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ABSTRACT

Depth estimation is a dense prediction task that infers per-pixel depth from a single
image, fundamental to 3D perception and robotics. Although real-world scenes
exhibit strong structure, these methods treat it as an independent pixel-wise re-
gression problem, often resulting in structural inconsistencies in depth maps, such
as ambiguous object shapes. We propose SHED, a novel encoder-decoder archi-
tecture that enforces geometric prior explicitly from spatio-layout by incorporat-
ing segmentation into depth estimation. Inspired by the bidirectional hierarchical
reasoning in human perception, SHED redesigns the vision transformer by replac-
ing fixed patch tokens with segment tokens, which are hierarchically pooled in the
encoder and unpooled in the decoder to reverse the hierarchy. The model is su-
pervised only at the final output, and the intermediate segment hierarchy emerges
naturally without explicit supervision. SHED offers three key advantages. First,
it improves depth boundaries and segment coherence, and demonstrates robust
cross-domain generalization. Second, it enables features and segments to better
capture global scene layout. Third, it enhances 3D reconstruction and reveals part
structures that conventional pixel-wise methods fail to capture.

1 INTRODUCTION

Images are 2D projections of the 3D world, where surfaces, regions, and boundaries form a coherent
structure. Many vision tasks aim to recover this structure by predicting semantic or geometric values
at each pixel, a process known as dense prediction (Forsyth & Ponce, 2002). Among them, monocu-
lar depth estimation is one of the most studied, inferring depth from a single RGB image (Torralba &
Oliva, 2002). Despite the inherent structure of real-world scenes, most models, including the Dense
Prediction Transformer (DPT) (Ranftl et al., 2021), treat the task as independent pixel-wise regres-
sion. Although their outputs may appear plausible, they often lack structural consistency, resulting
in ambiguous object shapes (Figure 1, row 1).

This limitation stems from a disconnect between depth estimation and scene organization. Depth
encodes geometric structure, while segmentation captures semantically coherent regions. Though
serving different purposes, the two are closely related: segment boundaries align with depth discon-
tinuities, and depth gradients with semantic boundaries. This relationship has long been recognized
in classical vision literature (Malik et al., 2016), yet recent models such as Depth Anything (Yang
et al., 2024b) and Segment Anything (Ravi et al., 2025) treat them as independent tasks, largely
overlooking their connection.

In contrast, the human visual system integrates depth and segmentation through a bidirectional hi-
erarchical process (Hochstein & Ahissar, 2002), where part-whole segmentation informs depth es-
timation, and depth in turn guides segmentation. It first infers a global layout by grouping segments
from fine to coarse, then refines depth from coarse to fine, adding detail within smaller regions while
preserving the overall structure. This organization supports part-whole reasoning and yields depth
maps with sharp boundaries and smooth intra-object variations (Figure 1, row 2).

To realize this idea, we propose a novel architecture called SHED, which performs monocular depth
estimation using a bidirectional segment hierarchy. With the design of DPT (Ranftl et al., 2021),
a standard encoder-decoder framework built on the Vision Transformer (ViT) (Dosovitskiy, 2020),
but replaces fixed-size patch tokens with hierarchical segment tokens to produce a structured depth.
These tokens are organized from fine to coarse and learned in an unsupervised manner, guided solely
by pixel-wise regression objectives.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Grid patches

Output

Coarse

Input image

Segment-grounded  prediction (ours)

Pixel-wise prediction (DPT)
Output

Ground truth

Input image Superpixels

Conv. feature map

CNN
Encoder

…

Fine Coarse

DecoderEncoder

CNN
Decoder

Coarse Fine

Long skip connection

Figure 1: Segment hierarchy for estimating depth (SHED). Conventional methods such as
DPT (Ranftl et al., 2021) perform pixel-wise prediction without considering structure, often resulting
in blurry object shapes. SHED addresses this by leveraging a hierarchy of segment tokens to guide
prediction. Unlike DPT, which uses fixed grid tokens across all layers, we adapt its ViT (Dosovit-
skiy, 2020) blocks into two stages: the encoder pools superpixel tokens into coarser segment tokens,
and the decoder progressively refines predictions from coarse to fine segments, producing depth
maps with structural coherence.

SHED uses a hierarchical segmentation process to define structural conditions. The encoder, which
builds on the CAST (Ke et al., 2024b), a ViT-based model for hierarchical segmentation in recog-
nition tasks, starts by representing the image as superpixels instead of standard patches. It then
iteratively merges these superpixel tokens based on feature similarity, creating a multi-level hierar-
chy of segment tokens. To produce a structured depth, the decoder inverts this hierarchy, leveraging
both the segment maps and their features. It unpools finer segments from coarser ones using soft
assignments computed in the encoder, and adds them with tokens from the corresponding encoder
layer. Each segment token is projected into a spatial map by distributing its features over the asso-
ciated region, producing sharp boundaries across different objects and smooth transitions within the
same object. The features from multiple segment levels are fused with pixel-level features from a
convolutional encoder to produce outputs that preserve global layout while capturing fine detail.

