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Abstract
Mental stress adversely impacts both physical
and mental health, with chronic stress leading
to serious health concerns. Photoplethysmog-
raphy (PPG) sensors, widely available in wear-
able devices, offer a convenient, cost-effective,
and non-invasive method for stress monitoring.
This study proposes a dual path hybrid convo-
lutional neural network-bidirectional long short-
term memory (CNN-BiLSTM) hybrid architec-
ture for real-time stress detection using only PPG
signals. Trained and validated on the publicly
available WESAD dataset, the model achieves ex-
ceptional performance metrics: 97.90% accuracy,
98.30% specificity, 97.20% sensitivity, 97.06%
F1-score, 99.12% AUC, and 95.42% Cohen’s
kappa. The lightweight model exhibits high accu-
racy in stress detection while maintaining compu-
tational efficiency, making it particularly suitable
for wearable devices. These results highlight the
potential of this approach for practical real-time
stress monitoring and management applications.

1. Introduction
Stress is a crucial adaptive response that helps the body
manage challenges and restore balance (Elzeiny & Qaraqe,
2020). However, mental stress has been identified as a sig-
nificant contributor to various cardiovascular diseases (Esler,
2017), prompting individuals to monitor their stress levels in
daily life. Commonly used physiological signals for stress
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monitoring include electrocardiography (ECG), electroen-
cephalography (EEG), galvanic skin response (GSR), elec-
trodermal activity (EDA), photoplethysmography (PPG),
and others. PPG operates by measuring blood volume
pulses through near-infrared light, providing insights into
various physiological parameters (Lu et al., 2009). How-
ever, PPG has emerged as a practical alternative to ECG
due to its non-invasive nature, ease of integration, ability to
monitor cardiac, respiratory, and nervous system activity,
cost-effectiveness, and widespread availability in commer-
cially available wearable devices (Motin et al., 2019; 2020).
The application of machine learning (ML) and deep learn-
ing (DL) techniques to analyze physiological signals has
become a prominent method for stress monitoring. Sev-
eral studies (Bobade & Vani, 2020; Bellante et al., 2021;
Heo et al., 2021; Jahanjoo et al., 2024) have explored ma-
chine learning-based classifiers for assessing stress using
either unimodal PPG signals or combinations of signals
comprising PPG. However, these methods rely entirely on
hand-crafted features, which can result in the omission of
important signal characteristics during manual feature ex-
traction. This limitation may hinder the generalizability and
real-world applicability of such approaches.

Deep learning-based approaches are being increasingly
adopted for stress monitoring, as reflected in a rising num-
ber of studies (Elzeiny & Qaraqe, 2020; Gasparini et al.,
2021; Rashid et al., 2021; Kalra & Sharma, 2023). These
methods excel at automatically learning relevant features
directly from raw data while also allowing the integration
of manually engineered features when appropriate. Most
existing studies employ deep learning models that either in-
corporate hand-crafted features or utilize transformed signal
representations such as the Fourier Transform, Short-Time
Fourier Transform, or Continuous Wavelet Transform to
generate input images. However, relying on hand-crafted
features may lead to the loss of critical information, thereby
degrading performance, while transforming signals into
images significantly increases computational complexity.
These limitations reduce the applicability of such methods
to resource-constrained wearable devices.

In this work, we propose a dual-path hybrid CNN-BiLSTM-
based shallow architecture for stress monitoring using uni-
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Figure 1. Architecture of the proposed hybrid CNN-BiLSTM model with dual processing paths: a convolutional-LSTM-BiLSTM pathway
extracting spatio-temporal features and a convolutional pathway capturing spatial features, with concatenated outputs classified through
feed-forward convolutional blocks.

modal PPG signals, specifically designed for wearable de-
vices to achieve improved performance. To ensure inter-
pretability of the proposed model, t-distributed Stochastic
Neighbor Embedding (t-SNE) is used to visualize feature
representations. The paper is structured as follows: materi-
als and methods, results and discussion, and finally, conclu-
sion.

