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ABSTRACT

Certified guarantees of adversarial robustness play an important role in providing
assurances regarding a models output, irrespective of the behaviour of an attacker.
However, while the development of such guarantees has drawn upon an improved
understanding of attacker behaviour, so too can certified guarantees be exploited in
order to generate more efficient adversarial attacks. Within this work, we explore
this heretofore undiscovered additional attack surface, while also considering how
previously discovered attacks could be applied to models defended by randomised
smoothing. In all bar one experiment our approach generates smaller adversarial
perturbations for more than 70% of tested samples, reducing the average magnitude
of the adversarial perturbation by 13%.

1 INTRODUCTION

The observation that neural networks’ exhibit particular sensitivity to adversarial behaviours has
motivated numerous recent works. That such networks are frequently deployed within contexts for
which incentives for adversarial behaviour exist makes guarding against such interventions to be of
paramount importance.

Our understanding of this problem space has been heavily driven by the development of new
perspectives on potential attack vectors, stemming the original works in adversarial examples through
to data poisoning, backdoor attacks, model stealing, transfer attacks and more. While uncovering such
attack vectors has the potential to compromise deployed models, there is prima facie evidence that
any security provided by a lack of knowledge is illusory. As such, it is clear that understanding new
attack vectors has the potential to produce stronger defences, due to the implicit coupling between
attacks and their defences.

In contrast to this implicit coupling, recent works have focused upon the construction of certified
guarantees of adversarial robustness, which verify that a models output will be unchanged over all
adversarial behaviours (subject to a set of loose constraints). The calculations of such guarantees
are performed in parallel to inference, and are achieved by way of modifications to the mechanisms
of the model. One common backbone for such techniques is randomised smoothing, which can be
performed without requiring any modifications to the core training loop beyond a pre-processing and
post-processing step.

However, while models incorporating certified guarantees should be more adversarially robust than
their counterparts, within this work we consider how such models can still be attacked in a fashion
that yields small adversarial perturbations. Such a consideration is important, as we also identify a
heretofore undiscovered new attack vector, which exploits the very nature of the certified guarantee
to identify smaller adversarial perturbations than any other tested approach. To explore the nature of
this novel attack surface, this work makes the following contributions:

• Demonstrating how general attacks can be constructed against models defended by ran-
domised smoothing. This is achievable by exploiting the Gumbel-Softmax within either
white-box or surrogate modelling attacks to render the models differentiable. In doing so,
we are able to exploit the fact that randomised smoothing inherently smooths the underlying
gradients, making them easier to attack.

• Introducing a new attack that exploits certification guarantees in both the original and
malicious classes by dynamically optimising the step-size. Correct class predictions exploit
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the certification to eliminate parts of the search space, incorrect class predictions are used to
focus the search process. In doing so we are able to identify smaller adversarial perturbations
than the best tested alternative in over 70% of all tested samples, resulting in a more than
13% reduction in the median perturbation.

• Assessing the performance of certified guarantees of adversarial robustness, through com-
parison to the magnitude of best-identified adversarial perturbations in L2 norm space.

2 RELATED WORK

It is well known that carefully crafted perturbations can change the output of learned models without
requiring change in the semantic properties of the input sample (Biggio et al., 2013). Such perturbed
samples are known as adversarial examples. Most common learned models, including neural
networks (Szegedy et al., 2013) consistently misclassify adversarial examples and furthermore output
highly confident but incorrect predictions. One significant driver of this behaviour appears to be the
piecewise-linear interactions within neural networks (Goodfellow et al., 2014).

While many attacks exist, we focus on key representative approaches. Each of these are white-box,
untargeted attacks that use gradient-based optimisation to construct adversarial perturbations. Of
these, the Iterative Fast Gradient Method (Dong et al., 2018) variant of Projected Gradient Descent
(PGD) (Carlini & Wagner, 2017) allows adversarial examples to be iteratively constructed by way of

xk+1 = P

ˆ

xk − ϵ

ˆ ∇xJ(θ,x, y)

∥∇xJ(θ,x, y)∥2

˙˙

. (1)

This process exploits gradients of the loss J(θ,x, y) to construct steps, subject to a step-size weighting
parameter ϵ, and a projection operator P that ensures that xk+1 is restricted to the feasible input
space, is typically [0, 1]d for a d-dimensional input space. Many PGD extensions exist, including
momentum-based variants (Dong et al., 2018) and AutoAttack (Croce & Hein, 2020).

The latter of these alternate approaches has been shown to be highly effective in identifying adversarial
examples, and as such we also tested performance against AutoAttack within this work. In contrast
to PGD, which sets a fixed step-size ϵ, AutoAttack algorithmically specifies the step-size at each
stage of its iterative process. Instead AutoAttack attempts to converge upon adversarial examples
with a pre-specified L2 norm perturbation magnitude, which obtusely is also labelled as ϵ. This is
inherently problematic within problem domains for which minimising the perturbation magnitude
is important, the requirement to pre-specify the perturbation magnitude is an inherently limiting
factor. Our preliminary investigations have suggested that the only way to minimise the perturbation
magnitude is to perform a greedy search over a range of possible pre-specified magnitudes.