We highlight the main differences between SHED and CAST (Ke et al., 2024b). First, while CAST
is encoder-only, SHED extends it to an encoder-decoder for dense prediction. Second, CAST treats
segmentations solely as outputs, whereas SHED also uses segment-associated features as decoder
inputs to produce dense representations. Third, CAST relies on image-level supervision and pro-
duces segmentations guided by visual cues, while SHED is trained with dense supervision (e.g.,
depth), resulting in segmentations guided by geometric cues. Finally, CAST links reorganization to
recognition in the “3Rs” (Malik et al., 2016), whereas SHED links reorganization to reconstruction.

By looping hierarchical segmentation into dense prediction, SHED offers three key advantages.
1) Segmentation enhances depth estimation by enforcing object-level structure, yielding sharper
boundaries and coherence within segments. It also achieves robust generalization in cross-domain
transfer settings. 2) Depth supervision leads to structured representations that better capture scene
layout. As a result, SHED retrieves layout-similar images more accurately, increasing top-1 recall
by 34% (45.2→60.5). 3) Accurate depth maps from SHED improve 3D reconstruction, producing
smooth surfaces aligned with the ground truth. Its hierarchy also enables unsupervised 3D part dis-
covery, which DPT cannot achieve as it predicts depth holistically without structural understanding.

2 RELATED WORK

Monocular depth estimation is a representative dense prediction task, that infers per-pixel depth
from a single image. It is widely used in 3D reconstruction (Song et al., 2017), autonomous driv-
ing (Geiger et al., 2012), and robotic perception (Tateno et al., 2017). Early approaches relied on
hand-engineered features (Torralba & Oliva, 2002; Saxena et al., 2008), while deep learning methods
later became dominant (Eigen et al., 2014; Laina et al., 2016; Godard et al., 2017; Zhou et al., 2017;
Hu et al., 2019; Godard et al., 2019; Lee et al., 2019; Ranftl et al., 2020). Recent ViT (Dosovitskiy,
2020)-based models such as DPT (Ranftl et al., 2021) have shown strong performance, leveraging
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foundation models pretrained on diverse data (Bhat et al., 2023; Yang et al., 2024a; Ke et al., 2024a).
However, these models still struggle with structural consistency in complex scenes.

Structural cues in depth estimation have been extensively explored to enhance geometric coher-
ence. Existing approaches can be broadly categorized into four types: 1) Representation approaches
modify how depth is encoded, such as by discretizing depth values (Fu et al., 2018; Bhat et al., 2021;
Li et al., 2024) or modeling spatial dependencies (Liu et al., 2015; Cheng et al., 2018; Yuan et al.,
2022). 2) Regularization imposes geometric constraints through loss functions that promote smooth
surfaces (Godard et al., 2017; Zhan et al., 2018; Bian et al., 2019), consistent normals (Yang et al.,
2018), or planar regions (Yin et al., 2019; Watson et al., 2019). 3) Multi-task learning jointly esti-
mates depth with auxiliary signals, such as scene geometry (Eigen & Fergus, 2015; Yin & Shi, 2018)
or semantics (Mousavian et al., 2016; Kendall et al., 2018; Chen et al., 2019; Guizilini et al., 2020;
Zhu et al., 2020). 4) Post-processing refines predictions using off-the-shelf techniques (Krähenbühl
& Koltun, 2011; Chen et al., 2016).

Several multi-task approaches have explored segmentation as an auxiliary signal to improve depth
estimation. Early works used segmentation as an additional supervision signal (Mousavian et al.,
2016; Kendall et al., 2018), while more recent ones leveraged segment regions or boundaries to guide
depth discontinuities (Chen et al., 2019; Guizilini et al., 2020; Zhu et al., 2020). SHED follows this
principle but integrates segmentation and depth estimation into a unified process, enabling them
to benefit from each other during training. Moreover, it discovers hierarchical segmentation in an
unsupervised manner, eliminating the need for costly human annotations.

Although structural cues offer clear benefits, most existing methods do not scale well to modern ar-
chitectures. Representation-based approaches often require architectural changes that are incompat-
ible with transformers, while regularization and multi-task methods rely on additional annotations,
limiting scalability. In contrast, SHED integrates seamlessly into ViT-based models such as DPT
and learns structural segmentation solely from depth supervision. By design, it inherently produces
sharp, segment-aligned boundaries, reducing the need for post-processing.

