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ABSTRACT
Federated learning has become a popular machine learning paradigm with many potential real-life applications,
including recommendation systems, the Internet of Things (IoT), healthcare, and self-driving cars. Though most
current applications focus on classification-based tasks, learning personalized generative models remains largely
unexplored, and their benefits in the heterogeneous setting still need to be better understood. This work proposes
a novel architecture combining global client-agnostic and local client-specific generative models. We show that
using standard techniques for training federated models, our proposed model achieves privacy and personalization
that is achieved by implicitly disentangling the globally-consistent representation (i.e. content) from the client-
dependent variations (i.e. style). Using such decomposition, personalized models can generate locally unseen
labels while preserving the given style of the client and can predict the labels for all clients with high accuracy
by training a simple linear classifier on the global content features. Furthermore, disentanglement enables other
essential applications, such as data anonymization, by sharing only content. Extensive experimental evaluation
corroborates our findings, and we also provide partial theoretical justifications for the proposed approach.

1 INTRODUCTION

Federated learning (FL) (Konečný et al., 2016b;a) is a re-
cently proposed machine learning setting where multiple
clients collaboratively train a model while keeping the train-
ing data decentralized, i.e. local data are never transferred.
FL has potential for the future of machine learning systems
as many machine learning problems cannot be efficiently
solved by a single machine/client for various reasons, in-
cluding scarcity of data, computation, and memory, as well
as the adaptivity across domains.

Most of the focus of federated learning has been on clas-
sification models, mainly for decision-based applications.
These applications include a wide variety of problems such
as next-word prediction, out-of-vocabulary word and emoji
suggestion, risk detection in finance, and medical image
analysis (Wang et al., 2021; Kairouz et al., 2019). How-
ever, based on recent works on representation learning and
causality (Schölkopf et al., 2021; Wang and Jordan, 2021),
we believe that to understand the causes, explain the process
of making a decision, and generalize it to unseen domains
of data, it is crucial, if not necessary, to learn a genera-
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tive model of the data as well, such that it is sufficient to
know the representation of the data to describe how it looks
and make decisions from it. For example, an agent can de-
scribe what a digit looks like and infer its label based on this
description. Therefore, by collaboratively learning a genera-
tive model and communicating with other agents with the
same representation, the agents can potentially generalize to
the unseen domains of other agents. In general, the potential
of a group of specialized agents that communicate and plan
efficiently among each other is almost always superior to
that of a single monolith agent that can handle every task.
These insights motivated us to propose the idea presented in
our work.

We take a step towards this objective and introduce our core
idea, which can be described as follows: to learn generative
models of heterogeneous data sources collaboratively and
to learn a globally-consistent representation of the data that
generalizes to other domains. The representation should
contain sufficient information to classify the data’s content
(e.g. label) with reasonable accuracy, and the generative
model should be able to generate data containing this content
under different domains (e.g. styles). Thus, we make no
assumptions about the availability of labels per client and
the intersection of the clients’ data distributions.

A direct application of our model is to disentangle the latent
factors that correspond to the content and learn a simple
classifier on top of it. This approach tackles the problem of
domain adaptation (Zhang et al., 2013), where, in our case,
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the domain is the client’s local distribution. In this scenario,
our model can learn a client-agnostic classifier based on the
representation learned by the discriminator, which should
generalize across all clients. We call the client-agnostic part
of the representation–the content, and the private part–the
style. Thus, we are concerned with the partial disentangle-
ment of latent factors into content and style factors, inspired
by (Kong et al., 2022). As for the generator part, its benefits
mainly involve generating data samples from the client’s dis-
tribution, either for data augmentation or for privacy reasons
by sampling synthetic data. We can also actively remove
private information or any client-identifying variations from
the client’s data by introducing a specialized reference client
that trains only on standardized, publicly available data or
data with no privacy concerns. After that, we can gener-
ate the same content of the private data with the reference
client’s style.

The generative model we focus on in this work is Generative
Adversarial Networks (GANs) (Goodfellow et al., 2020).
In particular, we use the style mapping network idea from
StyleGAN (Karras et al., 2019). In the case of supervised
data, we condition the GAN using a projection discrimina-
tor (Miyato and Koyama, 2018) with spectral normalization
(Miyato et al., 2018) and a generator with conditional batch
normalization (De Vries et al., 2017). We believe that de-
signing more sophisticated architectures can improve our
results and make them applicable to a wider variety of prob-
lems. In particular, using transformers (Vaswani et al., 2017)
for natural language processing tasks and diffusion models
(Ho et al., 2020), vision transformers (Dosovitskiy et al.,
2021) for image generation would make an interesting di-
rection for future work.

Contributions. Below, we summarize our contributions:

• We propose our framework for Partial Disentanglement
with Partially-Federated Learning Using GANs. Only
specific parts of the model are federated so that the rep-
resentations learned by the GAN’s discriminator are par-
tially disentangled into content and style factors, where
we are mainly concerned with the content factors, which
can be used for inference. We enforce this disentangle-
ment through a “contrastive” regularization term based
on the recently proposed Barlow Twins (Zbontar et al.,
2021).

• Our model can learn a globally-consistent representation
of the content of the data (e.g. label) such that it classifies
the labels with high accuracy. In the case of supervised
data, our model can generalize to locally-unseen labels
(within the client) with respect to classification and gen-
eration.

• Through extensive experimentation, we validate our
claims and show how popular techniques from feder-
ated learning, GANs, and representation learning can

seamlessly blend to create a more robust model for both
classifications and generation of data in real-world sce-
narios.

• We make the code publicly available for reproducibil-
ity at https://anonymous.4open.science/
r/FedGAN-F629.

Organization. Our manuscript is organized as follows.
Section 2 talks about related work and the novelty of our
approach. Section 3 describes notations and preliminary
knowledge about the frameworks used in our model. Sec-
tion 4 contains the main part of our paper and describes the
model design and training algorithm in detail. Section 5
shows a detailed evaluation of the model’s generative capa-
bilities across different domains, robustness under limited
label availability, and generalization capabilities based on its
learned representation. Section 6 conclude the manuscript
by providing exciting future directions and the paper’s sum-
mary.

2 RELATED WORK

Training GANs in the FL setting is not new. For example,
(Fan and Liu, 2020) considers the options of averaging ei-
ther the generator or the discriminator, but their training
algorithm has no client-specific components or disentan-
glement. Similarly, FedGAN (Rasouli et al., 2020) also
proposes a straightforward federated algorithm for training
GANs and proves its convergence for distributed non-iid
data sources. Another work exploring distributed GANs
with non-iid data sources is (Yonetani et al., 2019), which
is interesting because the weakest discriminator can help
stabilize training. Still, in general, their framework does not
align with ours.

