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Abstract

It is observed that the confidence score may fail to reflect the predicting quality
accurately in previous proposal-based line segment detection methods, since the
scores and the line locations are predicted simultaneously. We find that the line
segment detection performance can be further improved by learning-based line
candidate ranking and optimizing strategy. To this end, we build a novel end-to-end
line detecting model named RANK++LETR upon deformable DETR architecture,
where the encoder is used to select the line candidates while the decoder is applied
to rank and optimize these candidates. We design line-aware deformable attention
(LADA) module in which attention positions are distributed in a long narrow area
and can align well with the elongated geometry of line segments. Moreover, we in-
novatively apply ranking-based supervision in line segment detection task with the
design of contiguous labels according to the detection quality. Experimental results
demonstrate that our method outperforms previous SOTA methods in prediction
accuracy and gets faster inferring speed than other Transformer-based methods.

1 Introduction

Line segments and junctions are crucial information in structured scenes and are ubiquitous in human-
made environments. An accurate line segment detection algorithm can significantly enhance various
computer vision applications, such as 3D reconstruction (36; 2), camera calibration (22; 27), depth
estimation (40), scene understanding (11), object detection (29), SLAM (18; 41), etc. Traditional
geometric-based line segment detection algorithms usually extract low-level image features and group
them into line segments. These methods often run at a fast speed, while may suffer from fragmented
prediction. Learning-based methods achieve promising results by learning knowledge from image
sets with supervision, which are able to detect longer and more meaningful line segments.

Proposal-based methods constitute a pivotal component within learning-based approaches and have
been extensively studied recently. These models typically output target predictions such as endpoint
coordinates or midpoint coordinates with endpoint offsets for line segments. Generally, these methods
first simultaneously predict both the positional coordinates and confidence scores of candidate
line segments, then select the top-ranked proposal-based on confidence scores as final predictions.
Previous study (31) points out that some accurately detected line segments are assigned low confidence
scores during prediction since confidence prediction and location regression of line segments are
independent. Specifically, given the simultaneously predicted line candidates with confidence scores
and positions, the detection performance can be significantly improved even if only proper scores
are assigned. Based on the observation, we find that the line segment detection performance can be
further improved by learning-based line candidate ranking and optimizing strategy.

Transformers depend on attention modules to gather relevant features. However, in the classic
deformable attention module, the attention position of a query is usually around a reference point on
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the feature map, which is not easy to adapt to the long and narrow area for detecting line segments.
Thus, we specially design a novel attention module named line-aware deformable attention (LADA),
which can align well with the elongated geometry of line segments for better perceiving line features.

To effectively train our model for quality-aware ranking of line candidates, proper supervision is
essential. Ranking-based losses aim to rank the positive predictions above negative ones and sort
the high-score candidates over low-score ones, which naturally suit our line ranking task. We define
the contiguous label according to the quality of the predictions, which are based on the distance of
the nearest ground truth and the predictions. Then, ranking-based losses can be applied to promote
higher scores for high-quality predictions.

In this work, we propose a novel end-to-end line detecting model named RANK++LETR upon
deformable DETR architecture. For Transformer-based line detection methods, LETR uses DETR
architecture where the backbone and the encoder are used to extract features and the decoder is used
to generate line segments. RANK-LETR adopts an encoder-only network and directly predicts the
lines from the encoder. Different from the above approaches, our method leverages the complete
network architecture of deformable DETR in design philosophy. Specifically, we apply distinct
supervision during the encoder and decoder stages: the encoder is guided to predict candidate line
segments, while the decoder is responsible for ranking and refining these candidate line segments.

Our contributions can be summarized as follows: (1) We present a novel DETR-like line segment
detection framework, where the encoder is used to generate candidate line segment proposals, while
the decoder is used to optimize their confidence scores and locations. (2) We propose line-aware
deformable attention where the perception field can be long and narrow to catch features along
candidate line segments. (3) By defining the continuous label for line segment detection, we employ
ranking-based supervision to optimize confidence scores in the decoder. (4) Experimental results
demonstrate that our method outperforms previous SOTA approaches in prediction accuracy while
running faster than previous Transformer-based models.