2. Materials and Methods
2.1. Dataset Description

This study utilizes the publicly available Wearable Stress
and Affect Detection (WESAD) dataset to evaluate the per-
formance of the proposed model (Schmidt et al., 2018). The
dataset includes physiological data, including PPG, ECG,
EDA, EMG, and TEMP, collected from 17 participants who
wore wearable sensors. Due to sensor malfunctions, data
from two participants were excluded, leaving 15 partici-
pants (12 males and 3 females) with a mean age of 27.5 ±
2.4 years. This study exclusively focuses on PPG signals
sampled at 64 Hz.

2.2. Signal Preprocessing and Augmentation

The data were segmented into 30-second non-overlapping
windows, each associated with its corresponding label. To
ensure consistency in signal amplitude, the PPG signals
were normalized to have zero mean and unit variance. To ad-
dress class imbalance within the dataset, data augmentation
was applied to the minority class during the training phase.
The augmentation strategy is outlined in Algorithm 1.

2.3. Deep Learning Model

The proposed dual-path hybrid convolutional neural net-
work and bi-directional long-short term memory model,
depicted in Figure 1, features a dual-path hybrid architec-
ture designed to concurrently capture spatial and temporal
dependencies in PPG signals. The first path combines con-

volutional, LSTM, and bidirectional LSTM layers, while the
second path utilizes a series of convolutional layers. This
CNN-BiLSTM framework leverages the strengths of both
components: the convolutional path extracts hierarchical
spatial features from the raw PPG signals, while the inte-
grated convolutional, bidirectional, and LSTM layers model
complex temporal dynamics. The model then concatenates
the feature representations from both paths, preserving spa-
tiotemporal relationships essential for accurate signal anal-
ysis. Finally, a feed-forward convolutional block performs
classification based on these fused features, enabling robust
pattern recognition.

In this study, the leave-one-subject-out (LOSO) cross-
validation method was employed to evaluate the proposed
model. The model’s performance was assessed using several
metrics, including accuracy, F1-score, specificity, sensitivity,
AUC, and Cohen’s kappa (k).

Algorithm 1 Minority Class Augmentation via Sliding Win-
dow

1: Input: Minority class dataset Dmin, majority class size
Nmaj, sliding step size d

2: Output: Augmented minority class dataset Daug
3: Initialize Daug ← ∅
4: Naug ← 0
5: while Naug < Nmaj do
6: for each signal segment s in Dmin do
7: Apply sliding window with step size d to s
8: Extract sub-segments and append to Daug
9: Naug ← size of Daug

10: if Naug ≥ Nmaj then
11: break
12: end if
13: end for
14: end while
15: return Daug
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3. Results and Discussion
The proposed model achieves an overall accuracy of 97.90%,
with a specificity of 98.30%, sensitivity of 97.20%, F1-score
of 97.06%, AUC of 99.12%, and Cohen’s κ of 95.42%.
To address class imbalance in the dataset, where normal
class recordings outnumber stressed class recordings, data
augmentation was applied during training. This balanced
approach led to performance improvements across all evalu-
ation metrics: accuracy increased by 2.00%, specificity by
1.60%, sensitivity by 2.70%, F1-score by 3.13%, AUC by
1.16%, and κ by 4.54%. The complete results are presented
in Table 1. Figure 2 further illustrates the confusion matrix,
highlighting a 5% improvement in the minority (stressed)
class and an approximate 2% improvement in the majority
(normal) class when augmentation is used during training.
Furthermore, the Receiver Operating Characteristic (ROC)
curve shown in Figure 3 demonstrates a high Area Under the
Curve (AUC), indicating the model’s strong discriminative
capability between the two classes.

Figure 2. Normalized confusion matrices of the LOSO cross-
validation without (left) and with augmentation (right).
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Figure 3. ROC curve illustrating an AUC as high as 0.99, indicat-
ing excellent model performance.

Table 1. The performance scores using the leave-one-subject-out
strategy, both with and without augmentation, are presented. The
accuracy, F1 score, specificity, sensitivity, AUC, and k are ex-
pressed in percentages (%).

Aug Acc Spe Sen F1 AUC k
No 95.89 96.70 94.50 93.93 97.96 90.88
Yes 97.90 98.30 97.20 97.06 99.12 95.42

3.1. Comparison with State-of-the-Art-Architectures

A comparative analysis was conducted against both convo-
lutional and transformer-based state-of-the-art architectures

to evaluate the effectiveness of our proposed dual-path hy-
brid model for PPG-based stress detection. Specifically, we
compared the proposed model with convolutional networks
such as AlexNet, MobileNet-V1, and ResNet-18, as well as
transformer-based models including CNN with Transformer
(CNN+TF) and Multi-Perspective Channel Attention with
Transformer (MPCA+TF) (Hu et al., 2022). As shown in
Table 2, the proposed model outperforms all baseline meth-
ods across accuracy, specificity, sensitivity, and AUC on
the WESAD dataset, demonstrating its superiority over the
state-of-the-art-architectures.