Perceptual grouping is a key mechanism in human vision that organizes low-level elements into
coherent global structures (Wertheimer, 1938; Marr, 2010). This principle has inspired a broad range
of computer vision research, including perception (Locatello et al., 2020; Mo et al., 2021; Kang
et al., 2022; Deng et al., 2023; Ranasinghe et al., 2023), segmentation (Arbeláez et al., 2012; Hwang
et al., 2019; Ke et al., 2022; Xu et al., 2022), and generation (Hong et al., 2018; Mo et al., 2018;
He et al., 2022). In particular, CAST (Ke et al., 2024b) recently applied it to ViTs for concurrent
segmentation and recognition. However, most of these methods, including CAST, consider only
a forward hierarchy, constructing representations and segmentations in a bottom-up manner. In
contrast, we adopt the complementary concept of a reverse hierarchy (Hochstein & Ahissar, 2002),
where global structures guide and refine local parts through top-down feedback. We leverage this
principle to design an encoder-decoder that accounts for both hierarchies.

While some prior works (Anderson et al., 2018; Shi et al., 2023; Eftekhar et al., 2023) have explored
reverse hierarchies for recognition, they do not address dense prediction. Other studies (Eslami et al.,
2016; Sajjadi et al., 2022; Seitzer et al., 2022) apply similar ideas to encoder-decoder architectures,
but focus on object-centric representations, lacking the ability to model segment hierarchies and
often producing blurry outputs. To the best of our knowledge, this is the first work to leverage
bidirectional segment hierarchies to enhance dense prediction within a modern ViT framework.

3 SHED: SEGMENT HIERARCHY FOR ESTIMATING DEPTH
We propose SHED, which integrates a bidirectional segment hierarchy into the ViT blocks of
DPT (Ranftl et al., 2021). Unlike DPT, which uses fixed-size patch tokens across all layers, our
model constructs a hierarchy of segment tokens: the encoder builds a forward hierarchy by grouping
features from fine to coarse, while the decoder applies a reverse hierarchy to refine predictions from
coarse to fine, guided by the learned segment tokens. This design, illustrated in Figure 2, enables
the model to progressively reorganize and reconstruct structured scene information.

3.1 ENCODER: GROUPING SEGMENTS VIA FORWARD HIERARCHY

Our encoder builds on CAST (Ke et al., 2024b), which 1) replaces square patch tokens with su-
perpixel tokens, and 2) progressively clusters them into coarser segment tokens by token similarity.
This process produces a fine-to-coarse hierarchy of segment tokens. CAST was originally developed
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Figure 2: SHED integrates a forward and reverse segment hierarchy into the ViT blocks. Fol-
lowing the overall architecture of DPT which uses a standard decoder design choice of depth foun-
dation models including convolutional layers for monocular depth estimation, we adapt the ViT
into two stages. 1) The encoder converts the input image into superpixel tokens and applies graph
pooling to form coarser segments, following the hierarchical clustering strategy of CAST (Ke et al.,
2024b). 2) The decoder reverses this hierarchy by unpooling segment tokens from coarse to fine
and fusing them with encoder features at corresponding levels via skip connections. The tokens are
projected into 2D maps according to their regions. These multi-level maps are fused with pixel-level
features from early convolutional layers to recover fine details and produce the final depth map.

as an encoder-only model for image-level recognition. We extend it into an encoder-decoder, where
the segment hierarchy not only guides dense prediction but is also refined through dense supervision.

Tokenization. Given an input image X ∈ Rh×w×c, the encoder produces hierarchical segmen-
tations S0, S1, . . . and corresponding embeddings Z0, Z1, . . . , ordered from fine to coarse. This
process begins by dividing the image into n0 superpixels, which yields a one-hot assignment matrix
S0 ∈ R(h·w)×n0 that maps each pixel to a superpixel.

We extract a convolutional feature map Fconv ∈ R(h0·w0)×d with spatial stride 8 (h0 = h/8, w0 =
w/8), add fixed sinusoidal positional embeddings, and average-pool features within each superpixel
to obtain initial embeddings Z0 ∈ Rn0×d. To enable global context modeling, we append a class
token to form Z̄0 ∈ R(n0+1)×d, which is passed to the first ViT block.

Hierarchical clustering. We construct coarser segment tokens by alternating ViT blocks with graph
pooling (Ke et al., 2024b). At each level l, given Zl−1 and Sl−1 from the previous layer, we append
a class token to form Z̄l−1, apply ViT blocks, and obtain updated features, excluding the class token.

To form coarser tokens Zl ∈ Rnl×d, we compute a soft assignment matrix Pl ∈ Rnl−1×nl based on
cosine similarity between fine- and coarse-level tokens:

Pl(i→ j) ∝ sim(Zl−1[i], Zl[j]), for i ∈ [nl−1], j ∈ [nl],

where [n] := {0, . . . , n−1}. The coarse tokens Zl are initialized via farthest point sampling (Qi
et al., 2017) from Zl−1, and refined by aggregating fine-level features weighted by Pl, followed by
an MLP and a residual connection:

Zl ← Zl + MLP(P⊤
l Zl−1 ⊘ P⊤

l 1),

where ⊘ denotes element-wise division for normalization.