2 Related Work

2.1 Line Segment Detection.

Traditional line detection methods often rely on grouping image gradient (32; 1; 21) and pre-defined
rules (9; 7; 34). Recently, learning-based methods have achieved promising results. For junction
based methods, DWP (13) predicts junction map and edge map in two branches before merging
them. PPGNet (43) uses a point-pair graph to describe junctions and line segments. L-CNN (45)
applies line proposal and LoI pooling to propose candidate lines and verify them. Methods with
dense prediction first predict representation map and extract line segments with post-processing.
AFM (35) proposes attraction field maps to represent the image space and uses a squeeze module
to generate line segment maps. HAWP (38) builds a hybrid model considering 4D attraction field
and further extends to holistic attraction field (37). Lin et al. (17) apply deep Hough transform to
the previous detection architectures. TP-LSD (14) introduces tri-points line segment representation
for end-to-end detection. M-LSD (8) presents SoL augmentation and designs an extremely efficient
architecture for fast detection. SOLD2 (26) and DeepLSD (25) apply unsupervised pipelines and are
able to detect fine and sufficient line segments. Transformer-based method can directly output the
locations of the line segments. LETR (33) models it as object detection and predicts line segments
with DETR architecture. RANK-LETR (31) applies match predicting and re-ranking to improve the
training efficiency and the recall of high quality predictions. In this work, we extend Transformer and
proposal-based method with a pure learnable optimization module for better performance.

2.2 Visual Transformer for Detection

Visual Transformer for object detection task is originated in DETR (3), in which a Transformer-based
encoder-decoder framework is adopted and end-to-end supervision is applied with bipartite matching.
Zhu et al. (46) further proposes deformable DETR in which each query only focuses on a small
set of keys with learnable locations. A denoising training method is presented in (16) and a query
formulation using dynamic anchor boxes is introduced in (20) to speed up training convergence of
DETRs, which are further extended in DINO (42) Hou et al. (12) designed a hierarchical query
filtering strategy to reduce the computational redundancy of DETR. Visual Transformer is widely
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Figure 1: Overview of the proposed RANK++LETR. An image is first fed into a CNN-based feature
extractor and multi-level feature maps are obtained from different layers. Then, initial line segments
are generated by Transformer encoder based line segment generator with the multi-level features.
Candidate line segments with high confidence scores are selected to initialize the reference points in
the proposed line-aware deformable attention of the line optimizer. Finally, the confidence scores and
positions of the candidate line segments are optimized, and we choose the candidate line segments
according to their optimized confidence scores with non-maximum suppression as our final prediction.
The entire method can be end-to-end training and inferring.

used in many other visual detection tasks. Xu et al. (33) apply DETR in line segment detection with
a multi-scale encoder-decoder strategy. Tong et al. (30) use Transformer decoders in end-to-end
vanishing point detection with Gaussian hemisphere division. Chenhang et al. (10) apply Transformer
in 3D object detection with a set-to-set translation strategy. Tan et al. (28) utilize Transformers
to represent context features and line segments for detecting and reconstructing 3D planes from
a single image. Liu et al. (19) employed a Transformer-based architecture for end-to-end lane
detection. Leveraging the encoder-decoder architecture of deformable DETR, we design to generate
line segment proposals and optimize line candidates successively in a single framework.

2.3 Ranking-based Losses

Ranking-based losses have received much attention in recent studies. Chen et al. (5) first propose
Average Precision Loss to address the imbalance of foreground-background classification problem by
framing object detection as a ranking task. Rank & Sort (RS) Loss that defines a ranking objective
between positives and negatives as well as a sorting objective to prioritize positives with respect
to their continuous IoUs is designed in (24). Yavuz et al. (39) apply Bucketed Ranking-based
(BR) Losses which group negative predictions into several buckets. Cetinkaya et al. (4) extend
ranking-based Loss to edge detection with uncertainty modeling. Ranking-based loss is also used in
3D reasoning frameworks (15). In this work, we naturally employ ranking-based losses to supervise
the line optimizer for better confidence prediction.

