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Abstract
Most continual learning approaches implicitly as-
sume that there exists a multi-task solution for the
sequence of tasks. In this work, we motivate and
discuss realistic scenarios when this assumption
does not hold. We argue that the traditional met-
ric of zero-shot remembering is not appropriate in
such settings, and, inspired by the meta-learning
literature, we focus on the speed of remembering
previous tasks. A natural approach to deal with
this case is to separate the concerns into what task
is currently being solved and how the task should
be solved. At each step, the what algorithm per-
forms task inference, which allows our framework
to work in absence of task boundaries. The how
algorithm is conditioned on the inferred task, al-
lowing for task-specific behaviour, hence relaxing
the assumption of a multi-task solution. From
the perspective of meta-learning, our framework
is able to deal with a sequential presentation of
tasks, rather than having access to the distribution
of all tasks. We empirically validate the effective-
ness of our approach and discuss variations of the
proposed algorithm.

1. Introduction
Connectionist networks are known to suffer from catas-
trophic forgetting (CF) (McCloskey & Cohen, 1989), when
the underlying data stream is not independently and identi-
cally distributed (i.i.d). Continual Learning (CL) explores
this problem, where non-stationarity of data is given as a
sequence of distinct tasks. One typical goal of many CL
algorithms is to ensure that, after training on a sequence
of tasks, the performance of the network is close to a net-
work trained on all tasks at the same time. Hence, all these
methods implicitly assume that there is always a multi-task
solution that fits all previous tasks. Another common as-
sumption is that either the identities of different tasks or the
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boundaries between them are available to the learner, and
many CL methods often depend on this information to know
when to consolidate the knowledge learned so far.

However, there are many realistic scenarios where both of
the above-mentioned assumptions do not hold. Consider
a multi-agent game in reinforcement learning (RL), where
all agents are learning and adapting their policies. For any
of these agents, the objective it tries to optimize (in other
words, its task) depends not only on itself and the environ-
ment, but also on the policies and configurations of others,
which are usually not directly observable. Moreover, the
other agents might change their policies at any moment as
they are also learning. As a result, the task for this agent
is changing all the time and there are no clearly defined
boundaries available to the agent. It has been observed that
such non-stationarity in multi-agent systems usually causes
catastrophic forgetting of the agent (Hernandez-Leal et al.,
2019). For example, Vinyals et al. (2019) trained agents
to play the video game StarCraft II by self-play (Tesauro,
1995), and they noticed that one salient drawback of this
approach is in fact forgetting: the agent may forget how
to defeat a previous version of itself as training progresses,
and this may lead to a “tail-chasing” cycle where the agents
always relearn a previously learned strategy and training
never converges.

Furthermore, since the tasks now depend on the configura-
tions of other agents, in general, there is no guarantee that a
multi-task solution would exist in these settings. A poten-
tial example is Generative Adversarial Networks (GANs)
(Goodfellow et al., 2014), where a generator G and a dis-
criminator D are trained together by playing a minimax
game. The objective of D is to classify the data as real or
fake, whereas the goal of G is to fool D as much as possible
by generating fake data. It was shown in (Goodfellow et al.,
2014) that the optimal discriminator D∗(x) is a function of
the generator probability density function pG(x),

D∗(x) =
pdata(x)

pdata(x) + pG(x)

Therefore, if we take two snapshots G1, G2 of the genera-
tor at different moments of the training process such that
pG1

(x) 6= pG2
(x) for some x where pdata(x) 6= 0, then

their corresponding optimal discriminators have to be differ-
ent. In other words, there is no multi-task solution for the
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discriminator to be optimal for both generators. As a result,
optimizing the discriminator with respect to a new version of
the generator will inevitably lead to degradation of its perfor-
mance with respect to a past generator, which is considered
forgetting by the traditional metric of continual learning.
Indeed, it has been shown empirically by Thanh-Tung &
Tran (2019); Liang et al. (2019) that GANs suffer from
catastrophic forgetting, and they adapted CL methods such
as Elastic Weight Consolidation (EWC) (Kirkpatrick et al.,
2017) and Synaptic Intelligence (SI) (Zenke et al., 2017)
to alleviate forgetting in GANs . However, as we pointed
out before, these methods were initially designed with im-
plicit assumptions that a multitask solution always exists
and precise task boundaries are available, which makes them
unsuitable for the setting of multi-agent games like GANs.

In this work, we propose a CL framework that does not
make these assumptions and is applicable in a task agnostic
scenario where the tasks can potentially be conflicting with
each other. Furthermore, to evaluate our framework, we
shift our focus from less forgetting to faster remembering:
to rapidly recover the performance on a previously learned
task, given the right context as a cue.

