
Taxi re-positioning considering driver compliance

Cebrina Lindstroem1[0000−0002−2306−0140], Stefan Ropke1[0000−0002−6799−9934],
and Reza Pourmoayed2[0000−0002−4636−3400]

1 DTU Management, Technical University of Denmark, Akademivej Building 358,
2800 Kgs. Lyngby, Denmark

2 BNR A/S, Rolighedsvej 32, 8240 Risskov, Denmark

Abstract. Managing taxi fleets in large cities is challenging, especially
when drivers operate independently. This study improves taxi reposition-
ing by predicting demand and providing smart recommendations. Using
real-world data from a Scandinavian taxi service, we employ neural net-
works with LSTM layers to forecast demand and test different strategies,
like a simple greedy algorithm and a more structured matching-based
approach, to guide taxis to high-demand areas. Since drivers ultimately
decide whether to follow these suggestions, we also model their behavior
using a probabilistic acceptance strategy. Through a simulation of a real
day, we analyze how different approaches impact passenger wait times
and overall efficiency. The results show that proactive re-positioning sig-
nificantly reduces wait times but can increase total driving distance.
The greedy algorithm tends to perform better in quickly getting taxis to
passengers, while the matching model is more efficient in minimizing un-
necessary travel. However, increased mobility comes at a cost, as rerout-
ing leads to longer driving distances. Additionally, driver behavior plays
a crucial role, with lower acceptance rates reducing the effectiveness of
predictive recommendations. Overestimating demand in such cases helps
mitigate inefficiencies.

Keywords: Taxi re-positioning · LP based heuristics · Multivariate time
series forecasting.

1 Introduction
Efficiently allocating taxis in large Scandinavian cities is a difficult challenge.

The aim is to minimize passenger wait times while optimizing the transport
system, driver earnings, the number of trips serviced by the same cars, and
inefficient wait times. Much of the existing literature assumes this problem to
have centralized authority that can dispatch the taxis and direct taxis to specific
zones or passengers. Yet, in multiple real-life settings, taxi dispatching is decen-
tralized with each taxi working as an individual agent. This shifts the problem
from optimizing a centralized system to guiding and incentivizing a collection of
autonomous agents.

In both the centralized and de-centralized versions of this vehicle routing
problem, the dispatching occurs based on some assumptions or predictions for
future demand. To predict future demand, recurrent neural networks with LSTM



2 C. Lindstroem et al.

cells are a strong tool, as used in this study. However, with these predictions,
there is still a need to understand how they can be used to guide taxis working
as individual agents efficiently.

We tackle this challenge by integrating demand prediction with a simulation-
based framework to explore different aspects of decentralised taxi routing. Our
simulation models a scenario where individual drivers receive zone recommenda-
tions based on predicted demand. The drivers have full control over their routing
decisions. To generate recommendations, we test different approaches, such as
greedy algorithms and solving an assignment problem.

In this paper, we examine this challenge using a real-life case study from a
Scandinavian taxi service. Currently, the system does not provide any guidance
to the taxis, so the drivers make completely independent decisions regarding
their movement. However, there is interest in implementing a guidance system
to help drivers make more efficient decisions, which motivates this investigation
of integrating demand prediction with decentralized routing decisions.

Furthermore, we model driver behavior through a probabilistic acceptance
strategy to see how these behaviors affect different outcomes for both drivers
and passengers.

Our key contributions are 1) providing a simulation-based framework for eval-
uating decentralized taxi reouting in systems where drivers have full control over
their rerouting decisions and 2) examining the dual aspects of recommendation
generation and driver response, providing insights into how system performance
is influenced by drivers who choose not to follow the guidance.

2 Related Work
The problem of repositioning taxis and similar services is well-studied. Re-

search in this area follows two main approaches: classical operations research
(OR) techniques and deep reinforcement learning.

In the OR stream, Hao et al. [8] address taxi relocation in Singapore after the
morning rush hour, when taxis tend to cluster in low-demand downtown areas.
Their model, solved once daily, uses demand prediction based on weather data,
applying a regression tree with precipitation-based splits. A distributionally ro-
bust model plans repositioning, outperforming simpler approaches.