3 Method

3.1 Line Segment Detection Modeling

Building upon deformable DETR encoder-decoder architecture, we model line segment detection as
an end-to-end process including line proposal generation and optimization, with each line proposal
parameterized by the position of its endpoints and the confidence score. Specifically, the encoder
generates candidate line segment proposals with associated confidence scores and positions, while
the decoder performs optimization through positional refinement and confidence re-ranking. The
entire pipeline can be end-to-end training and inferring.

As shown in Fig.1, the proposed method takes images as input and finally predicts a given number of
line segments sorted according to their confidence. It is initiated by processing input images through
a CNN backbone to capture multi-level feature representations. Then these features subsequently

3



①

②

③

④ ⑤

2 4 1 3 5＞

2 4 1＞ ＞

Rank Positives above Negatives

Sort Positives w.r.t. prediction quality

prediction ground truth

(a) (b)

Figure 2: (a) The attention positions (red points) of a query are usually around a reference point
(orange point) on the feature map in classic deformable attention module (left). In our proposed
line-aware deformable attention (LADA, right), the attention positions are distributed in a long and
narrow area and align well with the elongated geometry of candidate line segments (blue line). (b)
Ranking-based supervisions rank the positives above the negatives and sort the positives with respect
to their prediction qualities. We define the prediction quality relating to the distance between a
predicted line segment and its nearest ground truth. The positives and negatives are also distinguished
according to prediction quality, e.g., with a proper threshold.

undergo hierarchical encoding via a deformable Transformer encoder for candidate line proposal
generation. The encoder implements a spatial-aware assignment mechanism where each spatial
feature point is assigned to detect line segments whose centroid resides within its proximal receptive
field. According to the confidence score predicted by the encoder, line segments with high scores
are chosen as candidates for the decoder. In this work, we rank line segments with their prediction
quality and refine their location simultaneously. The decoder takes learnable content and candidate
line segment positions as initiating and gradually gathers information from the encoder feature maps.
Finally, the decoder predicts the optimized confidence scores and their locations simultaneously in a
pure learning-based manner.

3.2 Line-Aware Deformable Attention Module

In DETRs, each query adaptively aggregates information from feature vectors at specific attention
positions in the corresponding feature map with the attention module. Typically, given the query
vector zq and feature map x, the multi-head attention module can be represented as

A(zq,x) =

H∑
h=1

Wh[

K∑
k=1

Ahqk ·W ′
hx(p)], (1)

where h indexes the attention head and k indexes the sampled keys. Wh and W ′
h are learnable

projection weights. Ahqk is the Scaled Dot-Product Attention weight. p indicates the attention
position of query vector zq on feature map x at the h-th head and k-th sampled point. Here we adopt
similar notations as deformable DETR (46) for a better understanding.

For the classical multi-head attention module, the attention positions are generally predefined to cover
all feature point locations across the entire feature map. Thus, p can be defined as the k-th index of
the predefined locations G

p = G[k]. (2)

Deformable attention introduces learnable deformable attention mechanism, where the attention
positions for each query are determined by a reference point pq and multiple learnable offsets, which
can be determined as

p = pq + Fhk(zq), (3)
where Fhk(zq) is a function of zq, e.g., a linear function. It allows the attention positions to be
dynamically adapted based on the query.

Since our method uses attention module for line segment verification and refinement, the query vector
should focus on regions near the corresponding candidate line segment. These regions are generally
long and narrow as shown in Fig.2 (a). However, in the classic deformable attention module, the
attention position of a query is usually around a reference point on the feature map, which is not
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easy to adapt to the long and narrow area for detecting line segments. To address this limitation, we
propose a line-aware deformable attention (LADA) module, where the attention positions are aligned
with the elongated geometry of candidate line segments. Specifically, p in LADA module can be
represent as

p =
k − 1

K − 1
sq +

K − k

K − 1
eq + Fhk(zq), (4)

where sq and eq are two endpoints of the candidate line segment lq. With this design, the receptive
field of the attention module is distributed along the candidate line segments. It enables the model to
better perceive their alignment with semantically image features, e.g., edges and endpoints.