2. Formal Statement
We consider an online learning scenario similar to Hochre-
iter et al. (2001); Nagabandi et al. (2019), where at each
time step t, a model f̂ parametrised by θt receives an ob-
servation xt and makes a prediction ŷt := f̂(xt; θt). It then
gets the ground truth yt on that task, which can be used to
optimize its parameters for better performance in the future.
If the data distribution is non-stationary (for example, (x, y)
are sampled from task A for a while, then the task switches
to task B at some moment t′), then training on the new data
might lead to catastrophic forgetting – the new parameters
θ′ can solve task B but not task A anymore.

Many continual learning methods were proposed to alleviate
the problem of catastrophic forgetting. Most of them require
either the task identities (A andB in the example) or at least
the moment when the task switches (t′ in this case). This
information, however, is not available when the ground
truth yt depends not only on the observation xt but also on
some hidden task (or context) variable Tt: yt = f(xt, Tt),
a common situation in partially observable environments
(Monahan, 1982; Cassandra et al., 1994). Only recently, the
CL community started to look at the task agnostic setting
(Zeno et al., 2018; Aljundi et al., 2019). However, all these
methods have the underlying assumption that no matter
what tasks the learner has been learning, at any time t, it
is always possible to find parameters θt that fit all previous
tasks: ∃θt s.t. ∀t′ ≤ t, f̂(xt′ , θt) ≈ yt′ . As discussed in
the previous section, this assumption does not hold in many
realistic scenarios where different tasks conflict with each

other: f(xt, Tt) 6= f(xt′ , Tt′) even when xt = xt′ . It
follows that, in those settings, catastrophic forgetting cannot
be avoided if the model f̂(·; θt) does not depend on the
hidden task variable Tt.

3. What & How Framework
Here we propose a framework for task agnostic continual
learning that explicitly infers the current task from some
context data Dctx

t and makes predictions based on both the
inputs xt and the inferred task representations ct. The frame-
work consists of two modules: a task inference encoder al-
gorithm Fwhat : Dctx

t → ct that predicts the current task rep-
resentation ct based on the context data Dctx

t , and a decoder
algorithm FHow : ct → f̂t that maps the task representation
ct to a task specific model f̂t : x→ ŷ.

Under this framework, even when the inputs xt and
xt′ are the same, the predictions ŷt and ŷt′ can be
different from each other depending on the context.
In this work, we choose the recent k observations
{(xt−k, yt−k), · · · (xt−1, yt−1)} as the context dataset Dctx

t .
This choice is reasonable in an environment where the task
variable Tt is piece-wise stationary or changes smoothly.
An overview of this framework is illustrated in Figure 1.

Figure 1. What & How framework

3.1. Meta Learning as Task Inference

In fact, many recently proposed meta-learning methods can
be seen as decomposing the problem into What and How
modules. For example, Conditional Neural Processes (CNP)
(Garnelo et al., 2018) embed the observation and target
pairs in context data (xi, yi) ∈ Dctx

t by an encoder net-
work ri = h(xi, yi; θh). The embeddings are then aggre-
gated by a commutative operation ⊕ (such as the mean
operation) to obtain a single embedding of the context:
rt = FWhat(Dctx

t ; θh) =
⊕

xi,yi∈Dctx
t
h(xi, yi; θh). At infer-

ence time, the context embedding is passed as an additional
input to a decoder g to produce the conditional outputs:
FHow(rt) = g(·, rt; θg).

Model-Agnostic Meta-Learning (MAML) (Finn et al., 2017)
infers the current task by applying one or a few steps
of gradient descent on the context data Dctx

t . In this
case, the gradient descent algorithm is the What encoder
and the resulting task-specific parameters can be consid-
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ered a high-dimensional representation of the current task:
θkt = FWhat(Dctx

t ; θinit) = Uk(θinit,Dctx
t , λ

in) := θk−1t −
λin∇θLin(f̂(·; θk−1t ),Dctx

t ), where the meta parameters θinit
t

are the initial values of the model parameters, Uk is the op-
erator that updates θinit by k steps of gradient descent on the
context data Dctx

t with an inner loop learning rate λin and an
inner loop loss function Lin. The How decoder of MAML
returns the task-specific model by simply re-parametrizing
the model f̂ with θt: FHow(θt) := f̂(·; θt).

In Fast Context Adaptation via Meta-Learning (CAVIA)
(Zintgraf et al., 2019), a neural network model f̂ takes a
context vector ct as an additional input: ŷ = f̂(x, ct; θ).
The context vector is inferred from context data by a few
steps of gradient descent: ct = FWhat(Dctx

t ; θ) := cinit −
λin∇cLin(f̂(·, c; θ),Dctx

t ). Then a context-dependent model
is returned by the How decoder: FHow(ct) := f̂(·, ct; θ).

