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Abstract

This paper tackles the language confusion of large language models (LLMs) within
code-switching contexts, a common scenario for bilingual users. We evaluate lead-
ing LLMs on English-Korean prompts designed to probe their language selection
capabilities, analyzing responses to both simple matrix-language cues and com-
plex tasks where the user prompt contains an instruction and content in different
languages. Our findings reveal that even top-performing models are highly incon-
sistent, frequently failing to generate responses in the expected language. This
work confirms that code-switching significantly exacerbates language confusion,
highlighting a critical vulnerability in current models’ ability to process natural,
mixed-language inputs.

1 Introduction

For the large population of multilingual speakers who use large language models (LLMs), code-
switching—the practice of interleaving two or more languages within a single conversational con-
text [[1]—is a natural and routine mode of communication. A common scenario involves providing
content in English (e.g., a written draft) and issuing an instruction in another language to revise or
continue it. Current LLMs frequently fail in these situations by exhibiting “language confusion,”
where they incorrectly switch the language of the original English content to match the instruction’s
language. This unreliability forces users into a frustrating cycle of re-prompting or adding explicit
language specifiers, creating a significant usability barrier and revealing the models’ failure to handle
common, real-world interaction patterns.

While foundational work like the Language Confusion Benchmark [[17]] has investigated language
confusion, its analysis is confined to monolingual inputs. This focus overlooks the more complex
and realistic scenario of code-switched inputs, where the users’ intended response language is
often implicit. Meanwhile, prior research on code-switching in LLMs has centered on generating
naturalistic code-switched text [25, [16] or measuring task performance degradation [28]], rather than
the appropriateness of the language choice itself. As a result, the model’s ability to select the correct
response language, a critical factor for user satisfaction, has been largely overlooked.

This study addresses this crucial gap by presenting the first systematic evaluation of language
confusion in LLMs within code-switching contexts. We construct a new benchmark centered on
English-Korean code-switching scenarios. Through a comprehensive evaluation across four popular
multilingual LLMs, we show that language confusion is a pervasive and asymmetric problem: models
consistently default to Korean when faced with mixed-language inputs, and their accuracy drops
sharply when the expected response is English. Our findings highlight a fundamental limitation in
current multilingual LLMs and establish a clear benchmark for developing more robust, code-switch-
aware models.
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Table 1: Example prompts from the Simple and Complex settings. English translations are shown for
convenience.

Setting Prompt Type Expected Lang.
Simple Write four 7] A} on the 54| of &+ 3}HH] with a minimum EN Matrix English
of 300 words each. — KO Embed

(Translation: Write four articles on the topic of cryptocur-
rency with a minimum of 300 words each.)

Complex  Action Items: 1. Separate discussion to be held with KO Instruction English
Risk on the property valuation report topic 2. Further = — EN Content (Content Lang.)
assessment to identify whether sign-off is necessary for
net worth statements will be in place (...) U &5 o] 2t
22 ARH9 Qo] £ 74 5 QIrar
(Translation: Is my grammar correct? Can you revise it
in professional language for me?)

2 Related Work

Code-switching. Code-switching has been a long-standing area of research in Natural Language
Processing [24], as multilingual users naturally employ it when interacting with conversational Al
and expect systems to handle it appropriately [3l 6]. Code-switching occurs in various switching
levels: subwords such as at morpheme boundary (i.e., intra-word switching), tag phrases (i.e., tag-
switching), words (i.e., intra-sentential switching), and sentences or clauses (i.e., inter-sentential
switching). Recent studies investigated the competence of multilingual LLMs in code-switching
texts [28} (11} 27, [18] and generating synthetic code-switched data [15} [25]. Studies are often guided
by linguistic frameworks like the Matrix Language Frame model [19], which distinguishes between
the grammatically dominant matrix language and the inserted embedded language.

Language Confusion. The issue of language confusion has previously been studied in Machine
Translation as ‘off-target translation,” where a model translates a source sentence into an incorrect
language, severely degrading system credibility [4]. While prior work provides initial evidence of
such failures occurring at the response level in LLMs [14} 5] and identified frequently confused
language pairs [[10], the first systematic investigation of this phenomenon was conducted by Marchisio
et al. [[17]. Their work provides the first in-depth, multi-level (line and word) analysis of the problem,
though it was confined to monolingual prompts. We extend this investigation to the more complex
domain of code-switching with diverse switching levels, a setting that better reflects the natural
interaction patterns of multilingual users.

