), it follows that under this regime $\lim_{L \rightarrow \infty} \mathcal{E}_{\text{test}}^*[\hat{y}] = \min(\pi, 1 - \pi)$. \square
791792 **Proof of Theorem 1**
793794 Before dividing into the two separate cases of Theorem 1, we begin with a simplification of the
795 optimal test error. Writing $w = (w_1, \dots, w_L)$ with $w_\ell \in \mathbb{R}^d$, we have
796

797
$$\langle \text{vec}(X), w \rangle + b = \|w\| z + 1_{y=1} \theta \sum_{\ell=1}^L v_\ell \langle w_\ell, \xi \rangle + b$$

798

810 for $z \sim \mathcal{N}(0, 1)$. Absorbing $\|w\|$ into b gives
 811

$$\begin{aligned}
 812 \quad \mathcal{E}_{\text{test}}^*[\hat{y}] &= \inf_{w \in \mathbb{R}^{Ld}, b \in \mathbb{R}} (1 - \pi)\mathbb{P}(z > b) + \pi\mathbb{P}\left(z + \theta \sum_{\ell=1}^L v_\ell \frac{\langle w_\ell, \xi \rangle}{\|w\|} < b\right) \\
 813 \\
 814 \quad &= \inf_{w \in S^{Ld-1}, b \in \mathbb{R}} (1 - \pi)\mathbb{P}(z > b) + \pi\mathbb{P}\left(z + \theta \sum_{\ell=1}^L v_\ell \langle w_\ell, \xi \rangle < b\right) \\
 815 \\
 816 \quad &= \inf_{a \in S^{d-1} \cap \mathbb{R}_+^d, b \in \mathbb{R}} (1 - \pi)\mathbb{P}(z > b) + \pi\mathbb{P}(z + \theta \langle v, a \rangle < b) \tag{23}
 \end{aligned}$$

817 The last line follows as any optimal w will be of the form $w_\ell = a_\ell \xi$ for $1 \leq \ell \leq L$ where $a_\ell \geq 0$
 818 and $\|a\| = 1$.
 819

820 With the representation for $\mathcal{E}_{\text{test}}^*[\hat{y}]$ given in (23), we now establish the separate results of the theo-
 821 rem.
 822

823 1. Recalling the assumption
 824

$$\begin{aligned}
 825 \quad \|p\| = O\left(\frac{R}{\sqrt{L}}\right) \quad \text{where } p_j = \mathbb{P}(v_j = 1) \text{ for } j \in [L], \tag{24}
 \end{aligned}$$

826 there exists $C > 0$ such that $\|p\| \leq C(R/\sqrt{L})$ for all $L \geq 1$. To begin, defining the
 827 random variable $u = \theta \langle v, a \rangle$ and the decreasing function $f_b(x) = \Phi(-x - b)$, notice that
 828 (23) is equivalent to
 829

$$\inf_{a \in S^{d-1} \cap \mathbb{R}_+^d, b \in \mathbb{R}} (1 - \pi)\Phi(b) + \pi\mathbb{E}[f_b(u)]. \tag{25}$$

830 where the dependence on a persists through u and the expectation is taken with respect to
 831 u .
 832

833 We first show that if $\ell^* = \infty$, one has $\mathcal{E}_{\text{test}}^*[\hat{y}] \rightarrow 0$ as $L \rightarrow \infty$. To this end, consider a
 834 “flat” solution $a = 1/\sqrt{L} \cdot \mathbf{1}_L$ and notice that this gives $u = \mathbb{E}[u] = \theta R/\sqrt{L}$. Thus, we have
 835

$$\mathbb{E}_u[f_b(u)] = f_b(\theta R/\sqrt{L}) = \Phi(-\theta R/\sqrt{L} - b).$$

836 Taking $b = -\theta R/2\sqrt{L}$, we have
 837

$$\mathcal{E}_{\text{test}}^*[\hat{y}] \leq (1 - \pi)\Phi(-\theta R/2\sqrt{L}) + \pi\Phi(-\theta R/2\sqrt{L}) \xrightarrow{L \rightarrow \infty} 0.$$

838 Next, we show that $\mathcal{E}_{\text{test}}^*[\hat{y}] \rightarrow \min(\pi, 1 - \pi)$ if $\ell^* = 0$. Observe that for $\nu > 0$,
 839

$$\begin{aligned}
 840 \quad \mathbb{E}_u[f_b(u)] &\geq \mathbb{E}_u[f_b(u)1_{\{u \leq k\}}] \\
 841 \\
 842 \quad &\geq f_b(k)\mathbb{P}(u \leq k) \\
 843 \\
 844 \quad &\geq f_b(k)\left(1 - \frac{\mathbb{E}[u]}{k}\right) \tag{26}
 \end{aligned}$$

845 where the second and third inequalities above are due to the monotonicity of f_b and
 846 Markov’s inequality respectively. Note that
 847

$$\mathbb{E}[u] = \theta \langle p, a \rangle \leq \theta \|p\| \leq C \frac{R}{\sqrt{L}}$$

848 by our delocalization assumption. Setting $\nu_L = (C\theta R/\sqrt{L})^{1/2}$, from (25) and (26), we have
 849

$$\mathcal{E}_{\text{test}}^*[\hat{y}] \geq \inf_{b \in \mathbb{R}} (1 - \pi)\Phi(b) + \pi\Phi(-\nu_L - b)(1 - \nu_L).$$

850 Since $\Phi(-\nu_L - b)(1 - \nu_L) \xrightarrow{L \rightarrow \infty} \Phi(-b)$ uniformly in $b \in \mathbb{R}$, we have
 851

$$\liminf_{L \rightarrow \infty} \mathcal{E}_{\text{test}}^*[\hat{y}] \geq \liminf_{L \rightarrow \infty} \left(\inf_{b \in \mathbb{R}} (1 - \pi)\Phi(b) + \pi\Phi(-\nu_L - b)(1 - \nu_L) \right) \tag{27}$$

$$= \inf_{b \in \mathbb{R}} (1 - \pi)\Phi(b) + \pi\Phi(-b) \tag{28}$$

$$= \min(\pi, 1 - \pi). \tag{29}$$

864 On the other hand,

$$\limsup_{L \rightarrow \infty} \mathcal{E}_{\text{test}}^*[\hat{y}] \leq \min(\pi, 1 - \pi)$$

867 as the upper bound above can be achieved by setting the original weight vector $w = 0_d$.
868 This establishes that $\lim_{L \rightarrow \infty} \mathcal{E}_{\text{test}}^*[\hat{y}] = 0$ when $\ell^* = 0$. Finally, we consider the case
869 where $\ell^* \in (0, \infty)$. Setting $\bar{u} = \max(u, -b)$, we have

$$\mathbb{E}[f_b(u)] \geq \mathbb{E}[f_b(\bar{u})] \geq f_b(\mathbb{E}[\bar{u}]) = \Phi(-\mathbb{E}[\bar{u}] - b) \quad (30)$$

872 where the first inequality is due to the monotonicity of f_b and the second comes is by
873 Jensen's inequality seeing that $f_b(x)$ is convex for $x \geq -b$. This provides a lower bound
874

$$\mathcal{E}_{\text{test}}^*[\hat{y}] \geq \inf_{a \in S^{d-1} \cap \mathbb{R}_+^d, b \in \mathbb{R}} (1 - \pi)\Phi(b) + \pi\Phi(-\mathbb{E}[\bar{u}] - b)$$

875 where we remark that $\mathbb{E}[\bar{u}]$ depends on both a and b . Defining $g(b) = -\mathbb{E}[\bar{u}] - b$, one
876 notices that g is concave, piecewise linear, and non-increasing. As $\mathbb{E}[u] \leq \theta\|p\|$, one finds
877 that the function

$$\tilde{g}(b) = \begin{cases} -\theta\|p\|, & b \leq 0 \\ -\theta\|p\| - b, & b > 0 \end{cases}$$

883 is a minorant for $g(b)$ and so

$$\mathcal{E}_{\text{test}}^*[\hat{y}] \geq (1 - \pi)\Phi(b) + \pi\Phi(\tilde{g}(b)) \quad (31)$$

$$\geq \begin{cases} \pi\Phi(-\theta\|p\|), & b \leq 0 \\ (1 - \pi)/2, & b > 0 \end{cases} \quad (32)$$

884 Applying the delocalization bound on $\|p\|$ then yields the lower bound

$$\liminf_{L \rightarrow \infty} \mathcal{E}_{\text{test}}^*[\hat{y}] \geq \min\left(\frac{1 - \pi}{2}, \pi\Phi(-C\ell^*)\right) > 0$$

893 where $C > 0$ was such that $\|p\| \leq CR/\sqrt{L}$. This completes the proof for the first set of
894 assumptions of Theorem 1.

- 895 2. We now turn the the uniformity assumptions, namely when $\pi = 1/2$ and v has a uniform
896 distribution on its support. Setting $G(a, b)$ to be the objective function of (25) and

$$g(b, t) = {}^{1/2}\Phi(-b) + {}^{1/2}\Phi(b - t)$$

897 for $t \geq 0$, observe that $\mathbb{E}[g(b, u)] = G(a, b)$ where we again recall that u depends on a .
898 Following the same minimization over b in the proof of Proposition 1, we see that

$$\inf_{b \in \mathbb{R}} g(b, t) = \frac{\Phi(-t/2)}{2}$$

900 and so

$$\mathcal{E}_{\text{test}}^*[\hat{y}] = \inf_{a \in S^{d-1} \cap \mathbb{R}_+^d, b \in \mathbb{R}} G(a, b) \geq \inf_{a \in S^{d-1} \cap \mathbb{R}_+^d} \frac{\mathbb{E}[\Phi(-u/2)]}{2} \geq \inf_{a \in S^{d-1} \cap \mathbb{R}_+^d} \frac{\Phi(-\mathbb{E}[u/2])}{2}$$

901 where the last inequality follows from Jensen's inequality as $\Phi(-x)$ is convex for $x \geq 0$.
902 By monotonicity of $\Phi(-\cdot)$ and since the choice $a = {}^{1/\sqrt{L}} \cdot \mathbf{1}_L$ maximizes $\mathbb{E}[u]$, we have

$$\mathcal{E}_{\text{test}}^*[\hat{y}] \geq \frac{\Phi(-\ell_L/2)}{2}$$

911 where $\ell_L = {}^{\theta R/\sqrt{L}}$. Here, one notices that the right-hand-side corresponds to the optimal
912 test error found for the pooled classifier in (22) when $\pi = 1/2$. Notably, the above is
913 indeed an equality which is seen by evaluating G as the previously considered values (a, b) .
914 Hence, the uniformity assumptions reduce the optimal test error for the vectorized classifier
915 to those of the pooled classifier. One then obtains an analogous result to (9).

918 **C PROOF OF THEOREM 2**
919

920 We detail in this Appendix the proof of Theorem 2. The proof builds on the following intermediary
921 proposition, which gives a sufficient condition for vanishing test error, when the query weights q are
922 constrained in norm.

923 **Proposition 2.** Consider the attention model A (5). For $\tau > 0$, let $\tau\mathbb{B}^d = \{x \in \mathbb{R}^d : \|x\| \leq \tau\}$, we consider the optimal test error $\mathcal{E}_{\text{test}}^*[\mathbf{A}, \tau] = \inf_{q \in \tau\mathbb{B}^d, w \in \mathbb{R}^d, b \in \mathbb{R}} \mathcal{E}_{\text{test}}[\mathbf{A}_{q, w, b}]$, restraining the
924 minimization on q to vectors of norm less than or equal to τ . In the limit $L \rightarrow \infty$, $R = \Theta(1)$,
925 allowing the signal θ to depend on L , suppose that

926

$$\lim_{L \rightarrow \infty} \frac{\theta e^{\beta\tau\theta}}{L} \rightarrow \infty \quad (33)$$

927 Then, the attention model A achieves an optimal test error of $\mathcal{E}_{\text{test}}^*[\mathbf{A}] = 0$.
928

929 *Proof.* We remind that from Lemma 2, for any q, w, b the test error can be expressed as
930

$$\mathcal{E}_{\text{test}}[\mathbf{A}_{q, w, b}] = (1 - \pi)\mathbb{P}\left(\|P_q^\perp w\| \cdot \|s_-\|z < b + \frac{\langle w, q \rangle}{\|q\|}\langle g, s_- \rangle\right) \quad (34)$$

$$+ \pi\mathbb{P}\left(\|P_q^\perp w\| \cdot \|s_+\|z < -b - \frac{\langle w, q \rangle}{\|q\|}\langle g, s_+ \rangle - \langle \theta v, s_+ \rangle \langle \xi, w \rangle\right). \quad (35)$$

931 where

932 $s_- = \text{softmax}(\beta\|q\|g)$ and $s_+ = \text{softmax}(\beta(\|q\|g + \langle q, \xi \rangle \theta v))$,
933 $P_q^\perp = I_d - qq^\top / \langle q, q \rangle$, and $z \sim N(0, 1)$ is independent of $g \sim \mathcal{N}(0, I_L)$. The probability \mathbb{P} bears
934 jointly over the random variables v, g, z . To derive an upper bound on the optimal test error, we can
935 consider the special case $q = \tau\xi, w = \xi$. The expression of the test error then simplifies to
936

$$\mathcal{E}_{\text{test}}[\mathbf{A}_{q, w, b}] = (1 - \pi)\mathbb{P}(0 < b + \langle g, s_- \rangle) + \pi\mathbb{P}(0 < -b - \langle g, s_+ \rangle - \langle \theta v, s_+ \rangle). \quad (36)$$

937 Note that

$$\langle g, s_- \rangle = \frac{\sum_{i \in [L]} g_i e^{\beta\tau g_i}}{\sum_{i \in [L]} e^{\beta\tau g_i}} = \frac{\beta\tau e^{\frac{\beta^2\tau^2}{2}} + \frac{1}{\sqrt{L}}z_2}{e^{\frac{\beta^2\tau^2}{2}} + \frac{1}{\sqrt{L}}z_1}. \quad (37)$$

938 We have introduced the random variables

$$z_1 = \frac{\sum_{i \in [L]} e^{\beta\tau g_i} - L e^{\frac{\beta^2\tau^2}{2}}}{\sqrt{L}}, \quad z_2 = \frac{\sum_{i \in [L]} g_i e^{\beta\tau g_i} - L\beta\tau e^{\frac{\beta^2\tau^2}{2}}}{\sqrt{L}}. \quad (38)$$

939 From the central limit theorem, z_1, z_2 converge in distribution to standard Gaussian variables. By
940 the same token, one can rewrite

$$\langle g, s_+ + \theta v \rangle = \frac{\frac{e^{\beta\tau\theta}-1}{L}B + \frac{\theta e^{\beta\tau\theta}}{L}A + \beta\tau e^{\frac{\beta^2\tau^2}{2}} + \frac{1}{\sqrt{L}}z_2}{\frac{e^{\beta\tau\theta}-1}{L}A + e^{\frac{\beta^2\tau^2}{2}} + \frac{1}{\sqrt{L}}z_1}, \quad (39)$$

941 introducing the random variables

$$A = \sum_{i \in [R]} e^{\beta\tau g_i}, \quad B = \sum_{i \in [R]} g_i e^{\beta\tau g_i}. \quad (40)$$

942 Using the change of variables $b = -\beta\tau - \tilde{b}/\sqrt{L}$ allows to reach

$$\mathcal{E}_{\text{test}}[\mathbf{A}_{\tau\xi, \xi, -\beta\tau - \tilde{b}/\sqrt{L}}] = (1 - \pi)\mathbb{P}\left(\langle g, s_- \rangle - \beta\tau > \frac{\tilde{b}}{\sqrt{L}}\right) + \pi\mathbb{P}\left(\langle g + \theta v, s_+ \rangle - \beta\tau < \frac{\tilde{b}}{\sqrt{L}}\right) \quad (41)$$

$$= (1 - \pi)\mathbb{P}\left(\frac{z_2 - \beta\tau z_1}{e^{\frac{\beta^2\tau^2}{2}} + \frac{1}{\sqrt{L}}z_1} > \tilde{b}\right) \quad (42)$$

$$+ \pi\mathbb{P}\left(\frac{\theta \frac{e^{\beta\tau\theta}}{\sqrt{L}}A + \frac{e^{\beta\tau\theta}-1}{\sqrt{L}}(B - \beta\tau A) + z_2 - \beta\tau z_1}{\frac{e^{\beta\tau\theta}-1}{L}A + e^{\frac{\beta^2\tau^2}{2}} + \frac{1}{\sqrt{L}}z_1} < \tilde{b}\right). \quad (43)$$

972 Let $\epsilon > 0$. We first focus on the first term, which one can bound as
 973

$$974 \mathbb{P} \left(\frac{z_2 - \beta\tau z_1}{e^{\frac{\beta^2\tau^2}{2}} + \frac{1}{\sqrt{L}} z_1} > \tilde{b} \right) \leq \mathbb{P} \left(z_2 - \beta\tau z_1 > \tilde{b} \left(e^{\frac{\beta^2\tau^2}{2}} - 1 \right) \right) + \mathbb{P}(|z_1| > \sqrt{L}). \quad (44)$$

977 Let $M = \sqrt{2}\text{erfc}(1 - \epsilon/8)$, and let
 978

$$979 \tilde{b}_1 = \frac{\sqrt{2(1 + \beta^2\tau^2 - 2\beta^2\tau^2 e^{\beta^2\tau^2} (2e^{\beta^2\tau^2} - 1))}}{980 - 1 + e^{\frac{\beta^2\tau^2}{2}}} \text{erfc}(1 - \epsilon/8). \quad (45)$$

982 and

$$983 \tilde{b}_2 = \sqrt{2(1 + \beta^2\tau^2 - 2\beta^2\tau^2 e^{\beta^2\tau^2} (2e^{\beta^2\tau^2} - 1))} \text{erfc}(1 - \epsilon/8). \quad (46)$$

985 We now fix $\tilde{b} = \max(\tilde{b}_1, \tilde{b}_2)$. Let L_1 be such that for $L \geq L_1$,
 986

$$987 \mathbb{P} \left(z_2 - \beta\tau z_1 > \tilde{b} \left(e^{\frac{\beta^2\tau^2}{2}} - 1 \right) \right) \leq 1 - \Phi \left(\frac{\tilde{b} \left(e^{\frac{\beta^2\tau^2}{2}} - 1 \right)}{\sqrt{2(1 + \beta^2\tau^2 - 2\beta^2\tau^2 e^{\beta^2\tau^2} (2e^{\beta^2\tau^2} - 1))}} \right) + \frac{\epsilon}{8}, \quad (47)$$

$$992 \mathbb{P}(|z_1| > M) \leq 2 - 2\Phi(M) + \frac{\epsilon}{8}. \quad (48)$$

994 The existence of such L_1 is guaranteed by the convergence in distribution of z_1, z_2 to joint normal
 995 Gaussian variables. Then for any $L > \max(M, L_1)$,

$$996 \mathbb{P} \left(\frac{z_2 - \beta\tau z_1}{e^{\frac{\beta^2\tau^2}{2}} + \frac{1}{\sqrt{L}} z_1} > \tilde{b} \right) \leq \frac{\epsilon}{2}. \quad (49)$$

999 Turning to the other term,
 1000

$$1001 \mathbb{P} \left(\frac{\theta \frac{e^{\beta\tau\theta}}{\sqrt{L}} A + \frac{e^{\beta\tau\theta}-1}{\sqrt{L}} (B - \beta\tau A) + z_2 - \beta\tau z_1}{\frac{e^{\beta\tau\theta}-1}{L} A + e^{\frac{\beta^2\tau^2}{2}} + \frac{1}{\sqrt{L}} z_1} < \tilde{b} \right) \leq \mathbb{P}(z_2 - \beta\tau z_1 < -\tilde{b}) + \mathbb{P}(|z_1| \geq \sqrt{L}) \\ 1004 \quad + \mathbb{P} \left(A < \frac{2\tilde{b}(e^{\frac{\beta^2\tau^2}{2}} + 1) - \frac{e^{\beta\tau\theta}-1}{\sqrt{L}} B}{\theta \frac{e^{\beta\tau\theta}}{\sqrt{L}} - \frac{e^{\beta\tau\theta}-1}{\sqrt{L}} (\beta\tau + \tilde{b}/\sqrt{L})} \right) \quad (50)$$

$$1005 \quad + \mathbb{P} \left(A < \frac{2\tilde{b}(e^{\frac{\beta^2\tau^2}{2}} + 1) - \frac{e^{\beta\tau\theta}-1}{\sqrt{L}} B}{\theta \frac{e^{\beta\tau\theta}}{\sqrt{L}} - \frac{e^{\beta\tau\theta}-1}{\sqrt{L}} (\beta\tau + \tilde{b}/\sqrt{L})} \right) \quad (51)$$

1009 Let L_2 be such that for $L \geq L_2$,

$$1011 \mathbb{P} \left(z_2 - \beta\tau z_1 > \tilde{b} \left(e^{\frac{\beta^2\tau^2}{2}} - 1 \right) \right) \leq 1 - \Phi \left(\frac{\tilde{b}}{\sqrt{2(1 + \beta^2\tau^2 - 2\beta^2\tau^2 e^{\beta^2\tau^2} (2e^{\beta^2\tau^2} - 1))}} \right) + \frac{\epsilon}{8}, \quad (52)$$

$$1016 \mathbb{P}(|z_1| > M) \leq 2 - 2\Phi(M) + \frac{\epsilon}{8}. \quad (53)$$

1017 Finally,

$$1019 \mathbb{P} \left(A < \frac{2\tilde{b}(e^{\frac{\beta^2\tau^2}{2}} + 1) - \frac{e^{\beta\tau\theta}-1}{\sqrt{L}} B}{\theta \frac{e^{\beta\tau\theta}}{\sqrt{L}} - \frac{e^{\beta\tau\theta}-1}{\sqrt{L}} (\beta\tau + \tilde{b}/\sqrt{L})} \right) \leq \mathbb{P} \left(A < \frac{2\tilde{b}(e^{\frac{\beta^2\tau^2}{2}} + 1) + \frac{e^{\beta\tau\theta}-1}{\sqrt{L}} \sqrt{\theta}}{\theta \frac{e^{\beta\tau\theta}}{\sqrt{L}} - \frac{e^{\beta\tau\theta}-1}{\sqrt{L}} (\beta\tau + \tilde{b}/\sqrt{L})} \right) + \mathbb{P}(|B| > \sqrt{\theta}). \quad (54)$$

1023 Now, note that

$$1024 \frac{\theta e^{\beta\tau\theta}}{L} \xrightarrow{L \rightarrow \infty} \infty \implies \theta \xrightarrow{L \rightarrow \infty} \infty. \quad (55)$$

1026 From Markov's inequality,
 1027

$$1028 \quad \mathbb{P}(|B| > \sqrt{\theta}) \leq \frac{\mathbb{E}[|B|]}{\sqrt{\theta}}. \quad (56)$$

1029
 1030 Let L_3 be such that for all $L \geq L_3$,

$$1031 \quad \mathbb{P}(|B| > \sqrt{\theta}) < \frac{\epsilon}{8}. \quad (57)$$

1032
 1033 Finally, let us introduce the shorthand

$$1034 \quad h := \frac{2\tilde{b}(e^{\frac{\beta^2\tau^2}{2}} + 1) + \frac{e^{\beta\tau\theta} - 1}{\sqrt{L}}\sqrt{\theta}}{\theta \frac{e^{\beta\tau\theta}}{\sqrt{L}} - \frac{e^{\beta\tau\theta} - 1}{\sqrt{L}}(\beta\tau + \tilde{b}/\sqrt{L})}. \quad (58)$$

1035
 1036 Remark that $h \rightarrow 0$ as $L \rightarrow \infty$. Let L_4 be such that for $L \leq L_4$, $h < 1$. Using Mill's inequality,

$$1037 \quad \mathbb{P}(A < h) \leq \mathbb{P}(e^{\beta\tau g_1} < h) \leq \frac{1}{2} \frac{1}{\frac{1}{\beta\tau} |\log h|} e^{-\frac{1}{2\beta^2\tau^2} \log h^2}. \quad (59)$$

1038
 1039 The right hand side tends to 0: let L_5 be such that for all $L \leq L_5$, it is smaller than $\epsilon/8$. In conclusion,
 1040 summarizing, for any $L \geq \max(M, L_1, L_2, L_3, L_4, L_5)$,

$$1041 \quad 0 \leq \mathcal{E}_{\text{test}}^*[\mathbf{A}, \tau] \leq \mathcal{E}_{\text{test}} \left[\mathbf{A}_{\tau \xi, \xi, \sqrt{2(1+\beta^2\tau^2-2\beta^2\tau^2e^{\beta^2\tau^2}(2e^{\beta^2\tau^2}-1)}}, \text{erfc}(1-\epsilon/8) \max\left(1, \frac{1}{e^{\beta^2\tau^2/2}-1}\right) \right] < \epsilon. \quad (60)$$

1042
 1043 Thus,

$$1044 \quad \mathcal{E}_{\text{test}}^*[\mathbf{A}] \xrightarrow{L \rightarrow \infty} 0. \quad (61)$$

1045
 1046 \square

1047 This concludes the proof of Proposition 2. We now prove Theorem 2.

1048
 1049 *Proof.* Suppose

$$1050 \quad \liminf \frac{\theta}{\log L} > 0. \quad (62)$$

1051
 1052 There then exist $C > 0, L_0$, such that for all $L \geq L_0$, $\theta > C \log L$. Then, setting

$$1053 \quad \tau = \frac{1}{C\beta}, \quad (63)$$

1054 observe that

$$1055 \quad \frac{\theta e^{\beta\tau\theta}}{\sqrt{L}} \geq C \log L \sqrt{L} \xrightarrow{L \rightarrow \infty} \infty. \quad (64)$$

1056 From proposition 2,

$$1057 \quad 0 \leq \mathcal{E}_{\text{test}}^*[\mathbf{A}] \leq \mathcal{E}_{\text{test}}^*[\mathbf{A}, \tau] \xrightarrow{L \rightarrow \infty} 0 \quad (65)$$

1058
 1059 \square

1060 D PROOF OF THEOREM 3

1061
 1062 **Output Weights and Bias.** We prove in this appendix Theorem 3, which we summarized in the
 1063 main text. We first give the full statement.

1064
 1065 **Assumption 2.** The loss function is of the form $\ell(z, y) = \ell^*(yz)$ for some convex function $\ell^*(\cdot)$.
 1066 This assumption is in particular satisfied by the logistic and quadratic losses on $\mathbb{R} \times \{-1, +1\}$. We
 1067 further denote $C(\ell) = -y\partial_z \ell(z, y)|_{z=0}$. For the logistic (resp. quadratic) loss, $C(\ell) = 1/2$ (resp.
 1068 $C(\ell) = 1$).