In this work, to showcase our framework, we choose a sim-
ple meta learning method called Reptile (Nichol et al., 2018),
mainly for its simplicity and for being computationally in-
expenssive as it does not require second order gradients.
Similar to MAML, Reptile tries to learn an initialization of
model parameters θinit

t such that optimization on a test task
is fast, so its What encoder and How decoder are exactly
the same as those of MAML. To update the meta param-
eters θinit

t , Reptile simply uses the difference between the
task-specific parameters and the initialization as the gradient
direction: gθinit := θinit

t − θkt = θinit
t − Uk(θinit

t ,Dctx
t , λ

in).

3.2. Continual Meta Learning

In order to train a meta-learning model, one normally needs
access to a task distribution so that i.i.d task samples are
available at the same time during training. This is not possi-
ble in the online learning setting where tasks are presented
sequentially one after the other. Finn et al. (2019) pro-
posed an online meta-learning algorithm called follow the
meta leader (FTML) based on the framework of regret-
minimization. However, the computational cost of FTML
grows linearly over time as new losses are accumulated, and
it requires to store all datapoints from previous tasks, which
is usually considered infeasible in continual learning due
to limited resources or privacy reasons. In this work, we
choose an alternative framework of online learning called
online variational Bayes (Minka et al., 2009; Opper, 1998),
since it does not require unbounded computational and mem-
ory budget. Furthermore, when additional memory budget
are available for storing datapoints, online variational Bayes
can also be extended by combining it with memory-based
online learning methods (Minka et al., 2009; Nguyen et al.,
2017; Kurle et al., 2020). In this work, we focus on an
algorithm that does not have a growing memory cost over
time.

Formally, let φ be the collection of meta parameters inFWhat

and FHow (for instance, θinit in MAML and Reptile) such
that f̂t = FHow ◦ FWhat(Dctx

t ;φ). Using the Bayes rule, the
posterior p(φ|D0:t) can be recursively updated by

p(φ|D0:t) =
p(Dt|φ,D0:t−1)p(φ|D0:t−1)

p(Dt|D0:t−1)
(1)

where Dt = {(xt, yt)} and D0:t is the union of all data-
points up to t. By our assumption that a moving window of
context data is informative enough about the task variable,
we have

p(Dt|φ,D0:t−1) ≈ p(Dt|φ,Dctx
t ) = p(yt|f̂t(xt))

= p(yt|FHow ◦ FWhat(Dctx
t ;φ)(xt)) (2)

In online variational Bayes, the true posterior is approxi-
mated by a parametric distribution qt(φ) by minimizing the
Kullback-Leibler divergence

qt(φ) = arg min
q(φ)

KL(q(φ)||p(φ|Dt0:tn)) (3)

and if we use a parametric distribution at every time
step, the optimization problem above can be simpli-
fied as maximizing the evidence lower bound (ELBO)
E(q(φ),D0:t, qt−1(φ)) = Eq(φ)[log p(Dt|φ,D0:t−1)] −
KL(q(φ)||qt−1(φ)).

In this work, we choose the parametric distribution to be a
factorized Gaussian qt(φ) =

∏
iN (φi|µi(t), σi(t)), where

φi is the i-th component of φ. Using the re-parametrization
trick: φi = µi + σiεi, εi ∼ N (0, 1) and let qt−1(φ) =∏
iN (φi|µi(t− 1), σi(t− 1)), we can find the maximum

of the ELBO by solving the following equations

∂

∂µi(t)
E(q(φ),D0:t, qt−1(φ)) = 0 (4)

∂

∂σi(t)
E(q(φ),D0:t, qt−1(φ)) = 0 (5)

and the results are update rules for µi and σi that are similar
to Bayesian Online Learning (Opper, 1998) and Bayesian
Gradient Descent (BGD) (Zeno et al., 2018), but on the
meta-level:

µi(t) =µi(t− 1)− σ2
i (t− 1)Eε

[∂Lt(φ)

∂φi

]
, (6)

σi(t) =σi(t− 1)

√
1 +

(1

2
σi(t− 1)Eε

[∂Lt(φ)

∂φi
εi
])2

− 1

2
σ2
i (t− 1)Eε

[∂Lt(φ)

∂φi
εi
]
, (7)

where Lt(φ) = − log p(Dt|φ,D0:t−1). An intuitive inter-
pretation of these learning rules is that weights µi with
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Algorithm 1 What & How (using Reptile)