3 Code-Switching Language Confusion Benchmark

To systematically evaluate language confusion in a code-switched context, we create a new benchmark
by collecting a diverse set of prompts that reflect realistic use cases. We measure this phenomenon in
two distinct settings: Simple and Complex, using Korean-English code-mixed data. Simple setting
targets intra-sentential switching, where models must respond in a primary matrix language, and the
Complex setting targets inter-sentential switching, where the language boundary separates instruction
from content. Table [1|illustrates both settings. We probe the model’s ability to infer user intent to
determine the appropriate response language for intra- and inter-sentential code-switching queries.

3.1 Simple Setting

Simple setting is designed to test a model’s ability to identify and adhere to the primary (matrix)
language of a code-switched prompt.

Data Sources and Generation. The Simple set comprises 299 samples, derived from 199 English
queries from the Language Confusion Benchmark [[17] and 100 Korean queries from the WildChat
IM dataset [30]. To isolate the model’s implicit language selection capability, we intentionally
exclude any queries that explicitly request translation or specify a target language for the output.
We follow the code-switching synthesis process of Kim et al. [[15], providing instructions, a pair



of Korean-English parallel sentences with their code-switching output as a one-shot example, and
the target parallel sentences to GPT-40. Here, we manually generate the one-shot example based
on actual Korean-English code-switching examples from Finer [9]. We run this process twice for
each pair to create two variants: one with an English matrix and another with a Korean matrix. The
complete prompt is detailed in Appendix [B]

3.2 Complex Setting

Complex setting mirrors more intricate real-world scenarios where the language of the instruction
differs from the language of the content being discussed.

Data Sources and Generation. The Complex set is built upon WildChat 1M dataset [30], which
contains many naturally occurring prompts with this instruction-content structure. To define frequently
used scenarios, we first qualitatively analyzed a consented collection of ChatGPT logs from 18
graduate students (3,138 code-switching utterances). This analysis results in two primary categories
with an implicit but consistent expected response language:

1. Response in Instruction Language: These tasks typically involve content understanding or
clarification. Examples include answering questions about the provided content, summarizing it,
or explaining a specific part. In these cases, the user is expected to prefer a response in their more
comfortable language—the language of the instruction.

2. Response in Content Language: This category includes tasks that directly manipulate or extend
the provided text. Common examples are requests for editing, grammar revision, text continuation,
or generating new text based on the content (e.g., “Create multiple-choice questions based on
this article”). The natural expectation is for the output to remain in the language of the original
content.

To construct the dataset, we curate 30 representative instruction templates for each category (60
total). For each template, we pair the original with four additional variations generated using GPT-4o,
resulting in 300 unique samples. To capture order effects, each sample is instantiated twice—once with
the instruction preceding the content and once after—yielding 600 prompts in total. The examples
of instruction templates and the prompt used for content variation with GPT-40 are provided in

Appendices[A] and [B] [[]

4 Experiments

4.1 Experimental Setting

Models. We evaluate four multilingual LLMs: Gemini 2.5 Pro [[7], GPT-40 [20], Qwen 2.5 (32B) [21],
Exaone (32B) [22]. The model cards and details are described in Appendix

Metric. We evaluate model performance using Response-level Pass Rate, a binary metric that
assesses whether a response is generated in the expected language. Following Marchisio et al. [17],
we determine the primary language of each response by applying the pre-trained fastText [[12] model
to the entire generated text. A response is considered correct if its detected primary language aligns
with the expected output language. Our evaluation is intentionally lenient; even if a response contains
minor code-switching at the word or line level (e.g., retaining a specific named entity or technical
term from the prompt), it is marked as correct as long as the overall language of the response is
the one expected. We adopt this approach because, in a code-switched context, preserving certain
expressions from the prompt can be a feature that better reflects user intent, rather than an error.

4.2 Result

Our evaluation, summarized in Table [2] reveals that even state-of-the-art LLMs struggle significantly
with language selection in code-switched contexts. In Simple setting, model performance varies
depending on which language serves as the matrix. All evaluated models are more accurate when the
matrix language is Korean (KO Matrix), with accuracies ranging from 52.75% to a high of 92.98%
for Gemini 2.5. Conversely, performance is notably lower when the matrix language is English

'The full dataset and templates will be made publicly available upon publication.