Carlini & Wagner (C-W) constructs adversarial perturbations by way of the minimisation problem

min
x′

∥x′ − x∥22 +max {max{fθ(x′)j : j ̸= i} − fθ(x
′)i,−κ} (2)

in terms of the trained model fθ(x) (with weights θ). The latter term of Equation 2 compares the
logit value of the target class i with that of the next most likely class, subject to the parameter κ. This
criteria is then solved in the fashion of Equation 1, using gradients from Equation 2.

Another popular attack is DeepFool, which is an untargetted L2-norm attack (Moosavi-Dezfooli
et al., 2016) that interchanges between attacking a linearised variant of the model and updating the
linearisation based upon gradient steps. This linearisation allows for automatic step-size control
across the iterative process.

3 ATTACKS AGAINST CERTIFIED DEFENCES

Randomised smoothing is a common approach for constructing certified guarantees by constructing
expected class outputs through Monte Carlo sampling across samples perturbed by randomised noise.
While this is a test-time process, the sensitivity of the model to perturbations may be decreased by
performing adversarial training against single draws from the noise distribution. The magnitude of the
guarantee of predictive invariance for perturbations up to some magnitude r in a specified Lp-norm
space was first shown by way of differential privacy (Lecuyer et al., 2019; Dwork et al., 2006). More
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recent works has utilised Rényi divergence (Li et al., 2019) and worst-case behaviours parametrisation
(Cohen et al., 2019; Salman et al., 2019) to provide guarantees. We place particular focus upon the
latter of these approaches, which introduced the lower bound guarantee of class invariance

r =
σ

2

`

Φ−1 pE0q − Φ−1 pE1q
˘

, (3)

subject to the normal CDF Φ, in terms of the two largest class expectations E0 and E1, which are
calculated in terms of a one-hot encoding of the model’s output in response to noise

X̃ ∼ N (x, σ2I) Z̃ = fθ(X̃) Ỹj =

{
1, Z̃j > maxk∈K\j Z̃k

0, otherwise.
ED[Ỹ] =

1

n

n∑
i=1

ỹi .

(4)
We are interested in estimating E[Ỹ] as our ideal smoothed predictions. By taking a sample D of n
i.i.d. draws x̃i, z̃i, ỹi, ỹ

′
i of these random variables, we may form unbiased estimates of these ideal

expectations by expectations with respect to the empirical distribution on D.

In the absence of randomised smoothing, the objective of an attack is simple: to change the predicted
class of the model. However, under randomised smoothing that the output is expectations (with an
associated confidence interval) introduces an important question regarding the nature of an attack
within this context. If an idealised output has a no overlap between the confidence interval of the
class with the highest expectation and those from all other classes, is it enough for an attack to simply
introduce an overlap between the confidence intervals associated with the largest two classes? While
such a definition has utility, the overlap between predicted classes would be a simple trigger for
external validation, decreasing the likelihood of success. This in turn suggests that an adversarial
perturbation should instead be defined as one for which the associated class has an associated
confidence interval that is strictly larger than that of the label class. Such a definition naturally aligns
with that of certified defences of adversarial robustness.

3.1 THREAT MODEL

To formally define such an attack, consider a model fθ(x;σ,N) which acts upon inputs x ∈ [0, 1]d

and learned parameters θ, which produces a prediction of class i if the estimated expectation—based
upon adding N draws of N (0, σ2) Gaussian distributed noise to the input sample—satisfies

qEi[fθ(x)] > xEk[fθ(x)] ∀k ∈ K \ i , (5)

where |Ei and xEk respectively represent the lower and upper confidence bounds on class expectations
of classes i and k to some confidence level α (as calculated by way of the Goodman et al. (Good-
man, 1965) confidence interval), and K is the set of possible output classes. An attack on such a
classification is then a sample x′ ∈ [0, 1]d for which

|Ej [fθ(x
′)] > xEk[fθ(x

′)]

where i = argmax
m∈K

Em rfθ pxqs ,∃j ∈ K \ i, ∀k ∈ K \ j . (6)

The very nature of randomised smoothing makes such a definition particularly amenable to gradient-
based attacks. Randomised smoothing can be thought of as a Gaussian blur of the decision space,
which both removes many isolated adversarial examples, and decreases the local variance of gradients
in this space. This latter property further enhances the performance of iterative gradient based attacks.

The process that we will now describe requires white-box access to model and its parameter space,
including the level of added noise σ. While such a white-box attack framework is limiting, previous
work has demonstrated that it may be possible to successfully attack black-box models by way of
surrogate models (Papernot et al., 2017), effectively converting black-box models into white-box’s
suitable for attack. Moreover, as will be discussed in Appendix E.1, the attacker does not require
exact knowledge of σ, with even approximate values still yielding an attack which exhibits improved
performance relative to comprable attacks.

3.2 ATTACKING THROUGH UNDIFFERENTIABLE LAYERS

That the calculation and sorting of expectations involves undifferentiable argmax layers inherently
limits the applicability of gradient-based attacks to such a problem space. However, stochastic

3



Under review as a conference paper at ICLR 2023

gradient estimation techniques have been shown to accurately generate approximate derivatives,
even across undifferentiable layers (Fu, 2006; Chen et al., 2019). Within this work we implement
gradient-based attacks by replacing the argmax layer with the Gumbel Softmax (Jang et al., 2016)

yi =
exp p(log(πi) + gi)/τq∑
j∈K exp p(log(πi) + gi)/τq

for all i ∈ K (7)

in terms of temperature τ and i.i.d samples gi ∼ Gumbel(0, 1), which approximates the argmax
operation in the τ → 0 limit. As will be discussed in Section 4 these modifications allow for the
application of gradient-based attacks like PGD, Carlini-Wagner, DeepFool, and AutoAttack to models
defended by randomised smoothing.