Input: µ, σ, λin, k, J,Dctx
0 , ηµ, ησ ,

for t = 0, 1, . . . do
ct ← θt = Uk(µ;Dctx

t , λ
in) = FWhat(Dctx

t ;µ),
ŷt ← f̂(xt; θt) = FHow(ct)(xt)

∆µ ← ηµ
∂Lt(φ)
∂φ

∣∣∣
φ=µ
≈ ηµ(µ− Uk(µ,Dctx

t , λ
in))

for j = 1 to J do
εj ∼ N (0, 1)
φj = εjσ + µ

∆j
σ ← εj ∂Lt(φ)

∂φ

∣∣∣
φ=φj

≈ εj(φj−Uk(φj ,Dctx
t , λ

in))

end for
∆σ ← ησ

1
J

∑
j=1 ∆j

σ

µi ← µi − σ2
i∆µi

σi ← σi

√
1 +

(
1
2σi∆σi

)2
− 1

2σ
2
i∆σi

,

Update Dctx
t with {(xt, yt)} to get Dctx

t+1

end for

smaller uncertainty σi are more important for the knowl-
edge accumulated so far, thus they should change slower in
the future in order to preserve the learned knowledge.

In practice, we introduce learning rates for both 6 and 7.
Maximum a posterior (MAP) estimate of φ is used for pre-
diction. We approximate the expectation in the µ update
rule 6 by the gradient at the mean, and for the expectation in
the σ update rule 7, we estimate it by Monte Carlo sampling
method. The final algorithm called W&H is described in
Algorithm 1.

Complexity The number of parameters required by the
W&H algorithm is 3 times that of the base model, since
it needs to store the mean and the standard deviation of
the initialization and a copy of the current task-specific
parameters. In terms of time complexity, the computation
of the mean update ∆µ and the Monte Carlo (MC) sample
of the standard deviation update ∆j

σ can be parallelized. In
that case, W&H has only constant computational overhead
compared to Reptile due to sampling and gradient averaging.
If the MC sampling process is implemented sequentially,
the total time complexity is O(J + 1) times that of the
Reptile algorithm. Similar to the findings in Zeno et al.
(2018), we find that in practice the number of MC samples
has negligible effect on the performance of the algorithm.

4. Related Work
Continual learning has seen a surge in popularity in the
last few years, with multiple approaches being proposed to
address the problem of catastrophic forgetting. These ap-
proaches can be largely categorized into the following types
(Parisi et al., 2019): Rehearsal based methods focus on

techniques to either efficiently store data points from previ-
ous tasks (Robins, 1995; Lopez-Paz et al., 2017) or to create
pseudo datasets that are representative of past tasks. Then
the stored or generated data can be used to approximate the
losses of previous tasks. For example, Learning without
Forgetting (LwF) (Li & Hoiem, 2017) first labels the inputs
of the current task with the previous model, then use the
resulting input-output pairs for rehearsal. Deep Generative
Replay (DGR) (Shin et al., 2017) trains a generative model
together with a classifier, and when the task switches, the
previous generative model can be used to produce pseudo-
examples for rehearsing the old tasks. Structural based
methods exploit modularity to reduce interference, localiz-
ing the updates to a subset of weights. Rusu et al. (2016)
proposed to learn a new module for each task with lateral
connection to previous modules. This prevents catastrophic
forgetting by construction and allows forward transfer, at the
cost of quadratic growth in model size. He & Jaeger (2018)
proposed to use Conceptors to identify the linear subspaces
in a network that are not used by previous tasks for learning
future tasks. This method does not increase the size of the
network as long as the linear subspaces are not exhausted,
but the network capacity will eventually saturate. In (Golkar
et al., 2019), pruning techniques were applied to minimize
the growth of the model after each task. Finally, Regu-
larization based methods draw inspiration from Bayesian
learning, and can be seen as utilizing the posterior after
learning a sequence of tasks as a prior to regularize learning
of the new task. These methods differ from each other in
how the prior and implicitly the posterior are parametrized
and approximated. For instance, Elastic Weight Consolida-
tion (EWC) (Kirkpatrick et al., 2017) relies on a Gaussian
approximation with a diagonal covariance, estimated using
a Laplace approximation. Variational Continual Learning
(VCL) (Nguyen et al., 2017) learns directly the parame-
ters of the Gaussian relying on the re-parametrization trick.
(Ritter et al., 2018) achieved better approximation with a
block-diagonal covariance. Synaptic Intelligence (SI) by
Zenke et al. (2017) proposed to estimate the importance
of parameters by the path length of the updates on the pre-
vious task, then discourage future changes on important
parameters by a quadratic penalty.