Tavor and Raviv [11] assume fully automated taxis and solve repositioning
continuously. They propose three LP-based models: one maintaining a fixed num-
ber of cars per zone and two using demand forecasts. These models are solved
every 15 minutes and tested on New York City taxi data, showing that demand-
aware approaches balance empty mileage and customer wait times effectively.

Guo et al. [7] use the smart-predict-then-optimize approach proposed by El-
machtoub and Grigas [4] for taxi re-positioning. They consider a taxi-like service
provided by Didi Chuxing in Chengdu, China, and provide several mathemati-
cal models for relocating vehicles. They conclude that their smart-predict-then-
optimize approach outperforms simpler benchmarks as well as other mathemat-
ical models defined in the paper.

The problem of re-positioning taxis has been addressed through reinforce-
ment learning in, for example, [6], [9], and [10]. The approach by Gammelli



Taxi re-positioning considering driver compliance 3

et al. [6] is of special interest as it uses graph reinforcement learning combined
with linear programming to reposition taxis. The graph neural network suggests
how taxis should be distributed among zones, and the linear program (LP) finds
a cost-efficient way to obtain this distribution from the current one. This sim-
plifies the reinforcement learning algorithm as it does not have to consider the
feasibility of its proposed distribution and does not have to specify the precise
movements of taxis, the LP takes care of these parts.

The issue of drivers not adhering to repositioning suggestions has not received
much attention in the literature. Wang and Wang [12] studies relocating vehicles
using data from Didi Chuxing in China. It is acknowledged that vehicle relocation
tasks will only be a suggestion to the drivers, and drivers are not required to
follow the suggestion, however, this fact is, to the best of our understanding,
not embedded in the solution method or in the simulation results. The solution
method is based on mathematical models that aim at matching up as many
vehicles with transport requests. Very recently, Brar et al. [2] and Chen et al.
[3] studied the question further. Brar et al. [2] model driver behavior based on
repositioning preferences and confidence level in the recommendations provided
and incorporate the driver model in a repositioning algorithm. Chen et al. [3]
approach the issue of driver behavior from two angles, one is to analyze past
data to learn how a driver cruise while being idle, and the other is to use a
survey to understand what makes it likely for a driver to accept a repositioning
request. The model for driver behavior is then integrated into a repositioning
algorithm based on reinforcement learning. Our work differs from both Brar et al.
and [3] by focusing on a fully decentralised fleet, thus evaluating the effects of
driver uncertainty on system-wide outcomes rather than mitigating the effects
of incomplete driver compliance.

3 Problem description
The inspiration for this problem stems from a collaboration with BNR A/S

and the challenges faced by Scandinavian taxi centrals. This section provides
context on the issue.

Taxis are vital to urban transport, and in many Scandinavian cities, they
operate independently while the central dispatches rides. Although trips are
assigned via a queue system, drivers retain full autonomy over repositioning be-
tween trips and accepting assigned rides. This study assumes full trip acceptance,
focusing on the effects of repositioning while maintaining driver control. Taxi de-
mand fluctuates based on temporal, spatial, and contextual factors like weather
and events. Currently, repositioning is left to the driver’s intuition, making the
system reactive. The goal is to develop a proactive guidance system. Trips are
allocated based on queue order within zones. If a zone queue is empty, the trip
is assigned from the nearest available queue. Each trip has a fixed pickup and
drop-off, without ridesharing. While some trips originate from street hails, the
simulation assumes all trips are centrally booked.

In the simulation, taxis act as independent agents, making movement deci-
sions freely. They enter new queues when switching zones and receive rerouting
recommendations but decide whether to follow them. Priority is given to taxis



4 C. Lindstroem et al.

Fig. 1. A bar chart respresenting the number of trips per zone, ordered by zone ID.
already waiting in a zone over those en route. A probabilistic acceptance strat-
egy is applied, with drivers accepting rerouting suggestions at rates of 100%,
70%, 50%, or 30%. This approach was chosen due to no available data regarding
historical acceptance behaviour as no such recommendation system is currently
implemented. Additionally, the study aims to focus on understanding the impact
of decentralized drivers within a system, making this approach well-suited to the
research objective. The goal is to minimize passenger wait times while balancing
the additional kilometers driven due to rerouting.