The idea of splitting the model into two or more sub-
modules where one focuses on personalization or local ag-
gregation has been explored before under the name of Split
Learning. Very few of these works consider a generative
framework, which is the core consideration of our work.
For example, FedPer (Arivazhagan et al., 2019) and ModFL
(Liang et al., 2022) suggest splitting the model depth-wise
to have a shared module at the beginning, which is trained
with FL, and then a personalization module is fine-tuned by
the client. Inversely, (Vepakomma et al., 2018) personalize
early layers to provide better local data privacy and personal-
ization. A more recent work (Pillutla et al., 2022) proposes
the same idea of partial personalization based on domain
expertise (e.g. in our case, setting style-related modules for
personalization). Finally, HeteroFL (Diao et al., 2020) is
another framework for addressing heterogeneous clients by
assigning different levels of “locality” where the next level
aggregates all parameters excluding ones from the previous
levels, thus higher levels are subsets contained in the earlier
levels. Finally, (Horváth et al., 2021) trains orderly smaller
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subsets of weights for devices with less resources. For a
two-layer linear neural net and a target linear in the features,
it recovers the singular value decomposition in the hidden
layer. This is similar in spirit as we aim to decompose the
parameters based on the way they are federated.

Regarding the privacy of federated GANs, (Augenstein et al.,
2020) considers a setup where the generator can be on the
server as it only needs the gradient from the discriminator
on the generated data. However, they are mainly concerned
with resolving the issue of debugging ML models on devices
with non-inspectable data using GANs, which is a different
goal from ours. Though, they mention that the generator can
be completely deployed on the server, but the discriminator
needs direct access to data. Indeed, the discriminator is the
part with privacy concerns, which we will discuss.

Combining GANs with contrastive learning has also been
explored before. ContraGAN (Kang and Park, 2020) is a
conditional GAN model that uses a conditional contrastive
loss. Our model is not necessarily conditional, and we use
a contrastive loss as a regularizer and train GANs regu-
larly. Another work (Yu et al., 2021) trains GANs with
attention and a contrastive objective instead of the regular
GAN objective, which is again different from our imple-
mentation. Perhaps the most relevant is ContraD (Jeong and
Shin, 2021), which is a contrastive discriminator that learns
a representation, from which parts are fed to different pro-
jections for calculating a GAN objective and a contrastive
objective. Our work differs in many details, where the main
similarity to prior work is the usage of contrastive learning
on a discriminator representation.

3 PRELIMINARIES

This section describes the notations we use in detail to re-
move ambiguity, especially since our work brings together
ideas from different fields. We also describe the frameworks
we employ in the design and training of our model, namely
federated learning and generative models. In general, we
follow prevalent machine learning notation. For example,
parameters at time t will be denoted by θ(t) ∈ Rd, where d
is the dimensionality of parameters. A set of indices from 1
to to M is denoted as [M ] = {1, · · · ,M}. We also follow
standard notation used in federated learning (Wang et al.,
2021) and GANs (Miyato and Koyama, 2018).

3.1 Federated Learning

Federated learning is a framework for training massively
distributed models, where a server typically orchestrates the
training that happens locally on the models deployed on
user devices (i.e. clients) (Kairouz et al., 2019). The most
widely used algorithm for training models in such a setting
is FedAvg (McMahan et al., 2016), which operates by

running stochastic gradient descent on the client’s models
for a few steps and then aggregating the updates on the
server. Another popular algorithm that accounts for data
heterogeneity is FedProx (Li et al., 2018), which adds
a proximal term to the objective that regularizes the local
model to be close to the global model.

The aim of federated learning is to optimize the following
objective

F (θ) = E
i∼P

[Fi(θ)], Fi(θ) = E
ξ∼Di

[fi(θ; ξ)], (1)

where θ ∈ Rd is the parameter, P is the client distribution,
i is the index of the sampled client, ξ is a random variable
of the local distribution Di of client i. Due to the nature of
our framework, we also denote θi as the parameters at client
i. We reserve the client index 0 for the server. The client
distribution P , for example, could be uniform or propor-
tional to the size of the local dataset. The local distribution
Di could be a minibatch distribution on the local dataset
{(xj ,yj)}Ni

j=1, so that ξ ∼ Di is a subset of indices of a
minibatch.

However, the notation for the distributions that we will
follow is based on the generative model literature to avoid
confusion. Namely, qi(x,y) = q(x,y|i) is the target (data)
distribution for client i and pi(x,y) is its generative model.

Private Modules. Our model makes use of private modules
or parameters (Bui et al., 2019). Namely, for each client
i, we split the parameters of its model θi into a private
part θpvt

i and a federated part θfed
i , typically in a non-trivial,

structured manner that is specific to the model design. The
only difference between these two parts is that the federated
parameters are aggregated normally as in FedAvg, whereas
the private parameters are kept as is and outside the server’s
control. Thus, it could be thought of that θfed

i should be
more biased towards a trajectory that is close to all clients,
whereas θpvt

i should be free from this constraint and could
potentially traverse different regions from the other clients to
account for the domain shift effect, all while still optimizing
the global objective (1).

3.2 Generative Adversarial Networks

Generative Adversarial Networks (GANs) (Goodfellow
et al., 2020) are powerful generative models that are well-
known for their high-fidelity image generation capabilities
(Karras et al., 2019) among other applications. The frame-
work consists of two competing models playing a minimax
game. The competing models are called the generator and
the discriminator. The generator’s main objective is to gen-
erate samples so that they cannot be discriminated from real
samples.

To put it formally, let the true distribution over the data be
q(x), the generative model G : Z → X and the discrim-
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global

if given
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Figure 1. The overall structure of the GAN model. Federated modules are aggregated in each communication round, whereas private
modules are not. The discriminative loss is just the GAN loss as described in Sec. 4.1, whereas the contrastive regularization term is
explained in more detail in Sec. 4.3. We describe the model’s components in more detail in the supplementary material.

inator D : X → R, where X := Rheight×width×depth is the
image space and Z is the latent space. Further, let p(z)
be the latent distribution, which is typically standard nor-
mal N (0, I). Thus, the GAN objective can be written as
minG maxD V (D,G) where

V (D,G) = E
q(x)

log(D(x)) + E
p(z)

log(1−D(G(z))). (2)

Conditional GANs. In general, we might want our model to
make use of labels y in supervised data, so the space of data
becomes X × Y , where Y can be {0, 1}dy for a set of dy
classes, for example. In our case, the label is a one-hot vec-
tor indicating one class at a time, so we also have

∑
j yj = 1.