While effective at preventing forgetting, the above-
mentioned methods either rely on knowledge of task bound-
aries or require task labels to select a sub-module for adap-
tation and prediction, hence cannot be directly applied in
the task agnostic scenario considered here. To circumvent
this issue, (Kirkpatrick et al., 2017) used Forget-Me-Not
(FMN) (Milan et al., 2016) to detect task boundaries and
combined it with EWC to consolidate memory when task
switches. However, FMN requires a generative model that
computes exact data likelihood, which limits it from scaling
to complex tasks. Bayesian Gradient Descent (BGD) (Zeno
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et al., 2018), as we discussed before, adopts the framework
of online variational Bayes, and approximates the poste-
rior with a diagonal Gaussian distribution. More recently,
(Aljundi et al., 2019) proposed a rehearsal-based method
to select a finite number of data that are representative of
all data seen so far. All of these methods assume that it
is possible to learn one model that fits all previous data,
neglecting the scenario where different tasks may conflict
each other, hence does not allow task-specific adaptations.

Meta-learning, or learning to learn (Schmidhuber, 1987),
trains a model on a distribution of tasks and focuses on its
ability to quickly learn a new task at meta-testing time. As
with continual learning, different families of approaches
exist for meta-learning. Memory based methods Santoro
et al. (2016) rely on a recurrent model (optimizer) such as
LSTM to learn a history-dependent update function for the
lower-level learner (optimizee). Andrychowicz et al. (2016)
trained an LSTM to replace the stochastic gradient descent
algorithm by minimizing the sum of the losses of the opti-
mizees on multiple prior tasks. Ravi & Larochelle (2016)
use an LSTM-based meta-learner to transform the gradient
and loss of the base-learners on every new example to the fi-
nal updates of the model parameters. Metric based methods
learn an embedding space in which new tasks can be solved
efficiently. Koch (2015) trained siamese networks to tell if
two images are similar by converting the distance between
their feature embeddings to the probability of whether they
are from the same class. Vinyals et al. (2016) proposed
the matching network to improve the embeddings of a test
image and the support images by taking the entire support
set as context input. The approaches discussed in Section
3.1 instead belong to the family of optimization based meta-
learning methods. Beside the online meta learning work
(Finn et al., 2019) discussed before, the most relevant work
in this domain is from (Nagabandi et al., 2019), where they
studied fast adaptation in a non-stationary environment by
learning an ensemble of networks, one for each task. Un-
like our work, they used MAML for initialization of new
networks in the ensemble instead of task inference. A draw-
back of this approach is that the size of the ensemble grows
over time and is unbounded, hence can become memory-
consuming when there are many tasks.

5. Experiments
We design a series of experiments to thoroughly evaluate the
effectiveness of the What & How framework, and compare it
to BGD and other CL methods (EWC, online EWC, SI, LwF,
DGR, DGR+Distill) implemented by van de Ven & Tolias
(2019). We also include the following baselines: None: the
model is trained sequentially using Adam (Kingma & Ba,
2014) in the standard way without applying any continual
learning method; Joint: all tasks seen so far are trained at

Table 1. Zero-shot and few-shot recall (k = 5 steps) accuracies
for different continual learning methods on the label-permuted
MNIST tasks. The results are average accuracies over all tasks.
The mean and the standard error of mean (SEM) are computed
over 5 runs with different random seeds for each method.

METHODS ZERO-SHOT FEW-SHOT

NONE 28.07± 1.19 27.68± 0.98
JOINT 35.74± 0.99 33.44± 1.79
BGD 28.18± 1.17 27.67± 1.04
EWC 27.86± 1.19 29.85± 0.95
ONLINE EWC 27.85± 1.20 30.42± 0.69
SI 28.06± 1.19 29.50± 1.07
LWF 33.70± 1.02 32.91± 1.29
DGR 27.88± 1.12 23.06± 0.89
DGR+DISTILL 28.03± 1.14 28.88± 1.26
W&H (OURS) 28.16± 1.19 88.88± 1.00

the same time, this scheme usually sets the upper bound for
continual learning methods.

5.1. Label-Permuted MNIST

In this experiment, we first create a different permutation of
10 classes for every task, with which we shuffle the classes
in the labels. For instance, digit 0 might be the first class
in one task but the second class in another task. The reason
for this design is to ensure that a multi-task solution does
not exist since the network has to map the same image to
different labels for different tasks. In this way, we can test
whether our framework is able to quickly adapt its behavior
according to the current context. Five tasks are created
with this method and are presented sequentially for 1000
iterations each to an MLP with 2 hidden layers of 1000
neurons. In each iteration, a mini-batch of 128 images is
presented to the network. Note that except BGD, None
and our method, all the other baselines simply cannot be
directly applied in the task agnostic scenario, so we provide
the necessary task information for these methods in order to
perform the comparison.