3.3 ENHANCED CERTIFICATION-AWARE ATTACKS

While making such modifications allows for attacks to be applied to models defended by randomised
smoothing, it is also possible to construct new attack frameworks that incentivise the construction of
small adversarial perturbations against models defended by randomised smoothing. Focusing upon
small adversarial examples is crucial as such examples are likely to decrease the likelihood of the
attack being detected (Gilmer et al., 2018). To achieve this, we introduce the attack

min
x′∈[0,1]d

ˇ

ˇ

ˇ

ˇ

max
j∈K\i

qEj [fθ(x
′)]− pEi[fθ(x

′)]

ˇ

ˇ

ˇ

ˇ

+ λ∥x′ − x∥ . (8)

for some class j ∈ K, if argmaxE[fθ(x)] = i, subject to the Lagrange multiplier λ. This formalism
may appear counter-intuitive, as we are seeking to identify the smallest example x′ such that ∥x′−x∥,
which traditionally would lead to the Lagrange multiplier being applied to the first term of Equation 8.
Constructing the objective of the minimisation process in such a fashion prioritises finding parts of
the parameter space likely to contain an adversarial example, before converging upon solutions that
prioritise minimising the distance between x′ and x.

This formalism admits solutions constructed following the iterative process

x′
k+1 = P

ˆ

x′
k − s

d

∥d∥2

˙

where (9)

d = ∇x′

ˆ
ˇ

ˇ

ˇ

ˇ

max
j∈K\i

qEj [fθ(x
′)]− pEi[fθ(x

′)]

ˇ

ˇ

ˇ

ˇ

+ λ∥x′ − x∥
˙

for a given step-size s. Similar to PGD, the projection operator P is defined such that x′
k+1 ∈ [0, 1]d.

Step-size control by certified robustness Attacking models defended by randomised smoothing
presents additional opportunities to improve attack performance. We can exploit the fact that
robustness certificates allow us to generate a guarantee of class invariance for perturbations with L2

norm bounded magnitude less than r. This then allows the step-size s from x0 → x′
1 to be set such

that s > r, as we are guaranteed that no adversarial example can exist within this radius. Introducing
this change allows for a significant reduction of the potential search space for adversarial examples.
This process also applies to any x′

k, producing certifications with an L2 norm magnitude of

rk =
σ

2

´

Φ−1
´

qE0 px′
kq

¯

− Φ−1
´

pE1 px′
kq

¯¯

, (10)

by way of the two largest class expectations E0 and E1. If E0 corresponds to the original predicted
class, then setting sk > rk guarantees that steps take x′

k+1 outside the region of the adversarial
guarantee. However, if an adversarial perturbation has been constructed such that E0 corresponds to
a different class, then setting sk < rk guarantees that x′

k+1 will also remain an adversarial example.

While this efficiently traverses the potential search space, it is possible that large steps may move
the iterative process towards an early local optimum, bypassing a pathway towards convergence to a
preferred optimum. As such, our implementation incorporates a maximum step-size c, such that

sk = min{m× rk, c} , (11)
where m > 1 if the predicted class at x′

k matches the predicted class i, and m ≤ 1 if the classes do
not match, as is seen on lines 14 and 18 of Algorithm 1. While bounding the step-size in terms of the
certified radius enhances the ability to converge upon adversarial examples, enforcing the maximum
step-size disincentivises large steps that may lead towards the convergence of a local optima.
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Algorithm 1 Certification Aware Attack Algorithm.

1: Input: data x, level of additive noise σ, samples N , iterations M , true-label i, cutoff c, multi-
plicative Lagrange multiplier scaling factor λ, penalty parameters Γ ≫ 1 and δ ≥ 0

2: x′,x′
s,m = x,0,∞

3: for 1 to M do
4: qE0, pE1, R = Model(x′;σ,N) {Detailed in Algorithm 2}
5: if argmax y ̸= i then
6: if qE0 > pE1 then
7: d = ∇x′

´

( qE0 − pE1) + λ ∥x′ − x∥
¯

8: if ∥x′ − x∥< m then
9: m,x′

s = ∥x′ − x∥,x′

10: end if
11: else
12: d = ∇x′

´

Γ( qE0 − pE1 − δ) + λ ∥x′ − x∥
¯

{Γ is promotes distinct predictions}
13: end if
14: s = min{0.99R, c} {As R is about x′, this step is guaranteed to retain the class prediction}
15: λ = Lλ
16: else if argmax y = i then
17: d = ∇x′( qE0 − pE1 + δ)
18: s = min(1.05R, c) {s > R is necessary to inducing a change in the predicted class}
19: end if
20: x′ = P (x′ − s d

∥d∥2
) {Project upon [0, 1]d}

21: end for
22: return m,x′

s

Algorithmic innovations This section has demonstrated both how models defended by randomised
smoothing can be attacked and how exploiting Equation 3 as an additional attack surface by signifi-
cantly reducing the adversarial example search space, in order to attempt to identify the smallest
perturbation that is still an adversarial example.