Table 2: Response-level Pass Rate (%) on our code-switching benchmark. We report performance on
Simple (Matrix-Embed) and Complex (Instruction-Content) settings. Shaded cells indicate English
was the expected output language. We use boldface for the best and underline for the worst score.

Simple Complex
EN Matrix KO Matrix EN Instr KO Instr
KO Embed ENEmbed KO Content EN Content
GPT-40 33.78 78.60 64.84 68.06
Qwen 2.5 Instruct 55.18 72.58 64.0 55.85
EXAONE-4.0.1-32B 46.32 52.75 46.33 67.39
Gemini 2.5 Pro 12.04 92.98 59.34 50.17

Table 3: Response-level Pass Rate (%) breakdown for Complex setting. ‘Exp. Source’ indicates the
language source the model was expected to match. Shaded cells indicate English was the expected
output language. We use boldface for the best and underline for the worst score.

EN Instr. - KO Content KO Instr. - EN Content

Exp. Source Content Instruction Content Instruction
GPT-40 82.0 47.67 57.0 79.19
Qwen 2.5 Instruct 74.0 54.0 22.0 89.93
EXAONE-4.0.1-32B 53.33 39.33 43.33 91.61
Gemini 2.5 Pro 76.7 42.0 2.0 98.7

(EN Matrix). Under this condition, the highest accuracy is 55.18% from Qwen 2.5, while Gemini
2.5’s accuracy drops to 12.04%. This pattern suggests a tendency for the models to default to
generating Korean when presented with mixed-language inputs.

Complex setting presents a greater challenge, leading to more varied performance across the models.
GPT-40 shows the most consistent results, achieving the highest scores for both English-instruction
(64.84%) and Korean-instruction (68.06%) prompts. EXAONE 4, despite being specifically designed
as a Korean-English bilingual model, proves particularly weak in the EN Instruction — KO Content
setting (46.33%). The other models also exhibit less consistent performance, suggesting a general
difficulty in correctly inferring the intended response language from the task semantics.

However, a more granular analysis in Table [3|reveals that the core issue is rather a strong bias against
generating English, reinforcing the preference for Korean observed in the Simple setting. Across all
models, accuracy plummets when English is the expected output (shaded red), regardless of whether
it is the language of the instruction or the content. For example, Gemini 2.5’s accuracy drops to a
mere 2.0% when required to match English content given Korean instructions, and GPT-40’s accuracy
is as low as 47.67% even when English is the instruction language. This consistent failure highlights
a fundamental bias against generating English in mixed-language contexts. Further analyses on
the impact of instruction position and a qualitative review of common failure cases are detailed in
Appendix 5]

5 Discussion and Analysis

Impact of instruction position.

We analyze the impact of instruction position (before vs. after content), with robustness visualized in
Figure|l} All models are sensitive to placement; even the most robust models, Qwen and GPT-4o,
only succeed in both configurations 48.5% of the time. A strong asymmetric failure pattern emerges:
models are significantly more likely to fail when the instruction is placed at the beginning (blue bar,
(X,v")). This suggests a recency bias, where the model’s language choice is overly influenced by the
language of the content it processes last.

Unexpected Language Choices. Beyond the response-level pass rate, our qualitative analysis reveals
more subtle forms of language confusion. In many instances, models produce responses that are not
monolingual but are themselves code-switched, often in ways that are unnatural or erroneous. We



Table 4: Failure samples generated by LLMs

Query

Response

Natural Language Processing
(NLP)7} 231017482
(Translation: What is Natural
Language Processing (NLP)?)

A1 o] & 2](Natural Language Processing, NLP)= # FE{ 7} Q17+
o] 21012 olefs}il A2 5 Q=S Shie 218752 ¢ of
Ytk NLPE= A3y fsh, N THBEEE 2L XE B
B EHLAEM BAMER AN BERE, MASEILZ FFRL
B NLPRHARE iz, R ERR T HLa8 HEoth ¥ UK
HERERS ]

T B R R B R0, Bk fe — AR Bl Ak

NLPO] & ok ol - choFalod, 7] wiol, 74 34, £41 <)
A e g0k, o] 5 Al2E o] EeHHU Quen 2.5

—

A5} category ] trivia A E
generated]] A Q.
(Translation: Please generate an
example of trivia in the cinema
category.)