Zero-shot vs. Few-shot Recall at the end of the entire
learning process, we test the learner’s classification accuracy
of each task in two ways. The first way is to directly apply
the final model on the testing data without any adaptations,
this corresponds to the zero-shot recall accuracy tradition-
ally used in continual learning. For the W&H algorithm,
this means we apply the model simply with the learned ini-
tialization. In the second way, we provide the final model
with a mini-batch of 128 images from the training set of
each task as context data, then let the model take k = 5
steps of gradient descent on the context data before it is
tested on the testing data of that task. We call this metric
few-shot recall accuracy.
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Table 2. Average test accuracy (over all 10 tasks) on the permuted
MNIST experiment. The accuracies for BGD and W&H reported
here are the mean (± SEM) over 5 runs. Other results are taken
directly from van de Ven & Tolias (2019)

APPROACHES METHODS DOMAIN-IL

BASELINES
NONE 78.51± 0.24
JOINT 97.59± 0.01

REGULERIZATION
EWC 94.31± 0.11
ONLINE EWC 94.42± 0.13
SI 95.33± 0.11

LWF 72.64± 0.52

REPLAY
DGR 95.09± 0.04
DGR+DISTILL 97.35± 0.02

ONLINE BAYESIAN
BGD 93.02± 0.33
W&H (OURS) 93.37± 0.33

Table 3. Average test accuracy (over all 5 tasks) on the split MNIST
experiment. The accuracies for BGD and W&H reported here are
the mean (± SEM) over 5 runs. Other results are taken directly
from van de Ven & Tolias (2019)

APPROACHES METHODS DOMAIN-IL

BASELINES
NONE 59.21± 2.04
JOINT 98.42± 0.06

REGULERIZATION
EWC 63.95± 1.90
ONLINE EWC 64.32± 1.90
SI 65.36± 1.57

REPLAY
LWF 71.50± 1.63
DGR 95.72± 0.25
DGR+DISTILL 96.83± 0.20

ONLINE BAYESIAN
BGD 66.07± 2.13
W&H (OURS) 67.33± 2.03

Table 1 summarizes the performance of our method and
other CL methods. Note that in this experiment, it is im-
possible to achieve good performance with zero-shot recall
since a multi-task solution does not exist. Even the joint
training scheme which is considered the upper bound for
CL achieves very poor accuracies. In the few-shot setting,
our framework significantly outperforms the other baselines,
even without access to any task information during training.
Interestingly, some baselines perform worse in the few-shot
setting due to over-fitting on the context data.

5.2. Permuted and Split MNIST

We also test the What & How framework on the standard
CL benchmarks called Permuted MNIST (Goodfellow et al.,
2013; Kirkpatrick et al., 2017) and Split MNIST (Zenke
et al., 2017). In these experiments, tasks are not con-
flicting with each other, so multi-task solutions do exist.
van de Ven & Tolias (2019) described three scenarios for

these experiments based on what task information are avail-
able at test time: task-incremental learning: models are
always informed about which task is presented; domain-
incremental learning: task ID is not provided at test time;
class-incremental learning: task ID is not provided and
should be inferred at test time. However, they assumed
that during training there are clear and well-defined task
boundaries available for the learner. Since our focus is task
agnostic CL during training, we only consider the domain-
incremental scenario at test time, because in the other two
scenarios, the task boundaries are anyways available during
training (in the class-incremental case, a class corresponds
to a task, which can be simply detected from the labels), it
is not necessary to apply a task-agnostic method.

In the permuted MNIST protocol, a new task is created by
shuffling the pixels of all images in MNIST by a fixed per-
mutation. We present 10 such tasks sequentially for 5000
iterations each. After all tasks are learned, the network
has to predict the digit from an image without knowing the
permutation. For the split MNIST protocol, the original
MNIST dataset is divided into 5 subsets with 2 digits each.
We present one of these subsets at a time for 2000 iterations.
At the end of the training, the network has to predict if an
image was the first class or the second class in its subset,
without knowing which subset the image is from. To be com-
parable with the results from van de Ven & Tolias (2019),
we use exactly the same network architecture, experiment
setup and hyper-parameters for these two experiments.