1080
 1081 **Theorem 3** (Characterization of the query weights $q^{(2)}$ after two gradient steps). *Let $w^{(1)}, b^{(1)}$
 1082 be the readout weights and bias of the attention model A (5) at the end of step 2 of the training
 1083 procedure detailed in subsection 3. In the asymptotic limit of Assumption 1, the summary statistics
 1084 $b^{(1)}, \|w^{(1)}\|$ and $\langle w^{(1)}, \xi \rangle$ converge in probability to deterministic limits, given by*

$$1085 \quad b^{(1)} \xrightarrow[d \rightarrow \infty]{P} C(\ell) \eta_b (2\pi - 1), \quad (66)$$

1086 *while*

$$1088 \quad \|w^{(1)}\| \xrightarrow[d \rightarrow \infty]{P} \gamma_1 := \eta_w C(\ell) \sqrt{\frac{1}{\alpha_0 L} + (\pi \theta R/L)^2}, \quad \langle w^{(1)}, \xi \rangle \xrightarrow[d \rightarrow \infty]{P} \gamma_2 := \eta_w C(\ell) \frac{\theta \pi R}{L}. \quad (67)$$

1090 *Similarly, let $q^{(2)}$ denote the query weights at the end of step 3. The summary statistics $\|q^{(2)}\|$ and
 1091 $\langle q^{(2)}, \xi \rangle$ converge in probability to the limits*

$$1093 \quad \|q^{(2)}\| \xrightarrow[d \rightarrow \infty]{P} \frac{\eta_w \beta}{L} \left[(L-1) \gamma_1^2 \left((L-1) E_1^2 + \frac{E_3}{\alpha_0} \right) + \theta^2 \left(R - \frac{R^2}{L} \right) \left(\gamma_2^2 \frac{E_4}{\alpha_0} + 2\gamma_2^2 E_2 (L-1) E_1 \right) + \theta^4 \gamma_2^2 \left(R - \frac{R^2}{L} \right)^2 E_2^2 \right]^{\frac{1}{2}}, \quad (68)$$

1095 *and*

$$1097 \quad \langle \xi, q^{(2)} \rangle \xrightarrow[d \rightarrow \infty]{P} \gamma := -\frac{\eta_w \beta \gamma_2}{L} \left[(L-1) E_1 + \theta^2 (R - R^2/L) E_2 \right]. \quad (69)$$

1098 *Here, E_1, E_2, E_3, E_4 are constants whose expressions are given in the proof.*

1100 For this bias, the Law of Large Numbers yields

$$1101 \quad b^{(1)} = -\frac{\eta_b}{n_0} \sum_{i \leq n_0} h_i(0, 0, 0) \\ 1102 \quad = \frac{\eta_b}{n_0} \sum_{i \leq n_0} C(\ell) y_i \xrightarrow{P} C(\ell) \eta_b (2\pi - 1)$$

1106 since $\mathbb{E}[y] = \mathbb{P}(y = 1) - \mathbb{P}(y = -1) = 2\pi - 1$. Now, decomposing the noise Z_i by

$$1109 \quad Z_i = \begin{bmatrix} s_i^\top \\ U_i^\top \end{bmatrix} \in \mathbb{R}^{L \times d} \quad U_i \in \mathbb{R}^{d \times L-1}, \quad s_i \in \mathbb{R}^d,$$

1111 and setting

$$1113 \quad \mathbf{S} = [s_1 \quad \cdots \quad s_n] \quad \text{and} \quad \mathbf{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix},$$

1116 we have

$$1117 \quad w^{(1)} = -\frac{\eta_w}{nL} \sum_{i \leq n_0} h_i(0, 0, 0) X_i^\top \mathbf{1} \\ 1118 \quad \stackrel{(d)}{=} C(\ell) \cdot \frac{\eta_w}{L} \left(\sqrt{L} \mathbf{S} \mathbf{y} + \sum_{i \leq n_0} y_i v_i^\top \mathbf{1} \theta R \xi \right) \\ 1119 \\ 1120 \quad \asymp C(\ell) \eta_w \left(\frac{\mathbf{S} \mathbf{y}}{n_0 \sqrt{L}} + \frac{\pi \theta R \xi}{L} \right) \quad (70)$$

1125 where one applies the Law of Large Numbers for the last line above. Using the representation of
 1126 (70), we obtain

$$1127 \quad \langle w^{(1)}, \xi \rangle \xrightarrow[d \rightarrow \infty]{P} \gamma_2$$

1129 since $\langle \xi, \mathbf{S} \mathbf{y} \rangle / n_0 \sim \mathcal{N}(0, \frac{1}{n_0})$, and

$$1131 \quad \|w^{(1)}\| \asymp C(\ell) \eta_w \sqrt{\frac{\|\mathbf{S} \mathbf{y}\|^2}{n_0^2 L} + (\pi \theta R/L)^2} \xrightarrow[d \rightarrow \infty]{P} \gamma_1$$

1133 as $\langle \mathbf{S} \mathbf{y}, \mathbf{S} \mathbf{y} \rangle / n_0 \sim \chi_d^2$.

1134 **Query Weights.** Setting
 1135

1136 $c_\mu := h_\mu(0, w^{(1)}, b^{(1)}) \quad \text{and} \quad A_\mu := X_\mu^\top (I - \mathbf{1}\mathbf{1}^\top/L) X_\mu$
 1137

1138 we have

1139 $q^{(2)} = -\frac{\eta_q \beta}{n_0 L} \sum_{\mu \leq n_0} c_\mu A_\mu w^{(1)}. \quad (71)$
 1140
 1141

1142 It will become clear that we require only the first and second moments of c_μ conditional on y_μ to
 1143 characterize $\|q\|$ and $\langle q, \xi \rangle$ for large n_0 and d . Specifically, set
 1144

1145 $E_1 = \mathbb{E}[c_\mu], \quad E_2 = \mathbb{E}[c_\mu | y = 1], \quad E_3 = \mathbb{E}[c_\mu^2], \quad E_4 = \mathbb{E}[c_\mu^2 | y = 1]. \quad (72)$
 1146

1147 Concretely, c_μ is given by

1148 $c_\mu = \frac{d}{dz} \ell(z, y_\mu) |_{z=m_\mu} \quad (73)$
 1149

1150 where

1151 $m_\mu = \langle w^{(1)}, \underbrace{X_\mu^\top \mathbf{1}/L}_{\bar{x}_\mu} \rangle + b^{(1)}$
 1152
 1153

1154 To find the distribution of m_μ , we write

1155 $w^{(1)} = w_{-\mu}^{(1)} + \Delta_\mu, \quad \Delta_\mu = \frac{C(\ell) \eta_w}{n_0 L} \langle y_\mu, X_\mu^\top \mathbf{1} \rangle, \quad (74)$
 1156
 1157

1158 where $w_{-\mu}^{(1)}$ is obtained from all samples except μ and is therefore independent of X_μ . Substituting
 1159 (74) gives the exact identity

1160 $m_\mu = \underbrace{\langle \bar{x}_\mu, w_{-\mu}^{(1)} \rangle}_{\text{noise term}} + \underbrace{\langle \bar{x}_\mu, \Delta_\mu \rangle}_{\text{self term}} + b^{(1)}$
 1161
 1162
 1163 $= C(\ell) \frac{\eta_w}{n_0 L} \frac{\|X_\mu^\top \mathbf{1}\|^2}{L} y_\mu + C(\ell) \frac{\eta_w}{n_0 L} \langle \bar{x}_\mu, S_{\text{rest}} \rangle + C(\ell) \eta_b (2\pi - 1),$
 1164
 1165

1166 with $S_{\text{rest}} := \sum_{j \neq \mu} y_j X_j^\top \mathbf{1}$ (independent of X_μ). The above representations lends to the following
 1167 conditional distributions:

1168 $m_\mu \mid \{y_\mu = -1\} \sim \mathcal{N} \left(C(\ell) \eta_b (2\pi - 1) - \frac{C(\ell) \eta_w}{\alpha}, \frac{C(\ell)^2 \eta_w^2}{\alpha L^2} \right)$
 1169
 1170 $m_\mu \mid \{y_\mu = +1\} \sim \mathcal{N} \left(C(\ell) \eta_b (2\pi - 1) + C(\ell) \eta_w \left(\frac{1}{\alpha} + \frac{\theta^2 R^2}{L^2} \right), \frac{C(\ell)^2 \eta_w^2}{\alpha L^2} \right). \quad (75)$
 1171
 1172

1173 From the above, we see that marginally m_μ is Gaussian mixture. Knowing the distributions $m_\mu | y_\mu$
 1174 and y_μ facilitates the computation of E_1, \dots, E_4 . This can easily be done to machine precision —
 1175 such as via Gauss–Hermite quadrature as an example.

1176 Returning to another piece of (71), set $b_\mu := \mathbf{1}_{y_\mu} \cdot ((2\mathbf{1}\mathbf{1}^\top/\sqrt{L} - I_L)v)_{[2:L]} \in \mathbb{R}^{L-1}$ and decompose
 1177 the Gaussian noise U_μ by
 1178

1179 $U_\mu = [g_\mu \quad V_\mu], \quad g_\mu \in \mathbb{R}^d, \quad V_\mu \in \mathbb{R}^{d \times L-2}.$
 1180

1181 We then decompose the feature gradient A_μ by

1182 $A_\mu = U_\mu U_\mu^\top + \theta^2 (R \cdot \mathbf{1}_{\{y_\mu=1\}} - R^2 \cdot \mathbf{1}_{\{y_\mu=1\}}/L) \xi \xi^\top + \theta U_\mu b_\mu \xi^\top + \theta \xi b_\mu^\top U_\mu^\top$
 1183
 1184 $= g_\mu g_\mu^\top + V_\mu V_\mu^\top + \theta^2 (R \cdot \mathbf{1}_{\{y_\mu=1\}} - R^2 \cdot \mathbf{1}_{\{y_\mu=1\}}/L) \xi \xi^\top$
 1185
 1186 $+ \theta \sqrt{R \cdot \mathbf{1}_{\{y_\mu=1\}} - R^2 \cdot \mathbf{1}_{\{y_\mu=1\}}/L} \cdot (g_\mu \xi^\top + \xi g_\mu^\top)$
 1187 $= g_\mu g_\mu^\top + V_\mu V_\mu^\top + \theta^2 h_\mu^2 \xi \xi^\top + \theta h_\mu (g_\mu \xi^\top + \xi g_\mu^\top)$

1188 for

$$h_\mu := \|b_\mu\| = 1_{\{y_\mu=1\}} \sqrt{R - R^2/L}.$$

1190 Now, set

$$1192 \quad G = [g_1 \quad \cdots \quad g_n] \in \mathbb{R}^{d \times n}, \quad c = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}, \quad h = \begin{bmatrix} h_1 \\ \vdots \\ h_n \end{bmatrix},$$

1195 and let $\Lambda_x := \text{diag}(x) \in \mathbb{R}^{k \times k}$ for $x \in \mathbb{R}^k, k \in \mathbb{N}$. Observe that

$$1198 \quad \sum_{\mu=1}^n c_\mu V_\mu V_\mu^\top = \sum_{j=1}^{L-2} V_j \Lambda_c V_j^\top$$

1200 where — abusing notation — $V_j \stackrel{\text{iid}}{\sim} V \in \mathbb{R}^{d \times n}$ and V has i.i.d. $\mathcal{N}(0, 1)$ entries. Making a final
1201 decomposition of the noise:

$$1204 \quad G = \begin{bmatrix} \tilde{g}_s^\top \\ G_u^\top \end{bmatrix}, \quad V = \begin{bmatrix} \tilde{v}_s^\top \\ \tilde{V}_u^\top \end{bmatrix}, \quad \tilde{g}_s, \tilde{v}_s \in \mathbb{R}^n, \quad \tilde{G}_u, \tilde{V}_u \in \mathbb{R}^{n \times d-1},$$

1206 we obtain

$$1208 \quad q^{(2)} = -\frac{\eta_q \beta}{n_0 L} \left(\sum_{\mu \leq n_0} c_\mu A_\mu \right) w^{(1)}$$

$$1212 \quad = -\frac{\eta_q \beta}{n_0 L} \left[G \Lambda_c G^\top + \underbrace{V \Lambda_c V^\top}_{L-2 \text{ ind. copies}} + \theta^2 \left(\sum_\mu h_\mu^2 c_\mu \right) \xi \xi^\top + \theta G \Lambda_h c \xi^\top + (\theta G \Lambda_h c \xi^\top)^\top \right] w^{(1)}$$

$$1216 \quad \stackrel{(d)}{=} -\frac{\eta_q \beta}{n_0 L} \left[H_{w^{(1)}} \left(\|w^{(1)}\| \left(G \Lambda_c \tilde{g}_s + \underbrace{V \Lambda_c \tilde{v}_s}_{L-2 \text{ ind. copies}} \right) + \theta \cdot \xi^\top w^{(1)} \cdot G \Lambda_h c \right) \right. \\ \left. + \left(\theta \|w^{(1)}\| c^\top \Lambda_h g_s + \theta^2 (\xi^\top w^{(1)}) \sum_\mu c_\mu h_\mu^2 \right) \xi \right]$$

$$1222 \quad = -\frac{\eta_q \beta}{n_0 L} \left[H_{w^{(1)}} \left(\gamma_1 \cdot \left(G \Lambda_c \tilde{g}_s + \underbrace{V \Lambda_c \tilde{v}_s}_{L-2 \text{ ind. copies}} \right) + \theta \cdot \gamma_2 \cdot G \Lambda_h c \right) \right. \\ \left. + \left(\theta \cdot \gamma_1 \cdot c^\top \Lambda_h g_s + \theta^2 \cdot \gamma_2 \cdot \sum_\mu c_\mu h_\mu^2 \right) \xi \right].$$

1229 Since $\frac{1}{n_0} c^\top \Lambda_h g_s \xrightarrow{P} 0$ as $n_0 \rightarrow \infty$, we have

$$1231 \quad q^{(2)} \asymp -\frac{\eta_q \beta}{L} \left[\underbrace{\frac{1}{n_0} H_{w^{(1)}} \left(\gamma_1 \cdot (G \Lambda_c \tilde{g}_s + \underbrace{V \Lambda_c \tilde{v}_s}_{L-2 \text{ ind. copies}}) + \theta \cdot \gamma_2 \cdot G \Lambda_h c \right)}_M + \underbrace{\theta^2 \cdot \gamma_2 \cdot (R - R^2/L) \cdot E_2 \cdot \xi}_N \right]$$

$$1238 \quad = -\frac{\eta_q \beta}{L} (M + N \cdot \xi)$$

1240 Therefore ,

$$1241 \quad \langle \xi, q^{(2)} \rangle \asymp -\frac{\eta_q \beta}{L} \cdot (\xi^\top M + N)$$

1242 and

$$\|q^{(2)}\| \asymp \frac{\eta_q \beta}{L} \cdot \sqrt{M^\top M + 2N\xi^\top M + N^2}.$$

1245 By rotational invariance of the isotropic Gaussian, we may take ξ to be the first standard basis vector
1246 in the following derivations. We then have,

$$\begin{aligned} \xi^\top M &\stackrel{(d)}{=} \frac{1}{n_0} \frac{w^{(1)\top}}{\|w^{(1)}\|} \left(\gamma_1 \cdot \underbrace{G\Lambda_c \tilde{g}_s}_{L-1 \text{ ind. copies}} + \theta \cdot \gamma_2 \cdot G\Lambda_h c \right) \\ &= \frac{1}{n_0} \cdot w^{(1)\top} \underbrace{G\Lambda_c \tilde{g}_s}_{L-1 \text{ ind. copies}} + \theta \cdot \frac{\gamma_2}{\gamma_1} \cdot \underbrace{\frac{w^{(1)\top} G\Lambda_h c}{n_0}}_{\asymp 0} \\ &\asymp \frac{1}{n_0} \cdot w_1^{(1)\top} \tilde{g}_s^\top \Lambda_c \tilde{g}_s \\ &\asymp (L-1) \cdot \gamma_2 \cdot E_1. \end{aligned}$$

1259 This gives us the alignment

$$\langle \xi, q^{(2)} \rangle \xrightarrow[d \rightarrow \infty]{P} -\frac{\eta_q \beta \gamma_2}{L} [(L-1)E_1 + \theta^2(R - R^2/L)E_2] = \gamma$$

1263 as claimed.

1265 Finally, to compute the magnitude of $q^{(2)}$, all that remains is to determine $M^\top M$. We have,

$$\begin{aligned} M^\top M &\stackrel{(d)}{=} \frac{1}{n_0^2} \cdot \gamma_1^2 \cdot \sum_{1 \leq i, j \leq L-1} \tilde{v}_{i_s}^\top \Lambda_c V_i^\top V_j \Lambda_c \tilde{v}_{j_s} + \frac{2}{n_0^2} \cdot \theta \gamma_1 \gamma_2 \cdot c^\top \Lambda_h G^\top G \Lambda_c \tilde{g}_s \\ &\quad + \frac{2}{n_0^2} \cdot \theta \gamma_1 \gamma_2 \cdot c^\top \Lambda_h G^\top \underbrace{V \Lambda_c \tilde{v}_s}_{L-2 \text{ ind. copies}} + \frac{1}{n_0^2} \cdot \theta^2 \gamma_2^2 \cdot c^\top \Lambda_h G^\top G \Lambda_h c. \end{aligned}$$

1272 Examining each term separately, note that by repeated application of the Law of Large Numbers we
1273 obtain the following:

$$\begin{aligned} \frac{1}{n_0^2} \cdot \gamma_1^2 \cdot \sum_{1 \leq i, j \leq L-1} \tilde{v}_{i_s}^\top \Lambda_c V_i^\top V_j \Lambda_c \tilde{v}_{j_s} &= \frac{1}{n_0^2} \cdot \gamma_1^2 \cdot \sum_{i=1}^{L-1} \tilde{v}_{i_s}^\top \Lambda_c V_i^\top V_i \Lambda_c \tilde{v}_{i_s} + \frac{1}{n_0^2} \cdot \gamma_1^2 \cdot \sum_{i \neq j} \tilde{v}_{i_s}^\top \Lambda_c V_i^\top V_j \Lambda_c \tilde{v}_{j_s} \\ &\asymp (L-1) \gamma_1^2 \cdot \left(\frac{1}{n_0^2} (\tilde{v}_s^\top \Lambda_c \tilde{v}_s)^2 + \frac{1}{n_0^2} \tilde{v}_s^\top \Lambda_c \tilde{V}_u \tilde{V}_u^\top \Lambda_c \tilde{v}_s + \frac{1}{n_0^2} (L-2)((\tilde{v}_s^\top \Lambda_c \tilde{v}_s)^2) \right) \\ &\asymp (L-1) \gamma_1^2 \cdot \left((L-1) \cdot E_1^2 + \frac{E_3}{\alpha} \right), \end{aligned}$$

$$\frac{2}{n_0^2} \cdot \theta \gamma_1 \gamma_2 \cdot c^\top \Lambda_h G^\top G \Lambda_c \tilde{g}_s + \frac{2}{n_0^2} \cdot \theta \gamma_1 \gamma_2 \cdot c^\top \Lambda_h G^\top \underbrace{V \Lambda_c \tilde{v}_s}_{L-2 \text{ ind. copies}} \asymp 0,$$

1287 and

$$\begin{aligned} \frac{1}{n_0^2} \cdot \theta^2 \gamma_2^2 \cdot c^\top \Lambda_h G^\top G \Lambda_h c &\stackrel{(d)}{=} \theta^2 \gamma_2^2 \cdot \frac{\|\Lambda_h c\|^2}{n_0} \cdot \frac{g_1^\top g_1}{n_0} \\ &\asymp \theta^2 \gamma_2^2 \cdot (R - R^2/L) \cdot \frac{E_4}{\alpha}. \end{aligned}$$

1293 Putting all the terms together, we obtain

$$M^\top M \asymp (L-1) \gamma_1^2 \cdot \left((L-1) \cdot E_1^2 + \frac{E_3}{\alpha} \right) + \theta^2 \gamma_2^2 \cdot (R - R^2/L) \cdot \frac{E_4}{\alpha}$$

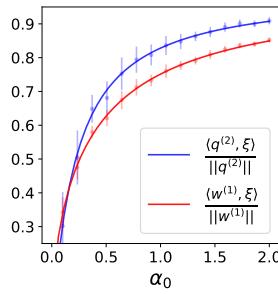


Figure 3: Cosine similarity between the signal ξ and the query weights $q^{(2)}$ (blue) and readout weights $w^{(1)}$ (red) after step 3 of the training 3, for $L = 10, R = 3, \pi = 0.2, \theta = 6, \eta = 0.5$, and logistic loss ℓ , as a function of the normalized number of samples α_0 . Solid lines: theoretical prediction of Theorem 3. Dots: numerical experiments in dimension $d = 1000$. Error bars represent one standard deviation over 10 trials.

and so

$$\|q^{(2)}\| = \frac{\eta_q \beta}{L} \cdot \left[(L-1)\gamma_1^2 \cdot \left((L-1) \cdot E_1^2 + \frac{E_3}{\alpha} \right) + \theta^2 \gamma_2^2 \cdot (R - R^2/L) \cdot \frac{E_4}{\alpha} + 2N(L-1) \cdot \gamma_2 \cdot E_1 + N^2 \right]^{1/2},$$

where we recall that

$$N = \theta^2 \cdot \gamma_2 \cdot (R - R^2/L) \cdot E_2.$$

This completes the precise characterization of the magnitude and ξ -alignment of the query vector $q^{(2)}$ where the definitions for the relevant constants E_1, \dots, E_4 are found in (72), (73), and (75).

D.1 LARGE α_0 BEHAVIOR

To conclude this appendix, we discuss the asymptotic behavior of the cosine similarities $\langle w^{(1)}, \xi \rangle / \|w^{(1)}\|$, $\langle q^{(2)}, \xi \rangle / \|q^{(2)}\|$ of the attention weights w, q after one or two gradient step with the signal vector ξ , in the limit of large sample complexity $\alpha_0 \gg 1$. As we summarized in Corollary 1 in the main text, the cosine similarities rapidly approach 1 in absolute value as the sample complexity α_0 is increased. We give here the full technical statement.

Corollary 1 (Large α_0 asymptotics). *Let $w^{(1)}, q^{(2)}$ be the readout weights and query weights of the attention model A (5) at the end of step 3 of the training procedure detailed in subsection 3. In the asymptotic limit of Assumption 1, the cosine similarities $\langle w^{(1)}, \xi \rangle / \|w^{(1)}\|$, $\langle q^{(2)}, \xi \rangle / \|q^{(2)}\|$ converge in probability to deterministic limits s_w, s_q from Theorem 3. We further assume that $\langle \xi, q^{(2)} \rangle \neq 0$ (69). When then further taking the limit $\alpha_0 \rightarrow \infty$, these limits admit the following asymptotic expansions*

$$s_w = 1 - \frac{L^2}{2\alpha_0(\pi\theta R)^2} + o\left(\frac{1}{\alpha_0}\right) \quad (76)$$

$$|s_q| = 1 - \frac{1}{2\alpha_0} \quad (77)$$

$$\cdot \frac{\frac{\eta_w^2 C(\ell)^2 (L-1)^2}{L} (\pi G_+^\infty + (1-\pi) G_-^\infty)^2 + (L-1)(\pi(G_+^\infty)^2 + (1-\pi)(G_-^\infty)^2) + \theta^2(R - \frac{R^2}{L})(G_+^\infty)^2}{((L-1)\pi G_+^\infty + (1-\pi) G_-^\infty + \theta^2(R - \frac{R^2}{L})G_+^\infty)^2} \quad (78)$$

$$+ o\left(\frac{1}{\alpha_0}\right) \quad (79)$$

We denoted

$$G_+^\infty = \ell' \left(C(\ell) \eta_b (2\pi - 1) + \frac{\eta_w \pi R^2 \theta^2}{2L^2}, 1 \right), \quad G_-^\infty = \ell' (C(\ell) \eta_b (2\pi - 1), -1). \quad (80)$$

1350 The sign of s_q is on the other hand given by that of
 1351

$$1352 - \left[(L-1) + \theta^2 R (1 - R/L) \right] \pi G_+^\infty - (1-\pi) G_-^\infty. \quad (81)$$

1353
 1354 *Proof.* The proof of Corollary 1 follows straightforwardly from a $\alpha_0 \rightarrow \infty$ expansion of the expressions of Theorem 3. \square
 1355

1356 Corollary 1 establishes how the weights of the attention model recover the signal vector ξ when
 1357 provided with sufficient data, at a rate of $1/\alpha_0$. The sign is given by an intricate but explicit condition
 1358 (81) on all the parameters in the problem $\ell, \pi, \theta, R, L, \eta_b, \eta_w$, and can in certain cases be negative –
 1359 signaling that the query vector q detrimentally anti-aligns with the signal ξ . In order to avoid such
 1360 a scenario, the condition (81) can offer some guideline for choosing the hyperparameters η_b, η_w, ℓ .
 1361 For example, for the logistic loss $\ell(y, z) = \log(1 + \exp(-yz))$, when $\pi < 1/2$ (resp. $\pi > 1/2$),
 1362 choosing η_b sufficiently large (resp. negative) ensures $s_q > 0$, namely that the query weights $q^{(2)}$
 1363 properly align with ξ when α_0 grows.
 1364

1365 E PROOF OF THEOREM 4

1366 In this Appendix, we detail the proof of Theorem 4, which we summarized in the main text. We now
 1367 present the full technical statement.

1368 **Theorem 4** (Test errors after step 4). *Let q denote the query weights after step 3 of the training
 1369 procedure 3, and \hat{w}, \hat{b} be the minimizers of the empirical risk (11) at step 4. We denote $\gamma = \langle q, \xi \rangle$.
 1370 In the asymptotic limit of Assumption 1, the associated test error $\mathcal{E}_{\text{test}}$ (12) converges in probability
 1371 to*

$$1372 \mathcal{E}_{\text{test}}[\mathbf{A}] = (1-\pi) \mathbb{E}_{g, s_+, s_-} \left[\Phi \left(\frac{\hat{b} + \langle g, s_- \rangle \mu_1}{\mu_3 \|s_-\|} \right) \right] + \pi \mathbb{E}_{g, s_+, s_-} \left[\Phi \left(\frac{-\hat{b} - \langle \theta v, s_+ \rangle \mu_2 - \langle g, s_+ \rangle \mu_1}{\mu_3 \|s_+\|} \right) \right], \quad (82)$$

1373 with $\mu_3 = [\nu^2 + 1/1 - \gamma^2 (\mu_1^2 + \mu_2^2 - 2\gamma\mu_1\mu_2) - \mu_1^2]^{\frac{1}{2}}$. The description of the joint law of the finite-
 1374 dimensional random variables $g, s_+, s_- \in \mathbb{R}^L$ is given in Lemma 1. The scalar statistics $\hat{b}, \mu_1, \mu_2, \nu$
 1375 are defined as the unique solutions of the following variational problem:

$$1376 \mu_1, \mu_2, \hat{b} = \underset{\mu_q, \mu_\xi, b}{\operatorname{argmin}} \phi(\mu_q, \mu_\xi, b) + \frac{\lambda}{2} [\mu_q \quad \mu_\xi] \begin{bmatrix} 1 & \gamma \\ \gamma & 1 \end{bmatrix}^{-1} \begin{bmatrix} \mu_q \\ \mu_\xi \end{bmatrix}. \quad (83)$$

1377 In the above display,

$$1378 \phi(\mu_q, \mu_\xi, b) := \mathbb{E}_{c_z, c_q, c_\xi, z, y} [\ell(z^* + c_q \mu_q + c_\xi \mu_\xi + b, y)] + \frac{\lambda}{2} \nu^2, \quad (84)$$

1379 where c_z, c_q, c_ξ are scalar random variables whose joint law is detailed in Lemma 1, and $z \sim$
 1380 $\mathcal{N}(0, 1)$. Finally,

$$1381 \nu^2 = \frac{1}{\lambda \chi} \mathbb{E}_{c_z, c_q, c_\xi, z, y} \left[\frac{z^* (z^* - c_z \nu z)}{c_z^2} \right], \quad \frac{1}{\alpha_1 \chi} = \mathbb{E}_{c_z, c_q, c_\xi, z, y} \left[\frac{\ell_i''(z^*) c_z^2}{1 + \ell_i''(z^*) c_z^2 \chi} \right] + \lambda. \quad (85)$$

1382 We used the shorthand $z^* := \operatorname{prox}_{c_z^2 \chi \ell(\cdot + c_q \mu_q + c_\xi \mu_\xi + b, y)}(c_z \nu z)$. Finally, the training loss $\mathcal{E}_{\text{train}}$
 1383 converges in probability to the minimizer of the right hand side of (83).

1384 Leveraging the equivalence between the attention model with zero query weights $\mathbf{A}_{0_d, w, b}$ (or, equivalently,
 1385 vanishing softmax inverse temperature $\beta = 0$) with the pooled classifier $\mathbf{L}_{w, b}^{\text{pool}}$, a similar
 1386 characterization for the latter can directly be deduced, as summarized in Theorem 5.