We can define a generative distribution over x in the pre-
vious equation as p(·|z)p(z) = G(p(z)), so by adding la-
bels we can get p(·,y) = p(·|z,y)p(z)p(y) := G(p(z),y),
where the prior p(y) can be a uniform distribution on the
class labels, for example. Then, we can rewrite the GAN
objective above as follows

V (D,G) = E
q(y)

E
q(x|y)

log(D(x,y))

+ E
p(y)

E
p(x|y)

log(1−D(x,y)). (3)

The method we adopt for conditioning the GAN is based
on (Miyato and Koyama, 2018). First, in the unconditional
case, we can write D(x) = (A◦ψ ◦ϕ)(x) a decomposition
of the discriminator, where A is the activation (e.g. A is
the sigmoid function in (3)), ϕ(x) : X → R returns the
hidden features of x, and ψ : R → R, which is often a
linear layer. Thus, ψ(ϕ(x)) can be thought of as the logit of
p(x), where logit = sigmoid−1. In other words, ψ(ϕ(x)) is
a real number that can be mapped to [0, 1] with the sigmoid
function so that it represents a probability. Thus, the choice
A = sigmoid implies D(x) = p(x).

Then, the basic idea of adding a conditional variable y is to
note that p(x,y) = p(y|x)p(x) and model log p(y|x) as a
simple log linear model

log p(y = y|x) := (vp
y)

⊺
ϕ(x)− logZ(ϕ(x)), (4)

where Z(ϕ(x)) :=
∑

y′∈Y exp
(
(vp

y′)
⊺
ϕ(x)

)
is the par-

tition function. The authors of (Miyato and Koyama,
2018) observed that the optimal solution of D has the
form of the ratio of the two log-likelihoods D∗ =
A(log q∗(x,y)/ log p∗(x,y)) (Goodfellow et al., 2020),
and given the assumption that D should follow the optimal
form and the log linear model in (4), they reparameterizedD
by absorbing the terms depending on y|x and x separately
to obtain an expression of the form

D(x,y) = A (y⊺V ϕ(x) + ψ(ϕ(x))) , (5)

where V is the embedding matrix of y.

The choice A = sigmoid activation is used in the vanilla
GAN objective, and A = identity used for the Wasserstein
metric (Gulrajani et al., 2017). We use the latter in our
implementation.

3.3 Self-Supervised Learning

Self-supervised learning (SSL) is a modern paradigm of
learning in which the supervision is implicit, either by learn-
ing a generative model of the data itself or by leveraging
some invariance in the data (Liu et al., 2021). For example,
we know that the label of an image is invariant to small
translations and distortions. Such properties help for learn-
ing a low dimensional representation such that the labels,
which are not used during training, are highly separable in
this representation space, i.e. can be classified with high ac-
curacy using a linear classifier. One well-known method is
to use a contrastive objective (Le-Khac et al., 2020), which
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simply pulls similar data together and pushes different data
away. Knowing which data are similar and which are not is
the part where implicit supervision happens. For example,
data augmentations should result in similar data because the
label should be invariant to augmentations.

We describe the general form of a contrastive loss, which
includes InfoNCE (Oord et al., 2018) and NT-Xent (Chen
et al., 2020). Let ϕ be an encoder that takes data x and re-
turn its representation, and let x and x+ be two similar data.
Then, given a similarity metric “sim”, such as the dot prod-
uct, and τ a temperature (i.e. sensitivity) hyperparameter,
we have

Lcontrast(x;x
+) = − log esim(ϕ(x),ϕ(x+))/τ

Ex− [esim(ϕ(x),ϕ(x−))/τ ]
. (6)

The similarity metric is often a dot product taken after em-
bedding the representations in some metric space via a learn-
able projection. For example, the projection can be parame-
terized as a one hidden layer neural net with a non-linearity.

Recently, many methods have been proposed to tackle the
problem of mining negative samples (for computing the
expectation in the denominator) by momentum-contrasting
with a moving-average encoder (He et al., 2020) or by using
stop gradient operator (Chen and He, 2021). One tech-
nique of particular interest is Barlow Twins (Zbontar et al.,
2021), which optimizes the empirical cross-correlation ma-
trix of two similar representations to be as close to the
identity matrix as possible, which should maximize correla-
tion and minimizes redundancy, thus the name Barlow for
his redundancy-reduction principle (Barlow, 2001). The em-
pirical cross-correlation between two batches of projected
representations A = g(ϕ(x)) and B = g(ϕ(x+)) for some
projection g is defined as

C(A,B)ij =
∑

b Ab,iBb,j√∑
b(Ab,i)2

√∑
b(Bb,i)2

. (7)

Now, the objective of Barlow Twins is

LBT(ϕ(x), ϕ(x
+)) =

∑
i(1− Cii)2 + λBT

∑
i̸=jC2ij , (8)

where we omit the dependence of C on g(ϕ(x)) and
g(ϕ(x+)) for clarity. The hyper-parameter λBT controls
the sensitivity of the off-diagonal “redundancy” terms and
is often much smaller than 1.

4 PARTIAL DISENTANGLEMENT WITH
PARTIALLY-FEDERATED GANS

In this section, we present a framework for Partial
Disentanglement with Partially-Federated (PaDPaF) GANs,
which aims at recovering the client invariant representation
(the content) by disentangling it from the client-specific rep-
resentation (the style). A contrastive regularization term is
used to force the discriminator to learn a representation of

some factor invariant to the variations of other factors, i.e.
a content representation invariant to style latent variations
given the same content latent, and similarly for the style
representation.

4.1 Federated Conditional GANs

Starting from the GAN framework in Sec. 3.2, we aim to
optimize (3) in the federated setting with respect to the pa-
rameters of Di and Gi per client i. We define the generator
to be a style-based generator with the architecture in (Gulra-
jani et al., 2017), and a style vectorizer as in (Karras et al.,
2019) for producing the conditioning variable of the con-
ditional batch normalization layers (De Vries et al., 2017).
The discriminator architecture is based on (He et al., 2016)
with the addition of spectral normalization (Miyato et al.,
2018).

The style vectorizer is set to be private (i.e. unique to each
client), while the base parameters of the generator are fed-
erated (i.e. shared). Also, in addition to the normal—or
henceforth “content”—discriminator, we introduce another
“style” discriminator in parallel, which is assumed to be
client-specific with private parameters. This split is done so
that we reserve the domain-specific parameters to be private
and solely optimized by the clients’ optimizers, whereas the
“content” parameters are federated and optimized collabora-
tively.

Namely, for each client i, we introduceDc
i (x,y) : X×Y →

R, the content discriminator, and Ds
i (x) : X → R

is the style discriminator. As for the generator, we let
Gc

i (z
c, si,y) : Zc × Si × Y → X , and Gs

i : Zs
i → Si

is the style vectorizer, where Zc,Zs
i := Rdz , for example.