3.3 Ranking Line Candidates with Prediction Quality

For further optimizing the ranking through the prediction quality of the candidate line proposal, we
employ ranking-based losses to supervise the confidence scores. The key to applying ranking-based
supervision is to define contiguous labels that can reflect the line detection quality properly. We
define a simple yet efficient contiguous label li based on the distances between the predicted lines
and the nearest ground truths of them. Specifically, it can be defined as

li = max(0, 1− δl ∗min(∥ei − e∗i ∥2 + ∥si − s∗i ∥2, ∥ei − s∗i ∥2 + ∥si − e∗i ∥2)), (5)

where ei, si means the two endpoints of the i-th line segment and e∗i , s
∗
i are two endpoints of the

corresponding ground truth. δl is a factor that controls the threshold of distance. The ranking-based
solution we used consists of two components that are visually exhibited in Fig.2 (b) for better
understanding.

Ranking Positives over Negatives. Given the candidate line segments and their contiguous labels,
ranking loss is used to rank the positives above the negatives. We consider the lines whose li > 0 as
positives while others are considered as negatives. P indicates the set of positive line segments and N
indicates the set of negatives. We define the ranking loss Lrank using a differentiable approximation
of Average Precision following (4), which can be presented as

Lrank = 1− 1

|P|
∑
i∈P

∑
j∈N H(xij)∑

j∈P∪N H(xij)
, (6)

where H(xij) = max(1,min(0, (cj −ci)/2δH +0.5)) is the step function with a δH -approximation
around the step. c is the confidence score.

Sorting Positives with Prediction Quality. Each candidate has a different prediction quality according
to the alignment degree with the corresponding ground truth, i.e., li. Thus, we supervise to sort the
positive line segments with li, making the well-aligned predictions tend to get higher confidence
scores. To this end, we use the sorting objective Lsort introduced in (24), which can be presented as

Lsort =
1

|P|
∑
i∈P

(

∑
j∈P H(xij)(1− li)∑

j∈P H(xij)
−

∑
j∈P H(xij)[lj ≥ li](1− lj)∑

j∈P H(xij)[lj ≥ li]
), (7)

where the former term is the current sorting error and the latter term is the target sorting error,
respectively. More details are referred to (24).

3.4 Training Strategy

During training, supervisions are added on both Transformer encoder and decoder, called encoder
supervision and decoder Supervision, respectively. For the encoder supervision, binary cross-entropy
loss LE

conf and L2 loss LE
pos are applied to supervise the confidence scores and positions of the

predicted line segments. For the decoder Supervision, we use ranking-based supervision Lrank and
Lsort to learn ranking the candidate line segments. Moreover, L2 loss LD

pos is also used to optimize
the positions of line segment candidates. The final loss we used can be represented as

Ltotal = λcLE
conf + λepLE

pos + λdpLD
pos + λrLrank + λsLsort. (8)

Since the ranking supervision depends on the quality of the candidate line segments from the encoder,
poor prediction results at the beginning will affect the training of the decoder. Therefore, we warm up
the model for several epochs. Only the encoder is supervised during the beginning of training. Then
both encoder and decoder are jointly trained after the encoder can predict meaningful line segments.
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Method Wireframe YUD FPSsAP5 sAP10 sF10 sF15 LAP sAP5 sAP10 sF10 sF15 LAP
LSD (32) 6.7 8.8 - - 18.7 7.5 9.2 - - 16.1 100.0
DWP (13) 3.7 5.1 - - 6.6 2.8 2.6 - - 3.1 2.2
AFM (35) 18.3 23.9 - - 36.7 7.0 9.1 - - 17.5 14.1
LGNN (23) - 62.3 - - - - - - - - 15.8
TP-LSD (14) 57.6 57.2 - - 61.3 27.6 27.7 - - 34.3 20.0
L-CNN (45) 58.9 62.8 61.3 62.4 59.8 25.9 28.2 36.9 37.8 32.0 16.6
M-LSD (8) 56.4 62.1 - - 61.5 24.6 27.3 - - 30.7 115.4*
M-LSD†(8) 63.3 67.1 - - 64.2 27.5 28.5 - - 32.4 32.9
HAWPv2 (38) 65.5 69.5 66.4 67.4 - 28.2 30.4 41.0 42.0 - 45
LETR (33) 59.2 65.6 66.1 67.4 65.1 24.0 27.6 39.6 41.1 32.5 5.4
RANK-LETR (31) 65.0 69.7 66.7 67.7 65.6 27.6 30.1 39.7 40.6 34.1 9.0
RANK++LETR (Ours) 67.9 72.1 68.8 69.7 68.3 28.8 31.2 41.2 42.1 34.8 12.4