Algorithm 1 contains several additional features designed to enhance the convergence upon the
smallest identifiable adversarial example, which we highlight now. One of these is the parameter
δ > 0 on lines 12 and 17, which promotes identifying distinct adversarial examples, ones for which
argmaxj∈K Ej [fθ(x

′
k)] ̸= i and maxj∈K\i qEj [fθ(x

′
k)] >

pEi[fθ(x
′
k)], promoting a small degree of

additional separation beyond the introduced bounds.

A final feature designed to promote the identification of distinct adversarial examples can be seen
in the introduction of Γ ≫ 1 into line 12. In the case of a non-distinct adversarial example, this
parameter incentivises the iterative process to converge upon a distinct example, by changing the
balance of weights between the terms relating to class difference and sample distances.

Additional algorithmic nuance is found on on lines 7 and 12 of Algorithm 1. Initially the Lagrange
multipliers introduce a counterproductive bias towards minimising ∥x′ − x∥, as our step-size control
ensures that are efficiently moving towards nearby adversarial examples. After such an example has
been found, Line 14 ensures that the predicted class will not change, with the Lagrange multiplier of
lines 7 and 12 then incentivising minimising ∥x′ − x∥.

Code demonstrating both our process, and our tested comparisons can be found at anonymised link.

4 EXPERIMENTS

To evaluate both the performance of our new attack technique and the difference between identified
adversarial perturbations and certified guarantees, we now present comprehensive experimental
validation against MNIST (LeCun et al., 1998) (GNU v3.0 license), CIFAR-10 (Krizhevsky et al.,
2009) (MIT license), and Tiny-Imagenet (Johnson et al., Accessed 2022-01-10) (BSD 3−Clause
license), the latter of which is a 200-class variant of Imagenet (Yang et al., 2021) which downsamples
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images to 3× 60× 60. Each model was trained in PyTorch (Paszke et al., 2019) using a Resnet18
architecture, with experiments considering two distinct levels of σ. The confidence intervals of the
expectations were calculated at a significance level of α = 0.005 . Based upon Appendix E.3, the
cutoff factor c of Equation (11) was set to 0.5.

For both MNIST and CIFAR-10 the experimentation employed a single NVIDIA P100 GPU core
with 12 GB of GPU RAM, with expectations estimated over 1500 samples. Over the course of 50
epochs of training, each sample was perturbed with a single perturbation drawn from N (0, σ2) and
added prior to normalisation. Training then utilised a batch size of 128, with losses assessed against
the Cross Entropy loss. Parameter optimisation was performed with Adam (Kingma & Ba, 2014),
with the learning rate set as 0.001. Tiny-Imagenet training and evaluation utilised 4 P100 GPU’s,
utilising a total of 48 GB of GPU RAM to estimate expectations based upon 1000 samples. Training
occurred using SGD over 80 epochs, with a starting learning rate of 0.1, decreasing by a factor of 10
after 30 and 60 epochs, and momentum set to 0.9.

To assess the relative performance between our newly constructed adversarial perturbations and
the corresponding certified guarantees (as provided by Cohen et al., 2019) Equation (3) provides
a lower bound on the distance between an adversarial example and the sample point. To aide this
comparison, we introduce the concept of the attack proportion, which represents the proportion
of correctly predicted samples that have an identified attack below a given L2-norm radius. The
lower bound attack radius—as provided by the certified guarantee—gives an upper bound on the
achievable attack proportion for any given radius. Our new Certification Aware Attack framework is
also compared against PGD, Carlini-Wagner and DeepFool based upon 100 attack iterations, with
metrics collected after the first successful attack and at the end of the iterative process. The nature
of AutoAttack requires the attack radii to be pre-specified, which we set at 100% increase over the
radius identified by Cohen et al. (2019). Further details of the attack hyperparameters can be found in
Appendix C.

Performance against other attacks Across the full set of tested experiments, the aggregate
measures of Figure 2 and Table 1 demonstrate that our Certification Aware Attack almost uniformly
identifies smaller adversarial perturbations than any other technique, resulting in a 24% reduction
in the median perturbation radii for Tiny-Imagenet at σ = 1.0, relative to the next best performing
technique in PGD. Across the full suite of tested experiments, on average our technique yields a
13.6% reduction in the median perturbation radii. Of the remaining techniques, both DeepFool and
Carlini-Wagner exhibit median radii perturbation radii that is an order of magnitude larger than both
our technique and PGD, although in the case of DeepFool these examples are identified significantly
faster than any other tested approach. Even setting the attack radii to be significantly larger than the
median radii identified by our approach and PGD, AutoAttack was able to identify significantly fewer
adversarial examples than our approach.

It is important to note that while increasing σ should improve the performance of all gradient-based
attacks due to the smoothing influence of noise upon the label space. However it is clear that our
attack is particularly well suited to this change, with a distinct improvement relative to PGD within
Figure 2.

Neither PGD nor DeepFool were able to converge upon smaller adversarial perturbations with
additional iterations, in contrast to the design of both our approach and Carlini-Wagner. Table 1
demonstrates that our Certification Aware Attacks can reduce the magnitude of the identified adver-
sarial perturbation 15%, at the cost of a 2− 3-fold increase in computational time. While continuing
to iterate with Carlini-Wagner yields more significant improvements even after the 100 iterative steps,
the attacks are still an order of magnitude larger than our approach, and take more than twice as long.