For simplicity, we assume that Dc
i and Ds

i have the same
architectures, but this is not necessary. Let ϕci : X → Rdc

for some content representation dimension dc, and for sim-
plicity, assume that the style representation dimension is
the same ds = dc. Finally, let the parameters of Dc

i ,
Ds

i , Gc
i , and Gs

i be θc,Di , θs,Di , θc,Gi , and θs,Gi , respec-
tively. Then, we have θfed

i := [θc,Di ; θc,Gi ] the federated
parameters and θpvt

i := [θs,Di ; θs,Gi ] the private parameters.
We also introduce the shorthand θDi = [θc,Di ; θs,Di ] and
θGi = [θc,Gi ; θs,Gi ]. Now, we rewrite the client objective to
follow the convention in (1)

fi(θ; ξ) = E
x,y∈ξ

[log(Dc
i (x,y) + log(Ds

i (x))] +

E
x̃,ỹ∼pi(·;θ)

[log(1−Dc
i (x̃, ỹ)) + log(1−Ds

i (x̃))] , (9)

where ξ ∼ qi(·). We make the dependence on θ ex-
plicit for the generative model pi since pi(x̃, ỹ; θ) =
Gc

i (z
c, Gs

i (z
s
i ), ỹ) where zc, zsi are standard Gaussian, i.e.

zc, zsi ∼ N (0, I) and ỹ is drawn randomly from qi(y). We
make the dependence on θ implicit elsewhere, making the
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objective less convoluted.

4.2 Partially-Federated Conditional GANs

When the client’s data distributions are not iid—which is
clearly the case in practice—then we can have a confound-
ing variable, which is the client’s domain variable i. In our
case, we assume that each client has its own domain and
unique variations. In practice, especially when we have
hundreds of millions of clients, meta-data can be used to
cluster clients into similar domains. The implementation of
this idea will be left for future work.

Before we proceed, we make a simplifying assumption
about the content of y.

Assumption 1 (Independence of content and style)
Given an image x ∼ q(x), the label y is independent from
i, i.e. y should contain no information about i given x.
Namely,

qi(y|x) = q(y|x). (10)

It is worth mentioning that this assumption might not be
entirely true in practice. Take, for example, the case with
MNIST, where some client writes 1 and 7 very similar to
each other, and another client also writes 1 in the same way
but always writes a 7 with a slash, so it is easily distinguish-
able from a 1. Then, a sample of the digit 7 without a slash
would be hard to distinguish from a 1 for the first client
but easily recognizable as a 1 for the second client. Hence,
given x, there could be some information in the dependence
y|x that would allow us to discriminate the domain i from
which x came from. However, we do not concern ourselves
with such edge cases and make the simplifying assumption
that the global representation of the content of x should be,
in theory, independent from the local variations introduced
by the client.

Given this assumption, we would like to construct our base
generative model such that pi(y|x) := p(y|x, i) is invariant
to i and pi(x) = p(x|i) generates personalized data from
domain i. First, we let p(i) the probability of sampling client
i, which we assume to be uniform on the clients, and p(y)
the prior of the labels, which we also assume to be uniform
on the labels. Note here that the label distribution for a given
i could be disjoint or has a small overlap with different i’s.
This is particularly true in practice, as clients rarely have
access to all possible labels for a specific problem. More
importantly, it implies that x can depend non-trivially on i
as well (e.g. through data augmentations, more details on
the construction in the Appendix). However, we want our
model to be agnostic to the client’s influence on y|x for
a globally-consistent inference while being specific to its
influence on x for a personalized generation.

As for pi(y|x), we enforce the independence of y|x from

i

zc

zs

xy

Figure 2. A causal model with the generative latent variables zc

and zs of x. The dotted arrows show the underlying causal model
without latents. Both latents depend on the client i, and we assume
that the content latent zc generates the label y as well. The blue
arrows drop when we do(zc), and the red arrows drop when we
do(zs). The dashed arrows indicate the reduced influence of i over
zc as we run federated averaging. zs and its mechanism, on the
other hand, are specific to the client in our case.

i via a split of private and federated parameters. This split
should influence the mechanism of the generative latent
variables zc and zsi of x, so that zc’s generative mechanism
becomes increasingly independent of i as we run federated
averaging on it, while zs’s generative mechanism is private
and depends on i. The causal model we assume is shown in
Fig. 2, and the idea of the independence of mechanisms is
inspired by (Gresele et al., 2021).

We can write the full probability distribution as
p(y|zc)p(x|zc, zs)p(zc|i)p(zs|i)p(i). Assuming an opti-
mal global solution for all θci → θc,⋆ exists as well as local
optimal solutions θs,⋆i , and assuming they are attainable
with federated learning on (9), we have that

p(y, zc, zs|x, i) t→∞−→ p(y|zc)p(zc|x; θc,⋆)p(zs|x, i; θs,⋆i ).
(11)

Thus, we can look at the problem of inferring y, zc, zs given
x from client i as a problem of “inverting the data generating
process” p(zc|x; θci ) and p(zs|x, i; θsi ), and then classifying
y from zc. We will next show how we can disentangle
the content latent from the style latent using a contrastive
regularizer on the discriminators, inspired by recent results
in contrastive learning (Zimmermann et al., 2021).

4.3 Contrastive Regularization

The main motivation for partitioning our model into feder-
ated and private components is that the federated compo-
nents should be biased towards a solution invariant to the
client. This is a desirable property to have for predicting
y given x. However, from a generative perspective, we
still want to learn x given y and i, so we are interested in
learning a personalized generative model that can model the
difference in changing the client i while keeping x and y
fixed, and similarly change x while keeping i fixed. This
type of intervention can help us understand how to represent
these variations better.

Assume for now that we do not have y. We want to learn
how i influences the content in x. The variable i might have
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variations that correlate with the content, but the variations
that persist across multiple clients should be the ones that
can potentially identify the content of the data. From an-
other point of view, a datum with the same content might
have a lot of variations within one client. Still, if these vari-
ations are useless for another client, we should not regard
them as content-identifying variations. Thus, our proposed
approach tries to maximize the correlation between the con-
tent representation of two generated images with the same
content latent. This is also applied analogously to style.
To achieve that, we use the Barlow Twins objective (8) as
a regularizer and the generator as a model for simulating
these interventions. Indeed, such interventional data are
almost impossible to come by in nature without simulating
the generative process.