Table 1: Quantitative comparisons on Wireframe (13) and YUD (6) datasets. We compare our
proposed method with LSD (32), DWP (13), AFM (35), LGNN (23), TP-LSD(14), L-CNN (45),
HAWPv2 (37), M-LSD (8), LETR (33) and RANK-LETR (31) methods. M-LSD† denotes the
approach of combining M-LSD and HAWP. Average precision (sAP), F-score measurement (sF) and
line matching average precision (LAP) are used as metrics for comprehensive comparisons. Our
method outperforms previous SOTA methods in prediction accuracy and gets faster inferring speed
than other Transformer-based methods.

4 Experimental Results

4.1 Experimental Setup

4.1.1 Datasets ans Metrics

We conduct our experiments in two publicly available datasets including the Wireframe dataset (13)
and the YorkUrban dataset (6), which are widely used as line segment detection benchmarks. The
Wireframe dataset contains 5,000 training and 462 testing images of man-made environments, while
the YorkUrban dataset contains 102 testing images. The model is only trained on the Wireframe
dataset and tested on both Wireframe and YorkUrban datasets as a typical protocol (14; 45). For
comprehensive comparison, we evaluate our models based on average precision (sAP), F-score
measurement (sF) and line matching average precision (LAP). For fair comparison, we select no
more than 500 prediction lines with high confidence scores of each image for quantitative analysis.

4.1.2 Implementation Details

Our training and evaluation are implemented in PyTorch. We use 4 NVIDIA V100 GPUs for training
and 1 GPU for evaluation. We train our model for 240 epochs for warming up and 120 epochs for
jointly optimizing. The learning rate is set as 5× 10−4. The image size and the batch size are set as
512× 512 and 8, respectively. We use the AdamW optimizer and set weight decay as 10−4.

The results of our method are predicted on the features of the resolution of 128× 128. λc, λep, λdp,
λr, λs are set to 1, 10, 10, 1, 1, respectively. Moreover, we use auxiliary loss on the early layer in the
Transformer-based encoder with a factor of 0.8. K is set to 4 for sampling. Up to 500 line segments
with high scores are detected with NMS for comparison in our method.

4.2 Comparison with the SOTA

We compare our method with previous state-of-the-art methods including LSD (32), DWP (13),
AFM (35), LGNN (23), TP-LSD (14), L-CNN (45), HAWPv2 (37), M-LSD (8), LETR (33) and
RANK-LETR (31). All the methods are learning-based methods except the classical LSD. M-
LSD†denotes the method of combining M-LSD and HAWP. LETR, RANK-LETR and our proposed
RANK++LETR take Transformer as key architecture while other approaches mainly use convolutional
neural networks. Some methods such as (26; 25) are not chosen in the comparison because they are
designed to tend to generate finer line segments. Thus, it is unfair for these methods to compare on
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Figure 3: Visual examples of line segment detection results of Transformer-based methods including
LETR (33), RANK-LETR (31) and our proposed RANK++LETR on the Wireframe dataset (13). For
a better visual experience, we highlight some significant differences of accurate detection with red
bounding boxes and complete detection with purple bounding boxes. Our method tends to produce
more accurate and complete line detection results.

standard wireframe and YorkUrban Dataset. The comparisons are conducted on the Wireframe dataset
(13) and the YorkUrban dataset (6) and the results are listed in Table 1. The proposed RANK++LETR
outperforms all previous SOTA methods in prediction accuracy. Especially, RANK++LETR gets
about 2.9 percents improvement over RANK-LETR and 2.4 percents improvement over HAWPv2
on sAP 5 metric.