Of the experimental set, the results observed for MNIST deserve additional consideration, due to
their surprising nature. While MNIST has a limited number of classes, single-channel low-resolution
images, and a perceived lack of semantic complexity across the class set, it proved the most difficult
example to attack, with only Carlini-Wagner being able to attack more than 90% of samples. That
these issues are more pronounced for σ = 0.5 intuitively suggests that this may be due to each attack
using step-sizes that are too large for the smaller, single-channel input space of MNIST. Increasing σ
adds additional smoothing to the label space and pushes adversarial examples further out. However,
both our Certification Aware Attack and DeepFool do not rely upon fixed step-sizes at all, but rather
construct their step-sizes by drawing upon observations of the state. This suggests that the relatively
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Table 1: Performance metrics for MNIST (M), Cifar-10 (C), and Tiny-Imagenet (TI) for varying σ.
‘Success’ and ‘Best’ are the proportion samples for which each attack was success, and outperformed
all others. r50 and %-Cohen are the median attack and the size relative to the guarantee of Cohen.

Categorisation Smallest Attack First Attack
Data Attack Success Best r50 %-Cohen Time (s) Ratio(r50) Ratio(Time)

M-0.5 Ours 75% 71% 1.95 67% 5.49 1.10 0.23
PGD 65% 6% 1.95 69% 8.95 1.00 0.34
C-W 94% 25% 8.19 612% 5.29 1.63 0.02
Auto 31% 2% 1.95 100% 174.87 1.00 1.00
D.Fool 5% 1% 9.20 2107% 0.66 1.00 1.00

M-1.0 Ours 100% 89% 2.41 66% 2.87 1.09 0.43
PGD 98% 4% 2.75 88% 8.92 1.00 0.43
C-W 94% 0% 8.83 505% 4.49 1.51 0.03
Auto 90% 6% 3.05 100% 174.08 1.00 1.00
D.Fool 47% 0% 12.80 1409% 0.65 1.00 1.00

C-0.5 Ours 96% 83% 0.85 69% 3.34 1.23 0.19
PGD 95% 3% 0.97 88% 9.19 1.00 0.14
C-W 95% 2% 6.65 1104% 4.58 2.07 0.03
Auto 85% 11% 1.27 100% 179.28 1.00 1.00
D.Fool 90% 0% 2.39 512% 0.67 1.00 1.00

C-1.0 Ours 100% 85% 1.24 79% 2.38 1.13 0.38
PGD 100% 1% 1.55 114% 9.17 1.00 0.22
C-W 95% 0% 6.76 775% 4.43 2.01 0.03
Auto 74% 12% 1.88 100% 178.91 1.00 1.00
D.Fool 98% 1% 3.05 462% 0.67 1.00 1.00

T-I-0.5 Ours 94% 77% 0.97 89% 6.62 1.18 0.23
PGD 93% 1% 1.15 113% 18.80 1.00 0.17
C-W 100% 6% 11.79 1981% 13.76 2.45 0.02
Auto 67% 15% 1.38 100% 360.88 1.00 1.00
D.Fool 79% 1% 2.39 532% 1.36 1.00 1.00

T-I-1.0 Ours 95% 84% 1.37 107% 4.70 1.13 0.44
PGD 94% 1% 1.80 161% 19.51 1.00 0.26
C-W 100% 5% 10.73 1373% 14.38 2.73 0.02
Auto 54% 11% 2.29 100% 372.23 1.00 1.00
D.Fool 89% 0% 3.44 577% 2.72 1.00 1.00
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Figure 1: Percentage distance between constructed adversarial perturbations and the certified radii
given by Equation 3, with Our technique in Red and PGD in Blue. Results for CIFAR-10 with
σ = 1.0. Additional experimental results are visible in Figure 3.

large adversarial perturbations for MNIST may be driven by the polarised nature of these samples—
containing regions of black and white with limited blending—and the constructed gradients leading
to adversarial perturbations outside the numerical domain, which are then clipped to [0, 1]d.

Performance relative to certified guarantees An important feature of these results is the difference
between the attack proportion of our technique, and the bound provided by Cohen et al. (Cohen et al.,
2019). Intuitively it would be expected that the linear multiplicative proportionality of Equation (3)
would increase the magnitude of the guarantee in L2 norm space, and thus in turn introduce a greater
difference between our attack and the certified guarantee. However, in practice these increases are
offset by both a decrease in both the class expectations—due to the smoothing influence of additive
noise—and the difficulty of constructing an attack.

In the context of the Cohen et al. bound of Equation 3, by Table 1 our technique clearly produces
smaller adversarial perturbations for the majority of samples, while consuming approximately the
same amount of computational time as both PGD and Carlini-Wagner. When compared against
PGD, Figure 1 underscores the difference in the magnitude of the adversarial perturbation when
considered against Cohen et al., with a clear self-similar trend in which the percentage difference to
Equation (3) increases as the largest class expectation decreases in Figure 3. This suggests that the
delta is likely not the attacks failing to identify global optimal adversarial perturbations in this region,
but rather that this region would instead potentially admit larger certifications by taking a revised
approach. There also appears to be a correlation between the outperformance of our approach and the
semantic complexity of the prediction task, which suggests that tightening these guarantees could be
increasingly relevant for complex datasets of academic and industrial interest.