First, let g be a projector from the representation space
to the metric embedding space, and let us denote a short-
hand for the embedding of the #-discriminator represen-
tation of a sample from the generator as Φ#

i (z
c, zs;y) =

gi

(
ϕ#i ((sg[Gc

i (z
c, Gs

i (z
s),y)])

)
, where # ∈ {c, s} and

sg is a stop gradient operator to simulate a sample from the
generative model without passing gradients to it. Omitting
y for clarity, the Barlow Twins regularizer will then be

Γi(θ; z
c, zs) = E

z̃c,z̃s
[LBT (Φ

c
i (z

c, zs),Φc
i (z

c, z̃s))

+ LBT (Φ
s
i (z

c, zs),Φs
i (z̃

c, zs))]. (12)

The intuition here is that the correlation of the content repre-
sentation between two images generated by fixing the con-
tent latent and changing other variables should be exactly
the same, and similarly for the style and other components if
any. This is related to the intervention concept in causal in-
ference (Pearl, 2009), and assuming the generator is optimal,
we can simulate a real-world intervention and self-supervise
the model by a contrastive regularization objective as in (12).
If we let L#

BT(x1,x2) = LBT

(
gi(ϕ

#
i (x1)), gi(ϕ

#
i (x2))

)
the consistency regularizer from the #-discriminator’s per-
spective, then we can rewrite the objective in terms of inter-
ventions on the generator’s latent variables as

Γi(θ; z
c, zs) =E

z̃s
E

x1,x2∼
p(·|z̃s,do(zc))

Lc
BT(x1,x2)

+E
z̃c

E
x1,x2∼

p(·|z̃c,do(zs))

Ls
BT(x1,x2), (13)

Thus, we can write the regularized client objective as

Fi(θ;λ) = E
x,y

[fi(θ;x,y)] + λ E
zc,zs

Γi(θ; z
c, zs). (14)

See Fig. 2 for a clearer understanding of the interventions.

Implementation details. The algorithm for training our
model is a straightforward implementation of GAN training
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Figure 3. Our model can learn the right data generating process
for this dataset (top right). Top right is the density plot of the
learned PaDPaF generator. Federated averaging on a linear model
will yield a linear regression solution at best as shown on the
bottom left, whereas a linear model with a private bias has better
generalization (per client) as the shown on the bottom right. Note
that only a sample of the data points is shown for clarity, where
the top left plot shows the full dataset. (color = client)

in a federated learning setting. We use FedAvg (McMa-
han et al., 2016) algorithm as a backbone for aggregating
and performing the updates on the server. The main nov-
elty stems from combining a GAN architecture that can
be decomposed into federated and private components, as
depicted in Fig. 1, with a contrastive regularizer (12) for the
discriminator in the GAN objective. The training algorithm
and other procedures are described in more detail in the
Appendix.

5 EXPERIMENTS

We run three experiments to show the capabilities of our pro-
posed model. First, we run a simplified version of our model
on a simple linear regression problem with data generated
following the Simpson’s Paradox as shown in Fig. 3. Next,
we run the main experiment on MNIST (LeCun et al., 1998).
Finally, we show our model’s performance on CelebA (Liu
et al., 2015) to show its robustness and generalization. More
experimental details can be found in the supplementary ma-
terial. We generally use Adam (Kingma and Ba, 2014) for
both the client’s and the server’s optimizer.

In our experiments, we show how our generator disentangles
content from style visually. We also show how the generator
can generate locally-unseen labels or attributes, i.e. gener-
ate samples from the client’s distribution given labels or
attributes that the client has never seen. Next, we show
how the representation learned by the content discriminator
contains sufficient information so that a simple classifier on
it yields high accuracy on downstream tasks.

Linear Regression. We generate a federated dataset follow-
ing Simpson’s Paradox by fixing a weight w and changing
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Figure 4. Accuracy and loss of a linear classifier on the content and
style representations of an unconditional GAN on MNIST. The
final accuracy is 98.1%.

the bias b across clients i, which would be y = wx + bi.
Further, for each client, we restrict x to regions such that
the opposite trend is observed when looking at data from all
clients (see Fig. 3).

Training a naive federated linear classifier leads to seemingly
acceptable performance but learns the complete opposite
trend as the negative trend is only due to the way of sampling
x|i and shifted bias. By federating the weight and keeping
the bias private, we allow each client to learn a shared trend
with their own biases. Then, training a simple linear router
that outputs a mixture of each clients output, we can achieve
significantly smaller error, generalize better, and keep the
client’s models private and unchanged.

We can train our proposed model on this dataset by sim-
plifying the architecture and changing the generator as
above (with federated weight and private bias). Namely,
for all clients i, we generate a point x = wzc + bi, where
zc ∼ N (0, 1) ∈ R and x, w, bi ∈ R2. We can also consider
x ∼ wczc+ws

i z
s+bc+bsi , where zs ∼ N (0, 1). We show

the performance of the latter model in Fig. 3.

MNIST. In our MNIST experiments, we generate a feder-
ated dataset by partitioning MNIST equally on all clients
and then adding a different data augmentation for each client.
This way, we can test whether our model can generate global
instances unseen to the client based on its own data augmen-
tation. The data augmentations in the figures are as follows
(in order): 1) zoom in, 2) zoom out, 3) colour inversion, 4)
Gaussian blur, 5) horizontal flip, 6) vertical flip, 7) rotation
of at most 40 degrees, and 8) brightness jitter.

See Fig. 5 for samples from a conditional GAN. One in-
teresting observation about the samples is that, since the
number 7 was seen only in the horizontally flipped client,
it retains this flipped direction across other clients as well.
This is not a bug in our model but a feature. In general,
learning flipping as a style is not incorporated in the design
of our generator, and the same goes for rotations (see Fig. 5,
lower left). However, the content was generally preserved
through most other clients. We show performance on other
more difficult augmentations in the Appendix.
Finally, Fig. 4 shows that the content representation con-
tains sufficient information such that a linear classifier can

Figure 5. Samples from a conditional GAN. Top to bottom, zc is
changed while zs and y are fixed. Left to right, zc is fixed while
zs and y are changed. zc and zs are the same across clients.

achieve of 98.1% accuracy on MNIST. It is also clear that
the style representations do not contain as much informa-
tion about the content. This empirically confirms that our
method can capture the most from zc and disentangle it
from zs.

CelebA. The federated dataset is created by a partition based
on attributes. Given 40 attributes and 10 clients, each client
is given 4 unique attributes, which all of its data have. The
content part should then capture the general facial structures,
and the style should capture the other non-global variations.
Our results again confirm the empirical feasibility of our
model.

6 DISCUSSION

Our framework leaves some room for improvements and
further work to be done in multiple directions. Here, we
discuss some of those directions and highlight interesting
aspects we can exploit.