4 Datasets and demand prediction
A central part of the simulation is the ability to predict demand arising in

different zones and, based on this, reroute the taxis to zones where there is a
supply deficit. The prediction is trained and used on a dataset collected over
multiple years.

4.1 Data
The data for this study comes from a real Scandinavian taxi central and

includes all trips from August 2016 to December 2024. This dataset serves as
the foundation for training the demand prediction model, containing details on
trip type, price, pickup/delivery times, and locations.

Notably, the dataset only includes completed trips, omitting declined or un-
recorded ones, which limits insight into total demand.

For prediction, we used a zone-based approach, clustering historical trips
with k-means clustering based on the locations of the trips. As city-supported
zones evolved over time, this method ensured a stable, flexible framework. We
selected 35 zones based on the elbow method [5]. We found 35 zones provided
the best granularity, balancing spatial detail with model simplicity.

Figure 1 provides insight into the dataset used in this paper and the cluster-
ing. It shows a bar chart of the zones (ordered numerically) based on the total
demand within each zone. There is a clear variance in the number of trips across



Taxi re-positioning considering driver compliance 5

the zones, reflecting the differences in demand between high- and low-density
areas.

4.2 Demand prediction using Neural Networks with LSTM-cells
To optimize taxi routing toward high-demand areas, our solution relies on

a demand prediction model. We use a neural network with Long Short-Term
Memory (LSTM) cells, which effectively handle time-series data by capturing
long-term patterns and mitigating vanishing gradients. This capability is crucial
for demand forecasting, where historical trends strongly shape future outcomes.

The model predicts demand across all zones simultaneously as a multivariate
time-series problem, rather than 35 separate univariate time-series as the zone
demands are highly correlated. This also ensures more consistent and coherent
predictions across the city. Input data consists of summed historical demand,
with predictions based on lag variables representing past demand. We used 10-
minute time steps and found the best balance between accuracy and efficiency
with 144 lag variables (covering two days). We experimented with incorporat-
ing external variables such as weather conditions, COVID-19 case counts, pre-
bookings, and holidays. However, these features offered minimal gains in pre-
diction accuracy while substantially increasing computational complexity and
runtime. The only added inputs were seasonality/cyclic inputs, specifically the
month, weekday as well as the period within the hour. These inputs were cycli-
cally encoded to preserve the cyclic nature of the data, while also reducing the
number of input features compared to alternatives like one-hot encoding [1].

The model provides both point predictions and confidence intervals by es-
timating quantiles, where the 90th percentile serves as the upper bound and
the 10th percentile as the lower bound. The network is trained through quantile
regression, which minimizes a quantile loss function tailored to each specified
quantile. We predicted three time periods into the future, thus as any point we
predict the demand for the next 30 minutes divided into 10-minute intervals.

Our architecture includes two shared LSTM layers (256 and 128 units) and an
individual LSTM layers (128 units each) for median, upper, and lower quantile
predictions. A dropout rate of 0.3 is applied between layers. Figure 2 shows an
overview of the architecture.

The demand prediction is programmed in Python using the Python package
Keras. It is trained using a training-validation-testing split of 70%-10%-20%,
and the day of the simulation is part of the testing data (and occurs at the end
of the time series). Thus the model is not trained on the data for the simulation,
but it has been evaluated based on this data before use. The model achieved an
R-squared value of approximately 0.74 on validation and testing data.

We compared the prediction performance of our multivariate model to tra-
ditional models such as Auto-ETS, which were run separately on each zone.
Auto-ETS achieved an average R-squared of 0.48 across all zones on the test set,
with values ranging from 0.17 to 0.66. The multivariate LSTM model achieved
a significantly higher average R-squared of 0.74 across all zones on the test set,
ranging from 0.30 to 0.94. It outperformed the Auto-ETS models in all but three
zones.