To propagate segmentation labels through the hierarchy, we compute coarser segmentations by com-
posing the assignment matrices:

Sl = Sl−1 P̄l, l = 1, 2, . . . , lmax,

4
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where P̄l is a hard assignment matrix obtained by taking the argmax over each row of Pl.

3.2 DECODER: PREDICTING OUTPUTS VIA REVERSE HIERARCHY

The decoder reconstructs spatial feature maps by reversing the encoder’s segment hierarchy, pro-
gressively unpooling segment tokens Zlmax , . . . , Z0. This involves two steps: 1) computing decoder
features Z ′

l by unpooling from Z ′
l+1 and fusing them with encoder features Zl via skip connections;

and 2) projecting Z ′
l to the image space to obtain a spatial feature map Fl of size (hl, wl).

Unpooling segment tokens. We reverse the encoder’s clustering in a coarse-to-fine manner. At
each level l = lmax − 1, . . . , 0, we compute

Z ′
l ← P⊤

l+1 Z
′
l+1,

which distributes coarse features to finer segments. We then add the unpooled features with the
corresponding encoder output:

Z ′
l ← MLP(Z ′

l + Zl),

followed by ViT blocks with class tokens.
Unpooling spatial features. We convert the segment tokens Z ′

l into spatial feature maps by com-
posing the soft assignment matrices:

P0→l = P1 · · ·Pl ∈ Rn0×nl ,

and applying them to the initial superpixel-to-pixel map S0 to obtain soft segmentations S0→l =
S0P0→l. The spatial feature map is then reconstructed as

Fl = S0→l Z
′
l , Fl ∈ R(hl·wl)×d.

The set of spatial maps {Fl}lmax
l=1 is fused using convolutional layers, combined with Fconv, and further

refined through final convolution and upsampling to produce the final dense prediction.

DPT reduces the spatial resolution of feature maps Fl at each level by a factor of 2l, with hl = h0/2
l,

wl = w0/2
l, producing coarse maps in early ViT layers that are progressively refined. This forms

a spatial hierarchy similar to U-Net (Ronneberger et al., 2015), improving global coherence and re-
ducing computation. However, it relies on local aggregation, which lacks fine-grained structure, and
reduces computation only in the final decoder. In contrast, our segment hierarchy groups segment
regions, providing a stronger inductive bias that promotes structural consistency and reducing com-
putation in the ViT blocks. As a result, applying spatial downsampling in SHED was not beneficial:
it yielded minimal efficiency gains in the decoder while degrading boundary quality by project-
ing coarse segments onto low-resolution maps. Therefore, we omit spatial reduction in SHED and
simply set hl = h0, wl = w0.

4 EXPERIMENTS

We demonstrate the benefits of SHED by integrating segmentation into the loop for dense predic-
tion: 1) Segment-consistent depth estimation that preserves occlusion boundaries and intra-segment
coherence, leading to improved accuracy and efficiency; 2) Structure-aware representation learning
through dense supervision, enabling layout-aware features and segmentations; 3) 3D scene recon-
struction from predicted depth maps, yielding globally coherent and part-aware structures.

4.1 SETUP

We implement SHED on top of DPT (Ranftl et al., 2021), adopting its overall training setup.
Specifically, we use the DPT-Hybrid variant, which combines ResNet-50 (He et al., 2016) and ViT-
Small (Dosovitskiy, 2020), and refer to it simply as DPT throughout the paper. For in-domain eval-
uation, we primarily train and evaluate on NYUv2 (Nathan Silberman & Fergus, 2012), a standard
benchmark for indoor depth estimation. For cross-domain transfer, we train SHED on the synthetic
HyperSim dataset (Roberts et al., 2021) and assess its zero-shot generalization on the real-world
NYUv2 dataset. We further compare our approach with stronger prior-based models, including the
DPT-style Depth Anything v2 (Yang et al., 2024b) and Marigold (Ke et al., 2025), both fine-tuned
on HyperSim. Depth Anything v2 uses the DPT decoder with DINOv2 (Oquab et al., 2023) encoder.

Tokenization. Input images of size 640×480 are randomly cropped to 384×384 during preprocess-
ing. We generate 576 superpixels using the SEEDS algorithm (Van den Bergh et al., 2012), matching
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Image Superpixel Segments (fine-to-coarse) Prediction GT

Figure 3: SHED produces consistent structures in predicted depth map with spatio-layout.
We visualize the fine-to-coarse segments and corresponding depth maps from SHED, along with
ground truth (GT) depth for comparison. Examples are from the NYUv2 test set. SHED captures
fine structures through its segments, such as desks in a classroom, which allow the depth map to
clearly separate them from the background (row 1). It also decomposes large objects, such as a
table, into multiple parts, leading to smooth depth variations toward the back (row 2).