Client shift. Our architecture adapts to different clients i
under covariate shift qi(x) and prior shift qi(y). Can we
extend it to the case of temporal heterogeneity? For example,
our model might not work well with clients with diurnal
activity.

Model improvement. How can we design a generator that
can effectively incorporate clients’ variations? Is the choice
of private parameters mostly problem-specific? What about
different modalities of data, such as language and sensori-
motor control? Can we use an attention-based mechanism
for controlling the aggregation or sampling mechanisms for
our model?

Generator on server. Our model is as private as FedAvg.
In fact, the federated part of the generator can stay com-
pletely in the server. Can we train the federated discrimina-
tor completely on the server as well to ensure full privacy?
The server would then need discriminative features of the
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data from the client, which might reveal the information
about the client. Still, it would be interesting to explore the
benefits of having the generator be completely on the server.

Conclusion. We introduced a framework combining feder-
ated learning, generative adversarial learning, and (causal)
representation learning together by leveraging the federated
setting for learning a client-invariant representation based
on a causal model of the data-generating process, which we
model as a GAN. We disentangle the content and style la-
tents using a contrastive regularizer on the discriminator. Ex-
periments validate our framework and show that our model
is effective at personalized generation and self-supervised
classification and benefits further from supervised data.
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A ALGORITHM

In this section, we write the training algorithm in detail for
completeness. The training is a straightforward application
of FedAvg on GANs without its private parameters.

Algorithm 1 Contrastive GANs with Partial FedAvg

1: Input: Clients i ∈ [M ], datasets Xi = {(xj ,yj)}|Xi|
j=1 ,

target distribution q(·|i)q(i) over Xi, GAN models
pi(·; θi), GAN objectives fi, server and clients first-
order optimizers OPT0 and OPTi with step sizes η0 and
ηi, client’s loop stopping probability πi ∝ |Xi|−1, and
TD iterations for training D vs. G.

2: Output: θfed
0 and θpvt

i ,∀i.
3: Set θi := θ0, ∀i ∈ [M ]
4: for τ = 1, · · · , τmax do
5: Sample subset of clients I ∼ q(i)
6: for i ∈ I in parallel do
7: for t = 1, · · · , tmax do
8: trainG ← 1[t mod TD + 1 = 0]
9: θi(t + 1) ←

GANOPT (i, θi(t), trainG; fi, qi)
10: if 1 ∼ Bernoulli(πi) then
11: ∆i ← θi(1)− θi(t)
12: ∆pvt

i ← 0
13: break loop
14: end if
15: end for
16: end for
17: θ0(τ + 1)← OPT0

(
1
|I|

∑
i∈I ∆i; θ0(τ), η0

)
18: θfed

i ← θfed
0 for all clients i ∈ [M ]

19: end for
20: procedure GANOPT(i, θi, trainG; fi, qi)
21: if trainG then
22: return OPTi

(
∇θG

i
fi(θi, ·); θi, ηi

)
23: else
24: Sample ξ ∼ q(·|i)
25: return OPTi

(
−∇θD

i
fi(θi, ξ); θi, 2ηi

)
26: end if
27: end procedure
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Here, we let OPT(θ,∇f(θ)) be a first-order optimizer, such
as SGD or Adam, that takes the current parameters θ, and the
gradient ∇f(θ) and returns the updated parameters given
step size η. We also define a subroutine GANOPT that runs
a single descent or ascent step on the GAN’s objective. The
term trainG is a boolean variable that specifies whether the
generator or the discriminator should be trained. In the GAN
literature, the discriminator is often trained 3 to 5 times as
much as the generator. In our experiments, we let TD = 3,
so D is trained 3 times before G is trained, but we also
update θD with double the learning rate, following the Two
Time-scale Update Rule. As for the client’s loop, we can
simply train it on the dataset for one epoch before breaking
the loop so that tmax = |Xi| and πi = 0, but we add a
loopless option as well by letting tmax =∞ and πi ∝ |Xi|
for the same training behaviour on average.

Note that we could have removed line 12 of the algorithm
and let line 11 be ∆fed

i ← θfed
i (1) − θfed

i (t), but we chose
the current procedure to emphasize that the server’s update
on the private parameters is always set to 0.

B MODEL ARCHITECTURE

Our model’s architecture is composed of regular modules
that are widely used in the GAN literature. The generator
is a style-based generator with a ResNet-based architec-
ture (Gulrajani et al., 2017), where we use a conditional
batch normalization layer (De Vries et al., 2017) to add the
style, which is generated via a style vectorizer (Karras et al.,
2019). The discriminator’s architecture is ResNet-based as
well (He et al., 2016) with the addition of spectral normal-
ization (Miyato et al., 2018). In the case of conditioning
on labels, we follow the construction of the projection dis-
criminator as in (Miyato and Koyama, 2018), so we add
an embedding layer to the discriminator, and we adjust the
conditional batch normalization layers in the generator by
separating the batch into two groups channel-wise, and con-
dition each group separately. Finally, we add a projector to
the discriminator for contrastive regularization, which is a
single hidden layer ReLU network. Recall that we use two
discriminators, one is private, and the other is federated.

As for the model architecture for the linear regression
dataset, we simplify the discriminator to a 2-layer neural net
with 8 hidden dimensions. The generator is a linear layer
and the style vectorizer is also a linear layer with a latent
vector of dimension 1. The projectors are linear layers as
well.

The variables that control the size of our networks are the
image size, the discriminator’s feature dimension, and the
latent variables’ dimension. We make the dimension of the
content and style latent variables equal for simplicity. For
MNIST, we choose the feature dimension to be 64 and the

latent dimension to be 128. For CelebA, we choose the
feature dimension to be 128 and the latent dimension to be
256. Kindly refer to the code for more specific details.

C EXPERIMENTS

In this section, we describe the experiments we run in more
detail and show results extra results supporting our frame-
work.

For all our experiments, the client models are handled by
“workers”. The workers only train their models on a spe-
cific subset of clients that does not change. We often assign
a worker for each client, but due to constraints on com-
putational resources, we might create a smaller number
of workers and assign a specific subset of clients for each
worker. We run all experiments on a single NVIDIA A100
SXM GPU 40GB.

Our choice for all the optimizers, including the server’s
optimizer, is Adam (Kingma and Ba, 2014) with β1 = 0.5
and β2 = 0.9. We choose Adam due to its robustness and
speed for training GANs. We found that choosing learning
rates 0.01 and 0.001 for the server optimizer and the client
optimizer, respectively, is a good starting point. We also
use an exponential-decay learning rate schedule for both the
server and the clients, with a decay rate of 0.99 for MNIST
(0.98 for CelebA) per communication round. This can help
stabilize the GAN’s output.