6 C. Lindstroem et al.

Fig. 2. The architecture of the neural network used for predicting demand.
In Figure 3, the predicted and actual values for each zone are displayed, along

with the confidence intervals for the predictions, for a single day between the
times 8 and 18. The model demonstrates strong performance in many zones,
accurately predicting demand patterns. However, in certain cases, such as Zone
10, the model struggles due to significant fluctuations in the actual values. This
uncertainty is reflected in larger confidence intervals, whereas zones like Zone 7
has smaller confidence intervals and still manage to capture key demand peaks
effectively. A similar plot for a low-demand day is shown in the appendix to
illustrate the models ability to handle diverse demand situations.

5 Simulation and suggestion methods
Based on the prediction model obtained as described in Section 4.2, we mod-

eled a simulation framework to "replay" an 8-hour interval of a real day’s de-
mands.

5.1 Simulation Framework
To evaluate the effectiveness of different rerouting techniques, we imple-

mented a discrete event-based simulation. This approach lets up replay an actual
day. The discrete event-based framework was chosen for its ability to model sys-
tems where changes occur at irregular intervals as is the case of taxi demand and
routing. It is implemented as a priority queue, so new events can be added (e.g.
a end-of-trip-event added whenever a new begin-trip-event has been handled.
Key events for the simulation are:

1. New Trip: Trip requests generated based on a single day. These are part of
the event queue from the beginning. When a new trip arises, it is assigned
to a taxi, which in turn generates a new trip end event that is added to the
event queue.

2. Trip ends: When a trip ends, the status of the assigned taxi is updated.
The taxi becomes available and is added to the dispatching queue of the
end zone of the trip, where it currently is. A routing suggestion event is
also added to the event queue, enabling the system to provide a relocation
recommendation.



Taxi re-positioning considering driver compliance 7

Fig. 3. Each plot shows the actual and predicted values for a single zone, with actual
values as blue dots and predictions as orange x. Confidence intervals are shown with
light blue shading. The x-axis shows time from 6 to 18 hour, and the y-axis represents
normalized demand.
3. Prediction: Demand forecasts are periodically updated and inserted into the

event queue at fixed intervals. In this setup, predictions are generated every
10 minutes, matching the model’s forecast interval. These events are used
during routing suggestion events but do not themselves generate additional
events.

4. Routing Suggestions: Relocation recommendations are issued to drivers ei-
ther when a trip ends or when a taxi has remained idle for an extended
period. If accepted, the taxi begins moving to the suggested zone, an end-
reroute event is added to the event queue, and the taxi is assigned a queue
number in the new zone (though dispatching prioritizes taxis already present
in the zone, if such taxis exist). If the suggestion is rejected, a new routing



8 C. Lindstroem et al.

suggestion event is scheduled after 10 minutes in case relocation becomes
preferable.

5. End Reroute: The rerouting process concludes and the taxi’s status is up-
dated. A new routing suggestion event is added to the event queue after 10
minutes, in case the taxi remains unassigned and relocation becomes neces-
sary.

A pseudocode of the simulation framework can be found in Algorithm 1.
Algorithm 1 Simulation framework
1: input: a set of taxis V , a set of events E, a prediction model m and a suggestion

algorithm algsug
2: while E is not empty do
3: get next event e from E
4: if e is of type new-trip then
5: Assign the demand of e to the first available taxi v from V in queue in the

zone. If no queue in the zone assign to the nearest available taxi v from V . If
no taxi available, wait.

6: If a taxi is assigned a trip add an end-of-trip event to E
7: else if e is of type end-of-trip then
8: Complete trip and let taxi v be available for new trips
9: Add routing suggestion event to E

10: else if e is of type prediction then
11: Predict from current state the demand into the next number of time periods

based on prediction model m
12: else if e is of type routing-suggestion then
13: Suggest to vehicle from event e the next zone to travel to based on algsug.

If the vehicle accept begin reroute, add the taxi to the dispatching queue of
the suggested zone, and add end reroute event to E. Otherwise add routing
suggestion event to E for the vehicle in 10 minutes.

14: else if e is of type end reroute then
15: The state of taxi is updated
16: Add routing suggestion event to E
17: end if
18: end while

5.2 Suggestion methods for rerouting
A central part of the simulation comes from the routing suggestions for the

drivers. In this part of the simulation the drivers are presented to a new zone they
should relocate to, and then they decide whether or not to follow the systems
recommendation. We worked with three different suggestion methods: (1) A
static strategy, where we did not move taxis at all, thus providing a baseline
for our data, (2) A simple greedy algorithm calculating the deficit in each zone,
i.e. the difference between predicted demand and available taxis, and reroutes
drivers to the zone with the largest deficit, and (3) A matching problem solution,
where we solve a matching problem every few minutes and reroute based on this.