Image DPT SHED (ours) GT DPT SHED (ours)

Figure 4: SHED generates sharper object contours, clearer occlusion boundaries, and more
coherent values within segments. We compare depth maps (cols 2-4) and occlusion boundaries
(cols 5, 6) from DPT, SHED on the NYUv2-OC++ dataset. Boundaries are extracted using a Canny
edge detector and evaluated against GT, with GT edges shown in yellow, true positive in green and
false positive in red. SHED more accurately captures object edges and produces smoother depth
within segments. Its predicted boundaries also align more closely with the ground truth.

the 24×24 token grid of DPT, which corresponds to 16×16 patches. Features are extracted from
intermediate ResNet-50 blocks at 1/4 and 1/8 of the input resolution; the latter initializes segment
token embeddings, while both are passed to the final decoder via skip connections. This entire
preprocessing and tokenization pipeline is applied consistently in all experiments.

Architecture. We modify the ViT encoder-decoder in DPT by inserting graph pooling and un-
pooling layers. The encoder consists of three stages, each with two ViT blocks followed by graph
pooling, progressively reducing the number of segment tokens to 256, 128, and 64. The decoder
mirrors this with unpooling and receives skip connections from the corresponding encoder stages.

Training. We train both SHED and DPT on NYUv2 for a fair comparison, using a batch size of
16 for 50 epochs with the Adam optimizer (Kingma & Ba, 2014) and a learning rate of 5e-5. With
pretrained ResNet and ViT backbones, we follow DPT’s default training recipe, including the scale-
invariant logarithmic loss computed against ground-truth depth. At inference time, predicted depth
maps at 384×384 resolution are bilinearly upsampled to 640×480 to match the ground-truth size.

4.2 SEGMENT-CONSISTENT DEPTH ESTIMATION

SHED generates structured depth maps by leveraging a learned segment hierarchy. We begin by
visualizing the hierarchy and predicted depth to illustrate their structural alignment. Next, we eval-
uate quality in terms of boundary accuracy and intra-segment coherence. Finally, we show that
hierarchical decoding improves efficiency without compromising pixel-wise accuracy.
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Table 1: SHED improves boundary accuracy and object-wise depth accuracy and error. We
evaluate the structural quality of depth maps using two metrics: 1) Occlusion boundary error, evalu-
ated on the NYUv2-OC++ dataset. Occlusion boundaries are extracted using a Canny edge detector,
and the Chamfer distance is computed in both directions: from prediction to ground truth and vice
versa. 2) Intra-segment coherence measures how well the predicted depth values within each object
align with the ground-truth. We compute this with object-level annotations.

Method Boundary Error ↓ Object-wise Depth Accuracy ↑ Object-wise Depth Error ↓
ϵa ϵc δ > 1.25 AbsRel RMSE log 10

DPT 6.395 1.438 0.802 0.144 0.500 0.061
SHED (ours) 5.713 0.608 0.814 0.142 0.496 0.060

Table 2: SHED improves both in-domain and cross-domain (synthetic → real) depth estima-
tion. We evaluate standard depth accuracy and error metrics on the NYUv2 test set. SHED delivers
competitive per-pixel depth estimation performance comparable to DPT when trained in-domain.
In cross-domain zero-shot evaluation, it shows competitive generalization compared to Depth Any-
thing v2 and Marigold.

Method Pre-training Training Depth Accuracy Depth Error

δ>1.25 ↑ δ>1.252 ↑ δ>1.253 ↑ AbsRel ↓ RMSE ↓ log10 ↓
DPT IN-1K NYUv2 0.839 0.971 0.992 0.132 0.457 0.055
SHED (ours) IN-1K NYUv2 0.846 0.972 0.992 0.130 0.451 0.054

Marigold Laion-5b HyperSim 0.375 0.659 0.833 0.542 1.243 0.171
Depth Anything v2 (small) LVM-142M HyperSim 0.592 0.902 0.960 0.749 0.808 0.110
Depth Anything v2 (base) LVM-142M HyperSim 0.346 0.889 0.985 0.341 0.898 0.123
SHED (ours) IN-1K HyperSim 0.632 0.892 0.960 0.583 0.740 0.102