1387 **Corollary 3** (Test error and training loss of $\mathbf{L}_{w, b}^{\text{pool}}$). *The training loss and test error if the pooled
 1388 linear classifier $\mathbf{L}_{w, b}^{\text{pool}}$ (4) trained on the empirical minimization (13) converge in probability to limits
 1389 $\mathcal{E}_{\text{train}}[\mathbf{L}^{\text{pool}}], \mathcal{E}_{\text{test}}[\mathbf{L}^{\text{pool}}]$, whose expressions can be read from Theorem 4, if one sets $\beta = 0$.*

1404
 1405 **Remark 1** (Length generalization). Note that the characterization of the test error in Theorem
 1406 4 readily generalizes to the case where there exists a distribution shift between the training data
 1407 and the testing data, when the model is tested on samples with a different length $L_{\text{test}} \neq L$ and
 1408 sparsity $R_{\text{test}} \neq R$. The characterization (82) can be adapted to this case by using $L_{\text{test}}, R_{\text{test}}$
 1409 in the definition of the joint law of g, s_+, s_- in Lemma 1, with the definitions of $\hat{b}, \mu_{1,2,3}$ otherwise
 1410 unchanged. Fig. 5 (right) shows the $\alpha \rightarrow \infty$ error achieved by the attention model trained on $L = 4$
 1411 sequences with the square loss, and tested on different $L_{\text{test}}, R_{\text{test}}$, and shows that the model is
 1412 capable of length generalization.

1413 **E.1 NOTATIONS AND ASSUMPTIONS**

1414 We take the following definition from Karoui (2018).

1415 **Definition 1.** Let

1416
$$X = (X_n(u) : n \in \mathbb{N}, u \in U_n), \quad Y = (Y_n(u) : n \in \mathbb{N}, u \in U_n) \quad (86)$$

1417 be two families of nonnegative random variables, where U_n is a possibly n -dependent parameter
 1418 set. We write $X_n = O_{L_k}(Y_n)$ if

1419
$$\sup_{u \in U_n} \mathbb{E}[|X_n(u)|^k] = O(\sup_{u \in U_n} \mathbb{E}[|Y_n(u)|^k])$$

1420 where “ O ” refers to the classical big O -notation. That is, for two deterministic sequences (a_n) ,
 1421 (b_n) , we say $a_n = O(b_n)$ if there exists some $C > 0$ such that $a_n \leq Cb_n$ for all n sufficiently large.

1422 We make the following assumptions on the loss function ℓ (with the first argument denoted z):

- 1423 (A1) ℓ is non-negative.
 1424 (A2) ℓ is convex in its first argument.
 1425 (A3) $\ell \in C^4$ in its first argument.
 1426 (A4) ℓ has bounded second–fourth derivatives.
 1427 (A5) ℓ is coercive, i.e.,

1428
$$\lim_{|z| \rightarrow \infty} \ell(z; -1) + \ell(z; 1) = \infty.$$

1429 **Remark 2.** The above assumptions are satisfied for many natural choices of loss functions such as
 1430 the quadratic loss, Huber loss, and logistic loss.

1431 **Remark 3.** Having a bounded second derivative immediately implies the existence of a quadratic
 1432 majorant of ℓ since for any $z \in \mathbb{R}$, a second-order Taylor expansion yields

1433
$$\ell(z) = \ell(0) + \ell'(0)z + \int_0^1 (1-t)\ell''(tz)z^2 dt \leq \ell(0) + \ell'(0)z + \frac{\|\ell''\|_\infty}{2}z^2.$$

1434 **E.2 EMPIRICAL RISK MINIMIZATION**

1435 In what follows, we study the following learning problem:

1436
$$\min_{w,b} \frac{1}{n_1} \sum_{i \in [n_1]} \ell(\langle f_i, w \rangle + b; y_i) + \frac{\lambda}{2} \|w\|^2, \quad (87)$$

1437 where $\ell(z; y)$ is a loss function that is convex with respect to z . Let w^* be the optimal weight vector
 1438 and b^* be the optimal bias for (87). Our goal is to characterize the following quantities:

1439
$$\mu_1 = \langle q, w^* \rangle, \quad \mu_2 = \langle \xi, w^* \rangle, \quad \nu = \|P_{q,\xi}^\perp w^*\|, \quad (88)$$

1440 and b^* , where $P_{q,\xi}^\perp$ denotes the projection onto the space orthogonal to q and ξ . Having b^*, μ_1, μ_2 ,
 1441 and ν will provide for a full characterization of the test error due to Lemma 2.

1458 **Remark 4.** Recall we have assumed that $\|\xi\| = 1$ and at no loss of generality we also take $\|q\| = 1$,
 1459 absorbing $\|q\|$ into β . Moreover, as a reminder, $\gamma = \langle \xi, q \rangle$. It is easy to check that for $\gamma \neq \pm 1$,
 1460

$$1461 \quad P_{q,\xi}^\perp w = [q \quad \xi] \begin{bmatrix} 1 & \gamma \\ \gamma & 1 \end{bmatrix}^{-1} \begin{bmatrix} \mu_q \\ \mu_\xi \end{bmatrix}$$

1463 and that

$$1464 \quad \|w\|^2 = [\mu_q \quad \mu_\xi] \begin{bmatrix} 1 & \gamma \\ \gamma & 1 \end{bmatrix}^{-1} \begin{bmatrix} \mu_q \\ \mu_\xi \end{bmatrix} + \|P_{q,\xi}^\perp w\|^2.$$

1466 for a weight vector w with

$$1467 \quad \mu_q = \langle q, w \rangle, \quad \mu_\xi = \langle \xi, w \rangle.$$

1469 From Lemma 1, we can rewrite the feature vectors $\{f_i\}$ as

$$1470 \quad f_i = c_{q,i}q + c_{\xi,i}\xi + c_{z,i}P_{q,\xi}^\perp z_i,$$

1472 where $\{c_{q,i}, c_{\xi,i}, c_{z,i}\}_{i \leq n_1}$ are scalar random variables that are independent of the isotropic Gaussian
 1473 vectors $\{z_i\}_{i \leq n_1}$. We write the joint law of $c_{q,i}, c_{\xi,i}, c_{z,i}$ as

$$1474 \quad c_{q,i}, c_{\xi,i}, c_{z,i} \sim \begin{cases} \mathcal{P}_+(c_q, c_\xi, c_z), & \text{if } y_1 = 1 \\ \mathcal{P}_-(c_q, c_\xi, c_z), & \text{if } y_1 = -1 \end{cases}.$$

1477 The exact specification of the joint distributions are given in Lemma 1. Specifically,

$$1479 \quad \mathcal{P}_+(c_q, c_\xi, c_z) : \quad c_q = \langle g, s_+ \rangle - \frac{\gamma \|s_+\| z_0}{\sqrt{1 - \gamma^2}}, \quad c_\xi = \langle \theta v, s_+ \rangle + \frac{\|s_+\| z_0}{\sqrt{1 - \gamma^2}}, \quad c_z = \|s_+\| \quad (89)$$

$$1482 \quad \mathcal{P}_-(c_q, c_\xi, c_z) : \quad c_q = \langle g, s_- \rangle - \frac{\gamma \|s_-\| z_0}{\sqrt{1 - \gamma^2}}, \quad c_\xi = \frac{\|s_-\| z_0}{\sqrt{1 - \gamma^2}}, \quad c_z = \|s_-\|. \quad (90)$$

1485 With this new decomposition of the feature vectors, the empirical risk minimization of (87) splits
 1486 into (i) a three scalar variable problem of μ_q, μ_ξ and b , governing the q, ξ plane and a bias, and (ii)
 1487 a $(d - 2)$ -dimensional sub-problem determining the orthogonal component to span $\{q, \xi\}$. The next
 1488 display formalizes this sequential optimization problem:

$$1489 \quad \min_{\mu_q, \mu_\xi, b} \phi_d(\mu_q, \mu_\xi, b) + \frac{\lambda}{2} [\mu_q \quad \mu_\xi] \begin{bmatrix} 1 & \gamma \\ \gamma & 1 \end{bmatrix}^{-1} \begin{bmatrix} \mu_q \\ \mu_\xi \end{bmatrix},$$

1492 where

$$1493 \quad \phi_d(\mu_q, \mu_\xi, b) := \min_{x \in \mathbb{R}^{d-2}} \frac{1}{n_1} \sum_{i \in [n_1]} \ell(\langle c_{z,i} z_i, x \rangle + c_{q,i} \mu_q + c_{\xi,i} \mu_\xi + b; y_i) + \frac{\lambda}{2} \|x\|^2, \quad (91)$$

1495 and $\{z_i\}_{i \leq n_1}$ is a collection of $(d - 2)$ -dimensional, isotropic, normal random vectors.

1497 Henceforth, our goal is to characterize the asymptotic limit of $\phi(\mu_q, \mu_\xi, b)$ and $\nu^2 = \|x^*\|^2$, where
 1498 x^* denotes the optimal solution to (91). Since x^* is a stationary point, we must have

$$1499 \quad x^* = -\frac{1}{n_1 \lambda} \sum_{i \in [n_1]} \ell'(\langle c_{z,i} z_i, x^* \rangle + c_{q,i} \mu_q + c_{\xi,i} \mu_\xi + b; y_i) (c_{z,i} z_i).$$

1502 Thus,

$$1504 \quad \nu^2 = \|x^*\|^2 = -\frac{1}{n_1 \lambda} \sum_{i \in [n_1]} \ell'(\langle c_{z,i} z_i, x^* \rangle + c_{q,i} \mu_q + c_{\xi,i} \mu_\xi + b; y_i) \langle c_{z,i} z_i, x^* \rangle. \quad (92)$$

1506 In the following, we will denote

$$1508 \quad \epsilon_i := c_{q,i} \mu_q + c_{\xi,i} \mu_\xi + b, \quad \ell_i(u + \epsilon_i) := \ell(u + \epsilon_i; y_i). \quad (93)$$

1510 to elicit parallels between our derivations and those present in Karoui (2018). For simplicity of
 1511 notation, we further write

$$1511 \quad \tilde{f}_i = c_{z,i} z_i$$

1512 E.3 LEAVE-ONE-OUT: DETERMINISTIC ANALYSIS
1513

1514 The key probabilistic structure in our problem is that different feature vectors are independent. This
1515 naturally prompts us to consider a leave-one-out analysis. We first need to introduce some notation.
1516 From this point forward x is in \mathbb{R}^{d-2} . Let

$$1517 \Phi_d^* := \min_x F_d^*(x) := \min_x \frac{1}{n_1} \sum_{i \in [n_1]} \ell_i(\langle \tilde{f}_i, x \rangle + \epsilon_i) + \frac{\lambda}{2} \|x\|^2 \quad x_d^* = \arg \min_x F_d^*(x)$$

$$1518 \Phi_{d, \setminus i}^* := \min_x F_{d, \setminus i}^*(x) := \min_x \frac{1}{n_1} \sum_{j \neq i} \ell_j(\langle \tilde{f}_j, x \rangle + \epsilon_j) + \frac{\lambda}{2} \|x\|^2 \quad x_{d, \setminus i}^* = \arg \min_x F_{d, \setminus i}^*(x)$$

1519 denote the optimal values and the optimizing solutions of the original optimization problem and its
1520 leave-one-out version, respectively. Going forward, we will often omit the d -dependence of these
1521 quantities to alleviate the notation.

1522 E.3.1 LEAVE-ONE-OUT ANALYSIS
1523

1524 A key step in the following consists in constructing a close approximation \tilde{x}_i of x^* , with simpler
1525 distributional properties. To that end, we introduce the surrogate optimization problem:
1526

$$1527 \tilde{\Phi}_{d, i} := \Phi_{d, \setminus i}^* + \min_x \tilde{F}_{d, i}(x), \quad \tilde{x}_{i, d} := \arg \min_x \tilde{F}_{d, i}(x)$$

1528 where

$$1529 \tilde{F}_{d, i}(x) := \left\{ \frac{1}{n_1} \ell_i(\langle \tilde{f}_i, x \rangle) + \frac{1}{2} (x - x_{\setminus i}^*)^\top H_{\setminus i} (x - x_{\setminus i}^*) \right\} \quad (94)$$

1530 and

$$1531 H_{\setminus i} := \frac{1}{n_1} \sum_{j \neq i} \ell_j''(\langle \tilde{f}_j, x_{\setminus i}^* \rangle + \epsilon_j) \tilde{f}_j \tilde{f}_j^\top + \lambda I$$

1532 is the (leave-one-out) Hessian matrix. Heuristically, this surrogate problem may be viewed as a
1533 quadratic approximation of Φ^* in the vicinity of $x_{\setminus i}^*$. It is straightforward to verify the following
1534 lemma.

1535 **Lemma 3.** *Let $\mathcal{M}_i(x; \gamma)$ denote the Moreau envelope of $\ell_i(x)$, i.e.,*

$$1536 \mathcal{M}_i(x; \gamma) := \min_z \ell_i(z) + \frac{(x - z)^2}{2\gamma}$$

1537 and let

$$1538 \text{Prox}_i(x; \gamma) := \arg \min_z \ell_i(z) + \frac{(x - z)^2}{2\gamma}$$

1539 be the corresponding proximal operator. Then it holds that

$$1540 \tilde{r}_i := \langle \tilde{f}_i, \tilde{x}_i \rangle + \epsilon_i = \text{Prox}_i(\tilde{r}_{i, \setminus i}; \gamma_i), \quad (95)$$

1541 where $\tilde{r}_{i, \setminus i} := \langle \tilde{f}_i, x_{\setminus i}^* \rangle + \epsilon_i$ and

$$1542 \gamma_i := \frac{1}{n_1} \tilde{f}_i^\top H_{\setminus i}^{-1} \tilde{f}_i. \quad (96)$$

1543 Moreover,

$$1544 \tilde{x}_i = x_{\setminus i}^* - \frac{1}{n_1} \ell_i'(\tilde{r}_i) H_{\setminus i}^{-1} \tilde{f}_i \quad (97)$$

1545 and

$$1546 \tilde{\Phi}_i = \Phi_{\setminus i}^* + \frac{1}{n_1} \mathcal{M}_i(\langle \tilde{f}_i, x_{\setminus i}^* \rangle).$$

1547 **Remark 5.** *Let $x = \text{Prox}(c; \gamma)$. It is often convenient to recall the following identity:*

$$1548 \ell'(x) + \frac{x - c}{\gamma} = 0. \quad (98)$$

1566 E.3.2 ON THE BOUNDEDNESS OF ℓ'
1567

1568 A key technical difference with the closely related analysis of Karoui (2018) lies in the assumption
1569 made therein that ℓ' is bounded. We would like the present results to hold for the quadratic loss in
1570 particular, which does not satisfy this assumption. The following lemma bridges this gap by showing
1571 how the optimizer of the inner problem using loss ℓ coincides, with large probability, with that of a
1572 modified loss with bounded first derivative.

1573 **Definition 2.** Given $I > 0$, we define the clipped loss $\ell_{\text{clip}}(\cdot, y) : \mathbb{R} \mapsto \mathbb{R}$ as follows:

- 1574 1. $\ell_{\text{clip}} \in C_b^{41}$ and convex
1575 2. $\ell_{\text{clip}}(z) = \ell(r)$ for $z \in [-I, I]$
1576 3. Letting $M = \sup_{z \in [-I, I]} |\ell'(z)|$, we require that $\|\ell'_{\text{clip}}\|_{\infty} \leq 2M$
1577 4. we further require that $\ell_{\text{clip}} \leq \ell$.
1578

1581 The construction given for ℓ_{clip} in definition 2 can be achieved in the following manner. Consider
1582 the “bump function”

$$1583 \psi(t) = \begin{cases} \exp\left(\frac{1}{t(t-1)}\right), & \text{if } t \in (0, 1) \\ 0, & \text{else} \end{cases}$$

1586 and, fixing a $\iota > 0$, define $\eta : \mathbb{R} \rightarrow [0, 1]$ by

$$1587 \eta(z) = \begin{cases} 0, & z \leq I \\ \frac{\int_0^{(z-I)/\iota} \psi(t) dt}{\int_0^1 \psi(t) dt}, & z \in (I, I + \iota), \\ 1, & z \geq I + \iota \end{cases}$$

1591 Note that $\eta \in C^{\infty}$ with bounded derivatives of all orders. Now, consider the left and right linear
1592 extensions of ℓ ,

$$1594 L_-(z) = \ell(-I) + \ell'(-I)(z + I), \quad L_+(z) = \ell(I) + \ell'(I)(z - I),$$

1595 which allow us to define ℓ_{clip} as the piecewise function

$$1596 \ell_{\text{clip}}(z) = \begin{cases} L_-(z), & z \leq -I - \iota \\ (1 - \eta(-z))\ell(z) + \eta(-z)L_-(z), & z \in (-I - \iota, -I) \\ \ell(z), & z \in [-I, I] \\ (1 - \eta(z))\ell(z) + \eta(z)L_+(z), & z \in (I, I + \iota) \\ L_+(z), & z \geq I + \iota \end{cases}$$

1602 The prescribed properties of definition 2 are then easily verified from basic calculus.

1603 **Lemma 4** (Clipped loss derivative). Recall that

$$1605 x^* = \arg \min_x \frac{1}{n_1} \sum_{i \in [n_1]} \ell_i(\langle \tilde{f}_i, x \rangle + \epsilon_i) + \frac{\lambda}{2} \|x\|. \quad (99)$$

1608 For a given $\delta \in (0, 1)$, let

$$1609 \mathfrak{R}^2 := \frac{2}{\lambda} \mathbb{E}[\ell(\epsilon; y)], \quad I := (1 + \mathfrak{R}) \sqrt{2 \log \frac{2n_1}{\delta}} + 1 + \sqrt{\mu_q^2 + \frac{(\mu_q \gamma + \mu_{\xi})^2}{1 - \gamma^2} + |b| + \sqrt{L\theta^2}} \quad (100)$$

1613 where $\epsilon \sim c_q \mu_q + c_{\xi} \mu_{\xi} + b$. Define

$$1614 x_{\text{clip}}^* = \arg \min_x \frac{1}{n_1} \sum_{i \in [n_1]} \ell_{\text{clip}, i}(\langle \tilde{f}_i, x \rangle + \epsilon_i) + \frac{\lambda}{2} \|x\|. \quad (101)$$

1617 Then, with probability at least $1 - \delta$,

$$1618 \quad x^* = x_{\text{clip}}^*. \quad (102)$$

1619 ¹Four times differentiable with continuous and bounded derivatives.

1620 *Proof.* The strategy consists in controlling the supremum $\sup_{i \in [n_1]} |r_i^{\text{clip}}|$ of the residuals $r_i^{\text{clip}} =$
 1621 $z^* [z^* - c_z \nu Z]$. Since by construction $\|\ell'_{\text{clip}}\|_\infty < C \text{polyLog}(n_1)$, one can apply the results of
 1622 Karoui (2018) to the clipped problem, showing that
 1623

$$1624 |r_i^{\text{clip}}| \leq |\text{Prox}_{\text{clip}}(\langle x_{\text{clip}, \setminus i}^*, \tilde{f}_i \rangle + \epsilon_i, \gamma_i)| + \delta^{(1)} \leq |\mathbf{g}_i| \|x_{\text{clip}, \setminus i}^*\| + \delta^{(1)} + |\epsilon_i| \quad (103)$$

1625 using the contractivity of the proximal operator. We used the shorthand $\mathbf{g}_i = \langle x_{\text{clip}, \setminus i}^* / \|x_{\text{clip}, \setminus i}^*\|, \tilde{f}_i \rangle$.
 1626 Note that from Karoui (2018), $\delta^{(1)} := \sup_i |r_i^{\text{clip}} - \text{Prox}_{\text{clip}}(\langle x_{\text{clip}, \setminus i}^*, \tilde{f}_i \rangle + \epsilon_i, \gamma_i)| =$
 1627 $O_{L_k} \left(\frac{\text{polyLog}(n_1)}{\sqrt{n_1}} \right)$. From the identity $F_{\text{clip}, \setminus i}(x_{\text{clip}, \setminus i}^*) \leq F_{\text{clip}, \setminus i}(0)$, one can bound
 1628

$$1631 \|x_{\text{clip}, \setminus i}^*\|^2 \leq \frac{2}{\lambda n_1} \sum_{j \neq i} \ell_{\text{clip}}(\epsilon_j; y_j) \leq \mathfrak{R}^2 + \delta^{(2)}, \quad (104)$$

1632 with $\delta^{(2)} = O_{L_2} \left(\frac{\text{polyLog}(n_1)}{\sqrt{n_1}} \right)$. Using the identity $|\sqrt{1+x} - 1| \leq |x|$, we have $\|x_{\text{clip}, \setminus i}^*\| \leq$
 1633 $\mathfrak{R} + |\delta^{(2)}|$. Summarizing,

$$1637 \sup_i |r_i^{\text{clip}}| \leq (\sup_i |\mathbf{g}_i|)(\mathfrak{R} + |\delta^{(2)}|) + \delta^{(1)} + \sup_i |\epsilon_i|. \quad (105)$$

1638 For n_1 large enough, from Markov's inequality,

$$1641 \mathbb{P}[\delta^{(1)} > 1] \leq \frac{\delta}{6}, \quad \mathbb{P}[|\delta^{(2)}| > 1] \leq \frac{\delta}{6}. \quad (106)$$

1642 We now need to control the term $\sup_i |\epsilon_i|$. From (89), for any given and *fixed* μ_ξ, μ_q, b and remem-
 1643 bering $\|s_\pm\| \leq 1$, one can bound

$$1646 |\epsilon_i| \leq a_\epsilon \|\mathbf{g}_i\|_1 + b_\epsilon |z_{0,i}| + c_\epsilon \quad (107)$$

1647 with

$$1649 a_\epsilon = |\mu_q|, \quad b_\epsilon = \left| \mu_q \frac{\gamma}{\sqrt{1-\gamma^2}} + \mu_\xi \frac{1}{\sqrt{1-\gamma^2}} \right|, \quad c_\epsilon = |b| + \sqrt{L\theta^2}. \quad (108)$$

1650 We remind that all entries of $g \in \mathbb{R}^L$, alongside with z_0 , are normal-distributed. Then, for any h ,
 1651 using an union bound

$$1655 \mathbb{P} \left[\sup_i |\epsilon_i| \geq \sqrt{a_\epsilon^2 + b_\epsilon^2} h + c_\epsilon \right] \leq \sum_{i \in [n_1]} \mathbb{P} \left[a_\epsilon \|\mathbf{g}_i\|_1 + b_\epsilon |z_{0,i}| \geq \sqrt{a_\epsilon^2 + b_\epsilon^2} h \right]. \quad (109)$$

1657 Examining more closely the summand $\mathbb{P}[a_\epsilon \|\mathbf{g}_i\|_1 + b_\epsilon |z_{0,i}| \geq h]$, one has

$$1659 \mathbb{P} \left[a_\epsilon \|\mathbf{g}_i\|_1 + b_\epsilon |z_{0,i}| \geq \sqrt{a_\epsilon^2 + b_\epsilon^2} h \right] \leq \sum_{s \in \{-1, +1\}^{L+1}} \mathbb{P} \left[a_\epsilon s_1 g_{i,1} + \dots + b_\epsilon s_{L+1} z_{0,i} \geq \sqrt{a_\epsilon^2 + b_\epsilon^2} h \right] \quad (110)$$

1663 from a coarse union bound, remarking that the left hand side appears in the right hand side sum.
 1664 Now that one has riden of the absolute value, observe that each term in the summand is distributed
 1665 as $\mathcal{N}(0, \sqrt{a_\epsilon^2 + b_\epsilon^2})$. Thus,

$$1667 \Pr \left[\sup_i |\epsilon_i| \geq \sqrt{a_\epsilon^2 + b_\epsilon^2} h + c_\epsilon \right] \leq 2^{L+1} n_1 \frac{e^{-\frac{1}{2} h^2}}{h}. \quad (111)$$

1669 In particular, for $h = \sqrt{2 \log n_1}$,

$$1671 \Pr \left[\sup_i |\epsilon_i| \geq \sqrt{a_\epsilon^2 + b_\epsilon^2} \sqrt{2 \log n_1} + c_\epsilon \right] \leq 2^{L+1} \frac{1}{\sqrt{2 \log n_1}}. \quad (112)$$

1673 Let us again suppose n_1 is large enough so that this probability is smaller than $\delta/6$.

1674 Thus, for n_1 large enough, the probability of the complementary event of $\Delta = \{\delta^{(1)} < 1\} \cap$
 1675 $\{\delta^{(2)} < 1\} \cap \{\sup_i |\epsilon_i| < \sqrt{a_\epsilon^2 + b_\epsilon^2} \sqrt{2 \log n_1} + c_\epsilon\}$ is bounded as $\mathbb{P}[\bar{\Delta}] \leq \delta/2$. Now, for any
 1676 $t \geq 2 + \sqrt{a_\epsilon^2 + b_\epsilon^2} \sqrt{2 \log n_1} + c_\epsilon$
 1677

$$1678 \mathbb{P}[\sup_i |r_i^{\text{clip}}| > t] \leq \mathbb{P} \left[\sup_i |g_i| > \frac{t - \delta^{(1)}}{\mathfrak{R} + |\delta^{(2)}|} \right] \quad (113)$$

$$1681 \leq \mathbb{P} \left[\left\{ \sup_i |g_i| > \frac{t - \delta^{(1)} - \sup_i |\epsilon_i|}{\mathfrak{R} + |\delta^{(2)}|} \right\} \cap \Delta \right] + \frac{\delta}{2} \quad (114)$$

$$1683 \leq \mathbb{P} \left[\sup_i |g_i| > \frac{t - 1 - (\sqrt{a_\epsilon^2 + b_\epsilon^2} \sqrt{2 \log n_1} + c_\epsilon)}{\mathfrak{R} + 1} \right] + \frac{\delta}{2} \quad (115)$$

$$1686 \leq \sum_{i \in [n_1]} \mathbb{P} \left[|g_i| > \frac{t - 1 - (\sqrt{a_\epsilon^2 + b_\epsilon^2} \sqrt{2 \log n_1} + c_\epsilon)}{\mathfrak{R} + 1} \right] + \frac{\delta}{2} \quad (116)$$

$$1689 \leq n_1 e^{-\frac{1}{2} \left(\frac{t - 1 - (\sqrt{a_\epsilon^2 + b_\epsilon^2} \sqrt{2 \log n_1} + c_\epsilon)}{\mathfrak{R} + 1} \right)^2} + \frac{\delta}{2} \quad (117)$$

1692 where the last line follows by Mill's inequality. In particular,

$$1694 \mathbb{P} \left[\sup_i |r_i^{\text{clip}}| > (1 + \mathfrak{R}) \sqrt{2 \log \frac{2n_1}{\delta}} + 1 + \sqrt{a_\epsilon^2 + b_\epsilon^2} \sqrt{2 \log n_1} + c_\epsilon \right] \leq \delta. \quad (118)$$

1696 The last step of the proof comes from the simple observation that with probability at least $1 - \delta$, for
 1697 all $i \in [n_1]$, $\ell_i(r_i) = \ell_{\text{clip},i}(r_i)$, and so under this event we have
 1698

$$1699 -\lambda x^* = \frac{1}{n_1} \sum_{i \in [n_1]} \ell_i(r_i) = \frac{1}{n_1} \sum_{i \in [n_1]} \ell_{\text{clip},i}(r_i). \quad (119)$$

1702 Therefore, x^* satisfies the stationarity condition for the clipped problem. By uniqueness of the
 1703 minimizer x_{clip}^* , we have

$$1704 x^* = x_{\text{clip}}^* \quad (120)$$

1706 in this event. \square
 1707

1708 A consequence of Lemma 4 is that one can assume, without loss of generality up to an event of
 1709 probability δ , that the first derivative ℓ' is bounded. More precisely,

$$1711 \|\ell'\|_\infty = O(\text{polyLog}(n_1)). \quad (121)$$

1712 This enables in particular the borrowing of a number of results from Karoui (2018), where such an
 1713 assumption is leveraged. Henceforth, we work under the $(1 - \delta)$ -probability event where $x^* =$
 1714 x_{clip}^* and work strictly with the clipped loss ℓ_{clip} , however we omit notation and simply write ℓ for
 1715 simplicity.