We also tried different suggestion intervals, as we found it beneficial to let a
taxi stay in one place right after it finished a trip. Thus, if the suggestion interval
was 0 minutes, we would suggest a new zone for a taxi right after they finished a



Taxi re-positioning considering driver compliance 9

trip, while if the suggestion interval was 10 minutes, we would wait 10 minutes
before suggesting a new trip and thus let the taxi get into the queue of their
finishing zone. Waiting briefly before suggesting a relocation proved helpful in
some cases, as the current location might turn out to be a hotspot, allowing the
taxi to get a trip without needing to relocate.

Each suggestion algorithm had some common implementations. First, if we
did not have a zone recommendation for a taxi, we let the taxi stay and gave
them a new recommendation after the next prediction. Secondly, if a taxi chooses
to decline our suggestion, we give them a new suggestion after 10 minutes, unless
they get assigned a trip before this time. Finally, in both the greedy algorithm
and the matching problem, we subtracted the actual demand since the last pre-
diction from the predicted demand. Thus, if predj defines the predicted demand
in zone j, and actj is the actual realized demand that has occurred in zone j
since the last prediction, the predicted demand used in the suggestion would be
predj − actj .

Greedy algorithm The greedy algorithm calculates the deficit in all zones
based on the latest prediction and reroutes taxis according to the largest deficit.
We explored both global and local approaches: the global version calculated
the deficit across all zones and made decisions based on this, while the local
version focused only on nearby zones for its calculations. We found that the
global version often resulted in taxis being dispatched to distant zones, leading to
inefficiencies. As a result, we opted for the local version of the greedy algorithm.

In this local version, the algorithm considers only the nearby zones (defined
as those that can be reached within 8 minutes) and calculates the deficit for each.
It then suggests the zone with the largest deficit. To prioritize more immediate
demand, the algorithm places greater weight on deficits occurring within the
next 10 minutes. If the predicted demand for the next 10 minutes is satisfied,
the algorithm extends the horizon to 20 minutes, and later to 30 minutes, in line
with our three-period prediction model.

If a deficit was predicted in a zone, we refrained from suggesting a new zone
for the taxis, as it would be counterproductive to relocate vehicles to different
areas when other taxis needed to return to the original location to meet demand.

Matching problem The matching problem algorithm solves a matching prob-
lem at specific time steps, where each predicted demand for each zone must be
met by the same number of taxis. Specifically, we let V be the set of taxis and
J be the set of zones. We then define xij = 1 if vehicle i ∈ V is matched to zone
j ∈ J , and 0 otherwise. Define dij as the distance from vehicle i ∈ V to zone
j ∈ J . Furthermore, we let zj be a continuous positive slack variable, defined
as a demand not met in a zone. To heavily prioritize satisfying all demand, we
impose a penalty on zj with a value of α = 1, 000, 000. We let predj describe
the predicted demand in zone j ∈ J . Unlike the greedy algorithm, we do not
restrict how far taxis can travel, as our goal is to find the best global solution.
Travel distance is already penalized in the objective function. Thus the problem



10 C. Lindstroem et al.

we solve at a specific time step is:

min
∑
i∈V

∑
j∈J

dijxij +
∑
j∈J

αzj

s. t. ∑
j∈J

xij ≤ 1 ∀i ∈ V (1)

∑
i∈V

xij + zj ≥ predj ∀j ∈ J (2)

xij ∈ {0, 1} ∀i ∈ V, j ∈ J (3)
zj ≥ 0 ∀j ∈ J (4)

We found that the optimal time frame for solving the matching problem was
every 5 minutes, as this frequency strikes a balance that prevents recalculations
that lead to conflicting solutions or contradictory recommendations. We used
Cplex to solve the linear problem.