Moreover, RANK++LETR demonstrates superior efficiency compared to other Transformer-based
approaches, primarily attributed to its minimalist architectural design that eliminates computationally
intensive components such as global attention mechanisms and rotation augmentation operations. It
is worth mentioning that a speed gap still persists when benchmarked against optimized CNN-based
implementations, where we think that it is mainly due to the inherent computational complexity
of Transformer architectures versus the convolutions. Our future work will focus on exploring
lightweight Transformer or CNN-guided architecture for more efficient line detection approaches.

Visual examples of line segment detection results of Transformer-based methods including LETR,
RANK-LETR and our proposed RANK++LETR on the Wireframe dataset are shown in Fig. 3. Our
method tends to produce more accurate and complete line detection results. We highlight some
significant differences in accurate detection with red bounding boxes and complete detection with
purple bounding boxes.

To explore the generalization capability of the proposed method in non-structured scenarios, we
directly applied the trained model to the NKL dataset (44) for semantic line detection. This dataset
primarily contains natural landscape images. The detection results are shown in the Fig.4. The
experiment demonstrates that even without training on the NKL dataset (44), our model still exhibits
perception ability for semantic lines.
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Line
Optimizer LADA Ranking

Loss
w/o

Warm-up R:S Attention
Points

Wireframe
sAP5 sAP10

- - - - - - 63.2 (↓ 2.3) 68.1 (↓ 2.7)
✓ - - - - 4 65.5 (-) 70.8 (-)
✓ ✓ - - - 4 67.0 (↑ 1.5) 71.4 (↑ 0.6)
✓ - ✓ - 1:1 4 67.2 (↑ 1.7) 71.4 (↑ 0.6)
✓ ✓ ✓ - 1:1 4 67.9 (↑ 2.4) 72.1 (↑ 1.3)
✓ ✓ ✓ ✓ 1:1 4 66.0 70.6
✓ ✓ ✓ - 1:0 4 67.3 71.6
✓ ✓ ✓ - 0:1 4 48.7 51.4
✓ ✓ ✓ - 1:1 2 67.4 71.5
✓ ✓ ✓ - 1:1 8 67.9 72.2

Table 2: Ablation and parameter study of our method on the Wireframe (13) dataset. We first
construct a baseline method without decoder according to our modeling and then gradually add
different components to explore their relevance and impact. Experimental results show that a second
optimization can bring performance improvement, and both the LADA module and ranking loss
contribute to better detecting results. Different numbers of attention points and weights of RS losses
are also tested for a comprehensive study.

Figure 4: Visual examples for non-structured environments on NKL dataset (44). Our method
demonstrates strong generalization capability in semantic line detection scenarios.

4.3 Ablation and Parameter Study

To verify the effectiveness of components and find the influence of the hyperparameters in our
proposed approach, we conduct an ablation and parameter study of RANK++LETR. The experience
is conducted on the Wireframe dataset and sAP results are reported in Table 2.

As a baseline method, we apply ResNet50 as feature extractor and 6 layers Transformer encoder
from classical deformable DETR for line segment detection with a matched prediction strategy,
where the feature point closest to the centroid of a line segment is responsible for predicting it.
Different from RANK-LETR, branch network and rotation enhancement network are no longer used.
Based on the baseline, we use 6 layers deformable Transformer decoder and construct the complete
proposal generating and candidate optimizing pipeline, where the selected proposals are used to
initialize the inputs of the decoder. It reveals a significant performance gap between the proposed
pipeline and baseline framework, which proves the effectiveness of our detection modeling. The
line-aware deformable attention and ranking-based loss are then added individually. Both of them
can bring obvious performance improvement. By combining the LADA module and ranking-based
Loss together, we verify that our proposed method can get the best results benefiting from each novel
component. Moreover, we find the warmup of encoder is also important to get a faster convergence
for better results. The experimental results are listed in Table 2. The contribution of each component
can be found during the performance differences.

The parameter study is conducted on LADA module and ranking-based losses. For LADA module,
we explore the influence of the number of attention points, by changing the default 4 to 2 and 8,
respectively. We find performance is not sensitive to the number of attention points when it exceeds
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Table 3: Evaluation of the outputs before and after
optimization, respectively. Adding line optimizer
for learnable ranking the confidence scores and
refining the positions brings an intuitive detecting
performance improvement.