(...) 5. Hu]dlo]¥ 2:Judgment Day’of| A 4 7 €]
A v L-E0] 4345t 01, ob=E 474 (Pronunciation: Arnold
Schwar) neneg (Pronunciation: zeneg) 7] (Pronunciation: ger) ©]
95%9] A AL 2 +ASHALG U . o] A trivial J2o]
gk Mot J3t a7t A vl SH|E2 AR E 5 E
Yt} (Quwen 2.5)

Al autonomous F-7] 2] FQ eth-
ical 212 Aeto] T gt blog 7| A]
2 Z435}7)

(Translation: Write a blog post
discussing the key ethical con-
siderations of Al autonomous
weapons.)

# <AL A% 7719 @e4 18] A 22lE ot ) o8
of G7H#* QIF A (AI) 7] &0 F4&5] WHSHAA ##2h-& F7]
Al 2~El(Autonomous Weapons Systems, AWS)**o] tjjgt =2
TAA oA 1 QhFUTH AlZF 17 A glo] HEE A5}

Could you give me some in
depth tips to make it go viral and
spread awareness widely.

AL ARE0] o Eot 7%

glo] AUES gelshe upo]

d e52 UET AUt 8
B wRe A A4 A
o AFe Hxsh AT
Holg Fa5tw olopr]2 7
f5p7] 9lof HAHLE A5
&7} gtk o] ofelt]ol &
32 0 2 $HakA 7| 1 ARrE ol
312 5o AAL T Aol o
o ZHE Ly|ws shew of

(..) — 2 o] B 1T oA A Q1 A A #* -
T T}A| (Translation: challenge; excessive word-for-word transla-
tion; should be replaced with transliteration (& g/.x])) & Al** 0 7
AQt: "5k Ft ANPEES Y, 4l S YA A
HEAL. FAHE TRl AL

— 3 QIERAX A AR U E] Z-gr - #+ 4 4 m]t] o] (Trans-
lation: Social media; should be replaced with SNS, an English loan-
word that have been appropriated in English and not readily under-
standable to English native speakers) Q1 ZZ A A ##2} F . npQl =
Z 1] A~ (Translation: mindfulness; should be replaced with Of-2-3.7]
rather than awkward transliteration), ¥, Z|& 7}55t gfo] T A
£}al Jope] QIEEC1A 7} M2 S FH o5 AlFo AL -
221 R El/hAe} A7) TA T b, 9 SolA] o wat
1 O[IES 53] Aol A-E BOHL(...) (Exaone)

identify three common patterns as follows. Table ] rows 1-3 provide illustrative examples of these
failure types, demonstrating that even when a model’s output is not a complete failure in terms of
language choice, its ability to maintain linguistic consistency remains a significant challenge.

1.

Mid-Response Language Switching: The model begins generating a response in the correct
language but abruptly switches to the other language mid-sentence or mid-paragraph without a
clear rhetorical reason. Interestingly, this language alternation occurs within languages not used in
code-switching queries; random languages (e.g., Chinese or Cyrillic script) are inserted within a
response upon a Korean-English code-switching query, maintaining semantic consistency. Zhao
et al. [29]], Yoo et al. [26] reported that this phenomenon more frequently occurs in continually pre-
trained LLMs for language transfer, and we observe that Qwen 2.5, one of the most multilingual
models, specifically includes more mid-response language switching instances than other models.

. Intra-word Switching: LLM responses occasionally (~4%) include intra-word switching based
on subword-based tokens (e.g., byte-pairs), maintaining its pronunciation continuously. The
inserted languages are random as mid-response language switching. This phenomenon only occurs
when the model responds in Korean. It implies that LLM tokenizers may internally process
cross-lingual alignment based on phonemic representation [[13]].



3. Excessive use of code-switching phrases or bilingual notations: LLMs tend to excessively use
bilingual notations in Korean-English or Korean-Hanja (i.e., Chinese script used to write Korean)
upon code-switching queries. In addition, they tend to repeat phrases from queries in embedded

languages in their responses. Figure 1: The robustness of models to the instruction position
English-style Korean. In Ko-
rean responses, both inter- and qwen 48.5% 5.6% 23.3% 22.6%
intra-sentential code-switching
queries elicit more use of awk- gpt 48.5% 8.9% 21.6% 21.0%
ward transliteration words from
English rather than Korean — gemini B G PR 6D

phrases (e.g., BF/IEEUA) or
loanwords that have been appro-
priated into Korean (e.g., A3
U] I;] O:D (Table El row 4) On the (InstrFirst, ContentFirst)

other hand, LLMs also use awk- () (v .X) (X.0) (X.X)

ward, excessive word-for-word

translations rather than naturally-sounding transliterations (e.g., T=2 I}A4)). In general, LLMs tend
to respond in Korean to code-switching queries with translationese, simply converting their internal
English generations into word-for-word translations [31} (8} 132} 2} 23]].