The results of these two experiments are displayed in Table
2 and Table 3. Again, BGD and our method do not have
access to any task information, while the other methods
cannot be directly applied without task information. For
our method, we use the previous mini-batch as context data
during training, and at testing time, the learned initialization
was directly used without any context-dependent adaption,
it can be seen from the tables that our method performs
the same as BGD, which also has similar performance to
the regularization-based task-aware methods. This means
our framework is also applicable when multi-task solutions

Figure 2. Few-shot adaptation on sine curves after trained on 200
such Sine curves. Left: predictions on the first presented Sine
curve. Right: predictions of different learners on a Sine curve that
did not occur during training.
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exist.

5.3. Sine Regression

One desideratum of continual learning is the ability of for-
ward transfer. Lopez-Paz et al. (2017) defined a metric
for forward transfer based on a model’s “zero-shot” per-
formance on a future task. We generalize the concept of
forward transfer to the “few-shot” setting: positive forward
transfer should allow a model to learn faster on a future task
similar to the ones it has learned. This definition coincides
with generalization in meta-learning, which refers to how
fast a meta-learner can learn a new task at meta-test time.
We show that our method is capable of forward transfer by
comparing it to Reptile, BGD and SGD on the sine regres-
sion tasks commonly used in meta learning literature. We
randomly generate 200 different sine curves and present
them sequentially to the learners for 100 iterations each. At
the end of the learning process, we evaluate the few-shot per-
formance (mean squared error) of all learners on these 200
sine curves as well as 200 new sine curves it has not seen
before. In particular, the learners are evaluated after they
takes k = 5 steps of SGD on a mini-batch of 64 context data.
Table 4 summarizes the results of this experiment. The other
baselines perform poorly due to catastrophic forgetting and
no multi-task solution. Figure 2 visualizes the predictions
of different learners on the first seen and a unseen sine curve
at the end of the entire training procedure.

5.4. Continual GAN

Finally, we apply our framework in the setting of GAN train-
ing, where the ultimate goal is to find the optimal parameters
θ∗G for a generator G(z; θG) by optimizing a minimax ob-
jective (e.g. Goodfellow et al., 2014; Metz et al., 2016):

θ∗G = argmin
θG

max
θD

l(θG, θD)

= argmin
θG

l(θG, θ
∗
D(θG)) (8)

where θ∗D(θG) = argmaxθD l(θG, θD) and l(θG, θD) =
Ex∼pdata(x)[log(D(x; θD))] + Ez∼N (0,1)[log(1 −
D(G(z; θG); θD))].

Following our discussion in the Section 1, continually learn-
ing D(·; θD) is impossible, because at different moments t
and t′ during training, the generator distributions may be dif-
ferent (pG 6= pG′ ), hence the corresponding optimal discrim-
inator parameters cannot be the same: θ∗D(θG) 6= θ∗D(θG′).
In other words, the tasks for the discriminator at time t and
t′ are conflicting with each other. Adopting the What &
How framework, we focus on continually learning a model
for θ∗D(·) in Eq.8 instead of the discriminator D(·). This
model corresponds to our What encoder: given a set of
data points DG := {G(zn; θG)}n sampled from the current
generator as context data, the What encoder is trained to ap-

Table 4. Average MSE of different methods on the sine curve re-
gression tasks at the end of training. The “Seen” column contains
the MSE over 200 sine curves presented during training. The
“Unseen” column contains the MSE over 200 new sine curves the
learners have not seen before. The results reported here are the
mean (± SEM) over 5 trials.

METHODS SEEN UNSEEN

SGD 3.71± 0.39 3.82± 0.40
BGD 3.34± 0.24 3.27± 0.22
REPTILE 3.23 ± 0.68 3.08± 0.65
W&H (OURS) 1.04 ± 0.09 1.08 ± 0.12

proximate the optimal discriminator parameters θ∗D(θG) ≈
FWhat(DG;φ) by k steps of inner loop updates on the con-
text data, where the meta parameter φ corresponding to an
initialization of the discriminator φ := θinit

D is learned by
Alg.1. The generator-specific discriminator returned by the
How decoder FHow ◦FWhat(DG;φ) := D(·;FWhat(DG;φ))
is used to compute the loss of θG and to update the current
generator1. This way, the conflict at the level of θD is re-
solved at the level of φ: it is possible, in theory, to find
a single φ that maximizes both l(θG,FWhat(DG;φ)) and
l(θG′ ,FWhat(DG′ ;φ)), even when θG 6= θG′ .

Thanh-Tung & Tran (2019) and Liang et al. (2019) showed
that a notorious problem for GAN training called mode
collapse (Che et al., 2016) is interrelated with catastrophic
forgetting and can cause the training process to never con-
verge, since the generator is always optimized to revisit a
mode that the discriminator has forgotten. Therefore, over-
coming catastrophic forgetting problem in the discriminator
should be able to break this mode revisiting cycles and
reduce mode collapse, as shown in the experiments below.

