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Extended Abstract

Contagion processes occur in diverse contexts, from rumour and knowledge diffusion to epi-

demics. They do not occur in isolation: competing contagions can contend such that a host

supports only one strain at a time. While most models assume pairwise transmission, real sys-

tems often involve higher-order group interactions—naturally represented by simplicial com-

plexes [1]-which can generate qualitatively distinct dynamics [2]. Network epidemiologi-

cal frameworks representing competition and higher-order interactions have focused on SIS

(susceptible-infected-susceptible) or SIR (susceptible-infected-recovered) processes, which can-
not describe all stages of many diseases, including Zika, Malaria, and Dengue [3].

To address these limitations, we propose a stochastic compartmental model for susceptible-
infected-recovered-susceptible (SIRS) processes competing via higher-order interactions on
simplicial complexes of size N. Each node occupies one of five states: (1) susceptible; (2/3)
infected with epidemic A/B; or (4/5) recovered from and resistant to epidemic A/B. For an-
alytic tractability, we derive both a deterministic 3N-dimensional Microscopic Markov Chain
(MMC) [4] and a three-dimensional mean field (MF) [2] approximation of the stochastic model.
We analyse the system’s fixed points and, via the next-generation method and eigenvalue anal-
ysis, determine stability conditions.

Combining SIRS dynamics with competition and higher order interactions leads to rich
phenomena: bistability in which the final steady state depends on initial condition (see Fig. 1);
limit cycles whose existence can be highly sensitive to parameter choices (see Fig. 2); and
discontinuous phase transitions with critical mass effects in which steady state infection is
zero (substantially larger than zero) below (above) a critical infection rate (see Fig. 3). We
also compare the approximations in terms of their ability to reproduce the eight classes of
dependence of final state on initial condition observed in stochastic simulations. These include:
extinction of both epidemics; dominance of one over the other; simultaneous outbreak of both
epidemics from any nonzero seeding; bistability; and an interesting case exhibiting three steady
states, two stable and one unstable (see inset of Fig. 1). This comparison reveals that MMC
captures all eight of these classes, while MF achieves only seven (see Fig. 4). Our work extends
contagion modelling by integrating higher-order interactions, competition, and the full SIRS
cycle, and illustrates how microscopic approaches like MMC can capture the richness of the
resultant dynamics.
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Figure 1: Bistability under MMC. Variation
with 1-simplex infection rate Bg of steady state
levels of disease. The inset shows the time evo-
lution of epidemic A for different initial con-
ditions when B = 0.1. The range [B5,B5"]
is the interval of bistability, in which multiple
stable states exist. Different colours represent
different initial conditions.

. In: Phys. Rev. Res. 2.1 (2020), p. 012049.
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Figure 2: Steady oscillations in epidemic A
and B under MMC. I () (Ip(t)) versus R4 (t)
(Rp(t)) as spreading time ¢ varies. Differ-
ent colours represent different times. The
1-simplex infection rate 4 takes values (a)
0.0; (b) 0.00599; (c) 0.006; (d) 0.00601; (e)
0.0065; (f) 0.01.
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Figure 3: Discontinu-
ous phase transitions
and critical mass
effects under MMC.
Variation with 1-
simplex infection rate
Ba of steady state
level of infection
Iy.  Each coloured
line corresponds to a
different  2-simplex
infection rate f3;. The
gray dash-dotted line
presents the critical
value f35.
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Figure 4: The MMC approach captures more distinct classes of depen-
dence of steady state on initial condition. Phase diagram mapping each
choice of 1-simplex infection rates B4 and Bp to one of eight dynam-
ical classes (I-VIII) observed in the stochastic model. (a) Eight cases
observed under MMC. The inset shows the seven classes observed for
the smallest values of B4 and Bg. (b) Seven classes observed under
ME, with Class V, corresponding to coexistence of epidemics A and B,