Limitations It is important to note that this current work has deliberately focused upon L2-norm
attacks as our technique is built upon certified guarantees of robustness, which are primarily built
upon the potential for adversarial examples bounded in L2-norm space and do not presently extend to
rotational or translational modifications (Tian et al., 2018), nor functional attacks (Laidlaw & Feizi,
2019) attacks. While this inherently biases our approach towards datasets with image-structured data,
the core concepts of attacking randomised smoothing, and of augmenting attack methodologies with
the knowledge of regions of class invariance should be readily extensible to a broad array of data
types and structures.

We also acknowledge that the chosen attacks exist at a single point of parameter space, and there are
many other attacks that remain untested, which may provide different results. We emphasise here that
the chosen set of attacks have distinct conceptual mechanisms, and were chosen to explore the relative
performance of other gradient-based mechanisms relative to our new approach. While in some cases
extended versions of these attacks exist, there is no guarantee that this increased complexity yields
better results in the context of randomised smoothing.

Finally, this attack requires access to significant amounts of GPU memory. Attacking a ResNet18
model trained for CIFAR-10 required approximately 10 GB of GPU memory when smoothing was
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Figure 2: Best achieved Attack Proportion for our new Certification Aware Attack (Blue), PGD (Red),
DeepFool (Cyan), Carlini-Wagner (Green), and AutoAttack (Magenta), with the black dotted line
demonstrating the theoretical best case performance, as calculated by Cohen et al.. Dashed lines
represent the first identified attack, while solid lines denote the best identified attack.

performed over 1500 samples, whereas close to 37 GB was required for Tiny-Imagenet with 1000
samples. This memory consumption is driven by our current implementation requiring all samples
to be loaded into memory at once, prior to performing the gradient-based iterative step. While this
process can be improved through batching, we chose not to follow this to ensure that our results
weren’t influenced by the batching implementation. Such a change would be necessary though to
attack datasets containing larger images, or more memory-intensive model architectures.

5 CONCLUSION

While it is well known that adding calibrated noise to models via randomised smoothing can improve
adversarial robustness, this work demonstrates that this process and the resulting certifications
introduce a heretofore undiscovered attack surface, yielding our Certification Aware Attacks. By
leveraging the guarantees of class invariance provided by randomised smoothing for both the correct
and malicious class prediction, these attacks have the potential to significantly decrease the size of
identified adversarial perturbations, relative to other techniques. Relative to tested baseline attacks,
our new attack finds smaller adversarial perturbations for almost 90% of samples, resulting in a
13% reduction in the median attack perturbation. Decreasing the magnitude of these adversarial
perturbation makes the attacks more difficult to detect, and thus, more likely to be successfully passed
through a model.

6 ETHICS STATEMENT

While constructing such attacks has malicious benefits, there is also inherent value in understanding
the potential of models to be compromised. As we discover within this work, certification mechanisms
introduce a heretofore undiscovered attack surface that can be exploited to further decrease attack
radii. As such, exploring such attacks is important to defray potential overconfidence regarding
the robustness of certified models, and to provide contextual information about the values (or lack
thereof) of deploying autonomous machine learning models in high stakes environments.
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7 REPRODUCABILITY STATEMENT

This work describes both a general framework for attacking models defended by randomised smooth-
ing, and a specific attack (as described in Algorithm 1) that can be used to attack such models. To
enhance reproducability, prototype code has been attached to the OpenReview submission, and will
be released publicly upon publication.
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Algorithm 2 Class prediction and certification for the Certification Aware Attack Algorithm of
Algorithm 1.

1: Input: Perturbed data x′, samples N , level of added noise σ
2: y = 0
3: for i = 1:N do
4: yj = yj + 1 if GS

`

fθ
`

x′ +N (0,σ2)
˘˘

= j {Here GS is the Gumbel-Softmax}
5: end for
6: y = 1

N y
7: z0, z1 = topk(y, k = 2) {topk is used as it is differentiable, z0 > z1}
8: qE0, pE1 = lowerbound(y, z0),upperbound(y, z)1 {Calculated by way of Goodman et al.

(Goodman, 1965)}
9: R = σ

2

´

Φ−1( qE0)− Φ−1( pE1)
¯

10: return qE0, pE1, R

A APPENDIX

B ALGORITHMIC DETAILS

Algorithm 2 outlines the steps sampling process required to generate both the class prediction and
the certification radius, which is expressed in terms of the lower and upper bounds of the largest and
second largest class, respectively labelled as qE0 and pE1. These expectations are calculated by way of
a Monte-Carlo approximation of y = E[fθ(x

′;σ,N)], subject to the application of a concentration
inequality to quantify the underlying uncertainties.

C ATTACK CONFIGURATION

Following previous experimental works, we employed the following hyperparameters for each attack
framework. For Carlini-Wagner, we set that κ of Equation 2 to 0, and weighted the loss from the
one-hot encoding by 10−4. The Carlini-Wagner training process was conducted using a learning
rate of 0.01 over 100 iterations. Similarly DeepFool also employed 100 iterations, and employed an
overshoot factor of 0.02. When considering PGD of the form outlined in Equation 1 the ϵ was set at
20
255 , with iterations again occurring 100 times. Further details relating to the choice of ϵ for PGD can
be found within Appendix E.4.