1717 E.3.3 CONCENTRATION RESULTS

1719 We first introduce and recall several quantities of importance in this section. For $i, j \in [n_1]$, we
 1720 write

$$1721 r_i = \langle \tilde{f}_i, x_i^* \rangle + \epsilon_i, \quad \tilde{r}_{j,i} = \langle \tilde{f}_j, \tilde{x}_i \rangle + \epsilon_j, \quad \tilde{r}_{j,\setminus i} = \langle \tilde{f}_j, x_{\setminus i}^* \rangle + \epsilon_j.$$

1723 The following lemma establishes that the introduced surrogate estimator \tilde{x}_i constitutes a good ap-
 1724 proximation of the full minimizer x^* as well as further concentration results.

1725 **Lemma 5** (Approximation by surrogate estimator). *We have, for any k ,*

$$1727 \sup_{i \in [n_1]} \|x^* - \tilde{x}_i\| = O_{L_k} \left(\frac{\text{polyLog}(n_1)}{n_1} \right) \quad \text{and} \quad \sup_{i \in [n_1]} \|x_{\setminus i}^* - \tilde{x}_i\| = O_{L_k} \left(\frac{1}{\sqrt{n_1}} \right), \quad (122)$$

1728 Moreover,

$$1729 \quad 1730 \quad \text{Var}(\|x^*\|^2) = O\left(\frac{\text{polyLog}(n_1)}{n_1}\right). \quad (123)$$

1731 Furthermore, at the level of the residuals, one has the bounds

$$1732 \quad 1733 \quad \sup_{i \in [n_1]} |r_i - \tilde{r}_i| = O_{L_k}\left(\frac{\text{polyLog}(n_1)}{\sqrt{n_1}}\right) \quad (124)$$

1736 *Proof.* The proof follows directly from Lemmas C.2, Theorem C.6 and Proposition C.7 of Karoui
1737 (2018). The statement on the residuals corresponds to Theorem 2.2 of the same work. \square

1738 The lemma thus shows that the squared norm $\|x^*\|^2$ concentrates. We denote in the following by
1739 $\nu^2 := \mathbb{E}[\|x^*\|^2]$ its limiting value. The statement on the residual can be further complemented by
1740 the following lemma, which covers the off-diagonal terms.

1742 **Lemma 6.** *We further have*

$$1743 \quad 1744 \quad \sum_{j \neq i} (r_j - \tilde{r}_{j,i})^2 = O_{L_k}\left(\frac{\text{polyLog}(n_1)}{n_1}\right), \quad (125)$$

1746 where we write $\tilde{r}_{j,i} = \langle \tilde{f}_j, \tilde{x}_i \rangle + \epsilon_j$.

1748 *Proof.* From the definition of \tilde{x}_i , one has

$$1749 \quad -\lambda \tilde{x}_i = -\lambda x_{\setminus i}^* + (H_{\setminus i} - \lambda I)(\tilde{x}_i - x_{\setminus i}^*) + \frac{1}{n_1} \ell'(\tilde{r}_i) \tilde{f}_i \quad (126)$$

$$1752 \quad = \frac{1}{n_1} \sum_{j \neq i} (\ell''(\tilde{r}_{j \setminus i})(\tilde{r}_{j,i} - \tilde{r}_{j \setminus i}) + \ell'(\tilde{r}_{j \setminus i})) \tilde{f}_j + \frac{1}{n_1} \ell'(\tilde{r}_i) \tilde{f}_i. \quad (127)$$

1754 Subtracting the stationarity condition for x^* ,

$$1756 \quad -\lambda(x^* - \tilde{x}_i) = \frac{1}{n_1} \sum_{j \neq i} (\ell'(r_j) - \ell''(\tilde{r}_{j \setminus i})(\tilde{r}_{j,i} - \tilde{r}_{j \setminus i}) - \ell'(\tilde{r}_{j \setminus i})) \tilde{f}_j + \frac{1}{n_1} (\ell'(r_i) - \ell'(\tilde{r}_i)) \tilde{f}_i \quad (128)$$

1759 Thus for $k \neq i$

$$1761 \quad -\lambda(r_k - \tilde{r}_{k,i}) = \frac{1}{n_1} \sum_{j \neq i} (\ell'(r_j) - \ell''(\tilde{r}_{j \setminus i})(\tilde{r}_{j,i} - \tilde{r}_{j \setminus i}) - \ell'(\tilde{r}_{j \setminus i})) \langle \tilde{f}_j, \tilde{f}_k \rangle + \frac{1}{n_1} (\ell'(r_i) - \ell'(\tilde{r}_i)) \langle \tilde{f}_i, \tilde{f}_k \rangle \quad (129)$$

1764 The last term can be controlled as

$$1765 \quad 1766 \quad \left| \frac{1}{n_1} (\ell'(r_i) - \ell'(\tilde{r}_i)) \langle \tilde{f}_i, \tilde{f}_k \rangle \right| \leq \|\ell''\|_{\infty} O_{L_k}\left(\frac{\text{polyLog}(n_1)}{n_1}\right) \quad (130)$$

1768 using the Lemma 5. We focus on the first term now. Note that

$$1769 \quad \ell''(\tilde{r}_{j \setminus i})(\tilde{r}_{j,i} - \tilde{r}_{j \setminus i}) + \ell'(\tilde{r}_{j \setminus i}) = \ell'(\tilde{r}_{j,i}) - \frac{1}{2} \ell^{(3)}(\check{r}_j)(\tilde{r}_{j,i} - \tilde{r}_{j \setminus i})^2 \quad (131)$$

1771 for some $\check{r}_j \in (\tilde{r}_{j,i}, \tilde{r}_{j \setminus i})$, from a Taylor expansion. Thus, from another application of the mean
1772 value theorem

$$1773 \quad \ell'(r_j) - \ell''(\tilde{r}_{j \setminus i})(\tilde{r}_{j,i} - \tilde{r}_{j \setminus i}) - \ell'(\tilde{r}_{j \setminus i}) = \ell''(\check{s}_j)(r_j - \tilde{r}_{j,i}) + \frac{1}{2} \ell^{(3)}(\check{r}_j)(\tilde{r}_{j,i} - \tilde{r}_{j \setminus i})^2 \quad (132)$$

1775 for some $\check{s}_j \in (r_j, \tilde{r}_{j,i})$. Let us introduce the vectors $\delta, \varepsilon \in \mathbb{R}^{n-1}$, defined for $k \neq i$ as

$$1776 \quad \delta_k = (r_k - \tilde{r}_{k,i}), \quad (133)$$

$$1778 \quad 1779 \quad \varepsilon_k = \frac{1}{2n_1} \sum_{j \neq i, k} \left(\ell^{(3)}(\check{r}_j)(\tilde{r}_{j,i} - \tilde{r}_{j \setminus i})^2 \langle \tilde{f}_j, \tilde{f}_k \rangle \right. \quad (134)$$

$$1781 \quad \left. + \frac{1}{2n_1} \ell^{(3)}(\check{r}_k)(\tilde{r}_{k,i} - \tilde{r}_{k \setminus i})^2 \|f_k\|^2 + \frac{1}{n_1} (\ell'(r_i) - \ell'(\tilde{r}_i)) \langle \tilde{f}_i, \tilde{f}_k \rangle \right) \quad (135)$$

and the diagonal matrix $\check{\Lambda} \in \mathbb{R}^{(n-1) \times (n-1)}$ with diagonal elements $\check{\Lambda}_{jj} = \ell''(\check{s}_j)$ for $j \neq i$. Then,

$$-\lambda\delta = \frac{1}{n_1} F_{\setminus i} F_{\setminus i}^\top \check{\Lambda} \delta + \varepsilon \quad (136)$$

where $F_{\setminus i} \in \mathbb{R}^{(n-1) \times d}$ has rows $\{\tilde{f}_j\}_{j \neq i}$. This implies

$$\delta = -\left(\frac{1}{n_1} F_{\setminus i} F_{\setminus i}^\top \check{\Lambda} + \lambda I_{n_1-1}\right)^{-1} \varepsilon = -\check{\Lambda}^{\frac{1}{2}} \left(\frac{1}{n_1} \check{\Lambda}^{\frac{1}{2}} F_{\setminus i} F_{\setminus i}^\top \check{\Lambda}^{\frac{1}{2}} + \lambda I_{n_1-1}\right)^{-1} \check{\Lambda}^{-\frac{1}{2}} \varepsilon. \quad (137)$$

But

$$\|\check{\Lambda}^{\frac{1}{2}} \left(\frac{1}{n_1} \check{\Lambda}^{\frac{1}{2}} F_{\setminus i} F_{\setminus i}^\top \check{\Lambda}^{\frac{1}{2}} + \lambda I_{n_1-1}\right)^{-1} \check{\Lambda}^{-\frac{1}{2}}\| = \left\|\left(\frac{1}{n_1} \check{\Lambda}^{\frac{1}{2}} F_{\setminus i} F_{\setminus i}^\top \check{\Lambda}^{\frac{1}{2}} + \lambda I_{n_1-1}\right)^{-1}\right\| \leq \frac{1}{\lambda}, \quad (138)$$

using the fact that similar matrices share the same operator norm. Thus

$$\|\delta\| \leq \frac{1}{\lambda} \|\varepsilon\|. \quad (139)$$

On ε — We now turn our attention to ε . Using the closed-form expression for $\tilde{r}_{j,i} - \tilde{r}_{j \setminus i}$ from Lemma 3:

$$\left| \frac{1}{2n_1} \sum_{j \neq i, k} \ell^{(3)}(\check{r}_j) (\tilde{r}_{j,i} - \tilde{r}_{j \setminus i})^2 \langle \tilde{f}_j, \tilde{f}_k \rangle \right| \quad (140)$$

$$= \left| \frac{1}{2n_1^3} \sum_{j \neq i, k} \ell^{(3)}(\check{r}_j) \langle \tilde{f}_j, \tilde{f}_k \rangle \ell'(\tilde{r}_{i,i})^2 \tilde{f}_i^\top H_{\setminus i}^{-1} \tilde{f}_j \tilde{f}_j^\top H_{\setminus i}^{-1} \tilde{f}_i \right| \quad (141)$$

$$= \left| \frac{\ell'(\tilde{r}_{i,i})^2}{2n_1^3} \tilde{f}_i^\top H_{\setminus i}^{-1} \left[\sum_{j \neq i, k} \ell^{(3)}(\check{r}_j) \langle \tilde{f}_j, \tilde{f}_k \rangle \tilde{f}_j \tilde{f}_j^\top \right] H_{\setminus i}^{-1} \tilde{f}_i \right| \quad (142)$$

$$\leq \frac{\ell'(\tilde{r}_{i,i})^2}{2n_1^3} \|H_{\setminus i}^{-1} \tilde{f}_i\|^2 \left\| \sum_{j \neq i, k} \ell^{(3)}(\check{r}_j) \langle \tilde{f}_j, \tilde{f}_k \rangle \tilde{f}_j \tilde{f}_j^\top \right\| \quad (143)$$

$$\leq \frac{1}{2\lambda^2} O_{L_k} \left(\frac{\text{polyLog}(n_1)}{n_1^2} \right) \|F_{\setminus i \setminus k}^\top D F_{\setminus i \setminus k}\|. \quad (144)$$

In the last step, we denoted D the diagonal matrix with elements $D_{jj} = \ell^{(3)}(\check{r}_j) \langle \tilde{f}_j, \tilde{f}_k \rangle$. Furthermore,

$$\|F_{\setminus i \setminus k}^\top D F_{\setminus i \setminus k}\| \leq \|F_{\setminus i \setminus k}\|^2 \|D\| = \|F_{\setminus i \setminus k}^\top F_{\setminus i \setminus k}\| \|D\| \quad (145)$$

$$\leq O_{L_k}(\text{polyLog}(n_1)n_1) \|\ell^{(3)}\|_\infty \sup_{j \neq i, k} |\langle \tilde{f}_j, \tilde{f}_k \rangle| = O_{L_k}(\text{polyLog}(n_1)n_1) \quad (146)$$

Using the fact that the maximum of n_1 independent standard Gaussians is $O_{L_k}(\text{polyLog}(n_1))$. Thus,

$$\left| \frac{1}{2n_1} \sum_{j \neq i, k} \ell^{(3)}(\check{r}_j) (\tilde{r}_{j,i} - \tilde{r}_{j \setminus i})^2 \langle \tilde{f}_j, \tilde{f}_k \rangle \right| = O_{L_k} \left(\frac{\text{polyLog}(n_1)}{n_1} \right). \quad (147)$$

The remaining two terms of ε_k can be shown to be $O_{L_k}(\text{polyLog}(n_1)/n_1)$ and so

$$|\varepsilon_k| \leq O_{L_k} \left(\frac{\text{polyLog}(n_1)}{n_1} \right) \quad (148)$$

Finally,

$$\|\delta\| \leq O_{L_k} \left(\frac{\text{polyLog}(n_1)}{\sqrt{n_1}} \right), \quad (149)$$

which concludes the proof. \square

1836 **Lemma 7** (On γ_i). *We have*

$$1838 \quad \sup_{i \in [n_1]} |\gamma_i - c_{z,i}^2 \chi| = O_{L_k} \left(\frac{1}{\sqrt{n_1}} \right) \quad \text{where} \quad \chi = \frac{1}{n_1} \text{tr}[H^{-1}]. \quad (150)$$

1840 *We called*

$$1842 \quad H := \frac{1}{n_1} \sum_{j \in [n_1]} \ell_j''(r_j) \tilde{f}_j \tilde{f}_j^\top + \lambda I \quad (151)$$

1844 *the full Hessian.*

1846 *Proof.* This follows from Corollary D.7 and Lemma E.4 in Karoui (2018). \square

1848 **Lemma 8** (Φ^* concentrates). *We have*

$$1849 \quad \text{Var}[\Phi^*] = O \left(\frac{\text{polyLog}(n_1)}{n_1} \right) \quad (152)$$

1852 *Proof.* Appealing to the Efron-Stein lemma, we have

$$1854 \quad \text{Var}[\Phi^*] \leq \sum_{i \in [n_1]} \mathbb{E} \left[(F^*(x^*) - F_{\setminus i}(x_{\setminus i}^*))^2 \right] \quad (153)$$

1856 The summand can be controlled as

$$1858 \quad \mathbb{E} \left[(F^*(x^*) - F_{\setminus i}(x_{\setminus i}^*))^2 \right] \leq 2\mathbb{E} \left[\left(F_{\setminus i}^*(x^*) - F_{\setminus i}(x_{\setminus i}^*) \right)^2 \right] + \frac{2}{n_1^2} \mathbb{E} [\ell_i(r_i)^2] \quad (154)$$

1860 We first control the second term.

$$1861 \quad \frac{1}{n_1^2} \mathbb{E} [\ell_i(r_i)^2] \leq \frac{1}{n_1^2} 2 \left(\ell_i(0)^2 + \|\ell'\|_\infty^2 \mathbb{E} [r_i^2] \right). \quad (155)$$

1864 As we will later show in Remark 6, the moments of r_i are indeed bounded, making the right hand-side $O(\text{polyLog}(n_1)/n_1^2)$. Note that the current result is not used to reach Remark 6, so there is no 1865 circular argument. We finally examine the first term. By the mean value theorem,

$$1867 \quad F^*(x^*) - F_{\setminus i}(x_{\setminus i}^*) = \left\langle \frac{1}{n_1} \sum_{j \neq i} \ell_i'(\check{r}_j) \tilde{f}_i + \lambda \frac{x^* + x_{\setminus i}^*}{2}, x^* - x_{\setminus i}^* \right\rangle, \quad (156)$$

1870 where \check{r}_j belongs to the (unordered) interval $(r_j, \tilde{r}_{j, \setminus i})$. We now show that both terms in the scalar 1871 product are small. First, we will use the fact that the first term is close to $F_{\setminus i}(x_{\setminus i}^*)$, which is by 1872 definition of $x_{\setminus i}^*$ vanishing. More precisely,

$$1874 \quad \left\| \frac{1}{n_1} \sum_{j \neq i} \ell_i'(\check{r}_j) \tilde{f}_i + \lambda \frac{x^* + x_{\setminus i}^*}{2} \right\| = \left\| \frac{1}{n_1} \sum_{j \neq i} (\ell_i'(\check{r}_j) - \ell_i'(\tilde{r}_{j, \setminus i})) \tilde{f}_i + \lambda \frac{x^* - x_{\setminus i}^*}{2} \right\| \quad (157)$$

$$1877 \quad \leq \frac{1}{n_1} \sum_{j \neq i} \|\ell_i''\|_\infty |\check{r}_j - \tilde{r}_{j, \setminus i}| + \frac{\lambda}{2} \|x^* - x_{\setminus i}^*\| \quad (158)$$

$$1880 \quad = O_{L_k} \left(\frac{\text{polyLog}(n_1)}{\sqrt{n_1}} \right). \quad (159)$$

1882 Since $\check{r}_j \in (r_j, \tilde{r}_{j, \setminus i})$,

$$1884 \quad |\check{r}_j - \tilde{r}_{j, \setminus i}| \leq |r_j - \tilde{r}_{j, \setminus i}| = O_{L_k} \left(\frac{\text{polyLog}(n_1)}{\sqrt{n_1}} \right) \quad (160)$$

1886 from Theorem 2.2 of Karoui (2018). From Theorem 2.2. and Lemma C.2 of Karoui (2018), we 1887 further have $\|x^* - x_{\setminus i}^*\| = O_{L_k}(\text{polyLog}(n_1)/\sqrt{n_1})$. Therefore, from Cauchy-Schwartz,

$$1888 \quad |F^*(x^*) - F_{\setminus i}(x_{\setminus i}^*)| = O_{L_k} \left(\frac{\text{polyLog}(n_1)}{n_1} \right). \quad (161)$$

1890 Putting everything together,
1891

$$1892 \quad \mathbb{E} \left[(F^*(x^*) - F_{\setminus i}(x_{\setminus i}^*))^2 \right] = O \left(\frac{\text{polyLog}(n_1)}{n_1^2} \right) \quad (162)$$

1893 and
1894

$$1895 \quad \text{Var}[\Phi^*] = O \left(\frac{\text{polyLog}(n_1)}{n_1} \right) \quad (163)$$

1896 from the Efron-Stein inequality, concluding the proof. \square
1897

1898 **Lemma 9** (χ concentrates). *Recall $\chi = 1/n_1 \text{tr}[H^{-1}]$. The following concentration result holds:*

$$1901 \quad \text{Var}[\chi] = O \left(\frac{\text{polyLog}(n_1)}{n_1} \right). \quad (164)$$

1902 *Proof.* From the Efron-Stein lemma,
1903

$$1904 \quad \text{Var}[\chi] \leq \sum_{i \in [n_1]} \mathbb{E} [(\chi - \chi_{\setminus i})^2], \quad (165)$$

1905 where $\chi_{\setminus i} = 1/n_1 \text{tr}[H_{\setminus i}^{-1}]$. We recall
1906

$$1907 \quad H_{\setminus i} = \frac{1}{n_1} \sum_{j \neq i} \ell''(\tilde{r}_{j \setminus i}) \tilde{f}_j \tilde{f}_j^\top + \lambda I_{n_1}. \quad (166)$$

1908 Let us further decompose
1909

$$1910 \quad \mathbb{E} [(\chi - \chi_{\setminus i})^2] \leq 2\mathbb{E} [(\chi - \tilde{\chi}_i)^2] + 2\mathbb{E} [(\tilde{\chi}_i - \chi_{\setminus i})^2], \quad (167)$$

1911 defining
1912

$$1913 \quad \tilde{\chi}_i = \frac{1}{n_1} \text{tr}[H_i^{-1}], \quad H_i = \frac{1}{n_1} \sum_{j \neq i} \ell''(\tilde{r}_{j,i}) \tilde{f}_j \tilde{f}_j^\top + \lambda I_{n_1}. \quad (168)$$

1914 We first focus on $\mathbb{E} [(\chi - \tilde{\chi}_i)^2]$.
1915

$$1916 \quad \chi - \tilde{\chi}_i = \frac{1}{n_1} \text{tr}[H^{-1}(H_i - H)H_i^{-1}] \quad (169)$$

$$1917 \quad = \frac{1}{n_1} \sum_{j \neq i} [\ell''(r_j) - \ell''(\tilde{r}_{j,i})] \frac{\tilde{f}_j^\top H^{-1} H_i^{-1} \tilde{f}_j}{n_1} + \frac{1}{n_1} \ell''(r_i) \frac{\tilde{f}_i^\top H^{-1} H_i^{-1} \tilde{f}_i}{n_1} \quad (170)$$

$$1918 \quad = \frac{1}{n_1} \sum_{j \neq i} \ell^{(3)}(\tilde{r}_j)(r_j - \tilde{r}_{j,i}) \frac{\tilde{f}_j^\top H^{-1} H_i^{-1} \tilde{f}_j}{n_1} + \frac{1}{n_1} \ell''(r_i) \frac{\tilde{f}_i^\top H^{-1} H_i^{-1} \tilde{f}_i}{n_1} \quad (171)$$

1919 where we used the mean value theorem and $\tilde{r}_j \in (r_j, \tilde{r}_{j,i})$. Thus,
1920

$$1921 \quad |\chi - \tilde{\chi}_i| \leq \frac{1}{n_1} |\langle \delta, \varrho \rangle| + O_{L_k} \left(\frac{\|\ell''\|_\infty \text{polyLog}(n_1)}{\lambda^2 n_1} \right). \quad (172)$$

1922 we introduce the vectors $\delta, \varrho \in \mathbb{R}^{n_1-1}$ with elements
1923

$$1924 \quad \delta_j = (r_j - \tilde{r}_{j,i}) \quad (173)$$

$$1925 \quad \varrho_j = \ell^{(3)}(\tilde{r}_j) \frac{\tilde{f}_j^\top H^{-1} H_i^{-1} \tilde{f}_j}{n_1}. \quad (174)$$

1926 The latter can be controlled as $\|\varrho\| = O_{L_k}(\sqrt{n_1} \text{polyLog}(n_1))$ while from Lemma 7, $\|\delta\| = O_{L_k}(\text{polyLog}(n_1)/\sqrt{n_1})$. Thus, the Cauchy-Schwarz inequality implies
1927

$$1928 \quad |\chi - \tilde{\chi}_i| = O_{L_k} \left(\frac{\text{polyLog}(n_1)}{n_1} \right). \quad (175)$$

1944 We now examine $\mathbb{E}[(\tilde{\chi}_i - \chi_{\setminus i})^2]$. From a Taylor expansion,
1945

$$1946 \tilde{\chi}_i - \chi_{\setminus i} = \frac{1}{n_1} \sum_{j \neq i} \ell^{(3)}(\tilde{r}_{j \setminus i})(\tilde{r}_{j,i} - \tilde{r}_{j \setminus i}) \frac{\tilde{f}_j^\top H_{\setminus i}^{-1} H_i^{-1} \tilde{f}_j}{n_1} \quad (176)$$

$$1949 + \frac{1}{2n_1} \sum_{j \neq i} \ell^{(4)}(\tilde{s}_j)(\tilde{r}_{j,i} - \tilde{r}_{j \setminus i})^2 \frac{\tilde{f}_j^\top H_{\setminus i}^{-1} H_i^{-1} \tilde{f}_j}{n_1} \quad (177)$$

1952 for some $\hat{s}_j \in (\tilde{r}_{j,i}, \tilde{r}_{j \setminus i})$. From Lemma C.4 of Karoui (2018), $|\tilde{r}_{j,i} - \tilde{r}_{j \setminus i}| = O_{L_k}(\text{polyLog}(n_1)/\sqrt{n_1})$,
1953 from which it follows that the second term is $O_{L_k}(\text{polyLog}(n_1)/n_1)$. The objective is now to approxi-
1954 mate H_i in the first term by the \tilde{f}_i – independent Hessian $H_{\setminus i}$, to unravel all statistical dependencies
1955 on \tilde{f}_i . The correction is
1956

$$1957 \left| \frac{1}{n_1} \sum_{j \neq i} \ell^{(3)}(\tilde{r}_{j \setminus i})(\tilde{r}_{j,i} - \tilde{r}_{j \setminus i}) \frac{\tilde{f}_j^\top H_{\setminus i}^{-1} (H_i^{-1} - H_{\setminus i}^{-1}) \tilde{f}_j}{n_1} \right| \quad (178)$$

$$1961 \leq \|\ell^{(3)}\|_\infty \sup_{j \neq i} |\tilde{r}_{j,i} - \tilde{r}_{j \setminus i}| \frac{1}{n_1} \sum_{j \neq i} \frac{\|\tilde{f}_j\|^2}{\lambda n_1} \|H_i^{-1} - H_{\setminus i}^{-1}\| \quad (179)$$

$$1964 \leq \|\ell^{(3)}\|_\infty \sup_{j \neq i} |\tilde{r}_{j,i} - \tilde{r}_{j \setminus i}| \frac{1}{n_1} \sum_{j \neq i} \frac{\|\tilde{f}_j\|^2}{\lambda^3 n_1} \|H_i - H_{\setminus i}\|. \quad (180)$$

1966 But
1967

$$1968 \|H_i - H_{\setminus i}\| = \left\| \frac{1}{n_1} \sum_{j \neq i} \ell^{(3)}(\tilde{t}_j)(\tilde{r}_{j,i} - \tilde{r}_{j \setminus i}) \tilde{f}_j \tilde{f}_j^\top \right\| \leq \sup_{j \neq i} |\ell^{(3)}(\tilde{t}_j)(\tilde{r}_{j,i} - \tilde{r}_{j \setminus i})| \|\hat{\Sigma}_{\setminus i}\| \quad (181)$$

1971 where $\hat{\Sigma}_{\setminus i}$ is the empirical covariance of the features, excluding the i -th. Putting everything to-
1972 gether yields

$$1973 \left| \frac{1}{n_1} \sum_{j \neq i} \ell^{(3)}(\tilde{r}_{j \setminus i})(\tilde{r}_{j,i} - \tilde{r}_{j \setminus i}) \frac{\tilde{f}_j^\top H_{\setminus i}^{-1} (H_i^{-1} - H_{\setminus i}^{-1}) \tilde{f}_j}{n_1} \right| = O_{L_k} \left(\frac{\text{polyLog}(n_1)}{n_1} \right). \quad (182)$$

1977 Thus, going back to the original objective,

$$1979 \mathbb{E}[(\tilde{\chi}_i - \chi_{\setminus i})^2] = \mathbb{E} \left[\left(\frac{1}{n_1} \sum_{j \neq i} \ell^{(3)}(\tilde{r}_{j \setminus i})(\tilde{r}_{j,i} - \tilde{r}_{j \setminus i}) \frac{\tilde{f}_j^\top H_{\setminus i}^{-2} \tilde{f}_j}{n_1} \right)^2 \right] + O \left(\frac{\text{polyLog}(n_1)}{n_1^2} \right) \quad (183)$$

1983 Leveraging the closed-form expression of $\tilde{r}_{j,i} - \tilde{r}_{j \setminus i}$, the first term can be written as
1984

$$1985 \mathbb{E} \left[\left(\ell'(\tilde{r}_{i,i}) \frac{1}{n_1^2} \sum_{j \neq i} \ell^{(3)}(\tilde{r}_{j \setminus i}) \tilde{f}_j^\top H_{\setminus i}^{-1} \tilde{f}_i \frac{\tilde{f}_j^\top H_{\setminus i}^{-2} \tilde{f}_j}{n_1} \right)^2 \right] \\ 1989 \leq \mathbb{E} [\ell'(\tilde{r}_{i,i})^4]^{\frac{1}{2}} \mathbb{E}_{\{\tilde{f}_j\}_{j \neq i}} \left[\left\| \frac{1}{n_1^2} \sum_{j \neq i} \ell^{(3)}(\tilde{r}_{j \setminus i}) \frac{\tilde{f}_j^\top H_{\setminus i}^{-2} \tilde{f}_j}{n_1} H_{\setminus i}^{-1} \tilde{f}_j \right\|^4 \mathbb{E}_g [g^4] \right]^{\frac{1}{2}}, \quad (184)$$