2D Mixture of Gaussian To directly visualize the effect
of our method, we first apply it to train a simple GAN
from synthetic data generated from a mixture of 8 Gaussian
distributions on 2D space. The network architecture and ex-
periment setup are exactly the same as in (Metz et al., 2016).
We first train a vanilla GAN with standard techniques on this
dataset, the first row (Vanilla GAN) of Figure 3 shows that
it enters a non-convergent cycle of revisiting the modes. We
then apply the What & How method (with k = 3 steps in the
inner loop) to the discriminator while keeping the rest of the
experiment setup and hyper-parameters the same. As can
be seen in the second row (WHGAN) of Figure 3, although
mode collapse also occurs at the beginning of the training

1Unlike the Unrolled GAN (Metz et al., 2016), we do not
backprop through the inner loop optimization of the discriminator
when we compute the gradients of the generator, even though this
can provide more accurate gradients for the generator and further
improve the performance of our GANs. The reason is that we want
to isolate the effect of our method from that of the Unrolled GAN.
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Figure 3. The What and How framework prevents mode collapse on the 2D mixture of Gaussians dataset. The first six columns show KDE
plots of 512 samples from the generator at different training steps. The last column are created from 512 samples of the real distribution.
The first row shows standard training of a vanilla GAN. The second row shows the same GAN with the discriminator trained by the What
and How framework.

Table 5. Quantitative Evaluation of DCGAN and WHGAN on CI-
FAR10. The results reported here are the mean (± SEM) over 5
random trials. ↓ (resp. ↑) indicates lower (resp. higher) is better.

Metrics DCGAN WHGAN(Ours)

NDB↓ 48.20± 4.68 26.00 ± 0.89
JSD↓ 0.013± 0.0016 0.0069 ± 0.00019
FID↓ 47.52± 0.49 46.78 ± 0.63
IS ↑ 4.40 ± 0.028 4.47 ± 0.027

process, our networks can avoid the repeating cycle, and
eventually converge to a distribution that covers all modes.

DCGAN on CIFAR10 In this experiment, we compare
the differences between a DCGAN (Radford et al., 2015)
trained with and without our method on the CIFAR10
dataset (Krizhevsky et al., 2009). Since it is hard to vi-
sualize mode collapse for high dimensional image data, we
use two bin-based metrics called NDB and JSD (Richardson
& Weiss, 2018) to evaluate the resulting GANs. To com-
pute NDB, the real samples are first clustered by K-means
into K = 200 bins, which can be considered as modes of
the data distribution. Then N = 50000 images sampled
from the generator are assigned to their nearest bins. For
each bin, a two-sample test is performed to decide if the
synthesized samples are statistically different from the real
samples. NDB is then simply the number of statistically
different bins and JSD is the Jensen-Shannon divergence
between the real distribution and the generator distribution
over these bins. Lower NDB and JSD scores imply more
similarity between two distributions, and hence less mode
collapse. In addition, we also evaluate the resulting GANs
with the Inception Score (IS) (Salimans et al., 2016) and
the Fréchet Inception Distance (FID) (Heusel et al., 2017),
which are metrics based on the image features extracted by
the Inception Network (Szegedy et al., 2015). Higher IS and

lower FID indicate better quality of the generated images.

Table 5 compares the performance of the original DCGAN
and one trained with our framework (WHGAN). Again, we
keep the network architecture and all hyper-parameters the
same, except that the discriminator in WHGAN is trained
with the What & How method. In both cases, we train the
networks for 50000 iterations with a mini-batch size 64. For
our method, k = 3 steps are used in the inner loop of the
What encoder. The results show that WHGAN achieved
significantly lower NDB and JSD while maintaining the
same image quality.

6. Conclusions
In this work, we showed that when a multi-task solution
does not exist, catastrophic forgetting is inevitable. A frame-
work that can infer task information explicitly from context
data was proposed to resolve this problem. The framework
separates the inference process into two components: one
for representing What task is presented, and the other for
describing How to solve the given task. In addition, our
framework unifies many meta learning methods and estab-
lishes a connection between continual learning and meta
learning, leveraging the advantages of both.

From the meta learning perspective, our framework ad-
dresses the continual meta learning problem by applying CL
techniques on the meta variables, therefore allowing meta
knowledge to accumulate over an extended period; from
the continual learning perspective, our framework addresses
the task agnostic continual learning problem by explicitly
inferring the task when the task information is not available
and a multi-task solution does not exist. This allows us to
shift the focus of continual learning from less forgetting to
faster remembering, given the right context.
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