AutoAttack was performed using the randomised model variant, with the attack radii set at max(2×
R, 0.1), where R was calculated by Equation 3. This choice of attack radii was a deliberate attempt
to match the average identified attack radii (relative to Equation 3), as is further discussed in
Appendix E.5.

D PERFORMANCE OF INDIVIDUAL SAMPLES

When comparing the individual performance of samples, as is seen in Figure 3 , it is clear that there’s
a consistent and marked improvement across the suite of experiments. The one exception to this
is when the largest class expectation is 1 and σ = 0.5, which leads to an interesting and marked
increase in the radii produced by our technique, relative to that of PGD. This appears to be a product
of how we estimate the bounds on the two highest class expectations, prior to calculating the iterative
step. By underestimating the uncertainties in this narrow region, we introduce significant growth
in the predicted certified radii, which in turn induces a significant overestimate in the radius of
certification. This in turn induces oversized iterative steps, which prevent converging upon smaller
potential adversarial perturbations.

That these graphs show no examples with percentage differences less than 25% also reinforces our
earlier point about there still being potential for improving certified guarantees. This is especially
true as the largest class expectation decreases, as the minimum observed percentage difference begins
to increase significantly.
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(a) MNIST, σ = 0.5
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(b) MNIST, σ = 1.0
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(c) CIFAR-10, σ = 0.5
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(d) CIFAR-10, σ = 1.0
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(e) Tiny-Imagenet, σ = 0.5
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(f) Tiny-Imagenet, σ = 1.0

Figure 3: Per-sample performance of our Certification Aware Attack technique (Red) and PGD (Blue),
relative to the magnitude of the L2 norm guarantees provided by Certified Robustness.
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Figure 4: Average perturbation radius when σ is estimated by σ̂. Data collected for CIFAR-10 at
σ = 1.0.

Table 2: Evolution of metrics as a function of the number of samples used to estimate the expectations,
as calculated for CIFAR-10 with σ = 0.5. All other experiments in this paper were calculated
using 1500 samples for MNIST and CIFAR-10, and 1000 samples for Tiny Imagenet. AutoAttack
experiments were excised from these experiments due to the underlying computational cost.

Method Metric 250 500 750 1000 2000

Ours r50 0.94 0.84 0.85 0.82 0.79
Attacked 96% 97% 97% 99% 98%
Time (s) 1.2 1.6 2.6 4.5 7.1

PGD r50 1.04 0.94 0.89 0.9 0.87
Attacked 95% 96% 96% 96% 96%
Time (s) 0.6 0.8 1.1 1.4 1.9

C-W r50 6.41 6.45 6.46 6.41 6.34
Attacked 93% 92% 93% 94% 94%
Time (s) 1.9 2.8 4.0 5.2 7.4

DeepFool r50 2.18 1.91 1.83 1.84 1.81
Attacked 76% 82% 81% 81% 85%
Time (s) 0.3 0.4 0.7 0.9 1.1

E SENSITIVITY ANALYSIS

E.1 ACCURACY OF σ

The white-box threat model assumes that the attacker has access to the full model and its parameters,
including the level of additive noise σ. However, for the purposes of constructing the attack, σ is only
required for constructing the maximum step-size through Equation 11, which is employed alongside
the cutoff factor c and scaling factor m. That m and c are scaling σ implies that accurate knowledge
of σ is in fact not strictly necessary. In fact, as shown by Figure 4, even over-estimating σ by 50%
decreases the radius of the identified adversarial perturbation. While this strongly suggests that there
is further scope for optimising m and c, it also makes it clear that even estimating σ as part of a
surrogate model, in order to attack under a black-box threat mode.

E.2 SAMPLE SIZE

In order to assess the influence of the sample size on the relative performance of the techniques,
Table 2 considers the performance of the best identified adversarial example. Due to the influence
of the sample size on the measured uncertainties, there is a small but steady decline in the radii
of observed adversarial examples with the sample size. Surprisingly, increasing the samples did
induce a slight increase in the proportion of adversarial perturbations identified, suggesting that the

14



Under review as a conference paper at ICLR 2023

Table 3: Comparison of the influence of the cutoff c in Our attack process for σ = 0.5, in terms of
the median first and best adversarial example, and the median time for identifying the first adversarial
example.

Dataset Cutoff c Successful First r50 Best r50 First t50 (s)

MNIST 0.05 45.0% 1.646 1.617 4.44
0.25 65.0% 1.988 1.874 1.51
0.5 71.5% 2.149 1.942 1.16
0.75 75.0% 2.345 1.962 1.07
1.0 75.5% 2.426 1.972 1.07
1.5 74.5% 2.687 1.993 0.97
3.0 74.0% 3.257 2.020 0.97

CIFAR-10 0.05 93.5% 0.806 0.756 1.76
0.25 97.5% 0.904 0.801 0.74
0.5 97.0% 1.030 0.807 0.65
0.75 97.0% 1.135 0.814 0.65
1.0 99.0% 1.220 0.838 0.65
1.5 98.5% 1.486 0.829 0.65
3.0 99.0% 2.194 0.845 0.65

smoothing influence of increasing the sample count may be making the gradient trajectories slightly
more amenable to identifying adversarial perturbations. A curious feature of these results is that
while the increases in computational time are sub-linear with respect to the number of samples for all
techniques except our Certification Aware Attacks. This suggests that additional improvements in our
technique’s performance could likely be achieved with additional code optimisation.