C.1 Linear Regression on Simpson’s Paradox

We generate a dataset that demonstrates Simpson’s Paradox
forM clients as follows. We fix a weight, say, w := 1. Then
for each client i ∈ {1, · · · ,M}, we sample x uniformly
from [M − i,M − i+ 1] and a bias bi from [L(i− 1), Li]
for some constant L. Finally, for each client i, we generate
ni points y ∼ wx + bi and then normalize x∗ and y by
subtracting the mean and dividing by the standard deviation.
In our experiments, we choose M := 8, L := 4, and ni :=
50 for all i. For training a PaDPaF model on this dataset, we
noticed that it is much better for Dc to have slightly larger
feature dimension, like 16, whereas Ds

i can be smaller, like
2.

If we train a naive linear regression model on this dataset
for 50 epochs with a batch size 10, we would get a mean-
squared error about 0.182, whereas similarly training a lin-
ear regression model for each client, and then freezing the
models and train again a linear routing model would yield an
error about 0.004, which is two orders of magnitude smaller.
See Fig. 6 for an illustration. Code for reproducing plots
and similar errors for this experiment are provided in the
linked repository in the main text.
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Figure 6. A single linear regression model on simpson’s Paradox dataset vs. federated linear regression models with private biases. Note
that only a sample is shown in the regression models. The full dataset is shown to the left.

(a) zc and zs are different across all cells per client. In other words,
zc and zs are the same across clients, but different within client.

(b) Top to bottom, zs is changed while zc and y are fixed. Left to
right, zs is fixed while zc and y are changed.

Figure 7. Samples from a GAN without conditioning. zc and zs are consistent across clients.

(a) Top to bottom, zc is changed while zs and y are fixed. Left to
right, zc is fixed while zs and y are changed.

(b) Top to bottom, zs is changed while zc and y are fixed. Left to
right, zs is fixed while zc and y are changed.

Figure 8. Samples from a conditional GAN. zc and zs are consistent across clients.
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C.2 MNIST

The MNIST train dataset is partitioned into 8 subsets as-
signed to 8 clients, and each client is handled by a unique
worker. The data augmentations used for each partition are
clear from the images. We write the PyTorch code for each
data augmentation:

1. Zoom in: CenterCrop(22).

2. Zoom out: Pad(14).

3. Color inversion: RandomInvert(p=1.0).

4. Blur: GaussianBlur(5, sigma=(0.1,
2.0)).

5. Horizontal flip: RandomHorizontalFlip(p=1.0).

6. Vertical flip: RandomVerticalFlip(p=1.0).

7. Rotation: RandomRotation(40).

8. Brightness: ColorJitter(brightness=0.8).

In the case of conditioning on y, we further restrict the
datasets and drop 50% of the labels from each partitioned
dataset. This implies that some data will be lost, and each
client will see only 50% of the labels. This is intentional
as we want to restrict the dataset’s size further and test our
model’s robustness on unseen labels.

The results for training our model on this federated dataset
are shown in Fig. 7 for the unconditional case (i.e. y is
unavailable), and Fig. 8 for the conditional case with 50%
labels seen per client. The results were generated after
training the model for 300 communication rounds. For
MNIST, we train the models for a half epoch in each round
to further restrict the local convergence for each client.

C.2.1 Adaptation to New Clients (i.e. Data Augmentation)

After training our conditional model on the previous data
augmentations, we re-train it for 25 communication rounds
on the following data augmentations and show the results:

1. Affine: RandomAffine(degrees=(30, 70),
translate=(0.1, 0.3), scale=(0.5,
0.75)).

2. Solarize: RandomSolarize(threshold=192.0).

3. Erase: transforms.RandomErasing(p=1.0,
scale=(0.02, 0.1)) (after ToTensor()).

This is to show that our conditional model can quickly adapt
to new styles without severely affecting its content genera-
tion capabilities and its generalization to unseen labels.

C.2.2 Can We Predict the Client from the Image?

We ask a question analogous to the one we are concerned
with in representation learning. Instead of predicting the
label from the image, we want to predict the augmentation,
or the client, that generated the image. We show that we can
predict the client with good accuracy (93.3%). See Fig. 11.

The style prediction is done by linear transformations on the
content representation and the style representations. For the
style representations, we linearly map each representation
from each client to a scalar ui, so that u is a vector of all
the scalars. We then pass u through an extra linear transfor-
mation to get a vector of logits for p(i|x). Note that this is
still a linear transformation of the style representations, but
we do it this way to reduce dimensionality.

Note that the content representation can still predict the style
with good accuracy. Indeed, we have seen that our generator
architecture finds difficulties in assigning rotations to style
variations, which is due to the style generator construction
as a conditional batch normalization layer, which shows lim-
ited capabilities in capturing rotation-like variations. Still,
the prediction accuracy from the style representations is
better overall, which shows that our model does disentangle,
to some extent, the style from the content.

C.2.3 Re-Styling via Content Transfer

We describe a simple method for transferring the content of
an image to another style, given the style vectorizers Gs

i . In
other words, we can transfer the content of an image taken
from one client to another without sharing the image but
by finding the approximate latent variables that generate
the image and transferring the content latent variable. We
shall see that this approach can indeed transfer the content
well enough, where the content is up to the generator’s
expressiveness and its separation of style. For example, we
show that our generator finds difficulties in distinguishing
some rotations as non-content variations. This is because
all other clients have slightly rotated digits as well.

To find the approximate latent variables from the image
without any significant overhead, we use the discriminator’s
representations to predict the latent variables. We show that
this approach can predict latents that reconstruct the image
very well, and thus we can use the same content latent on
the new client.

First, we show the algorithm for reconstructing and re-
styling an image from some client. The main idea is to
use LBT from (8) to maintain an identity correlation be-
tween the source content representation and the target (i.e.
reconstructed) content representation. We noticed that we
do not need to do the same for the style representation. In
fact, not enforcing an identity correlation between styles
can even improve the results in terms of style consistency.
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Figure 9. Results after re-training for 1 communication round on the three new data augmentations. Rows 1-2 are real samples and rows
3-8 are generated. Rows 3-6 share the same zc, and rows 7-10 as well. Rows 3-4 and 7-8 share the same zs, similarly for rows 5-6 and
9-10.

(a) Changing zs per row while fixing zc. (b) Changing zc per row while fixing zs. (c) Changing both zc and zs.

Figure 10. Results after 25 communication rounds. We can see that solarization is learned as a style, while erosion is learned as a content.
The generalization to unseen digits is maintained but less so in the challenging affine augmentation.
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Figure 11. Prediction of style. We see that the content features have good accuracy (82.6%), but the style features can classify the source
client with much better accuracy (93.3%).
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Algorithm 2 Re-style via content transfer

1: Input: Trained models, tmax number of epochs, xa (and
ya, if any) a sample from source client a, and a target
client b.