6 Computational results
For the numerical study, we ran the simulation described in Section 5.1 to

replay an 8-hour interval of a real day on this Scandinavian taxi central. Specif-
ically, we took all actual trips run between 8:00 and 16:00 on this day and let
them appear dynamically throughout the simulation. This 8-hour interval had
6112 actual trips, and in the simulation, we serviced these trips with a fleet of
300 vehicles, where we assume all of them are in operation all of the time, as
opposed to real life where they take natural breaks throughout the day. We used
OpenStreetMap to calculate distances between any two points. We treated all
taxis and trips within a zone as clustered together, considering only distances
between zones.

6.1 Varying the suggestion methods and changing the acceptance
rates

We ran the simulation with the different suggestion methods as well as differ-
ent acceptance rates, i.e. the chance a taxi accepts our recommendation. Specif-
ically, we ran the model with acceptance rates of 100%, 70%, 50%, and 30%.
The results can be found in Table 1. The columns show the used suggestion
algorithm, taxi acceptance percentage, average duration to the pickup location
in seconds, percentage of trips serviced in their starting zone, percentage of taxis
receiving trips in their relocation zone, and finally, the total driven kilometers.

As can be seen rerouting the taxis to zones before their suggestion greatly
decreases the average duration from a taxi to their assigned pickup trip. Please
note that the average duration is quite low, as we only consider distances and
durations between zones, and do not consider wait times for acceptance. Com-
pared to the static strategy, where we do not move any of the taxis preemptively,
the greedy algorithm (if followed completely by all taxis) can decrease the av-
erage duration by 71%, whereas the matching solution can decrease the average



Taxi re-positioning considering driver compliance 11

duration by 55% when followed completely. It thereby proves a significant im-
provement in passenger wait times and proximity to dynamically occurring trips,
by using a prediction to reroute the taxis. However, in this case, it seems the
greedy algorithm performs better than solving the LP of a matching problem,
which can be explained by the imbalance of solving an exact problem based
on predicted (i.e. not exact) numbers. The cost of using a proactive rerouting
strategy can, however, be seen in the total driven kms. When using the greedy
algorithm completely we see an increase in the total driven km compared to
the static strategy of 16%, whereas using the matching problem only increases
the driven kms by 4%. Thus, there is a definitive trade-off between an increased
proximity to pickup locations and the total kms driven.

When comparing different acceptance percentages, we see an increase in the
average duration to pickup when the acceptance percentage falls for both sug-
gestion methods. However, there is still a great decrease of the average duration
to pickup, as can be seen, when we only accept 30% of the suggestion methods,
the average duration for the greedy algorithm is still decreased 60% compared
to the static stragey, while the matching problem decreases average duration
by 50%. These numbers will slowly increase until they reach the static strategy
when no rerouting suggestions are accepted. The reason the number only slowly
approaches the average duration in the static strategy is explained by the fact,
that when the acceptance percentage falls, the simulation ends up suggesting
new zones more often to the taxis, as the ones that decline, will get a new sug-
gestion 10 minutes later, when a new prediction has been made. For example, we
make 2485 rerouting suggestions in the greedy algorithm when all suggestions
are accepted, whereas we make 3666 suggestions when only 30% of suggestions
are accepted.

6.2 Results of the algorithm when we have complete knowledge of
the future

We ran the simulation with the same algorithm strategies, except we assumed
complete knowledge of the future, i.e. we knew exactly how many trips would

Algorithm Acceptance Average duration Trips serviced Successful Total kms
percentage to pickup within a zone reroutes driven

(%) (s) (%) (%) (km)
Static strategy - 177 69 - 56,783
Greedy 100 51 87 76 65,661
Greedy 70 55 85 75 63,249
Greedy 50 60 82 74 61,931
Greedy 30 71 79 74 59,857
Matching 100 80 80 68 59,036
Matching 70 82 79 67 58,461
Matching 50 83 79 69 57,983
Matching 30 89 76 69 57,389

Table 1. Results from varying degrees of acceptance rates across different suggestion
methods. Successful reroute is defined as the percentage of taxis that receive a trip
within the zone they were rerouted to.



12 C. Lindstroem et al.

occur in a zone in the next three time periods when rerouting. The results can
be found in Table 2.