Table 2. Performance comparison of the proposed model with state-
of-the-art architectures. Accuracy, specificity, sensitivity, and AUC
are expressed in percentages (%).

Model Acc Spe Sen AUC
AlexNet 94.53 96.37 91.10 95.80
MobileNet-V1 95.59 95.51 95.71 97.40
ResNet-18 96.71 95.68 98.47 98.70
CNN+TF 92.52 95.51 87.12 93.20
MPCA+TF 95.31 95.68 94.48 96.30
Proposed 97.90 98.30 97.20 99.12

3.2. Comparison with Existing Works

To benchmark the performance of the proposed model, we
performed a comparative analysis with existing state-of-
the-art methods for PPG-based stress classification. As
shown in Table 3, our approach demonstrates superior per-
formance compared to other methods that use only BVP
signals. Although the highest accuracy reported in the lit-
erature reaches 97.2%, their study relies on multimodal
signals (Bobade & Vani, 2020), our unimodal BVP-based
method achieves comparable performance. The results indi-
cate that our model either exceeds the performance of recent
approaches, including those utilizing multimodal inputs.

Table 3. Comparison with the State-of-the-Art

Reference Signal Model Acc
(Bobade & Vani,
2020)

PPG, ECG, EDA,
EMG, RESP

ANN 95.21%

(Bellante et al.,
2021)

PPG, EDA, RESP ANN 97.20%

(Heo et al., 2021) PPG LDA 96.50%
(Rashid et al.,
2021)

PPG DNN 88.56%

(Jahanjoo et al.,
2024)

PPG SVM 95.55%

Proposed PPG DL 97.90%

3.3. Model Interpretability

Deep learning models typically function as black boxes,
making visualization of their internal feature representation
essential for physiological data analysis. The feature learn-
ing process of the dual path hybrid CNN-BiLSTM model
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is visualized using t-SNE as illustrated in Figure 4. The
input layer shows complete overlap between normal (red)
and stressed (blue) classes, confirming the inherent insep-
arability. Through successive transformations, the model
develops discriminative features, with the global average
pooling layer achieving clear class separation. This pro-
gression demonstrates our architecture’s ability to extract
meaningful patterns from initially indistinguishable inputs.

3.4. Compatibility with Wearable Devices

Continuous stress monitoring is crucial for maintaining
physical and mental well-being (Esler, 2017). Photoplethys-
mography (PPG) sensors, being cost-effective and widely
integrated in commercial wearables (Lu et al., 2009), offer
a practical solution for daily stress assessment. However,
wearable devices impose strict constraints on memory usage
and computational capacity, necessitating efficient model ar-
chitectures. Our dual path hybrid CNN-BiLSTM model ad-
dresses these requirements with a compact parameter count
of 1,386,306 (5.29 MB), making it suitable for deployment
on resource-constrained wearable platforms.

Figure 4. The t-SNE feature map visualization illustrates the fea-
ture learning process of the hybrid CNN-BiLSTM model. Ini-
tially, the features were indistinguishable; however, as training
progressed, a clear separation emerged between the normal (red)
and stressed (blue) classes, demonstrating the model’s effective-
ness in learning discriminative representations.

4. Conclusions
In this study, we propose a lightweight hybrid CNN-
BiLSTM architecture for stress detection using solely
PPG signals from wearable devices. The proposed model
achieves exceptional performance with 97.90% accuracy,
98.30% specificity, 97.20% sensitivity, 97.06% F1-score,
99.12% AUC, and 95.42% Cohen’s k, demonstrating supe-
riority over existing approaches in the literature. With mini-
mal parameters, the architecture is highly efficient and well-
suited for resource-constrained wearable devices. These
results highlight the potential for accurate, continuous, and
non-invasive stress monitoring in practical applications. Fu-
ture work will explore multi-class stress classification and
real-world system integration.
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