2: Output: Representation-to-latent transforms Zc and Zs
i

for each Dc
0 and Ds

i , resp., ∀i ∈ [M ], and re-styled xb.
3: for t = 1, · · · , tmax do
4: Sample client i ∼ q(i), and sample label y ∼ qi(y),

if any.
5: Sample latents zc ∼ qi(zc) and zs ∼ qi(zs).
6: Sample image x ∼ pi(x|zc, zs,y) (i.e. set x =
Gc

0(z
c, Gs

i (z
s),y)).

7: Transform latents z̃c = Zc(ϕc0(x)) and z̃si =
Zs
i (ϕ

s
i (x)).

8: Sample reconstructed image x̃ ∼ pi(x|z̃c, z̃s,y).
9: Minimize LBT(ϕ

c
0(x), ϕ

c
0(x̃); g

c
0) w.r.t. Zc and Zs

i

(see (8)).
10: end for
11: Transfer a → b: Sample xb ∼

pb(x|Zc
0(ϕ

c
0(xa)), z

s
b,ya), where zsb ∼ pb(zs).

We do not find a good explanation for this. We believe that
applying Barlow Twins loss in our setting warrants further
empirical and theoretical investigation.

The effectiveness of this procedure can be seen in Figs. 12
and 13, where we transfer the content of some image to
a specific client. In Fig. 12, we choose client 8 as the
source and client 3 as the target to demonstrate that the
reconstruction preserves both the content and style and that
the transfer preserves the content. In Fig. 13, notice that,
since the MNIST’s test set is unseen during training, the
unconditional GAN might map some seemingly-easy digits
to other similar-looking ones. Simply training on the test set
should allow the unconditional GAN to mitigate this effect.
Note that this effect is not seen in the conditional GAN,
given that the clients see only 50% of the labels during
training. It is worth mentioning that, as long as the content
representation encoder ϕc0 is good enough for images from
some unseen domains, like the test set of MNIST, then we
can still transfer its content to a known client i with a trained
style vectorizer Gs

i .

C.3 CelebA

We test our model on CelebA, which is a more challenging
dataset. The dataset contains pictures of celebrities, where
each image is assigned a subset of attributes among 40
possible attributes. Thus, we create 40 clients, give a unique
attribute to each, and then show them the subset with this
attribute. Note that this is not a partition, as some data will
be repeated many times, but we want to see if the client will
learn a biased style towards the assigned attributes.

To make the simulation feasible, we create 10 workers with
their models, each handling a unique subset of 4 clients, and
let each worker sample their clients in a round-robin fashion.
Thus, each worker will always see at least one of 4 attributes.
We train our model for approximately 200 communication
rounds, with 2 epochs per round and train the discriminators
5 times as frequently as the generator (i.e. TD = 5).

Given some content latent, we can see that the client-specific
attributes become more obvious in some clients than others.
For example, lipsticks, moustaches, blonde hair, and other
attributes are clearer in some clients than in others. See
Figs. 15 to 17 for samples from each worker.

For completeness and a better understanding of the genera-
tion quality, we list the attributes assigned to each worker:

1. Worker 1: [’Mustache’,
’Mouth_Slightly_Open’, ’Sideburns’,
’Big_Lips’].

2. Worker 2: [’Attractive’, ’Narrow_Eyes’,
’Gray_Hair’, ’Bald’].

3. Worker 3: [’Arched_Eyebrows’, ’Bangs’,
’Chubby’, ’Eyeglasses’].

4. Worker 4: [’Male’,
’Rosy_Cheeks’, ’Wearing_Necktie’,
’High_Cheekbones’].

5. Worker 5: [’Straight_Hair’,
’Wearing_Earrings’, ’Black_Hair’,
’No_Beard’].

6. Worker 6: [’5_o_Clock_Shadow’, ’Young’,
’Wearing_Necklace’, ’Wavy_Hair’].

7. Worker 7: [’Receding_Hairline’,
’Bushy_Eyebrows’, ’Goatee’,
’Heavy_Makeup’].

8. Worker 8: [’Pointy_Nose’, ’Blond_Hair’,
’Double_Chin’, ’Oval_Face’].

9. Worker 9: [’Big_Nose’, ’Smiling’,
’Blurry’, ’Brown_Hair’].

10. Worker 10: [’Wearing_Lipstick’,
’Pale_Skin’, ’Bags_Under_Eyes’,
’Wearing_Hat’].

Celebrity identification from representation. We also test
the content and style features on a celebrity-identification
task. The construction of the dataset is done so that we
only test whether the style introduces a bias towards some
attributes given some content, so we do not expect to see
disentanglement between content and style. If we see one
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(a) Source (generated) images. (b) Reconstructed images. (c) Re-styled with transferred content.

Figure 12. The images show results from the regular, unconditional GANs, whereas the bottom show results for conditional GANs with
50% labels seen per client. Observe how the content stays preserved after transfer. Here, we show an example of transferring the content
from client 8 (brightness) to client 3 (color inversion).

(a) Unconditional. (b) Conditional, 50% labels per client.

Figure 13. Transferring an image from MNIST’s test set to all clients. Test image on top transferred image to each client at the bottom.
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Figure 14. Accuracy and loss after training a linear classifier to predict the celebrity’s identity. Note that there are 10,177 identities in
total, which makes this task hard, so we also show top-10 and top-50 accuracies.

and only one attribute per client, then we might expect an
attribute to be a style in the sense that it constitutes a domain,
as in our MNIST example. In Fig. 14, we show the accuracy
of a linear classifier on the content and style representations.
Both achieve decent top-1 accuracies (84% and 79%, resp.),
good 90% in top-10 accuracies (95% and 93%, resp.). Note
that using top-10 and top-50 is approximately within the
same proportion as using top-1 and top-5 for ImageNet,
which has 1000 classes.
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(a) Changing zs per row while fixing zc. (b) Changing zc per row while fixing zs. (c) Changing both zc and zs.

Figure 15. Workers 1 at the top, 2 in the middle, and 3 at the bottom.
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(a) Changing zs per row while fixing zc. (b) Changing zc per row while fixing zs. (c) Changing both zc and zs.

Figure 16. Workers 4 at the top, 5 in the middle, and 6 at the bottom.
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(a) Changing zs per row while fixing zc. (b) Changing zc per row while fixing zs. (c) Changing both zc and zs.

Figure 17. Workers 7 at the top, 8 in the upper-middle, 9 in the lower-middle, and 10 at the bottom.