As can be seen, having complete knowledge of the future further decreases
the average duration to the pickup locations. We see the greedy algorithm, when
there is a perfect acceptance rate of 100%, decreases the average duration to
pickup by 12% compared to using the predicted values, whereas in the matching
problem, we got a 46% decrease, supporting the explanation that this method is
more sensitive to inaccurate predictions. We actually now see that the matching
problem outperforms the greedy algorithm when we have complete acceptance.
However, this is quickly negated when we change the acceptance rates, as already
when we have an acceptance rate of 70%, the greedy algorithm again outperforms
the matching problem. This indicates that the matching problem is also more
sensitive to the acceptance rate since the solution relies on all taxis following the
suggestions. In contrast, the greedy algorithm only considers the current state
and recommends the best option for an individual taxi. However, even with e.g.
50% acceptance rate, we find an improvement of the matching problem over the
static strategy of 53% when knowing the future, but only with a cost increase
of kms of 3%. Therefore, the algorithm may be advantageous if more accurate
predictions can be obtained, as opposed to the greedy approach, which results
in a higher cost increase.

6.3 Performance in different scenarios
The prediction model, as described in Section 4.2, outputs three different

values, one for the actual prediction and an upper and lower confidence interval.
In Table 3 the results from running the Greedy algorithm on both the high and
low prediction scenario is seen, where the high and low prediction compares to
higher and lower predicted values in each zone corresponding to upper and lower
quantiles, respectively.

As seen in the results, both the high and low scenarios perform worse than
the median prediction when the acceptance rate is 100%. There is also a signif-
icant difference in total kilometers driven: the low scenario results in minimal
additional driving, as it takes a conservative approach and only relocates taxis
when there is a high certainty of a demand deficit. In contrast, the high scenario
leads to a substantial increase in kilometers driven, as it tends to overestimate

Algorithm Acceptance Average duration Trips serviced Successful Total kms
percentage to pickup within a zone reroutes driven

(%) (s) (%) (%) (km)
Greedy 100 45 91 75 70,370
Greedy 70 52 90 77 67,212
Greedy 50 59 88 78 65,327
Greedy 30 70 85 78 62,787
Matching 100 43 86 84 59,324
Matching 70 54 82 83 59,069
Matching 50 62 80 79 58,504
Matching 30 83 75 80 57,443
Table 2. Results from the simulation with complete knowledge of the future.



Taxi re-positioning considering driver compliance 13

Algorithm Acceptance Scenario Average duration Trips serviced Successful Total kms
percentage to pickup within a zone reroutes driven

(%) (s) (%) (%) (km)
Greedy 100 low 85 77 45 58,771
Greedy 70 low 89 76 43 58,243
Greedy 50 low 93 74 42 57,657
Greedy 30 low 102 74 44 57,665
Greedy 100 high 57 86 77 77,648
Greedy 70 high 57 86 79 73,704
Greedy 50 high 58 85 80 69,218
Greedy 30 high 67 83 79 65,780

Table 3. Results from the simulation with different prediction scenarios.

the needed demand, causing more frequent vehicle movement. It is worth noting
that all of the results in these scenarios are better than when not moving the
taxis at all.

Interestingly, when the acceptance rate drops to 50% or 30%, the high sce-
nario outperforms the median prediction. This is likely because, with fewer taxis
accepting re-routing suggestions, more taxis need to be directed to high-demand
zones. By overestimating demand, the high scenario compensates for the lower
acceptance rate, ensuring better overall coverage.

7 Conclusion
This study investigates taxi re-repositioning by integrating demand predic-

tion with uncertain driver compliance. Our simulations demonstrate that proac-
tive rerouting significantly reduces passenger wait times, although it may in-
crease total kilometers driven. The greedy algorithm proves particularly effective
at minimizing wait times, while the matching approach balances efficiency with
lower additional travel costs.

One key finding is that driver acceptance rates play a crucial role in over-
all system performance. When acceptance rates drop, overestimating demand
(high scenario) can help maintain efficiency by ensuring enough taxis relocate
to high-demand areas. This highlights the challenge of balancing system-level
interventions with driver autonomy in decentralized environments.