1993 using Minkovski’s inequality; $g \sim \mathcal{N}(0, 1)$ in the expression above. Note that, introducing the
1994 vector $h \in \mathbb{R}^{n_1-1}$ with elements $h_j = \ell^{(3)}(\tilde{r}_{j \setminus i}) \tilde{f}_j^\top H_{\setminus i}^{-2} \tilde{f}_j / n_1$
1995

$$1996 \left\| \frac{1}{n_1^2} \sum_{j \neq i} \ell^{(3)}(\tilde{r}_{j \setminus i}) \frac{\tilde{f}_j^\top H_{\setminus i}^{-2} \tilde{f}_j}{n_1} H_{\setminus i}^{-1} \tilde{f}_j \right\| = \left\| \frac{1}{n_1^2} h^\top F_{\setminus i} H_{\setminus i}^{-1} \right\| \leq \frac{1}{\lambda n_1^2} \|h\| \|F_{\setminus i}\|. \quad (185)$$

1998 But $\|F_{\setminus i}\| = O_{L_k}(\sqrt{n_1} \text{polyLog}(n_1))$, and
 1999

2000 $\|h\| \leq \sqrt{n_1} \|\ell^{(3)}\|_\infty \sup_{j \neq i} \left| \frac{\tilde{f}_j^\top H_{\setminus i}^{-2} \tilde{f}_j}{n_1} \right| \leq \|\ell^{(3)}\|_\infty \frac{1}{\lambda \sqrt{n_1}} \sup_{j \neq i} \|\tilde{f}_j\|^2 = O_{L_k}(\text{polyLog}(n_1) \sqrt{n_1}).$
 2001
 2002
 2003

2004 Thus,
 2005

2006 $\mathbb{E} \left[\left(\ell'(\tilde{r}_{i,i}) \frac{1}{n_1^2} \sum_{j \neq i} \ell^{(3)}(\tilde{r}_{j \setminus i}) \tilde{f}_j^\top H_{\setminus i}^{-1} \tilde{f}_i \frac{\tilde{f}_j^\top H_{\setminus i}^{-2} \tilde{f}_j}{n_1} \right)^2 \right] = O \left(\mathbb{E} [\ell'(\tilde{r}_{i,i})^4]^{\frac{1}{2}} \frac{\text{polyLog}(n_1)}{n_1^2} \right).$
 2007
 2008
 2009
 2010

2011 To complete the proof, we need control of $\mathbb{E} [\ell'(\tilde{r}_{i,i})^4]^{\frac{1}{2}}$, which is provided by the proof of Lemma
 2012 (7), where we established that $\ell'(\tilde{r}_{i,i}) = O_{L_k}(1)$. \square
 2013

2014 E.3.4 LIMITING RESIDUAL DISTRIBUTIONS 2015

2016 It now remains to ascertain the law of \tilde{r} , which we describe in the following lemma.

2017 **Lemma 10** (Limiting distribution of $\tilde{r}_{i \setminus i}$). *The leave-one-out residual admit the simple representation*
 2018

2019 $\tilde{r}_{i \setminus i} = \epsilon_i + c_{z,i} \nu Z + O_{L_2} \left(\frac{\text{polyLog}(n_1)}{\sqrt{n_1}} \right)$
 2020
 2021

2022 with $Z \sim \mathcal{N}(0, 1)$ independently from $\epsilon_i, c_{z,i}$.
 2023

2024 *Proof.* We have
 2025

2026 $\tilde{r}_{i \setminus i} - \epsilon_i = \left\langle \tilde{f}_i, \frac{x_{\setminus i}}{\|x_{\setminus i}\|} \right\rangle \|x_{\setminus i}\|$
 2027

2028 and $Z := \frac{1}{c_{z,i}} \left\langle \tilde{f}_i, \frac{x_{\setminus i}}{\|x_{\setminus i}\|} \right\rangle \sim \mathcal{N}(0, 1)$. Furthermore, from the proof of proposition C.7 of Karoui
 2029 (2018),
 2030

2031 $\|x_{\setminus i}\|^2 = \|x^*\|^2 + O_{L_2} \left(\frac{\text{polyLog}(n_1)}{n_1} \right)$
 2032

2033 $= \nu^2 + O_{L_2} \left(\frac{\text{polyLog}(n_1)}{\sqrt{n_1}} \right) + O_{L_2} \left(\frac{\text{polyLog}(n_1)}{n_1} \right)$
 2034

2035 $= \nu^2 + O_{L_2} \left(\frac{\text{polyLog}(n_1)}{\sqrt{n_1}} \right).$
 2036

2037 Therefore,
 2038

2039 $\|x_{\setminus i}\| = \nu \sqrt{1 + O_{L_2} \left(\frac{\text{polyLog}(n_1)}{\sqrt{n_1}} \right)} = \nu + O_{L_2} \left(\frac{\text{polyLog}(n_1)}{\sqrt{n_1}} \right),$
 2040

2041 using the inequality $|\sqrt{1+x} - 1| \leq |x|$ in the last step. Finally,
 2042

2043 $\mathbb{E} [Z^2 (\|x_{\setminus i}\| - \nu)^2] = \mathbb{E} [(\|x_{\setminus i}\| - \nu)^2] = O \left(\frac{\text{polyLog}(n_1)}{n_1} \right),$
 2044

2045 in other words
 2046

2047 $Z (\|x_{\setminus i}\| - \nu) = O_{L_2} \left(\frac{\text{polyLog}(n_1)}{\sqrt{n_1}} \right).$
 2048

\square

2052 **Lemma 11** (Limiting distribution of $\tilde{r}_{i,i}$). *Setting $\chi_E := \mathbb{E}[\chi]$, we have*

$$2054 \quad 2055 \quad 2056 \quad \tilde{r}_{i,i} = \text{Prox}(\epsilon_i + c_{z,i}\nu Z; c_{z,i}^2 \chi_E) + O_{L_2} \left(\frac{\text{polyLog}(n_1)}{\sqrt{n_1}} \right). \quad (196)$$

2057 *Proof.* Let us introduce the shorthands $\delta_r = \tilde{r}_{i \setminus i} - \epsilon_i - c_{z,i}\nu Z$ and $\delta_\chi = \gamma_i - c_{z,i}^2 \mathbb{E}[\chi]$. From
2058 Lemma 3,

$$2059 \quad 2060 \quad |\tilde{r}_{i,i} - \text{Prox}(\epsilon_i + c_{z,i}\nu Z; c_{z,i}^2 \mathbb{E}[\chi])| \quad (197)$$

$$2061 \quad = |\text{Prox}(\epsilon_i + c_{z,i}\nu Z + \delta_r; c_{z,i}^2 \mathbb{E}[\chi] + \delta_\chi) - \text{Prox}(\epsilon_i + c_{z,i}\nu Z; c_{z,i}^2 \mathbb{E}[\chi])| \quad (198)$$

$$2062 \quad 2063 \quad 2064 \quad = \frac{1}{1 + c_{z,i}^2 \check{\chi} \ell'''(\check{r})} \delta_r + \frac{\ell'(\check{r})}{1 + c_{z,i}^2 \check{\chi} \ell'''(\check{r})} \delta_\chi, \quad (199)$$

2065 using the two-variable mean value theorem, and eliciting the derivatives of the proximal function.
2066 $\check{r}, \check{\chi}$ are on the line between the points $(\tilde{r}_{i \setminus i} - \epsilon_i + c_{z,i}\nu Z + \delta_r, c_{z,i}^2 \mathbb{E}[\chi] + \delta_\chi)$ and $(\tilde{r}_{i \setminus i} - \epsilon_i + c_{z,i}\nu Z, c_{z,i}^2 \mathbb{E}[\chi])$. From Lemma 11, $\delta_r = O_{L_2}(\text{polyLog}(n_1)/\sqrt{n_1})$. For the second term

$$2068 \quad 2069 \quad 2070 \quad \mathbb{E} \left[\left| \frac{\ell'(\check{r})}{1 + c_{z,i}^2 \check{\chi} \ell'''(\check{r})} \delta_\chi \right| \right] \leq \|\ell'\|_\infty |\delta_\chi| \quad (200)$$

2071 But

$$2073 \quad 2074 \quad |\delta_\chi| \leq |\gamma_i - c_{z,i}\chi| + c_{z,i}|\chi - \mathbb{E}[\chi]| = O_{L_2} \left(\frac{\text{polyLog}(n_1)}{\sqrt{n_1}} \right) \quad (201)$$

2075 One thus reaches

$$2077 \quad 2078 \quad \frac{\ell'(\check{r})}{1 + c_{z,i}^2 \check{\chi} \ell'''(\check{r})} \delta_\chi = O_{L_2} \left(\frac{\text{polyLog}(n_1)}{\sqrt{n_1}} \right). \quad (202)$$

2079 Putting everything together, one thus reaches that

$$2081 \quad 2082 \quad \tilde{r}_{i,i} - \text{Prox}(\epsilon_i + c_{z,i}\nu Z; c_{z,i}^2 \mathbb{E}[\chi]) = O_{L_2} \left(\frac{\text{polyLog}(n_1)}{\sqrt{n_1}} \right). \quad (203)$$

2083 \square

2084 **Remark 6** (Second moment of r_i). *The second moment $\mathbb{E}[r_i^2]$ of the responses is $O(1)$, for any
2085 $i \in [n_1]$.*

2086 \square

2088 *Proof.* Fix any $i \in [n_1]$. The moment $\mathbb{E}[r_i^2]$ can be controlled as

$$2089 \quad 2090 \quad \mathbb{E}[r_i^2] \leq 2\mathbb{E}[(r_i - \tilde{r}_i)^2] + 2\mathbb{E}[\tilde{r}_i^2] \quad (204)$$

$$2091 \quad 2092 \quad \leq 2\mathbb{E}[\text{Prox}(\epsilon_i + c_{z,i}\nu Z; c_{z,i}^2 \mathbb{E}[\chi])^2] + O\left(\frac{\text{polyLog}(n_1)}{n_1}\right) \quad (205)$$

$$2093 \quad 2094 \quad \leq 4\mathbb{E}[\epsilon_i^2 + c_{z,i}^2 \nu^2 Z^2] + O\left(\frac{\text{polyLog}(n_1)}{n_1}\right) = O(1). \quad (206)$$

2095 \square

2097 E.3.5 COMPUTING THE EXPECTATIONS

2099 Self-consistent equation on ν —

2100 **Lemma 12.** *The expected squared norm $\nu_E^2 := \mathbb{E}[\|x^*\|^2]$ satisfies*

$$2102 \quad 2103 \quad 2104 \quad 2105 \quad \nu_E^2 = -\frac{1}{\lambda} \mathbb{E}_{Z,y,\epsilon,c_z} [\ell'(\text{Prox}(\epsilon_i + c_z \nu_E Z; c_z^2 \chi_E) + \epsilon, y) \text{Prox}(\epsilon_i + c_z \nu_E Z; c_z^2 \chi_E)] + O\left(\frac{1}{\sqrt{n_1}}\right), \quad (207)$$

2106 where \tilde{r} is a random variable distributed as \tilde{r}_i , given $y = y_i$.

2106 *Proof.* Using the stationarity condition,

$$2108 \quad -\lambda x^* = \frac{1}{n_1} \sum_{i \in [n_1]} \ell'_i(r_i) \tilde{f}_i. \quad (208)$$

2110 Thus,

$$2112 \quad -\lambda \nu^2 = \frac{1}{n_1} \sum_{i \in [n_1]} \mathbb{E} [\ell'_i(r_i)(r_i - \epsilon_i)] \quad (209)$$

2114 Since

$$2116 \quad |\ell'_i(r_i)(r_i - \epsilon_i) - \ell'_i(\tilde{r}_i)(\tilde{r}_i - \epsilon_i)| \leq [\|\ell'\|_\infty + \|\ell''\|_\infty (|\epsilon_i| + |r_i|)] |r_i - \tilde{r}_i| \quad (210)$$

2117 From Cauchy-Schwartz's inequality and Lemma 5,

$$2119 \quad \mathbb{E} [\|\ell'\|_\infty + \|\ell''\|_\infty (|\epsilon_i| + |r_i|)] |r_i - \tilde{r}_i| \leq \mathbb{E} \left[(\|\ell'\|_\infty + \|\ell''\|_\infty (|\epsilon_i| + |r_i|))^2 \right]^{1/2} O \left(\frac{\text{polyLog}(n_1)}{\sqrt{n_1}} \right). \quad (211)$$

2122 The boundedness of the first expectation follows from Remark 6, and the existence of the second
2123 moment of ϵ_i follows from the proof of Lemma 4. Thus

$$2124 \quad \frac{1}{n_1} \sum_{i \in [n_1]} \ell'_i(r_i)(r_i - \epsilon_i) = \frac{1}{n_1} \sum_{i \in [n_1]} \ell'_i(\tilde{r}_i)(\tilde{r}_i - \epsilon_i) + O_{L_1} \left(\frac{\text{polyLog}(n_1)}{\sqrt{n_1}} \right). \quad (212)$$

2127 We now appeal to Lemma 11 to elicit the second term. Let $\tilde{\delta}_i = \tilde{r}_{i,i} - p_i$, using the shorthand
2128 $p_i = \text{Prox}(\epsilon_i + c_{z,i} \nu Z; c_{z,i}^2 \mathbb{E}[\chi])$. Then,

$$2129 \quad |\ell'_i(\tilde{r}_i)(\tilde{r}_i - \epsilon_i) - \ell'(p_i)(p_i - \epsilon_i)| = |\ell''(\tilde{p}_i) \tilde{\delta}_i (p_i + \tilde{\delta}_i - \epsilon_i) + \ell'(p_i) \tilde{\delta}_i| \quad (213)$$

$$2131 \quad \leq \|\ell''\|_\infty \left[\tilde{\delta}_i^2 + 2|\tilde{\delta}_i|(|\epsilon_i| + c_{z,i}|Z|) \right] + \|\ell'\|_\infty |\tilde{\delta}_i| \quad (214)$$

2133 Using Cauchy-Schwartz's inequality, and the fact that $\tilde{\delta}_i = O_{L_2}(\text{polyLog}(n_1)/\sqrt{n_1})$ from Lemma 11,
2134 the term in square brackets is $O_{L_1}(\text{polyLog}(n_1)/\sqrt{n_1})$. Thus,

$$2136 \quad |\ell'_i(\tilde{r}_i)(\tilde{r}_i - \epsilon_i) - \ell'(p_i)(p_i - \epsilon_i)| = O_{L_1} \left(\frac{\text{polyLog}(n_1)}{\sqrt{n_1}} \right) \quad (215)$$

2138 and

$$2139 \quad \frac{1}{n_1} \sum_{i \in [n_1]} \ell'_i(r_i)(r_i - \epsilon_i) \quad (216)$$

$$2142 \quad = \frac{1}{n_1} \sum_{i \in [n_1]} \ell'_i(\text{Prox}(\epsilon_i + c_{z,i} \nu Z; c_{z,i}^2 \mathbb{E}[\chi])) (\text{Prox}(\epsilon_i + c_{z,i} \nu Z; c_{z,i}^2 \mathbb{E}[\chi]) - \epsilon_i) \quad (217)$$

$$2145 \quad + O_{L_1} \left(\frac{\text{polyLog}(n_1)}{\sqrt{n_1}} \right). \quad (218)$$

2147 Taking expectation,

$$2149 \quad \nu^2 = -\frac{1}{\lambda} \mathbb{E}_{Z,y,\epsilon} [\ell'(\text{Prox}(\epsilon_i + c_z \nu Z; c_z^2 \mathbb{E}[\chi]) + \epsilon, y) \text{Prox}(\epsilon_i + c_z \nu Z; c_z^2 \mathbb{E}[\chi])] + O \left(\frac{1}{\sqrt{n_1}} \right), \quad (219)$$

2151 which completes the proof. \square

2153 **Remark 7.** Note that alternatively, ν_E^2 may be expressed as

$$2156 \quad \nu_E^2 = \frac{1}{\lambda \chi_E} \mathbb{E} \left[\frac{\text{Prox}(\epsilon + c_z \nu Z; c_z^2 \chi_E) [\text{Prox}(\epsilon + c_z \nu_E Z; c_z^2 \chi_E) - c_z \nu_E Z]}{c_z^2} \right] + O \left(\frac{1}{\sqrt{n_1}} \right). \quad (220)$$

2159 by applying (98) to Lemma 12.

2160 **Self-consistent equation for χ —**2161 **Lemma 13.** Recall $\chi = 1/n_1 \text{tr}[H^{-1}]$ and $\chi_E = \mathbb{E}[\chi]$. We have

2162
$$\lambda\chi_E + \mathbb{E} \left[\frac{\ell''(\text{Prox}(\epsilon + c_z \nu_E Z; c_z^2 \chi_E); y) c_z^2 \chi_E}{1 + \ell''(\text{Prox}(\epsilon + c_z \nu_E Z; c_z^2 \chi_E); y) c_z^2 \chi_E} \right] = \frac{1}{\alpha} + O\left(\frac{\text{polyLog}(n_1)}{\sqrt{n_1}}\right) \quad (221)$$

2163 *Proof.* By the construction of the Hessian matrix H , we have

2164
$$\frac{1}{n_1} \sum_i H^{-1} \ell''(r_i) \tilde{f}_i \tilde{f}_i^\top + \lambda H^{-1} = I.$$

2165 It follows that

2166
$$\frac{1}{n_1^2} \sum_i \ell''(r_i) \tilde{f}_i^\top H^{-1} \tilde{f}_i + \lambda \chi = \frac{1}{\alpha}.$$

2167 Applying the matrix inversion lemma then gives us

2168
$$\frac{1}{n_1} \sum_i \frac{\ell''(r_i) c_{z,i}^2 \hat{\chi}_i}{1 + \ell''(r_i) c_{z,i}^2 \hat{\chi}_i} + \lambda \chi = \frac{1}{\alpha},$$

2169 where

2170
$$\hat{\chi}_i = \frac{1}{n_1} z_i^\top \hat{H}_i^{-1} z_i$$

2171 and

2172
$$\hat{H}_i = \frac{1}{n_1} \sum_{j \neq i} \ell''(r_j) \tilde{f}_j \tilde{f}_j^\top + \lambda I.$$

2173 We note that $\hat{\chi}$ is close to $1/n_1 \text{tr} \hat{H}_i^{-1}$. To formalize this intuition, introduce

2174
$$\hat{\chi}_{\setminus i} = \frac{1}{n_1} z_i^\top H_{\setminus i}^{-1} z_i = 1/n_1 \text{tr}[H_{\setminus i}^{-1}] + O_{L_k}\left(\frac{\text{polyLog}(n_1)}{\sqrt{n_1}}\right), \quad (222)$$

2175 the last equality following from Lemma G.3 of Karoui (2018). But

2176
$$|\hat{\chi}_i - \hat{\chi}_{\setminus i}| = \left| \frac{1}{n_1} z_i^\top \hat{H}_i^{-1} (H_{\setminus i} - \hat{H}_i) H_{\setminus i}^{-1} \right| \quad (223)$$

2177
$$\leq \frac{1}{\lambda^2} O_{L_k(1)} \left| \frac{1}{n_1} \sum_{j \neq i} \ell^{(3)}(\hat{r}_j)(r_j - r_{j, \setminus i}) \tilde{f}_j \tilde{f}_j^\top \right| \quad (224)$$

2178
$$\leq \frac{1}{\lambda^2} O_{L_k(1)} O_{L_k}(\text{polyLog}(n_1)) \sup_{j \neq i} |r_j - r_{j, \setminus i}| = O_{L_k}\left(\frac{\text{polyLog}(n_1)}{\sqrt{n_1}}\right). \quad (225)$$

2179 The derivation mirrors the steps of Lemma 9, and the last bound follows from Theorem 2.2 of Karoui (2018). Thus,

2180
$$\hat{\chi}_i = \frac{1}{n_1} \text{tr}[H_{\setminus i}^{-1}] + O_{L_k}\left(\frac{\text{polyLog}(n_1)}{\sqrt{n_1}}\right). \quad (226)$$

2181 Now in trace form, we approximate $1/n_1 \text{tr}[H_{\setminus i}^{-1}]$ back by $1/n_1 \text{tr}[\hat{H}_i^{-1}]$. This can be done along the exact same lines as the previous approximation, finally yielding

2182
$$\hat{\chi}_i = \frac{1}{n_1} \text{tr}[\hat{H}_i^{-1}] + O_{L_k}\left(\frac{\text{polyLog}(n_1)}{\sqrt{n_1}}\right). \quad (227)$$

2183 We now show that $\hat{\chi}_i$ is close to χ :

2184
$$|\hat{\chi}_i - \chi| = \frac{1}{n_1} |\text{tr}[\hat{H}_i^{-1} (H - \hat{H}_i) H^{-1}]| \quad (228)$$

2185
$$= \frac{1}{n_1^2} |\ell''(r_i)| |\text{tr}[\hat{H}_i^{-1} \tilde{f}_i \tilde{f}_i^\top H^{-1}]| \quad (229)$$

2186
$$\leq \frac{1}{n_1^2} \|\ell''\|_\infty \|\hat{H}_i^{-1} H^{-1}\| \|\tilde{f}_i\|^2 = O_{L_k}\left(\|\ell''\|_\infty \frac{\text{polyLog}(n_1)}{n_1 \lambda^2}\right) \quad (230)$$

41

Furthermore, we can also approximate $\ell''(r_i) \approx \ell''(\tilde{r}_i)$. More precisely,

$$|\ell''(r_i) - \ell''(\tilde{r}_i)| = O_{L_k} \left(\|\ell^{(3)}\|_\infty \frac{\text{polyLog}(n_1)}{n_1} \right) \quad (231)$$

Thus,

$$\frac{\ell''(r_i)c_{z,i}^2\hat{\chi}_i}{1 + \ell''(r_i)c_{z,i}^2\hat{\chi}_i} = \frac{\ell''(\tilde{r}_i)c_{z,i}^2\chi}{1 + \ell''(\tilde{r}_i)c_{z,i}^2\chi} + O_{L_k} \left(\frac{\text{polyLog}(n_1)}{\sqrt{n_1}} \right) \quad (232)$$

Observe that further

$$\left| \frac{\ell''(\tilde{r}_i)c_{z,i}^2\chi}{1 + \ell''(\tilde{r}_i)c_{z,i}^2\chi} - \frac{\ell''(\tilde{r}_i)c_{z,i}^2\mathbb{E}[\chi]}{1 + \ell''(\tilde{r}_i)c_{z,i}^2\mathbb{E}[\chi]} \right| = \left| \frac{\ell''(\tilde{r}_i)c_{z,i}^2(\chi - \mathbb{E}[\chi])}{(1 + \ell''(\tilde{r}_i)c_{z,i}^2\mathbb{E}[\chi])(1 + \ell''(\tilde{r}_i)c_{z,i}^2\chi)} \right| \quad (233)$$

$$\leq \|\ell''\|_\infty O_{L_2} \left(\frac{\text{polyLog}(n_1)}{\sqrt{n_1}} \right), \quad (234)$$

using the concentration of χ , see Lemma 9, and that $0 \leq c_{z,i} \leq 1$. Summarizing,

$$\frac{\ell''(r_i)c_{z,i}^2\hat{\chi}_i}{1 + \ell''(r_i)c_{z,i}^2\hat{\chi}_i} = \frac{\ell''(\tilde{r}_i)c_{z,i}^2\mathbb{E}[\chi]}{1 + \ell''(\tilde{r}_i)c_{z,i}^2\mathbb{E}[\chi]} + O_{L_2} \left(\frac{\text{polyLog}(n_1)}{\sqrt{n_1}} \right). \quad (235)$$

Finally, let $\tilde{\delta}_i = \tilde{r}_{i,i} - p_i$, using the shorthand $p_i = \text{Prox}(\epsilon_i + c_{z,i}\nu Z; c_{z,i}^2\mathbb{E}[\chi])$. One can control

$$\left| \frac{\ell''(\tilde{r}_i)c_{z,i}^2\mathbb{E}[\chi]}{1 + \ell''(\tilde{r}_i)c_{z,i}^2\mathbb{E}[\chi]} - \frac{\ell''(p_i)c_{z,i}^2\mathbb{E}[\chi]}{1 + \ell''(p_i)c_{z,i}^2\mathbb{E}[\chi]} \right| \leq \frac{1}{\lambda} \|\ell^{(3)}\|_\infty |\tilde{\delta}_i|. \quad (236)$$

using $\chi \leq 1/\lambda$. From Lemma 11, $\tilde{\delta}_i = O_{L_2}(\text{polyLog}(n_1)/\sqrt{n_1})$. Putting all intermediary results together, and taking the expectation, it holds that

$$\mathbb{E} \left[\frac{\ell''(\text{Prox}_i(c_z\nu_E Z; c_z^2\chi_E); y)c_z^2\chi_E}{1 + \ell''(\text{Prox}_i(c_z\nu_E Z; c_z^2\chi_E); y)c_z^2\chi_E} \right] + \lambda\chi_E = \frac{1}{\alpha} + O \left(\frac{\text{polyLog}(n_1)}{\sqrt{n_1}} \right), \quad (237)$$

proving the lemma. \square

E.3.6 LAST STEPS

We begin by defining the constants ν and χ as solutions of the following self-consistent equations:

$$\nu^2 = \frac{1}{\lambda\chi} \mathbb{E} \left[\frac{z^* [z^* - c_z\nu Z]}{c_z^2} \right], \quad (238)$$

$$\mathbb{E} \left[\frac{\ell''(z^*; y)c_z^2\chi}{1 + \ell''(z^*; y)c_z^2\chi} \right] + \lambda\chi = \frac{1}{\alpha} \quad (239)$$

where

$$z^* = \text{Prox}(\epsilon + c_z\nu Z; c_z^2\chi).$$

and take for granted that ν and χ exist uniquely. We further assume the regularity conditions for the map $(\mu_q, \mu_\xi, b) \mapsto (\nu, \chi)$.

Assumption 3. *The map $(\mu_q, \mu_\xi, b) \mapsto (\nu, \chi)$ is continuous and*

$$(\nu_E, \chi_E) \rightarrow (\nu, \chi)$$

as $n_1 \rightarrow \infty$, where the convergence holds uniformly over (μ_q, μ_ξ, b) in any compact set.

Define the asymptotic inner objective function by

$$\phi_A(\mu_q, \mu_\xi, b) := \mathbb{E}_{c_z, c_q, c_\xi, z, y} [\ell(z^* + \epsilon; y)] + \frac{\lambda}{2} \nu^2$$

2268 where we recall that $\epsilon = \mu_q c_q + \mu_\xi c_\xi + c_z z + b$, $z \sim \mathcal{N}(0, 1)$ independent of c_q , c_ξ , and c_z . Let
 2269

$$2270 \quad G := \min_{\mu_q, \mu_\xi, b} g_d(\mu_q, \mu_\xi, b), \quad g_d(\mu_q, \mu_\xi, b) := \phi_d(\mu_q, \mu_\xi, b) + \frac{\lambda}{2} [\mu_q \quad \mu_\xi] \begin{bmatrix} 1 & \gamma \\ \gamma & 1 \end{bmatrix}^{-1} \begin{bmatrix} \mu_q \\ \mu_\xi \end{bmatrix} \quad (240)$$

2273 and

$$2274 \quad G_A := \min_{\mu_q, \mu_\xi, b} g_A(\mu_q, \mu_\xi, b), \quad g_A(\mu_q, \mu_\xi, b) := \phi_A(\mu_q, \mu_\xi, b) + \frac{\lambda}{2} [\mu_q \quad \mu_\xi] \begin{bmatrix} 1 & \gamma \\ \gamma & 1 \end{bmatrix}^{-1} \begin{bmatrix} \mu_q \\ \mu_\xi \end{bmatrix} \quad (241)$$

2277 so that G denotes our original optimization problem and G_A is the surrogate problem where the
 2278 random n_1 -dependent function ϕ has been replaced by ϕ_A . In establishing the result of Theorem 4
 2279 it remains to establish the asymptotic equivalence between G and G_A . We begin with the following
 2280 brief result which establishes the sufficiency in considering minimization of g_d and g_A over a
 2281 compact set in \mathbb{R}^3 .

2282 **Lemma 14.** *Let $v = (\mu_q, \mu_\xi, b)$ and set*

$$2284 \quad v_d^* = \arg \min_{v \in \mathbb{R}^3} g_d(v), \quad v_A^* = \arg \min_{v \in \mathbb{R}^3} g_A(v).$$

2286 For $\delta \in (0, 1)$, there exists a compact set $\mathcal{V} := \mathcal{V}(\delta) \subset \mathbb{R}^3$, not depending on d (equivalently on
 2287 n_1), such that

$$2288 \quad v_d^*, v_A^* \in \mathcal{V}$$

2289 for all $d \in \mathbb{N}$, with probability exceeding $1 - \delta$.