Figure 3 shows that the segment hierarchy in SHED yields depth maps with coherent object geom-
etry. The learned segments capture contours of objects, such as desks in a classroom, allowing the
depth to clearly separate them from the floor. They also decompose larger structures, like tables,
into parts, enabling smooth depth transitions from front to back. This suggests that structure guides
depth prediction toward more accurate and interpretable results.
Boundary accuracy. We assess the structural quality of SHED by comparing its boundary pre-
dictions to those of DPT for in-domain evalution. Figure 4 shows predicted depth maps and their
occlusion boundaries, extracted using a Canny edge detector (Canny, 1986), on samples from the
NYUv2-OC++ dataset (Ramamonjisoa et al., 2020). For quantitative evaluation, we follow the
standard protocol (Koch et al., 2018) and compute the average Chamfer distance (Fan et al., 2017)
in two directions: from prediction to ground truth, and vice versa. SHED produces sharper con-
tours and outperforms DPT on both metrics, with particularly large gains in recall, likely due to its
fine-grained segmentation. However, oversegmentation may introduce spurious edges that reduce
precision, highlighting the importance of accurate segmentation.
Intra-segment coherence. Beyond boundary, we evaluate how coherently depth values vary within
each segment. We use a metric called object-wise depth accuracy and error, which measures the
pixel-wise depth accuracy and error between the predicted and ground-truth depth depth maps within
each segment, treating the latter as structural references. As shown in Figure 4, SHED produces
smoother depth variations within segments. This is reflected quantitatively in Table 1.

Per-pixel metrics. We compare SHED with DPT for the evaluation of the in-domain and Depth
Anything v2 and Marigold for the evaluation of cross-domain transfer using standard depth metrics
per pixel, as shown in Table 2. In in-domain evaluation, SHED shows competitive per-pixel perfor-
mance compared to DPT. in the cross-domain evaluation, SHED demonstrates superior transfer ca-
pabilities by outperforming both Depth Anything v2 (Yang et al., 2024b) which leverages the strong
DINOv2 (Oquab et al., 2023) encoder pre-trained on over one million images and Marigold (Ke
et al., 2025) which is pre-trained on over five billion images in the majority of metrics, highlighting
SHED’s effectiveness despite using comparatively less pre-training data.

Table 3 includes additional results under mixed-training settings to assess robustness across different
domains. To further strengthen the experimental evaluation, we conduct new zero-shot cross-domain
evaluation in which SHED is trained exclusively on multiple datasets, including HyperSim (Roberts
et al., 2021), vKiTTI2 and MegaDepth (Li & Snavely, 2018) and evaluated without any fine-tuning
on multiple real-world benchmarks including KiTTI, NYUv2, SUN-RGBD.
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Table 3: SHED improves mixed data setting. We evaluate standard depth accuracy and error
metrics on more diverse dataset. SHED delivers competitive per-pixel depth estimation performance
comparable to DPT when trained mixed training setting in cross-domain zero-shot evaluation.

Method KITTI NYUv2 SUN-RGBD

AbsRel ↓ δ>1.25 ↑ AbsRel ↓ δ>1.25 ↑ AbsRel ↓ δ>1.25 ↑
DPT 0.286 0.475 0.247 0.559 8.58 0.169
SHED (ours) 0.272 0.500 0.244 0.571 7.16 0.190

Table 4: Ablation study. We evaluate depth accuracy and error metrics on the NYUv2 test set.

Method Depth Accuracy Depth Error

δ>1.25 ↑ δ>1.252 ↑ δ>1.253 ↑ AbsRel ↓ RMSE ↓ log10 ↓

DPT 0.839 0.971 0.992 0.132 0.457 0.055
SHED with forward hierarchy only 0.755 0.951 0.989 0.163 0.552 0.069
SHED (ours) 0.846 0.972 0.992 0.130 0.451 0.054

Table 5: SHED scales outperforms segmentation-guided depth estimation. We evaluate standard
depth accuracy and error metrics on the NYUv2 test set. These include approaches that integrate
over-segmentation to impose object-level consistency (Simsar et al., 2022) and classical multi-task
models (Mousavian et al., 2016) that jointly predict depth and semantics.

Method Depth Accuracy Depth Error

δ>1.25 ↑ δ>1.252 ↑ δ>1.253 ↑ AbsRel ↓ RMSE ↓ log10 ↓
Simsar et al. 0.847 0.971 0.993 0.116 0.448 -
Mousavian et al. 0.568 0.856 0.956 0.200 0.816 0.061
SHED (ours) 0.855 0.974 0.993 0.123 0.433 0.052

Computational efficiency. For a fair and hardware-independent comparison of structural complex-
ity, we report both the number of parameters and the computational cost in FLOPs. DPT-Hybrid
contains 41.88 million parameters and requires 135.0 GFLOPs. In contrast, SHED uses 56.58 mil-
lion parameters but reduces the computation to 103.2 GFLOPs, which is approximately a 24% de-
crease in FLOPs. This substantial reduction demonstrates that SHED is structurally more efficient
and achieves lower theoretical latency despite having a slightly larger parameter count.