E.3 CUTOFF FACTOR c

It is crucial to understand the influence of the cutoff factor c from Equation (11), due to its centrality
within Algorithm 1. In order to do so Table 3 considered the sensitivity of the MNIST and CIFAR-10
experiments to changes in c. Specific focus was placed upon the case where σ = 0.5, as the label
space for the lower level of noise is less smoothed, and thus should be more sensitive to the maximum
step-size. While we have excised Tiny-Imagenet due to computational cost concerns, for MNIST
and CIFAR-10 it is clear that beyond c = 0.5 there is effectively no advantage in increasing the
cutoff factor further, when both the converged adversarial example, and the rate of convergence. The
decreased sensitivity to c beyond this point is a consequence of the distribution of likely certified
radii—specifically that as c increases it becomes increasingly less likely that a sample point would
lead to a certification of a radii larger than this value.

E.4 PGD STEP-SIZE ϵ

Across all our experiments, the step-size for PGD was uniformly set to ϵ = 20/255, primarily
as this parameter matched the results of prior works attacking these datasets in the absence of
randomised smoothing, and such attacks are likely to be the primary source of information for an
attacker attempting to modify their approach to consider defended models. However, Figure 5 does
demonstrate that decreasing ϵ below this level will yield decreased perturbation radii, doing so would
further increase the computational cost of PGD relative to our new technique, while still yielding an
insignificant change in the number of samples for which PGD yields the smallest certification.

E.5 AUTOATTACK RADIUS ϵ

As was discussed in Section 2, AutoAttack’s ϵ is not the step-size of the iterative process, but rather
the maximum bound on the norm of adversarial perturbations. While theoretically this ϵ should
serve as an upper bound, in practice our experiments showed that the significant majority of identified
adversarial examples were produced with a radii of ϵ. To explore the performance of changes in how
ϵ is specified—either directly or as a multiple of the Cohen certified radius of the original sample
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Figure 5: Performance of PGD for varying the step-size ϵ. Results for CIFAR-10 at σ = 1.0.
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Figure 6: Performance of AutoAttack for varying ϵ, where ϵ is either set directly or as a multiple of
the Cohen certified radius. Results for CIFAR-10 at σ = 1.0.

point—Figure 6 demonstrates the relative performance of AutoAttack. While increasing the radius of
certification does increase the proportion of samples that are able to be viably attacked, we uniformly
set n = 2 for all test sets to match the average size of the adversarial perturbation identified by our
technique (relative to the certification provided by Cohen).

F TRAINING WITH MACER

Recent work has considered how the certified proportion of models can be improved by augmenting
the training reward to maximising the expectation gap between classes Salman et al. (2019). A
popular approach for this is MACER Zhai et al. (2020), in which the training loss is augmented
to incorporate what the authors dub as the ϵ-robustness loss, which reflects proportion of training
samples with robustness above a threshold level. Such a training time modification can increase the
average certified radius by 10− 20%, however doing so does increase the overall training cost by
more than an order of magnitude.

To test the performance of our new attack framework against models trained with MACER, Table 4
and Figure 7 recreate earlier results from within this work. Under such training time modifications
our approach produces both consistent attack radii—relative to Table 1—and the same levels of
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Table 4: Performance metrics for MNIST (M), Cifar-10 (C), and Tiny-Imagenet (TI) for varying σ.
‘Success’ and ‘Best’ are the proportion samples for which each attack was success, and outperformed
all others. r50 and %-Cohen are the median attack and the size relative to the guarantee of Cohen.

Categorisation Smallest Attack First Attack
Data Attack Success Best r50 %-Cohen Time (s) Ratio(r50) Ratio(Time)

C-0.25 Ours 100% 100% 0.91 1188% 17.54 1.20 0.35
PGD 100% 0% 15.17 20977% 26.25 1.00 0.02
C-W 96% 0% 10.61 13958% 4.04 1.30 0.08
D.Fool 100% 0% 2.10 3105% 9.59 1.00 1.00

C-0.5 Ours 92% 92% 1.56 1148% 19.33 1.08 0.55
PGD 100% 0% 15.58 11912% 26.32 1.00 0.02
C-W 87% 2% 11.58 7242% 3.37 1.23 0.10
D.Fool 100% 5% 4.28 3353% 11.51 1.00 1.00

C-1.0 Ours 75% 75% 2.03 1209% 19.57 1.05 0.66
PGD 100% 1% 16.14 8101% 26.24 1.00 0.02
C-W 99% 11% 11.29 5932% 3.36 1.24 0.10
D.Fool 100% 13% 7.49 3984% 9.61 1.00 1.00
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Figure 7: Attack and Certification Performance for a Resnet-110 model for Cifar-10, when trained
with MACER. Similar to Figure 2, an ideal attack will approach the Cohen radii suggested by the
black dotted lines.

out-performance that were seen in the earlier results. However, we must emphasise that the percentage
difference to the certified Cohen radius for all techniques has significantly increased, which is a
consequence of the average certified radius decreasing four-fold under the MACER training routine.
This appears to be a consequence of the larger model architecture in these tests, with these latter
tests employing a Resnet-110 architecture, as compared to Resnet-20 in the main body of the paper.
This decrease in the average certification increases the average computational time for our approach,
as a greater number of iterative steps are required to converge upon a solution, as the step size is
proportional to the calculated certified radius.
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