2291 *Proof.* If a function $h : \mathbb{R}^p \rightarrow \mathbb{R}$ is coercive, in the sense that

$$2293 \quad \lim_{\|x\| \rightarrow \infty} h(x) = +\infty,$$

2295 then h has bounded level sets

$$2297 \quad \text{lev}_h(c) := \{x \in \mathbb{R}^p : h(x) \leq c\} \quad \text{for } c \in \mathbb{R}.$$

2298 To show that g_A is coercive note that if $\|v\| \rightarrow \infty$, but $\|(\mu_q, \mu_\xi)\|$ remains bounded, then necessarily
 2299 $|b| \rightarrow \infty$ and (A5) implies $g_A \rightarrow \infty$. If indeed $\|(\mu_q, \mu_\xi)\| \rightarrow \infty$, then due to the quadratic
 2300 regularization term

$$2302 \quad Q(\mu_q, \mu_\xi) = \frac{\lambda}{2} [\mu_q \quad \mu_\xi] \begin{bmatrix} 1 & \gamma \\ \gamma & 1 \end{bmatrix}^{-1} \begin{bmatrix} \mu_q \\ \mu_\xi \end{bmatrix}$$

2304 we have

$$2305 \quad \lim_{\|(\mu_q, \mu_\xi)\| \rightarrow \infty} g_A(\mu_q, \mu_\xi, b) = \infty.$$

2306 since $\ell \geq 0$, and so g_A is indeed coercive. Moreover, the map $v \mapsto (\nu, \chi)$ is continuous by Assumption 3, and so ϕ_A is continuous in v by continuity of ℓ and the proximal operator. It then follows that g_A is continuous in v and so, having established coercivity, its level sets are closed and bounded, hence compact. From similar observations and reasoning, we see that $g_d(v)$ is also continuous. Since $\{(\epsilon_i, y_i)\}_{i \geq 1}$ are sub-Gaussian and ℓ has a quadratic majorant by Remark 3, $\{\ell(\epsilon_i; y_i)\}_{i \geq 1}$ are sub-exponential and so by Bernstein's Inequality (Vershynin, 2018, Theorem 2.8.1), for any $\kappa > 0$ sufficiently large,

$$2314 \quad \mathbb{P} \left(\left| \frac{1}{n_1} \sum_{i \in [n_1]} \ell(\epsilon_i; y_i) - \mathbb{E}[\ell(\epsilon; y)] \right| > \kappa \right) \leq 2 \exp(-C\kappa^2 n_1)$$

2317 where $C > 0$ is an absolute constant. Therefore, taking $\kappa > 0$ large so that
 2318 $\sum_{n_1 \geq 1} 2 \exp(-C\kappa^2 n_1) \leq \delta$, by a union bound, one can ensure that for
 2319

$$2320 \quad \Omega_\delta := \bigcap_{n_1 \geq 1} \left\{ \left| \frac{1}{n_1} \sum_{i \in [n_1]} \ell(\epsilon_i; y_i) - \mathbb{E}[\ell(\epsilon; y)] \right| \leq \kappa \right\},$$

2322 $\mathbb{P}(\Omega_\delta) \geq 1 - \delta$. In the remainder of the proof, we work on the event Ω_δ . Letting $\lambda_{\min} > 0$ denote
 2323 the smallest eigenvalue of the positive definite matrix in $Q(\mu_q, \mu_\xi)$, we have
 2324

$$2325 \frac{\lambda_{\min}}{2} \|(\mu_{q,d}^*, \mu_{\xi,d}^*)\|^2 \leq g_d(v_d^*) \leq \mathbb{E}[\ell(\epsilon, y)] + \kappa =: \beta_0$$

2326 where we write the optimal solution by $v_d^* = (\mu_{q,d}^*, \mu_{\xi,d}^*, b_d^*)$. The first inequality above is due to
 2327 $g_d(v) \geq Q(\mu_q, \mu_\xi)$ whereas the second follows from $g_d(v_d^*) \leq g_d(0)$. Thus, we find that the first
 2328 two components of v_d^* are bounded uniformly (independent of d) — in particular
 2329

$$2330 \|\mu_{q,d}^*, \mu_{\xi,d}^*\| \leq \sqrt{\frac{2\beta_0}{\lambda_{\min}}} =: B_0$$

2332 Moreover, as

$$2333 g_d(v) \geq \mathbb{E}[\ell(\epsilon, y)] - \kappa \rightarrow \infty$$

2334 as $|b| \rightarrow \infty$ for fixed (μ_q, μ_ξ) by (A5), there exists $B_1 > 0$ — independent of d — such that

$$2335 \inf_{\|(\mu_q, \mu_\xi)\| \leq B_0, |b| > B_1} g_d(\mu_q, \mu_\xi, b) \geq \beta_0 + 1$$

2337 Hence, on Ω_δ , the minimizer v_d^* of g_d lies in the set

$$2338 \mathcal{U} := \{(\mu_q, \mu_\xi, b) : \|(\mu_q, \mu_\xi)\| \leq B_0, |b| \leq B_1\}$$

2340 which is compact by continuity of g_d and importantly does not depend on d . Therefore, taking
 2341 $\beta = \max(g_A(0), \beta_0 + 1)$, having previously established the level-compactness of g_A , we have that

$$2342 \mathcal{V} := \mathcal{U} \cup \text{lev}_{g_A}(\beta)$$

2343 is compact and contains v_A^* and v_d^* for all $d \in \mathbb{N}$. \square

2344 The compactness yielded by the above lemma is an important fact that will be carried in the subsequent
 2345 results. Notably, we remark that all preliminaries that have been established hereunto involving
 2346 $O(b_n)$ errors terms for some sequence (b_n) hold uniformly over the above defined set \mathcal{V} . To see
 2347 why, simply recall the meaning of writing $a_n = O(b_n)$ is to infer the existence of an n -independent
 2348 constant $C > 0$ such that

$$2349 a_n \leq C \cdot b_n$$

2350 for n sufficiently large. Revisiting our previous results, one can check that, given a sequence $a_n(v)$
 2351 parameterized by $v \in \mathcal{V}$, the map $v \rightarrow C(v)$, namely the map from the parameter to the order-
 2352 defining constant, is continuous. This turns out to be a simple consequence of the continuity of the
 2353 loss ℓ . Therefore, $\sup_{v \in \mathcal{V}} C(v) < \infty$, and, as stated, all previous results hold uniformly over $v \in \mathcal{V}$.

2354 **Lemma 15** (Uniform convergence to ϕ_A). *We have*

$$2355 \sup_{v \in \mathcal{V}} |\mathbb{E}\phi_d(v) - \phi_A(v)| \longrightarrow 0$$

2356 as $d \rightarrow \infty$

2357 *Proof.* Let

$$2358 z_{n_1}^* := \epsilon + \text{Prox}(\epsilon + c_z \nu_E Z; c_z^2 \chi_E),$$

2359 noting that the dependence on n_1 in $z_{n_1}^*$ comes through the deterministic n_1 -dependent quantities
 2360 χ_E and ν_E . Recall that by Assumption 3, $(\nu_E, \chi_E) \longrightarrow (\nu, \chi)$ uniformly over \mathcal{V} . By continuity of
 2361 the proximal operator, applying the continuous mapping theorem together with Slutsky's theorem
 2362 yields convergence of

$$2363 z_{n_1}^* \xrightarrow{P} \epsilon + z^*.$$

2364 Note that this convergence holds uniformly over \mathcal{V} as the proximal operator is non-expansive (i.e.
 2365 Lipschitz). For some \hat{r}_i lying between \tilde{r}_i and r_i , and \check{r}_i between \tilde{r}_i and $z_{n_1}^*$, a Taylor expansion
 2366 yields

$$2367 \begin{aligned} \mathbb{E}[\phi_d(v)] &= \frac{1}{n_1} \sum_{i \in [n_1]} \left(\mathbb{E}[\ell(z_{n_1}^*; y_i)] + \mathbb{E}[\ell'(\hat{r}_i; y_i)(r_i - \tilde{r}_i)] + \mathbb{E}[\ell'(\check{r}_i; y_i)(\tilde{r}_i - z_{n_1}^*)] \right) \\ &\quad + \frac{\lambda}{2} \nu_E^2 + O\left(\frac{1}{\sqrt{n_1}}\right) \\ &= \mathbb{E}[\ell(z_{n_1}^*; y)] + O\left(\frac{\text{polyLog}(n_1)}{\sqrt{n_1}}\right) + \frac{\lambda}{2} \nu_E^2 \end{aligned}$$

2376 where in the second equality we used $\|\ell'\|_\infty = O(\text{polyLog}(n_1))$ and applied the upper bound on
2377 $|r_i - \tilde{r}_i|$ from Lemma 5, and Lemma 11 to bound $|\tilde{r}_i - z_{n_1}^*|$. Now, for $M > 0$, decomposing
2378

$$2379 \mathbb{E}[\ell(z_{n_1}^*; y)] = \mathbb{E} \left[\ell(z_{n_1}^*; y) 1_{\{\ell(z_{n_1}^*; y) \leq M\}} \right] + \mathbb{E} \left[\ell(z_{n_1}^*; y) 1_{\{\ell(z_{n_1}^*; y) > M\}} \right],$$

2381 we have that

$$2382 \mathbb{E} \left[\ell(z_{n_1}^*; y) 1_{\{\ell(z_{n_1}^*; y) \leq M\}} \right] \rightarrow \mathbb{E} \left[\ell(z^* + \epsilon; y) 1_{\{\ell(z^*; y) \leq M\}} \right]$$

2383 uniformly over \mathcal{V} by the Dominated Convergence Theorem. Uniform convergence of $(\nu_E, \chi_E) \rightarrow$
2384 (ν, χ) yields uniform boundedness in L^2 of $(\ell(z_{n_1}^*; y))_{n_1 \geq 1}$ since ℓ has bounded second derivative.
2385 Namely,

$$2386 \sup_{v \in \mathcal{V}} \sup_{n_1 \in \mathbb{N}} \mathbb{E}[\ell(z_{n_1}^*; y)^2] < \infty$$

2388 which provides uniform integrability of $(\ell(z_{n_1}^*; y))_{n_1 \geq 1}$. That is for arbitrary $\varepsilon > 0$, there exists
2389 $M > 0$ for which

$$2390 \sup_{v \in \mathcal{V}} \mathbb{E} \left[\ell(z_{n_1}^*; y) 1_{\{\ell(z_{n_1}^*; y) > M\}} \right] < \varepsilon$$

2392 as $n_1 \rightarrow \infty$ and so, uniformly over \mathcal{V} , one has

$$2393 \mathbb{E}[\ell(z_{n_1}^*; y)] \rightarrow \mathbb{E}[\ell(z^* + \epsilon; y)]$$

2395 Lastly, by Assumption 3, $\lambda\nu_E^2/2 \rightarrow \lambda\nu^2/2$ uniformly over \mathcal{V} , which yields the result.

2396 \square

2397 **Lemma 16** (Uniform convergence to $\mathbb{E}\phi(v)$). *We have*

$$2399 \sup_{v \in \mathcal{V}} |\phi(v) - \mathbb{E}[\phi(v)]| \xrightarrow{P} 0$$

2402 as $d \rightarrow \infty$

2403 *Proof.* We include the parametrization of v in $x_d^*(v)$, $F_d^*(v)$, and other quantities where the parameters $v = (\mu_q, \mu_\xi, b)$ were previously fixed and hence omitted in the notation. Note that continuous
2404 differentiability of the map $v = (\mu_q, \mu_\xi, b) \mapsto \ell(\langle c_{z,i} z_i, x \rangle + c_{q,i} \mu_q + c_{\xi,i} \mu_\xi + b; y_i)$ carries to the
2405 map $v \mapsto x_d^*(v)$ because strong convexity from the regularizer $\lambda/2\|x\|^2$ ensures a unique minimizer
2406 and the Implicit Function Theorem provides that the minimizer depends smoothly on v . Thus, the
2407 map $v \mapsto x_d^*(v)$ is uniformly bounded over \mathcal{V} as the set is compact. Then, observe that

$$2410 \sup_{v \in \mathcal{V}} \frac{\lambda}{2} \|x_d^*(v)\|^2 \leq F_d^*(0; v) = \frac{1}{n_1} \sum_{i \in [n_1]} \ell(\epsilon_i(v); y_i) = O(\text{polyLog}(n_1))$$

2412 by compactness of \mathcal{V} and since $\sup_{i \leq n_1} |\epsilon_i| = O(\text{polyLog}(n_1))$ by the proof of Lemma 4. Again,
2413 invoking compactness of \mathcal{V} and Lemma 4, we have that

$$2415 \sup_{v \in \mathcal{V}} \left\| \nabla_v \left[\frac{1}{n_1} \sum_{i \in [n_1]} \ell_i(\langle \tilde{f}_i, x_d^*(v) \rangle) \right] \right\| = O(\text{polyLog}(n_1))$$

2419 since by the Implicit Function theorem, $\partial_v x_d^*(v) = O(\text{polyLog}(n_1))$, and we have that $\|\ell'\|_\infty =$
2420 $O(\text{polyLog}(n_1))$. Putting these results together, we have that ϕ_d is Lipschitz on \mathcal{V} with a poly-
2421 logarithmic constant which we denote by L_d . Namely,

$$2422 |\phi(v) - \phi(w)| \leq L_d \|v - w\| = \|v - w\| \cdot O(\text{polyLog}(n_1))$$

2423 for $v, w \in \mathcal{V}$. Lipschitzness of $\mathbb{E}\phi$ follows by linearity of the expectation and thus the centered
2424 process $Z := \phi - \mathbb{E}\phi$ is $2L_d$ -Lipschitz. We finish the proof with a covering-net argument. Fix
2425 $\varepsilon > 0$, set

$$2426 \delta_d = \frac{\varepsilon}{4L_d}$$

2428 By compactness of \mathcal{V} , let $v^{(1)}, \dots, v^{(N_d)}$ be points in \mathcal{V} such that

$$2429 \mathcal{V} \subset \bigcup_{m=1}^{N_d} B_{\delta_d}(v^{(m)})$$

2430 where $B_{\delta_d}(v^{(m)})$ denotes a ball of radius δ_d centered at $v^{(m)}$. A standard volume argument shows
 2431 that we may take $N_d = O(\text{polyLog}(n_1))$ as $L_d = O(\text{polyLog}(n_1))^2$. Using the variance bound of
 2432 Lemma 8, Chebyshev's inequality yields

$$2434 \quad \mathbb{P}\left(|Z(v^{(m)})| > \frac{\varepsilon}{2}\right) = O(\text{polyLog}(n_1)/n_1).$$

2435 for $m \in [N_d]$. A union bound then provides

$$2437 \quad \mathbb{P}\left(\max_{m \leq N_d} |Z(v^{(m)})| > \frac{\varepsilon}{2}\right) = O(\text{polyLog}(n_1)/n_1)$$

2439 as $N_d = O(\text{polyLog}(n_1))$. By construction of the cover $\{v^{(1)}, \dots, v^{(N_d)}\}$, for any $v \in \mathcal{V}$, there
 2440 exists $v^{(m)}$ such that

$$2442 \quad |Z(v)| \leq |Z(v^{(m)})| + \frac{\varepsilon}{2}.$$

2443 Hence,

$$2444 \quad \mathbb{P}\left(\sup_{v \in \mathcal{V}} |\phi(v) - \mathbb{E}[\phi(v)]| > \varepsilon\right) \leq \mathbb{P}\left(\max_{m \leq N_d} |Z(v^{(m)})| > \frac{\varepsilon}{2}\right) \rightarrow 0$$

2446 as $d \rightarrow \infty$ which concludes the proof. \square

2448 The following result marks the grand conclusion of the section and completes the proof of Theorem
 2449 4.

2450 **Lemma 17.** *We have*

$$2451 \quad |G - G_A| \xrightarrow{P} 0 \quad (242)$$

2453 as $d \rightarrow \infty$.

2454 *Proof.* Let v^* and v_A^* be the respective minimizers of g and g_A , hiding the d -dependence for nota-
 2455 tional ease. Setting

$$2457 \quad \Delta = \sup_{v \in \mathcal{V}} |\phi(v) - \phi_A(v)|,$$

2458 we have

$$2459 \quad G - G_A = g(v^*) - g_A(v_A^*) \leq g(v_A^*) - g_A(v_A^*) \leq \Delta.$$

2460 By symmetry, we obtain

$$2461 \quad |G - G_A| \leq \Delta$$

2462 and so the result follows by the triangle inequality in applying Lemma 15 and Lemma 16. \square

2464 F PROOF OF THEOREM 5

2466 Appendix E details the asymptotic characterization of the learning of the attention model 6, in
 2467 the asymptotic limit of Assumption 1. We now expound the related characterization for the linear
 2468 classifier baselines $L_{w,b}^{\text{pool}}$ (4) and $L_{w,b}^{\text{vec}}$ (3), summarized in the main text in Theorem 5. The first part
 2469 of the latter for the pooled classifier $L_{w,b}^{\text{pool}}$ (4) was already covered in Corollary 3 in Appendix E, as
 2470 it coincides with a special case of Theorem 4 for the attention model.

2472 We consequently turn to analyzing the learning of the linear classifier acting on the vectorized inputs
 2473 $L_{w,b}^{\text{vec}}$ (3), described in subsection 1.1. Formally, let us consider the empirical risk minimization
 2474 problem

$$2476 \quad w^*, b^* = \underset{w \in \mathbb{R}^{Ld}, b \in \mathbb{R}}{\underset{i \in [n]}{\text{argmin}}} \frac{1}{n} \sum \ell(\langle f_i, w \rangle + \langle \mu(v_i), w \rangle + b, y_i) + \frac{\lambda}{2} \|w\|^2 := \underset{b \in \mathbb{R}}{\text{argmin}} \phi(b) \quad (243)$$

2479 where we denote $f_i := \text{vec}(Z_i)$ the flattened background term of the inputs, and $\mu(v_i) =$
 2480 $\theta \text{vec}(v_i \xi^\top)$. We denote by p_v the law of v over $\{0, 1\}^L$, and recall that $p_v(v = 0_L) := 1 - \pi$
 2481 by definition. Note also that in these notations, $y = 1 - \delta_{v,0_L}$ is a function of v .

2483 ²Without loss of generality we may assume \mathcal{V} is a closed sphere of radius $r > 0$ and by (Vershynin, 2018,
 Corollary 4.2.13), $N_d \leq (2r\delta_d^{-1} + 1)^3$.

Proposition 3 (Test error and train loss of the linear classifier on vectorized inputs). *The test error and train loss of the linear classifier acting on the vectorized inputs, described in subsection 1.1, trained with the empirical risk minimization (243), concentrate in the asymptotic limit of Assumption 1 to*

$$\mathcal{E}_{\text{train}} = \min_b \mathbb{E}_{y, v', z} [\ell(z^* + b, y)] + \frac{\lambda}{2} \nu^2$$

$$\mathcal{E}_{\text{test}} = (1 - \pi) \Phi \left(\frac{b^*}{\nu} \right) + \mathbb{E}_{v \neq 0_L} \left[\Phi \left(\frac{-b^* - \theta m(v)}{\nu} \right) \right].$$

For any $v \in \mathbb{R}^L$ we noted $m(v) = v_1 m_1 + \dots + v_L m_L$, where the summary statistics $\nu, \chi, \{m_k\}_{k \in [L]}, b^*$ are given by the set of self-consistent equations:

$$m_k = -\frac{1}{\lambda} \mathbb{E}_{y, v', z} \left[\ell'(z^* + b^*, y) \left(\theta^2 v'_k + \frac{m_k}{\nu} z \right) \right]$$

$$\nu^2 = -\frac{1}{\lambda} \mathbb{E}_{y, v', z} [\ell'(z^* + b^*, y) z^*]$$

$$\frac{L}{\alpha \chi} = \mathbb{E}_{y, v', z} \left[\frac{\ell''(z^* + b^*, y)}{1 + \ell''(z^* + b^*, y) \chi} \right] + \lambda$$

where $v' \sim p_v$, $y = 1 - \delta_{v, 0_L}$, $z \sim \mathcal{N}(0, 1)$, and

$$b^* = \arg \min_b \mathbb{E} [\ell(z^* + b^*, y)] + \frac{\lambda}{2} \nu^2.$$

We employed the shorthand $z^* = \text{prox}_{\chi \ell(\cdot + b^*, y)}(\nu z + m(v'))$.

Note that the data distribution formally coincides with a Gaussian mixture with $2^L + 1$ isotropic clusters, and the analysis of logistic regression on such data is covered in Loureiro et al. (2021). In this appendix, we rather give a more concise derivation in the specific setting considered, leveraging once more the leave-one-out approach. The following derivation closely follows the steps of the proof of Theorem 4, detailed in Appendix E. For the sake of conciseness, we only provide an informal sketch of the derivation. Before doing so, let us observe that the equations (244) are amenable to being massaged into a form closer to that of Loureiro et al. (2021); Mignacco et al. (2020a).

Remark 8. The system of self-consistent equations 244 can also be written as

$$\hat{\chi} = \frac{1}{\chi} \mathbb{E} \left[1 - \text{prox}'_{\chi \ell(\cdot + b^*, y)}(\nu z + m(v')) \right], \quad \chi = \frac{L}{\alpha} \frac{1}{\lambda + \hat{\chi}} \quad (244)$$

$$\hat{m}_k = \frac{\theta^2}{\chi} \mathbb{E} [(z^* - \nu z - m(v')) v'_k], \quad m_k = \frac{\hat{m}_k}{\lambda + \hat{\chi}} \quad (245)$$

$$\hat{\nu}^2 = \frac{1}{\chi^2} \mathbb{E} [(z^* - m(v') - \nu z)^2], \quad \nu^2 = \frac{\frac{L}{\alpha} \hat{\nu}^2 + \frac{1}{\theta^2} \sum_{k=1}^L \hat{m}_k^2}{(\lambda + \hat{\chi})^2}. \quad (246)$$

Proof. We begin by noting that the derivative of the proximal operator reads

$$\frac{\partial \text{prox}_{\gamma \ell(\cdot)}(\omega)}{\partial \omega} = \frac{1}{1 + \gamma \ell''(\text{prox}_{\gamma \ell(\cdot)}(\omega))}. \quad (247)$$

Therefore,

$$\hat{\chi} = \mathbb{E} \left[\frac{\ell''(z^* + b^*, y)}{1 + \ell''(z^* + b^*, y) \chi} \right] \quad (248)$$

and the last equation of (244) can thus be written as

$$\chi = \frac{L}{\alpha} \frac{1}{\lambda + \hat{\chi}}. \quad (249)$$

Let us now focus on the first equation of (244). We have

$$0 = \lambda m_k + \theta^2 \mathbb{E} [\ell'(z^* + b^*, y) v'_k] + \frac{m_k}{\nu} \mathbb{E} [\ell'(z^* + b^*, y) z] \quad (250)$$

$$= \lambda m_k - \frac{\theta^2}{\chi} \mathbb{E} [(z^* - \nu z - m(v') v'_k) + m_k \mathbb{E} \left[\frac{\ell''(z^* + b^*, y)}{1 + \chi \ell''(z^* + b^*, y)} \right]]. \quad (251)$$

Thus,

$$m_k = \frac{\hat{m}_k}{\lambda + \hat{\chi}}. \quad (252)$$

Finally, starting from the second equation of (244),

$$0 = \lambda \nu^2 - \frac{1}{\chi} \mathbb{E} [(z^* - \nu z - m(v'))^2] - \frac{1}{\chi} \mathbb{E} [(z^* - \nu z - m(v'))(\nu z + m(v'))] \quad (253)$$

$$= \lambda \nu^2 - \frac{1}{\chi} \mathbb{E} [(z^* - \nu z - m(v'))^2] - \frac{1}{\theta^2} \sum_{k=1}^L \hat{m}_k m_k + \nu^2 \mathbb{E} \left[\frac{\ell''(z^* + b^*, y)}{1 + \chi \ell''(z^* + b^*, y)} \right] \quad (254)$$

$$= \lambda \nu^2 - \frac{1}{\chi^2} \frac{L}{\alpha} \frac{1}{\lambda + \hat{\chi}} \mathbb{E} [(z^* - \nu z - m(v'))^2] \quad (255)$$

$$- \frac{1}{\theta^2(\lambda + \hat{\chi})} \sum_{k=1}^L \hat{m}_k^2 + \nu^2 \mathbb{E} \left[\frac{\ell''(z^* + b^*, y)}{1 + \chi \ell''(z^* + b^*, y)} \right] \quad (256)$$

Thus

$$\nu^2 = \frac{\frac{L}{\alpha} \hat{\nu}^2 + \frac{1}{\theta^2} \sum_{k=1}^L \hat{m}_k^2}{(\lambda + \hat{\chi})^2} \quad (257)$$

□

Sketch of the derivation — For a given b , let us introduce

$$\Phi = \underset{w}{\operatorname{argmin}} \frac{1}{n} \sum_{j \in [n]} \ell(\langle f_j, w \rangle + \langle \mu(v_j), w \rangle + b, y_j) + \frac{\lambda}{2} \|w\|^2$$

$$\Phi_{\setminus i} = \underset{w}{\operatorname{argmin}} \frac{1}{n} \sum_{j \neq i} \ell(\langle f_j, w \rangle + \langle \mu(v_j), w \rangle + b, y_j) + \frac{\lambda}{2} \|w\|^2$$

$$\tilde{\Phi} = \Phi_{\setminus i} + \min_w \left[\frac{1}{n} \ell(\langle f_i, w \rangle + \langle \mu(v_i), w \rangle + b, y_i) + \frac{1}{2} (w - w_{\setminus i}^*)^\top H_{\setminus i} (w - w_{\setminus i}^*) \right],$$

where the Hessian is defined as

$$H_{\setminus i} = \frac{1}{n} \sum_{j \neq i} \ell''(\langle f_j, w \rangle + \langle \mu(v_j), w \rangle + b, y_j) (f_j + \mu(v_j)) (f_j + \mu(v_j))^\top + \lambda I_{Ld}$$

Then it holds that

$$\langle f_i + \mu(v_i), w^* \rangle = \operatorname{prox}_{\chi \ell(\cdot, y_i)}(\langle f_i + \mu(v_i), w_{\setminus i}^* \rangle)$$

where

$$\chi = \frac{1}{n} \left[f_i^\top H_{\setminus i}^{-1} f_i + \mu(v_i)^\top H_{\setminus i}^{-1} \mu(v_i) + 2 f_i^\top H_{\setminus i}^{-1} \mu(v_i) \right] \approx \frac{1}{n} \operatorname{tr}[H^{-1}].$$

We used that $\|\mu(v_i) \mu(v_i)^\top\|, \|\mu(v_i) f_i^\top\| \ll \|f_i f_i^\top\|$.

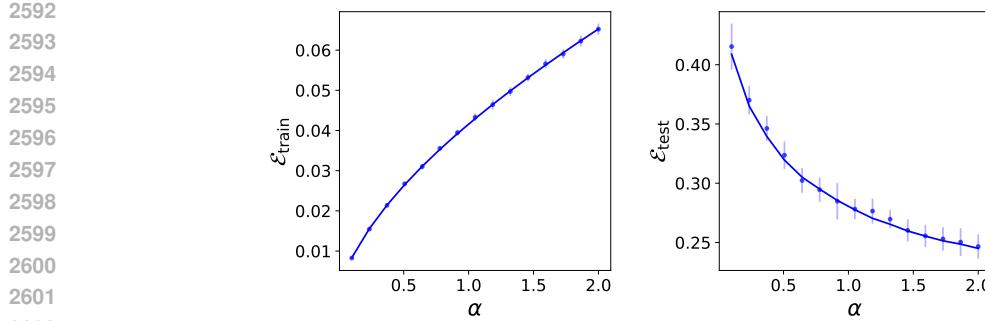


Figure 4: Train loss (**left**) and test error (**right**) of the linear classifier acting on the vectorized outputs, as discussed in subsection 1.1 of the main text, for $L = 3, R = 2, \theta = 2, \pi = 0.5, \lambda = 0.01$. Solid lines: theoretical characterization of Proposition 3. Dots : numerical simulations in dimension $d = 1000$. Error bars indicate one standard deviation over 8 trials.