Segmentation-guided depth estimation. In addition to ViT-based depth foundation models, Ta-
ble 5 shows comparison results of SHED against other methodologies that utilize structural cues,
specifically those employing segmentation to enhance depth estimation. There is an approach to in-
tegrate over-segmentation into the depth network to enforce object-level consistency (Simsar et al.,
2022). Classical multi-task learning approach (Mousavian et al., 2016) also predicts depth and se-
mantics jointly, using semantic boundaries to guide pixel-wise depth refinement. While effective in
constrained settings, these approaches rely on task-specific supervision or post-processing pipelines,
making them difficult to scale naturally to modern transformer-based architectures.

Ablation. We conducted an ablation study to isolate the contributions of the hierarchical clustering
in the encoder and the hierarchy reversing in the decoder. To verify the necessity of our proposed
decoder, we experimented with a variant of SHED by removing the progressive unpooling pro-
cess in the decoder. Table 4 shows removing the reverse hierarchy leads to a sharp performance
degradation, falling significantly behind the DPT baseline. This demonstrates that the coarse-to-
fine unpooling mechanism in the decoder is essential to recover fine-grained spatial details from the
grouped representations.

4.3 STRUCTURE-AWARE REPRESENTATION LEARNING

Our architecture not only improves depth prediction but also facilitates structure-aware representa-
tion learning. First, SHED learns features that reflect scene layout, enabling more accurate layout-
aware image retrieval than DPT (Ranftl et al., 2021). Second, its segment hierarchy captures geo-
metric cues informed by depth supervision, whereas CAST (Ke et al., 2024b) relies on visual cues.
Layout-aware image retrieval. We assess the structural understanding of learned representations
by performing layout-aware image retrieval on the NYUv2 dataset, using 120K video frames col-
lected from 206 scenes. These frames serve as queries, and we define two retrieval settings. In scene
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a) Top-5 retrieval examples

D
PT

Query 0.713 0.638 0.624 0.621 0.617 SH
E

D
(ours)Query 0.885 0.844 0.812 0.792 0.787

b) Top-K retrieval accuracy (%)
Method Top-1 Top-3 Top-5

Scene retrieval
DPT 45.2 69.7 77.2
SHED (ours) 60.5 78.7 87.0

Frame retrieval (k=5)
DPT 18.5 31.0 38.3
SHED (ours) 30.5 42.3 48.3

Figure 5: SHED learns layout-aware representations through depth supervision. We evaluate
image retrieval on NYUv2 based on cosine similarity between class tokens from the final ViT block.
a) Top-5 results (ranked left to right), with similarity scores shown below. SHED retrieves images
with similar layouts, such as a central desk and a rear bookshelf, while DPT retrieves unrelated
scenes. b) Top-K accuracy at the scene and frame level (k = 5), where the targets are different
views from the same scene or nearby frames. SHED significantly outperforms DPT in all settings,
indicating that our depth-guided segmentation effectively encodes spatial layout.

Image Segment Depth SHED: 64, 32, 16 segments CAST: 64, 32, 16 segments

Figure 6: SHED learns depth-aware segment hierarchies, while CAST relies on visual cues.
We compare segmentations from SHED and CAST (Ke et al., 2024b) at the same hierarchy levels:
64, 32, and 16 segments. SHED captures meaningful part structures, such as separating the blanket
and pillow from the bed (row 1). It also decomposes large structures like the floor based on depth,
grouping nearby regions into a single large segment while dividing distant areas into smaller ones
(row 2). In contrast, CAST relies on appearance cues and fails to capture geometric structure. For
instance, it groups white floor regions by color but divides them arbitrarily, ignoring depth. These
results highlight the value of depth supervision in learning 3D-aware segmentations.

retrieval, all frames from the same sequence are valid targets. For finer-grained evaluation, we also
consider frame-k retrieval, where only frames within k time steps of the query are included. Given
a query image, we rank other images by the cosine similarity of their class tokens from the final
ViT decoder block. Figure 5 presents both qualitative and quantitative results. The left side shows
that SHED retrieves images with similar spatial layouts, such as a central desk and a rear bookshelf,
while DPT returns unrelated scenes. The right side shows that SHED significantly outperforms DPT
in both scene- and frame-level metrics, improving Top-1 recall in scene retrieval from 45.2 to 60.5.
Depth-aware image segmentation. We analyze the segment hierarchy learned by SHED by com-
paring it to CAST, an encoder trained for image recognition using segment-based representations.
We use CAST-B, trained on ImageNet (Deng et al., 2009) with the MoCo-v3 objective (Chen et al.,
2021), a self-supervised learning by instance discrimination (Wu et al., 2018) that clusters visually
similar images. Following CAST’s setup, we use 224×224 images and extract 196 superpixels,
clustered into 64, 32, and 16 segments. For fairness, we produce the same number of segments by
adapting the graph pooling layers of SHED, keeping the original input resolution and superpixels.