Future research could explore alternative suggestion and prediction methods,
such as Markov decision processes. Additionally, more advanced driver behavior
models may provide further insights into drivers’ choices. Another interesting
direction is to investigate how drivers might be incentivized to accept the sug-
gestions, as this study shows that system-wide benefits arise when all drivers
follow the recommendations. This could also involve examining the outcomes
for drivers who follow the suggestions compared to those who do not. Finally,
examining the impact of exact distances within zones would be valuable, as it im-
proves real-world applicability but also requires considering where taxis should
stay within the zone.

Acknowledgments. This study was funded by BNR A/S. We thank Filipe Rodrigues
for advice and discussions on demand prediction using recurrent neural networks.



14 C. Lindstroem et al.

Disclosure of Interests. C. Lindstroem is an industrial PhD student at BNR A/S,
and R. Pourmoayed is employed by BNR A/S. S. Ropke has no affiliations with the
company. The authors declare that they have no competing interests that are relevant
to the content of this article.

A Appendix
Figure 4 shows the predicted zone plots for a low-demand day (weekend).

Actual values are blue dots, predicted values are orange x. Confidence intervals
marked with light blue shading. The x-axis shows time from 6 to 18 hour, and
the y-axis represents normalized demand.

Fig. 4. Predicted and actual values with confidence intervals for all 35 zones on a low-
demand day.

Bibliography
[1] Anthony Adams and Peter Vamplew. Encoding and decoding cyclic data.

The South Pacific Journal of Natural Science, 1998.



BIBLIOGRAPHY 15

[2] Avalpreet Singh Brar, Rong Su, and Gioele Zardini. Vehicle rebalancing
under adherence uncertainty. arXiv preprint arXiv:2412.16632, 2024.

[3] Haoyang Chen, Peiyan Sun, Qiyuan Song, Wanyuan Wang, Weiwei Wu,
Wencan Zhang, Guanyu Gao, and Yan Lyu. i-rebalance: Personalized ve-
hicle repositioning for supply demand balance. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38, pages 46–54, 2024.

[4] Adam N Elmachtoub and Paul Grigas. Smart predict then optimize. Man-
agement Science, 68(1):9–26, 2022.

[5] Marisa Fitri, Wardhani Arie Restu, Purnomowati Wiwin, Vitianingsih
Anik Vega, Maukar Anastasia Lidya, and Puspitarini Erri Wahyu. Po-
tential customer analysis using k-means with elbow methos. Jiko (jurnal
Informatika Dan Komputer), 7:307, 2023.

[6] Daniele Gammelli, James Harrison, Kaidi Yang, Marco Pavone, Filipe Ro-
drigues, and Francisco C Pereira. Graph reinforcement learning for network
control via bi-level optimization. arXiv preprint arXiv:2305.09129, 2023.

[7] Zhen Guo, Bin Yu, Wenxuan Shan, and Baozhen Yao. Data-driven ro-
bust optimization for contextual vehicle rebalancing in on-demand ride ser-
vices under demand uncertainty. Transportation Research Part C: Emerging
Technologies, 154:104244, 2023.

[8] Zhaowei Hao, Long He, Zhenyu Hu, and Jun Jiang. Robust vehicle pre-
allocation with uncertain covariates. Production and Operations Manage-
ment, 29(4):955–972, 2020.

[9] John Holler, Risto Vuorio, Zhiwei Qin, Xiaocheng Tang, Yan Jiao,
Tiancheng Jin, Satinder Singh, Chenxi Wang, and Jieping Ye. Deep re-
inforcement learning for multi-driver vehicle dispatching and repositioning
problem. In 2019 IEEE International Conference on Data Mining (ICDM),
pages 1090–1095. IEEE, 2019.

[10] Chao Mao, Yulin Liu, and (Max) Shen Zuo-Jun. Dispatch of autonomous
vehicles for taxi services: A deep reinforcement learning approach. Trans-
portation Research Part C, 115:102626, 2020.

[11] Shir Tavor and Tal Raviv. Anticipatory rebalancing of robotaxi systems.
Transportation Research Part C: Emerging Technologies, 153:104196, 2023.

[12] Hai Wang and Zhengli Wang. Short-term repositioning for empty vehicles
on ride-sourcing platforms. 2020.