Probabilistic analysis — In similar fashion to the proof of Theorem 4, one can show that the parameter χ satisfies self-consistently

$$\frac{L}{\alpha\chi} = \mathbb{E}_{z,y,v} \left[\frac{\ell''(z^*, y)}{1 + \ell''(z^*, y)\chi} \right] + \lambda.$$

where $z^* = \text{prox}_{\chi\ell(\cdot, y)}(\nu z + m(v))$, with $m(v) := \langle \mu(v), w^* \rangle$. Using the stationarity condition

$$w^* = -\frac{1}{\lambda} \left[\frac{1}{n} \sum_{j \in [n]} \ell'(\langle f_j, w^* \rangle + \langle \mu(v_j), w^* \rangle + b, y_j) (f_j + \mu(v_j)) \right]$$

allows to reach

$$\nu^2 = -\frac{1}{\lambda} \mathbb{E}_{y,z} [\ell'(z^* + b, y) z^*]$$

and

$$\begin{aligned} m(v) &= -\frac{1}{\lambda} \mathbb{E}_{y,v'} \left[\ell'(z^* + b, y) (\langle \mu(v) \mu(v') \rangle + \frac{m(v)}{\nu} z + \sqrt{\|\mu(v)\|^2 - m(v)^2 / \nu^2} \omega) \right] \\ &= -\frac{1}{\lambda} \mathbb{E}_{y,v'} \left[\ell'(z^* + b, y) (\langle \mu(v) \mu(v') \rangle + \frac{m(v)}{\nu} z) \right] \end{aligned}$$

where $z \sim \mathcal{N}(0, 1)$. Finally

$$\phi(b) = \mathbb{E} [\ell(z^*, y)] + \frac{\lambda}{2} \nu^2.$$

This completes the derivation, but there is one further simplification. Let us introduce the unit vectors $\{e_k\}_{k \in L} \in \mathbb{R}^{dL}$, where the $kd + 1$ to $(k + 1)d$ -th elements of e_k correspond to $\theta \xi$, with all components otherwise zero. Note that all these vectors are orthogonal to each other. Then one can write

$$\mu(v) = \sum_{k \in [L]} v_k e_k.$$

Then, simply, one has

$$\langle \mu(v), \mu(v') \rangle = \theta^2 \langle v, v' \rangle,$$

and

$$m(v) = \sum_{k \in [L]} v_k m_k$$

with $m_k := \langle w, e_k \rangle$. This simplifies the equation for $m(v)$, and yields the characterization of Proposition 3.

The theoretical predictions for the test and train errors of Proposition 3 are displayed in Fig. 4, and show a good agreement with numerical experiments performed in dimension $d = 1000$.

2646 **G PROOF OF COROLLARY 2**
 2647

2648 The full technical statement of Theorem 4, presented in Appendix E, and of Theorem 5, presented
 2649 in Appendix F, provide a tight asymptotic characterization of learning errors in terms of a small set
 2650 of summary statistics, characterized in turn as the solutions of a set of self-consistent equations. For
 2651 the case of the square loss $\ell(y, z) = 1/2(y - z)^2$, in the limit of vanishing regularization $\lambda = 0^+$,
 2652 these equations considerably simplify, making it possible to reach closed-form expressions for the
 2653 test error in particular. These expressions are summarized in Corollary 2 in the main text. In this
 2654 appendix, we provide the full technical statement. For ease of presentation, we break the statement
 2655 into three proposition which we derive in succession, respectively for the attention model $A_{q,w,b}$ (6),
 2656 the pooled linear classifier $L_{w,b}^{\text{pool}}$ (4) and the vectorized linear classifier $L_{w,b}^{\text{vec}}$ (3).
 2657

2658 **G.1 ATTENTION MODEL**
 2659

2660 **Proposition 4.** *From Theorem 4, in the asymptotic limit of Assumption 1, the test error of the*
 2661 *attention model converges in probability to a limit $\mathcal{E}_{\text{test}}[A]$. For the quadratic loss function $\ell(y, z) =$*
 2662 *$1/2(y - z)^2$, this quantity admits a well-defined limit in the limit $\lambda \rightarrow 0$. This limit admits the*
 2663 *expansion:*

$$2664 \mathcal{E}_{\text{test}}[A] = \mathcal{E}_{\text{test}}^{\infty}[A] \quad (258)$$

$$2665 + \frac{1}{\alpha_1} (1 - \pi) \mathbb{E} \left[\frac{e^{-\frac{1}{2} \left(\frac{\hat{b}^{\infty} + \langle g, s_- \rangle \mu_1^{\infty}}{\mu_3^{\infty} \|s_-\|} \right)^2}}{\sqrt{2\pi}} \frac{(\delta \hat{b} + \langle g, s_- \rangle \delta \mu_1 - (\hat{b}^{\infty} + \langle g, s_- \rangle \mu_1^{\infty}) \delta \mu_3 / \mu_3^{\infty})}{\mu_3^{\infty} \|s_-\|} \right] \quad (259)$$

$$2669 + \frac{\pi}{\alpha_1} \mathbb{E} \left[\frac{e^{-\frac{1}{2} \left(\frac{-\hat{b}^{\infty} - \langle \theta v, s_+ \rangle \mu_2^{\infty} - \langle g, s_+ \rangle \mu_1^{\infty}}{\mu_3^{\infty} \|s_+\|} \right)^2}}{\sqrt{2\pi}} \right. \quad (260)$$

$$2673 \left. \frac{(-\delta \hat{b} - \langle \theta v, s_+ \rangle \delta \mu_2 - \langle g, s_+ \rangle \delta \mu_1 + (\hat{b}^{\infty} + \langle \theta v, s_+ \rangle \mu_2^{\infty} + \langle g, s_+ \rangle \mu_1^{\infty}) \delta \mu_3 / \mu_3^{\infty})}{\mu_3^{\infty} \|s_+\|} \right] \quad (261)$$

$$2676 + o \left(\frac{1}{\alpha_1} \right). \quad (262)$$

2678 The limiting error is

$$2679 \mathcal{E}_{\text{test}}^{\infty}[A] = (1 - \pi) \mathbb{E}_{g,s_+,s_-} \left[\Phi \left(\frac{\hat{b}^{\infty} + \langle g, s_- \rangle \mu_1^{\infty}}{\mu_3^{\infty} \|s_-\|} \right) \right] \quad (263)$$

$$2682 + \pi \mathbb{E}_{g,s_+,s_-} \left[\Phi \left(\frac{-\hat{b}^{\infty} - \langle \theta v, s_+ \rangle \mu_2^{\infty} - \langle g, s_+ \rangle \mu_1^{\infty}}{\mu_3^{\infty} \|s_+\|} \right) \right]. \quad (264)$$

2685 We introduced

$$2686 \begin{pmatrix} \mu_1^{\infty} \\ \mu_2^{\infty} \\ \hat{b}^{\infty} \end{pmatrix} = (I^{\infty})^{-1} J^{\infty}, \quad \begin{pmatrix} \delta \mu_1 \\ \delta \mu_2 \\ \delta \hat{b} \end{pmatrix} = (I^{\infty})^{-1} \left(\delta J + \delta I \begin{pmatrix} \mu_1^{\infty} \\ \mu_2^{\infty} \\ \hat{b}^{\infty} \end{pmatrix} \right), \quad (265)$$

2689 where

$$2691 I^{\infty} = \begin{pmatrix} \mathbb{E}[c_q^2] & \mathbb{E}[c_q c_{\xi}] & \mathbb{E}[c_q] \\ \mathbb{E}[c_q c_{\xi}] & \mathbb{E}[c_{\xi}^2] & \mathbb{E}[c_{\xi}] \\ \mathbb{E}[c_q] & \mathbb{E}[c_{\xi}] & 1 \end{pmatrix}, \quad J^{\infty} = \begin{pmatrix} \mathbb{E}[yc_q] \\ \mathbb{E}[yc_{\xi}] \\ 2\pi - 1 \end{pmatrix} \quad (266)$$

$$2695 \delta I = \frac{1}{\mathbb{E}[c_z^2]} \begin{pmatrix} \mathbb{E}[c_q^2 c_z^2] & \mathbb{E}[c_q c_{\xi} c_z^2] & \mathbb{E}[c_q c_z^2] \\ \mathbb{E}[c_q c_{\xi} c_z^2] & \mathbb{E}[c_{\xi}^2 c_z^2] & \mathbb{E}[c_{\xi} c_z^2] \\ \mathbb{E}[c_q c_z^2] & \mathbb{E}[c_{\xi} c_z^2] & \mathbb{E}[c_z^2] \end{pmatrix}, \quad \delta J = -\frac{1}{\mathbb{E}[c_z^2]} \begin{pmatrix} \mathbb{E}[yc_q c_z^2] \\ \mathbb{E}[yc_{\xi} c_z^2] \\ \mathbb{E}[yc_z^2] \end{pmatrix} \quad (267)$$

2699 Finally, we denoted $\delta \mu_3 = 1/\mu_3^{\infty} (1/2\nu^2 + \mu_1^{\infty} \delta \mu_1 + \mu_2^{\infty} \delta \mu_2 - \gamma \mu_1^{\infty} \delta \mu_2 - \gamma \mu_2^{\infty} \delta \mu_1) - \mu_1^{\infty} \delta \mu_1 / \mu_3^{\infty}$.
 We remind that the joint law of c_z, c_{ξ}, c_q is given in Lemma 1, and γ is defined in Theorem 3.

2700 **Sketch of the derivation—** In what follows, we consider the case of quadratic loss
 2701

$$2702 \quad \ell(x; y) = \frac{1}{2}(yx - 1)^2. \\ 2703$$

2704 In our problem, $\ell_i(x) = \ell(x_i + \epsilon_i; y_i)$. We have
 2705

$$2706 \quad \ell'_i(x) = x_i + \epsilon_i - y_i \quad \text{and} \quad \ell''_i(x) = 1. \\ 2707$$

2707 Moreover, for this case, the proximal operator assumes a compact, closed-form expression
 2708

$$2709 \quad \text{Prox}_i(x; \gamma) = \frac{x}{1 + \gamma} + \frac{\gamma}{1 + \gamma}(y_i - \epsilon_i). \\ 2710$$

2711 These closed-form expressions allow us to greatly simplify the self-consistent equations appearing
 2712 in Theorem 4. Specifically, we can rewrite (85) as
 2713

$$2714 \quad \frac{1}{\alpha_1} = \mathbb{E} \left[\frac{c_z^2 \chi}{1 + c_z^2 \chi} \right] + \lambda \chi. \quad (268) \\ 2715$$

2716 and

$$2717 \quad \nu^2 = \frac{\mathbb{E} \left[\frac{c_z^2 \chi (y - \epsilon)^2}{(1 + c_z^2 \chi)^2} \right]}{\lambda + \mathbb{E} \left[\frac{c_z^2}{(1 + c_z^2 \chi)^2} \right]}. \\ 2718$$

2719 Let χ be the unique solution to (268). In the ridgeless limit (with $\lambda \rightarrow 0^+$), it is straightforward to
 2720 check that
 2721

$$2722 \quad \lim_{\lambda \rightarrow 0^+} \lambda \chi = \frac{1}{\alpha_1} - 1, \quad \text{for } \alpha_1 < 1. \\ 2723$$

2724 and

$$2725 \quad \lim_{\lambda \rightarrow 0^+} \chi = \chi_{\text{ridgeless}}^*, \quad \text{for } \alpha_1 > 1,$$

2726 where $\chi_{\text{ridgeless}}^*$ is the unique solution to
 2727

$$2728 \quad \frac{1}{\alpha_1} = \mathbb{E} \left[\frac{c_{b,i}^2 \chi}{1 + c_{b,i}^2 \chi} \right]. \\ 2729$$

2730 We focus on the latter $\alpha_1 > 1$ case in the following. In the ridgeless limit, the fixed point equation
 2731 for ν further simplifies to
 2732

$$2733 \quad \nu^2 = \frac{\mathbb{E} \left[\frac{c_z^2 \chi (y - \epsilon)^2}{(1 + c_z^2 \chi)^2} \right]}{\mathbb{E} \left[\frac{c_z^2}{(1 + c_z^2 \chi)^2} \right]}. \\ 2734$$

2735 Then, the function $\phi(\mu_q, \mu_\xi, b)$ assumes the simple form
 2736

$$2737 \quad \phi(\mu_q, \mu_\xi, b) = \frac{1}{2} \mathbb{E} \left[\frac{(y - \epsilon)^2}{1 + c_z^2 \chi} \right]. \quad (269) \\ 2738$$

2739 Requiring that the gradients with respect to μ_q, μ_ξ, b leads to the following characterization for the
 2740 minimizers μ_1, μ_2, \hat{b}
 2741

$$2742 \quad I(\alpha_1) \begin{pmatrix} \mu_1 \\ \mu_2 \\ \hat{b} \end{pmatrix} = J(\alpha_1) \quad (270) \\ 2743$$

2744 with

$$2745 \quad I(\alpha_1) = \begin{pmatrix} \mathbb{E} \left[\frac{c_q^2}{1 + c_z^2 \chi} \right] & \mathbb{E} \left[\frac{c_q c_\xi}{1 + c_z^2 \chi} \right] & \mathbb{E} \left[\frac{c_q}{1 + c_z^2 \chi} \right] \\ \mathbb{E} \left[\frac{c_q c_\xi}{1 + c_z^2 \chi} \right] & \mathbb{E} \left[\frac{c_\xi^2}{1 + c_z^2 \chi} \right] & \mathbb{E} \left[\frac{c_\xi}{1 + c_z^2 \chi} \right] \\ \mathbb{E} \left[\frac{c_q}{1 + c_z^2 \chi} \right] & \mathbb{E} \left[\frac{c_\xi}{1 + c_z^2 \chi} \right] & \mathbb{E} \left[\frac{1}{1 + c_z^2 \chi} \right] \end{pmatrix}, \quad J(\alpha_1) = \begin{pmatrix} \mathbb{E} \left[\frac{y c_q}{1 + c_z^2 \chi} \right] \\ \mathbb{E} \left[\frac{y c_\xi}{1 + c_z^2 \chi} \right] \\ \mathbb{E} \left[\frac{y}{1 + c_z^2 \chi} \right] \end{pmatrix} \quad (271) \\ 2746$$

2747 Note that $I(\alpha_1)$ is the Gram matrix of the random variables $(c_q, c_\xi, 1)$ for the inner product $\langle a, b \rangle =$
 2748 $\mathbb{E} [ab / (1 + c_z^2 \chi)]$, and is thus invertible since the random variables are linearly independent
 2749

2754 **Large α_1 behavior** We now study in further detail the regime of large sample complexity $\alpha_1 \gg 1$.
 2755 In this limit,

$$2757 \quad \chi = \frac{1}{\alpha_1 \mathbb{E}[c_z^2]} + o\left(\frac{1}{\alpha_1}\right) \quad (272)$$

2759 while

$$2760 \quad \nu^2 = \frac{1}{\alpha_1} \frac{\mathbb{E}[c_z^2(y - \epsilon^\infty)^2]}{\mathbb{E}[c_z^2]^2} + o\left(\frac{1}{\alpha_1}\right). \quad (273)$$

2762 Note that the limit $\nu^2 \xrightarrow{\alpha_1 \rightarrow \infty} 0$ implies that for large sample complexity, the readout weights lie in
 2763 the span of ξ, q . We denote $\epsilon^\infty = c_q \mu_1^\infty + c_\xi \mu_2^\infty + \hat{b}^\infty$, with

$$2765 \quad \begin{pmatrix} \mu_1^\infty \\ \mu_2^\infty \\ \hat{b}^\infty \end{pmatrix} = (I^\infty)^{-1} J^\infty \quad (274)$$

2768 where

$$2770 \quad I^\infty = \begin{pmatrix} \mathbb{E}[c_q^2] & \mathbb{E}[c_q c_\xi] & \mathbb{E}[c_q] \\ \mathbb{E}[c_q c_\xi] & \mathbb{E}[c_\xi^2] & \mathbb{E}[c_\xi] \\ \mathbb{E}[c_q] & \mathbb{E}[c_\xi] & 1 \end{pmatrix}, \quad J^\infty = \begin{pmatrix} \mathbb{E}[y c_q] \\ \mathbb{E}[y c_\xi] \\ 2\pi - 1 \end{pmatrix}. \quad (275)$$

2773 The corresponding residual test error is then simply given by adapting (82) to obtain

$$2775 \quad \mathcal{E}_{\text{test}} \xrightarrow{\alpha_1 \rightarrow \infty} \mathcal{E}_{\text{test}}^\infty = (1 - \pi) \mathbb{E}_{g, s_+, s_-} \left[\Phi \left(\frac{\hat{b}^\infty + \langle g, s_- \rangle \mu_1^\infty}{\mu_3^\infty \|s_-\|} \right) \right] \quad (276)$$

$$2777 \quad + \pi \mathbb{E}_{g, s_+, s_-} \left[\Phi \left(\frac{-\hat{b}^\infty - \langle \theta v, s_+ \rangle \mu_2^\infty - \langle g, s_+ \rangle \mu_1^\infty}{\mu_3^\infty \|s_+\|} \right) \right], \quad (277)$$

2780 with $\mu_3^\infty = [1/1 - \gamma^2 ((\mu_1^\infty)^2 + (\mu_2^\infty)^2 - 2\gamma\mu_1^\infty\mu_2^\infty) - (\mu_1^\infty)^2]^{1/2}$. We now turn to ascertaining the
 2781 leading correction. We introduce

$$2783 \quad \begin{pmatrix} \mu_1 \\ \mu_2 \\ \hat{b} \end{pmatrix} = \begin{pmatrix} \mu_1^\infty \\ \mu_2^\infty \\ \hat{b}^\infty \end{pmatrix} + \frac{1}{\alpha_1} \begin{pmatrix} \delta\mu_1 \\ \delta\mu_2 \\ \delta\hat{b} \end{pmatrix} + o\left(\frac{1}{\alpha_1}\right), \quad (278)$$

2786 with

$$2788 \quad \begin{pmatrix} \delta\mu_1 \\ \delta\mu_2 \\ \delta\hat{b} \end{pmatrix} = (I^\infty)^{-1} \left(\delta J + \delta I \begin{pmatrix} \mu_1^\infty \\ \mu_2^\infty \\ \hat{b}^\infty \end{pmatrix} \right), \quad (279)$$

2790 where we denote

$$2792 \quad \delta I = \frac{1}{\mathbb{E}[c_z^2]} \begin{pmatrix} \mathbb{E}[c_q^2 c_z^2] & \mathbb{E}[c_q c_\xi c_z^2] & \mathbb{E}[c_q c_z^2] \\ \mathbb{E}[c_q c_\xi c_z^2] & \mathbb{E}[c_\xi^2 c_z^2] & \mathbb{E}[c_\xi c_z^2] \\ \mathbb{E}[c_q c_z^2] & \mathbb{E}[c_\xi c_z^2] & \mathbb{E}[c_z^2] \end{pmatrix}, \quad \delta J = -\frac{1}{\mathbb{E}[c_z^2]} \begin{pmatrix} \mathbb{E}[y c_q c_z^2] \\ \mathbb{E}[y c_\xi c_z^2] \\ \mathbb{E}[y c_z^2] \end{pmatrix}. \quad (280)$$

2796 Finally, let us denote $\delta\mu_3 = 1/\mu_3^\infty (1/2\nu^2 + \mu_1^\infty \delta\mu_1 + \mu_2^\infty \delta\mu_2 - \gamma\mu_1^\infty \delta\mu_2 - \gamma\mu_2^\infty \delta\mu_1) - \mu_1^\infty \delta\mu_1/\mu_3^\infty$.
 2797 Then, the following asymptotic correction holds:

$$2798 \quad \mathcal{E}_{\text{test}} = \mathcal{E}_{\text{test}}^\infty \quad (281)$$

$$2799 \quad + \frac{1}{\alpha_1} (1 - \pi) \mathbb{E} \left[\frac{e^{-\frac{1}{2} \left(\frac{\hat{b}^\infty + \langle g, s_- \rangle \mu_1^\infty}{\mu_3^\infty \|s_-\|} \right)^2}}{\sqrt{2\pi}} \frac{(\delta\hat{b} + \langle g, s_- \rangle \delta\mu_1 - (\hat{b}^\infty + \langle g, s_- \rangle \mu_1^\infty) \delta\mu_3/\mu_3^\infty)}{\mu_3^\infty \|s_-\|} \right] \quad (282)$$

$$2803 \quad + \frac{\pi}{\alpha_1} \mathbb{E} \left[\frac{e^{-\frac{1}{2} \left(\frac{-\hat{b}^\infty - \langle \theta v, s_+ \rangle \mu_2^\infty - \langle g, s_+ \rangle \mu_1^\infty}{\mu_3^\infty \|s_+\|} \right)^2}}{\sqrt{2\pi}} \frac{(-\delta\hat{b} - \langle \theta v, s_+ \rangle \delta\mu_2 - \langle g, s_+ \rangle \delta\mu_1 + (\hat{b}^\infty + \langle \theta v, s_+ \rangle \mu_2^\infty + \langle g, s_+ \rangle \mu_1^\infty) \delta\mu_3/\mu_3^\infty)}{\mu_3^\infty \|s_+\|} \right] \quad (283)$$

$$2807 \quad + o\left(\frac{1}{\alpha_1}\right). \quad (284)$$

2808 G.2 POOLED CLASSIFIER
2809

2810 **Proposition 5.** *From Theorem 4, in the asymptotic limit of Assumption 1, the test error of the pooled
2811 classifier model converges in probability to a limit $\mathcal{E}_{\text{test}}[\mathbf{L}^{\text{pool}}]$. For the quadratic loss function
2812 $\ell(y, z) = 1/2(y - z)^2$, this quantity admits a well-defined limit in the limit $\lambda \rightarrow 0$. This limit admits
2813 the expansion:*

$$2814 \quad \mathcal{E}_{\text{test}}[\mathbf{L}^{\text{pool}}] = \mathcal{E}_{\text{test}}^{\infty}[\mathbf{L}^{\text{pool}}] - (1 - \pi) \frac{e^{-\frac{1}{2} \left(\frac{2\pi - 1 - \pi\mathcal{X}^2(1 - \pi)}{2\pi\mathcal{X}(1 - \pi)} \right)^2}}{2\sqrt{2\pi}} \left(\frac{2\pi - 1 - \pi\mathcal{X}^2(1 - \pi)}{2\pi\mathcal{X}(1 - \pi)} \right) \frac{\nu^2}{(\mu_2^{\infty})^2} \quad (285)$$

$$2819 \quad + \pi \frac{e^{-\frac{1}{2} \left(\frac{2\pi - 1 + \pi\mathcal{X}^2(1 - \pi)}{2\pi\mathcal{X}(1 - \pi)} \right)^2}}{2\sqrt{2\pi}} \left(\frac{2\pi - 1 + \pi\mathcal{X}^2(1 - \pi)}{2\pi\mathcal{X}(1 - \pi)} \right) \frac{\nu^2}{(\mu_2^{\infty})^2} + o\left(\frac{1}{\alpha_1}\right) \quad (286)$$

2822 The limiting error is
2823

$$2824 \quad \mathcal{E}_{\text{test}}^{\infty}[\mathbf{L}^{\text{pool}}] = (1 - \pi)\Phi\left(\frac{2\pi - 1 - \pi\mathcal{X}^2(1 - \pi)}{2\pi\mathcal{X}(1 - \pi)}\right) + \pi\Phi\left(-\frac{2\pi - 1 + \pi\mathcal{X}^2(1 - \pi)}{2\pi\mathcal{X}(1 - \pi)}\right). \quad (287)$$

2827 We denoted the signal-to-noise ratio $\mathcal{X} = \theta R / \sqrt{L}$.

2829 **Sketch of derivation —** We remind that the pooled classifier corresponds to setting the softmax
2830 inverse temperature in the attention model to zero, namely $\beta = 0$. In this limit, the joint distribution
2831 of the parameters $s_+, s_-, c_z, c_{\xi}, c_q$ detailed in (89) simplify to

$$2832 \quad s_+ = s_- = \frac{1_L}{L}, \quad \left(c_{\xi} - \delta_{y,1} \frac{\theta R}{L} \right) \sim \mathcal{N}\left(0_2, \frac{1}{L(1 - \gamma^2)} \begin{bmatrix} 1 & -\gamma \\ -\gamma & 1 \end{bmatrix}\right), \quad c_z = \frac{1}{\sqrt{L}}. \quad (288)$$

2835 Then, the limiting summary statistics $\mu_1^{\infty}, \mu_2^{\infty}, \hat{b}^{\infty}$ are given by $\mu_1^{\infty} = \gamma\mu_2^{\infty}$ and

$$2837 \quad \begin{pmatrix} \pi\mathcal{X}^2 + 1 & \pi\mathcal{X} \\ \pi\mathcal{X} & 1 \end{pmatrix} \begin{pmatrix} \mu_2^{\infty}/\sqrt{L} \\ \hat{b}^{\infty} \end{pmatrix} = \begin{pmatrix} \pi\mathcal{X} \\ 2\pi - 1 \end{pmatrix} \quad (289)$$

2840 i.e.

$$2841 \quad \frac{\mu_2^{\infty}}{\sqrt{L}} = \frac{2\pi\mathcal{X}(1 - \pi)}{1 + \pi\mathcal{X}^2(1 - \pi)} \quad (290)$$

$$2844 \quad \hat{b}^{\infty} = \frac{2\pi - 1 - \pi\mathcal{X}^2(1 - \pi)}{1 + \pi\mathcal{X}^2(1 - \pi)} \quad (291)$$

2846 The residual error then reads
2847

$$2848 \quad \mathcal{E}_{\text{test}}^{\infty} = (1 - \pi)\Phi\left(\frac{\hat{b}}{\mu_2^{\infty}/\sqrt{L}}\right) + (1 - \pi)\Phi\left(\frac{-\hat{b} - \mathcal{X}\mu_2^{\infty}/\sqrt{L}}{\mu_2^{\infty}/\sqrt{L}}\right) \quad (292)$$

$$2851 \quad = (1 - \pi)\Phi\left(\frac{2\pi - 1 - \pi\mathcal{X}^2(1 - \pi)}{2\pi\mathcal{X}(1 - \pi)}\right) + \pi\Phi\left(-\frac{2\pi - 1 + \pi\mathcal{X}^2(1 - \pi)}{2\pi\mathcal{X}(1 - \pi)}\right). \quad (293)$$

2853 We used the identity
2854

$$2855 \quad \mathbb{E}_g \left[\Phi\left(\frac{a + bg}{c}\right) \right] = \mathbb{E}_{g, g'} [\mathbf{1}_{-a - bg + cg \geq 0}] = \Phi\left(\frac{a}{\sqrt{b^2 + c^2}}\right). \quad (294)$$

2858 Finally observe that $I = \alpha/1 + \alpha I^{\infty}$, $J = \alpha/1 + \alpha J^{\infty}$. As a consequence,

$$2860 \quad \begin{pmatrix} \mu_1 \\ \mu_2 \\ \hat{b} \end{pmatrix} = \begin{pmatrix} \mu_1^{\infty} \\ \mu_2^{\infty} \\ \hat{b}^{\infty} \end{pmatrix} \quad (295)$$

2862

2863

2864

2865

2866

2867

2868

2869

2870

2871

2872

Figure 5: (left) Residual error $\mathcal{E}_{\text{test}}^{\infty}$ in the $\alpha_1 \rightarrow \infty$ limit as a function of the alignment $\gamma = \langle q, \xi \rangle$ between the attention query weights and the signal vector, for the attention model (blue) and the linear classifiers (dashed red), trained with the quadratic loss at vanishing regularization. $L = 5, R = 1, \theta = 3, \pi = 0.75$. Solid lines correspond to the theoretical characterizations (276) and (292). Dots correspond to numerical simulations in dimension $d = 100$, and large number of samples $n = 10^5$, averaged over 10 trials, with error bars representing one standard deviation. (right) Residual error of the attention model for different training lengths $L, R = L^{1/2}$ and test-time lengths $L_{\text{test}}, R_{\text{test}} = L_{\text{test}}^{1/2}$, and $\theta = 3$.