Figure 6 shows qualitative results. SHED learns hierarchical structures that align with scene geom-
etry: it separates objects like blankets and decomposes large structures such as floors into segments
that reflect their spatial extent. In contrast, CAST groups regions based on appearance. For exam-
ple, it clusters white floor areas by color but fails to account for geometric cues. We attribute this
difference to the training objective: CAST learns segments through image-level recognition, while
SHED is guided by dense prediction. Although our focus here is depth, the ability to learn segment
hierarchies grounded in 3D structure opens possibilities for other dense prediction tasks as well.

We additionally evaluate the quality of the learned segment hierarchy using standard segmentation
metrics. Following CAST, we compute boundary F-score and region IoU between the predicted
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Image DPT SHED (ours) GT DPT SHED (ours) GT

Figure 7: SHED produces structured 3D reconstructions. We visualize 3D point clouds re-
constructed from single-view depth maps, following the semantic scene completion protocol (Song
et al., 2017), using predictions from DPT, SHED, and the ground truth on NYUv2 examples. Frontal
views (cols 2-4) show that DPT fails to preserve planar structures, producing curved wall bound-
aries, whereas SHED more accurately recovers straight lines. This difference is more apparent in
the bird’s-eye views (cols 5-7): DPT yields warped surfaces, while SHED produces flatter layouts.

Table 6: SHED improves 3D
alignment. We compute the
Chamfer distance between point
clouds from the predicted and
ground-truth depths. SHED
achieves lower errors than DPT.

Method Precision / Recall ↓
DPT 0.171 / 0.251
SHED (ours) 0.158 / 0.244

Image Segment 3D Parts

Figure 8: SHED discovers 3D part structures. Concurrent
segmentation and depth estimation enable part-level decompo-
sition of the reconstructed 3D point clouds.

segments and ground-truth superpixels. CAST achieves an mIoU of 43.1 and a boundary F-score of
36.5. In comparison, SHED attains an mIoU of 44.5 and a boundary F-score of 37.7, outperforming
CAST on both region accuracy and boundary quality. This highlights that SHED not only leverages
the hierarchy effectively for depth prediction but also learns segment boundaries that correspond
well to meaningful scene geometry.

4.4 3D SCENE RECONSTRUCTION WITH PART STRUCTURES

We conclude by demonstrating SHED’s capability for 3D scene understanding. While plausible
pixel values may suffice for 2D depth estimation, accurate and structured depth is particularly critical
when projected into 3D space. Accordingly, SHED enables high-quality 3D reconstruction and
supports unsupervised 3D part discovery through concurrent segmentation.
To evaluate the structural quality of predicted depth maps, we project them into 3D point clouds
on the NYUv2 dataset (Nathan Silberman & Fergus, 2012), following the semantic scene com-
pletion protocol (Song et al., 2017) and using NYUv2 camera intrinsics. For interpretability, all
depth values are scaled by 1/1000. Figure 7 shows that SHED produces cleaner reconstructions
with sharper boundaries and flatter surfaces that better align with ground truth geometry, whereas
DPT yields curvier, less faithful shapes. We quantify reconstruction performance with the Chamfer
distance (Fan et al., 2017) in both directions. Table 6 shows that SHED consistently achieves lower
distances than DPT, confirming its advantage in structured 3D prediction. By jointly predicting
segmentation and depth, SHED lifts 2D parts into 3D space, enabling part-level decomposition of
scenes. Figure 8 shows an example from NYUv2, where segments corresponding to objects form
coherent 3D structures in point clouds. This demonstrates SHED’s potential for unsupervised 3D
part reasoning, a key capability for interactive and dynamic scene understanding (Mo et al., 2019).

5 CONCLUSION

We shed light on the role of segmentation in depth estimation. SHED learns a segment hierarchy
in the encoder and reverses it in the decoder to predict dense maps. This results in depth maps
with segment-consistent structure, layout-aware representations, and coherent 3D scenes with inter-
pretable parts. Our principle of unifying reconstruction and reorganization offers a new direction
for 3D vision and robotics, particularly for tasks that require fine-grained interaction with physical
components. Additional results and limitations are discussed in Section D.

Ethics statement. This research was conducted responsibly based on the principles outlined in the
ICLR Code of Ethics. This technology can enhance the 3D environmental perception of autonomous
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driving systems, thereby improving road safety, and can help robots interact more safely and effi-
ciently with their surroundings. Before deploying this model in real-world scenarios, it must undergo
rigorous and thorough validation for robustness and safety across a wide range of conditions.

Reproducibility statement. Appendix provides implementation details. Full release of the code
upon acceptance.
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