exaone 29.8% 14.4% 17.0% 38.7%

0 20 40 60 80 100

6 Conclusion

This study presents the first systematic evaluation of language confusion in LLMs within realistic
English-Korean code-switching contexts. We find that state-of-the-art LLMs exhibit a critical, asym-
metric bias. The models consistently default to generating Korean, with performance plummeting
whenever English is the expected output, regardless of its role in the prompt. This reveals a signifi-
cant usability barrier for the vast population of multilingual users. We acknowledge that our study
is confined to English-Korean; future work should investigate other language pairs to understand
the generality of this bias. Furthermore, the inconsistent quality of LLM-generated code-switched
text necessitated intensive manual verification, which constrained the scalability of our benchmark.
Despite these limitations, our work highlights a crucial gap in multilingual model evaluation and
provides a clear benchmark to spur the development of more robust, code-switch-aware systems that
respect users’ implicit language preferences.
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A Representative Queries

The full list of 60 representative instruction templates will be available on GitHub.

Table 5: Representative sample queries from the dataset. Only a subset of queries is shown for clarity.

# Query Expected Lang.
1  Explain in simple terms the following content Instruction

2 Explain this to a beginner, what is the concept, what is it trying to say Instruction

3 In the passage provided, what is the prediction? Instruction

4 please write the following in a legal way Content

5 please recompose this with more details Content

6  please draft a reply to the update above. Content

B System Prompts

Prompt for generating code-switching queries

You are a bilingual rewriting assistant.

TASK

e Input : an English sentence (E) and its Korean translation (K)

* Output : the code-switched version of E

- Replace about level percent of NOUNS / NOUN PHRASES in E with their Korean equivalents
taken from K

- Keep the original English word order (S-V-O)

- DO NOT add explanations, examples, tags, or extra sentences

- If there is no suitable Korean equivalent, keep the English word

[EXAMPLE]

Input

<English>Topic: Using Al to Augment Human Capabilities
Explain a common misconception about your topic.

<Korean>FA]: AIF AR-g-519] Q179|585 7517
FAale] FA ol Hiet A el 2SS HAgshA 8.

Desired Output

<Code-Switch>

Z=A: Using Al to =7} Human Capabilities
Explain &5 Q1 @ 3] about your F+A].

[BEGIN TASK]
<English>question
<Korean>translation

Prompt for generating variations of existing content

You are an expert data augmentation assistant.

You will be given an existing Instruction and its current Content that together form a
user query.
Your task is to invent FOUR NEW Content paragraphs that satisfy ALL of the following
conditions:
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1. When combined with the SAME Instruction they should form a sensible, coherent query.
2. Each new Content must be DIFFERENT from the original Content and from each other. Do not
simply paraphrase, instead be creative. You should use different topics and styles.

3. Each new Content must be BETWEEN 200 and 600 characters (inclusive).

4. Do NOT answer the Instruction — you are ONLY creating new Content, not responses.
5. Do NOT mention these guidelines or any numbering in the output.

Return ONLY a JSON array of the four new Content strings.

[CONTEXT]

Instruction: {instruction}

Original Content:{original_content}

[END CONTEXT]

### OUTPUT FORMAT

non non non

[ "content] ...", "content2 ...", "content3 ...", "content4 ..." |

C Experimental Setting

Our study focuses on the most advanced and widely-used generative models currently accessible,
encompassing both proprietary and open-source options. We evaluate four multilingual LLM:s:

e Gemini 2.5: Gemini 2.5 Pro [[7]]

* GPT-40: GPT-40 [20] ]

« Qwen 2.5: Qwen 2.5 Instruct 32B [21]| ]

« Exaone 4: Exaone 4.0.1 32B [22][1]
We set the parameters for all models to: temperature = 0.7, top_p = 0.9. 4 Quadro RTX 8000 48GB,

2 NVIDIA H200 141GB were used with CUDA version 12.4 when running open-sourced Models
EXAONE and Qwen 2.5 Instruct 32B.

2version: gpt-40-2024-08-06
*https://huggingface.co/Quen/Quen2.5-32B- Instruct
“https://huggingface.co/LGAI-EXAONE/EXAONE-4.0.1-32B
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