2880

2881

2882

2883

and

$$2885 \quad \nu^2 = \frac{L}{\alpha_1} \left(1 + \hat{b}^2 - 2\hat{b}(2\pi - 1) + \frac{(\mu_2^{\infty})^2}{L} (1 + \pi\mathcal{X}^2) + 2\mathcal{X}\pi(\hat{b} - 1) \frac{\mu_2^{\infty}}{\sqrt{L}} \right) \quad (296)$$

$$2887 \quad \mu_3 = \sqrt{1 - \gamma^2} \mu_2^{\infty} + \frac{L}{2\alpha_1} \frac{1 + \hat{b}^2 - 2\hat{b}(2\pi - 1) + \frac{(\mu_2^{\infty})^2}{L} (1 + \pi\mathcal{X}^2) + 2\mathcal{X}\pi(\hat{b} - 1) \frac{\mu_2^{\infty}}{\sqrt{L}}}{\sqrt{1 - \gamma^2} \mu_2^{\infty}} \quad (297)$$

$$2890 \quad + o\left(\frac{1}{\alpha_1}\right). \quad (298)$$

2892

It follows that the leading order correction to the test error reads

$$2895 \quad \mathcal{E}_{\text{test}} = \mathcal{E}_{\text{test}}^{\infty} \quad (299)$$

$$2896 \quad - (1 - \pi) \frac{e^{-\frac{1}{2} \left(\frac{2\pi - 1 - \pi\mathcal{X}^2(1 - \pi)}{2\pi\mathcal{X}(1 - \pi)} \right)^2}}{2\sqrt{2\pi}} \left(\frac{2\pi - 1 - \pi\mathcal{X}^2(1 - \pi)}{2\pi\mathcal{X}(1 - \pi)} \right) \frac{\nu^2}{(\mu_2^{\infty})^2} \quad (300)$$

$$2900 \quad + \pi \frac{e^{-\frac{1}{2} \left(\frac{-2\pi - 1 + \pi\mathcal{X}^2(1 - \pi)}{2\pi\mathcal{X}(1 - \pi)} \right)^2}}{2\sqrt{2\pi}} \left(\frac{2\pi - 1 + \pi\mathcal{X}^2(1 - \pi)}{2\pi\mathcal{X}(1 - \pi)} \right) \frac{\nu^2}{(\mu_2^{\infty})^2} + o\left(\frac{1}{\alpha_1}\right). \quad (301)$$

2905 **Comparison with the attention model** We contrast in Fig. 5 the residual errors $\mathcal{E}_{\text{test}}^{\infty}$ achieved in
 2906 the limit of large sample complexity $\alpha_1 \gg 1$ by the attention-based and linear classifiers. As we
 2907 detail in Appendix F, the vectorized and pooled linear classifiers share identical residual test errors.
 2908 Interestingly, for a small alignment γ between the attention query weights q and the signal vector ξ ,
 2909 the attention model performs worse than the linear classifiers, as the discrepancy between q, ξ can
 2910 cause the model to spuriously privilege tokens devoid of signal.

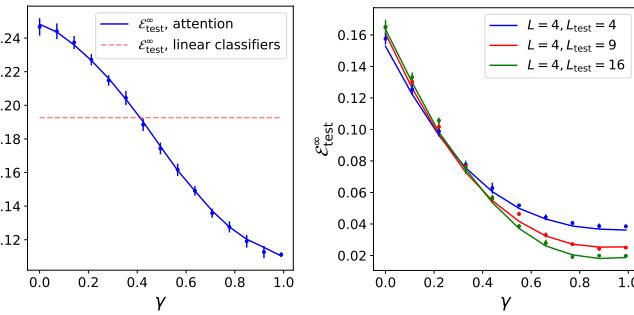
2911

2912

G.3 VECTORIZED CLASSIFIER

2913

2914 **Proposition 6.** *From Theorem 4, in the asymptotic limit of Assumption 1, the test error of the pooled
 2915 classifier model converges in probability to a limit $\mathcal{E}_{\text{test}}[\mathbf{L}^{\text{pool}}]$. For the quadratic loss function
 $\ell(y, z) = \frac{1}{2}(y - z)^2$, this quantity admits a well-defined limit in the limit $\lambda \rightarrow 0$. This limit admits*



2916 the expansion:

2917

$$2918 \mathcal{E}_{\text{test}}[\mathbf{L}^{\text{pool}}] = \mathcal{E}_{\text{test}}^{\infty}[\mathbf{L}^{\text{pool}}] + \left\{ \pi \frac{e^{-\frac{1}{2} \left(-\mathcal{X} - \frac{b^{\infty}}{\nu^{\infty}} \right)^2}}{\sqrt{2\pi}} \frac{b^{\infty} + \chi \nu^{\infty}}{2(\nu^{\infty})^3} - (1-\pi) \frac{e^{-\frac{1}{2} \left(\frac{b^{\infty}}{\nu^{\infty}} \right)^2}}{\sqrt{2\pi}} \frac{b^{\infty}}{2(\nu^{\infty})^3} \right\} \quad (302)$$

2920

$$2921 \cdot \left(\frac{1 + \pi \mathcal{X}^2 - \pi^2 \mathcal{X}^2 (1 - b^*)}{1 + \pi \mathcal{X}^2} + (b^{\infty})^2 - 2(2\pi - 1)b^{\infty} \right) \frac{L}{\alpha_1} + o\left(\frac{1}{\alpha_1}\right), \quad (303)$$

2922

2923 with

2924

$$2925 (\nu^{\infty})^2 = \left(\frac{2\pi \mathcal{X}(\pi - 1)}{1 + \pi(1 - \pi)\mathcal{X}^2} \right)^2, \quad 2926 b^{\infty} = \frac{2\pi - 1 - \pi(1 - \pi)\mathcal{X}^2}{1 + \pi(1 - \pi)\mathcal{X}^2}. \quad (304)$$

2927

2928 The limiting error is

2929

$$2930 \mathcal{E}_{\text{test}}^{\infty}[\mathbf{L}^{\text{pool}}] = (1 - \pi)\Phi\left(\frac{2\pi - 1 - \pi\mathcal{X}^2(1 - \pi)}{2\pi\mathcal{X}(1 - \pi)}\right) + \pi\Phi\left(-\frac{2\pi - 1 + \pi\mathcal{X}^2(1 - \pi)}{2\pi\mathcal{X}(1 - \pi)}\right). \quad (305)$$

2931

2932 We denoted the signal-to-noise ratio $\mathcal{X} = \theta R / \sqrt{L}$.

2933

2934 **Sketch of derivation —** For the quadratic loss and vanishing regularization, the fixed point equations of Proposition 3 simplify to

2935

$$2936 m = \frac{\theta^2 p(1 - b^*)}{1 + \theta^2 p(1 + (L - 1)\rho)} \quad (306)$$

2937

$$2938 \nu^2 = \chi \frac{1 + \theta^2 p + \theta^2(L - 1)p\rho - \theta^2 L p^2(1 - b^*)^2}{1 + \theta^2 p(1 + (L - 1)\rho)} + \frac{\theta^2 L p^2(1 - b^*)^2}{(1 + \theta^2 p(1 + (L - 1)\rho))^2} \quad (307)$$

2939

$$2940 - 2\chi(2\pi - 1)b^* + (b^*)^2\chi \quad (308)$$

2941

$$2942 \chi = \frac{L}{\alpha - L} \quad (309)$$

2943

2944 where $p = \frac{\pi R}{L}$ and

2945

$$2946 \rho = \delta_{R \geq 2} \frac{R(R - 1)}{L(L - 1)} \frac{\pi}{p}, \quad b^* = 1 + \frac{(2\pi - 2)A}{A - \theta^2 L p^2}. \quad (310)$$

2947

2948 We used a shorthand $A := 1 + \theta^2 p(1 + (L - 1)\rho)$. These expression are amenable to being more compactly rewritten, introducing the \mathcal{X} introduced in Theorem 1. We remind that in the current setting, \mathcal{X} admits the compact expression

2949

$$2950 \mathcal{X} = \frac{\theta R}{\sqrt{L}}. \quad (311)$$

2951

2952 The self-consistent equations then simplify to

2953

$$2954 b^* = 1 + \frac{(2\pi - 2)(1 + \pi\mathcal{X}^2)}{1 + \pi(1 - \pi)\mathcal{X}^2} \quad (312)$$

2955

$$2956 m = \frac{1}{R} \frac{\pi\mathcal{X}^2(1 - b^*)}{1 + \pi\mathcal{X}^2} \quad (313)$$

2957

$$2958 \nu^2 = \chi \frac{1 + \pi\mathcal{X}^2 - \pi^2\mathcal{X}^2(1 - b^*)}{1 + \pi\mathcal{X}^2} + \frac{\pi^2\mathcal{X}^2(1 - b^*)^2}{(1 + \pi\mathcal{X}^2)^2} - 2\chi(2\pi - 1)b^* + (b^*)^2\chi. \quad (314)$$

2959

2960

2961 **$\alpha_1 \rightarrow \infty, \mathcal{X} = O(1), \alpha_1 \gg L$ regime —** Following a similar derivation as the ones detailed in the previous subsections, the test error is found to admit the large α_1 residual

2962

2963

2964

2965

2966

2967

2968 $\alpha_1 \rightarrow \infty, \mathcal{X} = O(1), \alpha_1 \gg L$ regime — Following a similar derivation as the ones detailed in the previous subsections, the test error is found to admit the large α_1 residual

2969

$$2970 \mathcal{E}_{\text{test}}^{\infty} = \pi\Phi\left(-\mathcal{X} - \frac{b^{\infty}}{\nu^{\infty}}\right) + (1 - \pi)\Phi\left(\frac{b^{\infty}}{\nu^{\infty}}\right) \quad (315)$$

2970 with

2971

$$(\nu^\infty)^2 = \frac{\pi^2 \mathcal{X}^2 (1 - b^\infty)^2}{(1 + \pi \mathcal{X}^2)^2} = \left(\frac{2\pi \mathcal{X}(\pi - 1)}{1 + \pi(1 - \pi)\mathcal{X}^2} \right)^2, \quad (316)$$

2972

$$b^\infty = 1 + \frac{(2\pi - 2)(1 + \pi \mathcal{X}^2)}{1 + \pi(1 - \pi)\mathcal{X}^2} = \frac{2\pi - 1 - \pi(1 - \pi)\mathcal{X}^2}{1 + \pi(1 - \pi)\mathcal{X}^2}, \quad (317)$$

2973 and the asymptotic expansion

2974

$$\mathcal{E}_{\text{test}} = \mathcal{E}_{\text{test}}^\infty + \left\{ \pi \frac{e^{-\frac{1}{2}(-\mathcal{X} - \frac{b^\infty}{\nu^\infty})^2}}{\sqrt{2\pi}} \frac{b^\infty + \mathcal{X}\nu^\infty}{2(\nu^\infty)^3} - (1 - \pi) \frac{e^{-\frac{1}{2}(\frac{b^\infty}{\nu^\infty})^2}}{\sqrt{2\pi}} \frac{b^\infty}{2(\nu^\infty)^3} \right\} \quad (318)$$

2975

$$\cdot \left(\frac{1 + \pi \mathcal{X}^2 - \pi^2 \mathcal{X}^2 (1 - b^*)}{1 + \pi \mathcal{X}^2} + (b^\infty)^2 - 2(2\pi - 1)b^\infty \right) \frac{L}{\alpha_1} + o\left(\frac{1}{\alpha_1}\right) \quad (319)$$

2976 **Remark 9** (Comparison with the pooled model). Note that the residual error $\mathcal{E}_{\text{test}}^\infty$ can be explicitly
2977 expressed as

2978

$$\mathcal{E}_{\text{test}}^\infty = (1 - \pi)\Phi\left(\frac{(2\pi - 2)(1 + \pi \mathcal{X}^2)}{2\pi \mathcal{X}(1 - \pi)}\right) + \pi\Phi\left(\frac{2\pi - 1 + \pi \mathcal{X}^2(1 - \pi)}{2\pi \mathcal{X}(1 - \pi)}\right). \quad (320)$$

2979 This incidentally corresponds to the residual error achieved by the pooled classifier trained with
2980 ridgeless quadratic loss (292), since for the considered data distribution $\mathcal{X} = \hat{\mathcal{X}} = \theta^R/\sqrt{L}$. We
2981 also furthermore have a similar correspondence at the level of the summary statistics, namely $b^\infty =$
2982 $\hat{b}^\infty, \nu^\infty = \mu_2^\infty/\sqrt{L}$, where $\hat{b}^\infty, \mu_2^\infty/\sqrt{L}$ are defined for the pooled model in (290). Furthermore, the
2983 leading order corrections are related by a simple factor L :

2984

$$\frac{\mathcal{E}_{\text{test, vector}} - \mathcal{E}_{\text{test}}^\infty}{\mathcal{E}_{\text{test, pool}} - \mathcal{E}_{\text{test}}^\infty} = L + o(1). \quad (321)$$

2985 Note that a consequence of Remark 9 is that in the $\alpha \rightarrow \infty$ limit, for ridgeless regression with a
2986 quadratic loss, the pooled and vectorized models converge to the same solution, in the sense that
2987 the weights of the vectorized model correspond to that of the pooled model stacked L times. Both
2988 models furthermore yield the same limiting test error. Let us also comment that Arnaboldi et al.
2989 (2025) also observe a similar speed up between related flattened and pooled models learning from
2990 sequential data, in a related task, in terms of weak recovery time. The result of Remark 9 instead
2991 bears on the coefficient of the leading asymptotic correction in terms of sample complexity.

2992 **Remark 10.** We note that the joint limit $\alpha_1, L \rightarrow \infty, \mathfrak{b} = \alpha/L = O(1), \mathcal{X} = O(1)$ can also be
2993 analyzed, and is simply given by equations (312) setting

2994

$$\chi = \frac{1}{\mathfrak{b} - 1} \quad (322)$$

2995 **Study of the $\alpha_1 \rightarrow \infty$ residual error** We now examine the behaviour of the residual error $\mathcal{E}_{\text{test}}^\infty$
2996 with the signal-to-noise ratio \mathcal{X} . We first examine the case $\mathcal{X} \rightarrow \infty$. In this limit,

2997

$$b^\infty = -1 + o(1), \quad (\nu^\infty)^2 = \frac{4}{\mathcal{X}^2} + o\left(\frac{1}{\mathcal{X}^2}\right) \quad (323)$$

2998 The residual error then decays to zero as

2999

$$\mathcal{E}_{\text{test}}^\infty \asymp \sqrt{\frac{2}{\pi}} \frac{e^{-\frac{\mathcal{X}^2}{8}}}{\mathcal{X}}. \quad (324)$$

3000 In the opposite limit of small signal $\mathcal{X} \rightarrow 0$,

3001

$$b^\infty = 2\pi - 1 + o(1), \quad (\nu^\infty)^2 = 4\pi^2(1 - \pi)^2\mathcal{X}^2 + o(\mathcal{X}^2). \quad (325)$$

3002 Then

3003

$$\mathcal{E}_{\text{test}}^\infty \xrightarrow{\mathcal{X} \rightarrow 0} \min(\pi, 1 - \pi). \quad (326)$$

3004 These limiting errors stand in coherence with Theorem 1.

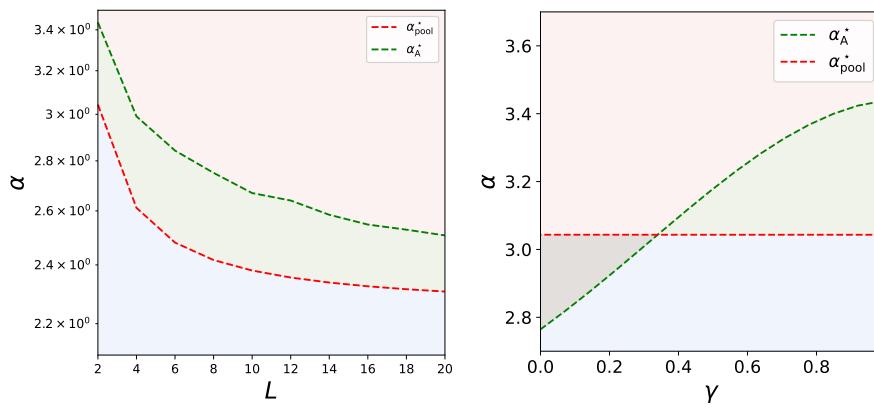


Figure 6: Separability thresholds for the attention model (green), and the pooled (red) and vectorized (blue) linear classifiers, as given in Conjectures 2, 3 and 2, as a function of the sequence length L (left) and the attention query/signal cosine similarity γ (right). Left: $\theta = 2, \pi = 0.3, \gamma = 1$, and $R = 1$ is kept fixed while L is increased. Right: $\theta = 2, \pi = 0.3, L = 2, R = 1$ and γ is varied.

H DERIVATION OF CONJECTURE 1

As a corollary of Theorem 4, we derive in the appendix the *capacity* of the three considered models, namely the largest number of samples that can typically be perfectly classified, up to vanishing training error. The corresponding separability threshold was characterized in the seminal work of Cover (2006), and revisited in many later works, e.g. Gardner & Derrida (1988); Krauth & Mézard (1989); Candès & Sur (2020); Mignacco et al. (2020a). Note that at the level of the representations $f_{\text{vec}}(\cdot), f_q(\cdot), f_{\text{pool}}(\cdot)$, the capacity intuitively reflects how well the representations separate positive and negative samples in feature space, with a larger separability thresholds signaling more markedly separated classes.

Definition 3 (Separability threshold). *Consider the empirical risk minimization problem (11) for the attention model, or the related problem for the linear classifier models, with logistic loss $\ell(z; y) = \log(1 + e^{-yz})$ and vanishing regularization $\lambda = 0^+$. As stated in Theorem 4, the training loss converges in probability in the considered asymptotic limit to a limit $\mathcal{E}_{\text{train}}$. We define the separability threshold α^* of the model as*

$$\alpha^* = \sup \{ \alpha \geq 0 \mid \mathcal{E}_{\text{train}} = 0 \}. \quad (327)$$

A closed-form characterization of the separability threshold α^* can be heuristically derived from Theorem 4 for each of the three models. We first provide the characterization for the vectorized classifier.

Conjecture 2 (Separability threshold for the vectorized classifier). *The separability threshold for the vectorized classifier is equal to*

$$\alpha_{\text{vec}}^* = \max_{s \in [0,1], b} \frac{L(1 - s^2)}{\int_0^\infty [\pi \Phi'(b + \mathcal{X}s + u) + (1 - \pi)\Phi'(u - b)] u^2 du} \quad (328)$$

We have used the shorthand $\mathcal{X} = \theta R / \sqrt{L}$.

Proof. First note that the following identity follows from Proposition 3, and most conveniently seen from the rewriting of Remark 8:

$$\nu^2 - \frac{L}{\theta^2} m^2 = \frac{\alpha}{L} \mathbb{E} [\ell'(z^* + b, y)^2] \chi^2 \quad (329)$$

for any given b . We assume that the loss function is of the form $\ell(z, y) = \tilde{\ell}(yz)$, and satisfies $\lim_{z \rightarrow \infty} \tilde{\ell}(z) = 0$, while being convex. We assume $\tilde{\ell}$ to be decreasing, with a monotonically increasing and negative derivative satisfying $\lim_{z \rightarrow \infty} \tilde{\ell}'(z) = 0^-$. We denote $\kappa = -\lim_{z \rightarrow -\infty} \tilde{\ell}'(z)$,

which we assume to be finite. Note that all those assumptions are satisfied in particular by the logistic loss function. We again assumed all token locations are symmetric, leading to a solution $m_k = m$ for all $k \in [L]$. Introducing the cosine similarity $s = \sqrt{L}m/\theta\nu \in [0, 1]$, and the normalized quantities $\gamma = \chi/\nu$, $\mathfrak{b} = b/\nu$, and introducing the random variable $u = \tilde{\ell}'((z^* + b)y)$

$$1 - s^2 = \frac{\alpha}{L} \gamma^2 \mathbb{E}[u^2]. \quad (330)$$

But $z^* - \delta_{y,1}Rm - \nu z + \chi yu = 0$ by definition of the proximal operator, and $z^* = y\tilde{\ell}^{-1}(u) - b$, while $z \sim \mathcal{N}(0, 1)$. Furthermore, $u \in (-\kappa, 0)$ Thus

$$\mathbb{E}[u^2] = -2 \int_{-\kappa}^0 \left[\pi \Phi \left(\frac{\tilde{\ell}^{-1}(u) - b - Rm + \chi u}{\nu} \right) + (1 - \pi) \Phi \left(\frac{\tilde{\ell}^{-1}(u) + b + \chi u}{\nu} \right) \right] u du \quad (331)$$

$$= -2 \int_{-\kappa}^0 \left[\pi \Phi \left(\frac{\tilde{\ell}^{-1}(u)}{\nu} - \mathfrak{b} - \mathcal{X}s + \gamma u \right) + (1 - \pi) \Phi \left(\frac{\tilde{\ell}^{-1}(u)}{\nu} + \mathfrak{b} + \gamma u \right) \right] u du. \quad (332)$$

Following Mignacco et al. (2020b) we aim to determine the necessary conditions on α such that there exists a solution satisfying $\nu = \infty, \gamma = \infty$ – which should hold for a solution achieving zero training loss. We conjecture the following limit

$$\lim_{\gamma, \nu \rightarrow \infty} \gamma^2 \mathbb{E}[u^2] = 2 \int_0^\infty [\pi \Phi(-\mathfrak{b} - \mathcal{X}s - u) + (1 - \pi) \Phi(\mathfrak{b} - u)] u du \quad (333)$$

$$= \int_0^\infty [\pi \Phi'(\mathfrak{b} + \mathcal{X}s + u) + (1 - \pi) \Phi'(u - \mathfrak{b})] u^2 du \quad (334)$$

where we remind that Φ' is simply a standard Gaussian density. Then, a necessary condition for the existence of a solution with $\nu = \infty, \gamma = \infty$ is the existence of an $s \in [0, 1]$ so that

$$\alpha = \frac{L(1 - s^2)}{\int_0^\infty [\pi \Phi'(\mathfrak{b} + \mathcal{X}s + u) + (1 - \pi) \Phi'(u - \mathfrak{b})] u^2 du} \quad (335)$$

□

Note that the pooled classifier can be mapped to a special case of the vectorized classifier, formally evaluating the expression for the vectorized classifier for $L, R \rightarrow 1, \theta \rightarrow \theta R/\sqrt{L}$. Leveraging this connection yields the following conjecture.

Conjecture 3 (Separability threshold for the pooled classifier). *The separability threshold for the pooled classifier is equal to*

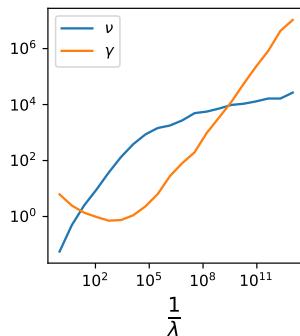
$$\alpha_{\text{pool}}^* = \max_{s \in [0, 1], \mathfrak{b}} \frac{(1 - s^2)}{\int_0^\infty [\pi \Phi'(\mathfrak{b} + \mathcal{X}s + u) + (1 - \pi) \Phi'(u - \mathfrak{b})] u^2 du} = \frac{\alpha_{\text{vec}}^*}{L}. \quad (336)$$

Finally, a similar characterization can be conjectured from Theorem 4 for the attention model.

Conjecture 4 (Separability threshold for the attention model). *The separability threshold for the pooled classifier is equal to*

$$\alpha_A^* = \max_{m_q, m_\xi, \mathfrak{b}} \frac{1}{\mathbb{E}_{y, c_z, c_\xi, c_q} \left[c_z^3 \int_0^\infty \Phi' \left(\frac{c_z^2 u + y(b + c_q m_q + c_\xi m_\xi)}{c_z} \right) u^2 du \right]} \quad (337)$$

3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143



3144 Figure 7: Parameters γ, ν involved in the derivation of Conjecture 1, for the attention model trained
3145 with the logistic loss, as a function of the regularization λ . The curves correspond to numerical
3146 experiments in dimension $d = 1000$, averaged over 3 trials. The problem parameters are $L =$
3147 $2, R = 1, \theta = 2, \pi = 0.3$.

3148
3149
3150 *Proof.* The derivation proceeds in close likeness to that for the vectorized classifiers. First observe
3151 that from Theorem 4, the following identity holds:

$$3152 \quad \nu^2 = \alpha \chi^2 \mathbb{E} [c_z^2 \ell'(z^* + c_q \mu_q + c_\xi \mu_\xi + b, y)^2] \quad (338)$$

3153 Introducing the normalized quantities $\gamma = \chi/\nu, \mathbf{b} = \mathbf{b}/\nu, m_q = \mu_q/\nu, m_\xi = \mu_\xi/\nu$, and introducing the
3154 random variable $u = \tilde{\ell}'((z^* + c_q \mu_q + c_\xi \mu_\xi + b)y)$, this identity can be compactly rewritten as
3155

$$3156 \quad 1 = \alpha \gamma^2 \mathbb{E} [c_z^2 u^2]. \quad (339)$$

3157 But $z^* - c_z \nu z + c_z^2 \chi y u = 0$ by definition of the proximal operator, and $z^* = y \tilde{\ell}^{-1}(u) - b - c_q \mu_q -$
3158 $c_\xi \mu_\xi$, while $z \sim \mathcal{N}(0, 1)$. Thus

$$3161 \quad \mathbb{E} [c_z^2 u^2] = -2 \int_{-\kappa}^0 \mathbb{E} \left[c_z^2 \Phi \left(\frac{\tilde{\ell}^{-1}(u)}{\nu} + c_z^2 \gamma u - y(\mathbf{b} - c_q m_q - c_\xi m_\xi) \right) \right] u du. \quad (340)$$

3164 Again, following Mignacco et al. (2020b) we aim to determine the necessary conditions on α such
3165 that there exists a solution satisfying $\nu = \infty, \gamma = \infty$. This assumption is further motivated by
3166 numerical experiments, as illustrated in Fig. 7, where ν, γ are observed to diverge as $\lambda \rightarrow 0$. Then,

$$3167 \quad \lim_{\gamma, \nu \rightarrow \infty} \gamma^2 \mathbb{E} [c_z^2 u^2] = 2 \int_0^\infty \mathbb{E} \left[c_z \Phi \left(c_z^2 u - \frac{y(\mathbf{b} - c_q m_q - c_\xi m_\xi)}{c_z} \right) u du \right] \\ 3168 \quad = \int_0^\infty \mathbb{E} \left[c_z^3 \Phi' \left(c_z u - \frac{y(\mathbf{b} - c_q m_q - c_\xi m_\xi)}{c_z} \right) u^2 du \right], \quad (341)$$

3172 which concludes the derivation. \square

3173
3174 The theoretical prediction of Conjectures 2, 3 and 4 are contrasted with numerical experiments in
3175 Fig. 1, revealing a good agreement with the point where the training error – defined as the fraction of
3176 misclassified training samples – ceases to be zero. Note interestingly that the separability thresholds
3177 $\alpha_{\text{vec, pool}}^*$ for the vectorized and pooled classifiers are related by a factor L . The latter can be ratio-
3178 nalized by the fact that the vectorized classifiers operates in \mathbb{R}^{Ld} , while the pooled classifier acts on
3179 the smaller space \mathbb{R}^d . Moreover, observe that while the threshold α_A^* for the attention model lies
3180 for large query/signal alignment γ above α_{pool}^* , it becomes smaller for small values of γ (see Fig. 6,
3181 right). This temptingly suggests the intuitive interpretation that when the internal representation
3182 of the attention is misaligned with the signal, the attention model displays a smaller capacity than
3183 the simple pooled linear classifier. This conclusion echoes a similar observation at the level of the
3184 residual errors, see the discussion of Fig. 5 and its discussion in Appendix E.

3185