Metric Before Optimize After Optimize

sAP5 64.1 67.9
sAP10 68.8 72.1

sF5 64.5 66.3
sF10 67.4 68.8

Figure 6: Attention maps of our proposed line-aware deformable attention module (LADA) in the
decoder. We show the attention map of the last decoder layer for clear viewing. Brighter areas mean
more attention. The attention points generally appear around the image lines, making the proposed
LADA easier to capture line features.

4, which may be because it obtains enough useful information such as endpoints and edges. For
ranking-based supervision, we test the ranking loss and sorting loss individually to find their roles in
training. We observe that only adding ranking loss can bring limited improvement and only using
sorting loss will even get worse performance. We think both loss terms should be used together in the
task, which may be because they complement each other.

4.4 Analysis and Interpretation

In order to gain a deeper understanding of the proposed method, we conduct further analysis and
feature visualization to exhibit intermediate process. As our method uses encoder to get initial
proposals and optimize the score and position with decoder in successive processing, an intuitive way
to explain the pipeline is to compare the predicting performance of the two outputs in one model
directly. As demonstrated in Table.3, the line optimizer brings an intuitive detecting performance
improvement.

We then compare the ranking quality to verify the effectiveness of the supervision and further explore
the underlying reason for performance improvement. For the output results before and after line
optimization, we select 500 line segments with high confidence and gather them into two groups,
respectively. For each ground truth line segment, the closest line segment can be found from each
group and the ranking of the line segment among its group can be recorded. It indicates that the
corresponding ground truth will be recalled at the ranking in these predictions. It is obvious that a
better method should gain higher ranking quality. In other words, with fewer predictions, more correct
line segments can be detected. We statistically analyze the distribution of the rank of corresponding
ground truth being recalled and the results are shown in Fig.5. The ranking-based supervision
contributes to gaining high ranking distribution of the prediction, yielding a better line segment
detection performance.

We also visualize the distribution of attention points in line-aware deformable attention (LADA). 6
images are randomly selected with the attention heat map masking on, which is shown in Fig.6. We
show the attention map of the last decoder layer for clear viewing. Brighter areas mean more attention.
The attention points generally appear around the image lines, demonstrating that the proposed LADA
is easier to capture line features and more suitable for line detection tasks.

In addition to the module innovation, from a holistic perspective, the proposed method leverages
the encoder-decoder design where the encoder generates line segment proposals while the decoder
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performs confidence re-ranking and position refinement of these segments. For the encoder, our
method relies on its recall capability, whereas the decoder provides a secondary opportunity to
enhance detection performance by ranking confidence and optimizing locations for the recalled line
segments. Theoretically, since the encoder itself is trained as a line segment detector, cases where
the proposed encoder itself demonstrates significantly inferior recall performance compared to other
detection methods are unlikely to occur.

5 Conclusion

In this work, we develop proposal-based line segment detection methods with a novel pipeline where
the high-quality line proposals are ranked and optimized with learnable features. To achieve this
goal, we specially design a novel line-aware deformable attention (LADA) module in which attention
positions are distributed in a long narrow area and can align well with the elongated geometry of
line segments. For better supervising the ranking of selected proposals, ranking-based losses are
employed and modified with proper contiguous labels generation to adapt line segment detection
task. Building on the above techniques, we construct a novel line segment detection model with
encoder-decoder architecture named RANK++LETR. Extensive experiments show that our method
outperforms previous SOTA methods in prediction accuracy and gets faster inferring speed than other
Transformer-based methods.
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tions to faithfully reproduce the main experimental results, as described in supplemental
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Answer: [Yes]

Justification: The code are provided in the supplemental material. The data is public
available and have been widely used.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
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6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specify all the training and test details in the experiment section.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
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material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The main results are reported with ablation study.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-
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• The factors of variability that the error bars are capturing should be clearly stated (for
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• The method for calculating the error bars should be explained (closed form formula,
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should
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of Normality of errors is not verified.
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figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: Replace by [Yes]
Justification: The computer resources are reported in the experiment section.
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: the research conducted in the paper conform with the NeurIPS Code of Ethics
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Related codes and papers are cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
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Question: Are new assets introduced in the paper well documented and is the documentation
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14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No crowdsourcing experiments.

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
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