
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PRUNEFUSE: EFFICIENT DATA SELECTION VIA
WEIGHT PRUNING AND NETWORK FUSION

Anonymous authors
Paper under double-blind review

ABSTRACT

Efficient data selection is crucial for enhancing the training efficiency of deep
neural networks and minimizing annotation requirements. Traditional methods
often face high computational costs, limiting their scalability and practical use.
We introduce PruneFuse, a novel strategy that leverages pruned networks for
data selection and later fuses them with the original network to optimize training.
PruneFuse operates in two stages: First, it applies structured pruning to create
a smaller pruned network that, due to its structural coherence with the original
network, is well-suited for the data selection task. This small network is then trained
and selects the most informative samples from the dataset. Second, the trained
pruned network is seamlessly fused with the original network. This integration
leverages the insights gained during the training of the pruned network to facilitate
the learning process of the fused network while leaving room for the network to
discover more robust solutions. Extensive experimentation on various datasets
demonstrates that PruneFuse significantly reduces computational costs for data
selection, achieves better performance than baselines, and accelerates the overall
training process.

1 INTRODUCTION

Deep learning models have achieved remarkable success across various domains, ranging from image
recognition to natural language processing (Ren et al., 2015; Long et al., 2015; He et al., 2016).
However, the performance of models heavily relies on the access of large amounts of labeled data for
training (Sun et al., 2017). In practical real-world applications, the process of manually annotating
massive datasets can be prohibitively expensive and time-consuming. Data selection techniques
such as Active Learning (Gal et al., 2017) offer a promising solution to address this challenge by
iteratively selecting the most informative samples from the unlabeled dataset for annotation. The
goal of active learning is to reduce the labeling costs while maintaining or even improving model
performance. Nowadays, due to tremendous increase in data and model complexity, traditional active
learning techniques requiring large models to be trained iteratively to perform data selection, can
result in significant computational costs. This computational burden restricts the scalability of active
learning methods, particularly in scenarios where training large models is impractical due to resource
constraints.

In this paper, we propose a novel strategy for efficient data selection in active learning setting that
overcomes the limitations of traditional approaches. Our approach builds up on the concept of
model pruning, which selectively reduces the complexity of neural networks while preserving their
accuracy. By utilizing small pruned networks as reusable data selectors, we eliminate the need to train
large models, specifically during the data selection phase, thus significantly reducing computational
demands. By enabling swift identification of the most informative samples, our method not only
enhances the efficiency of active learning but also ensures its scalability and cost-effectiveness in
resource-limited settings. Additionally, we employ these pruned networks to train the final model
through a fusion process, effectively harnessing the insights from the trained networks to accelerate
convergence and improve the generalization of the final model.

Main Contribution. To summarize, our key contribution is to introduce PruneFuse, an efficient and
rapid data selection technique that leverages pruned networks. This approach mitigates the need for
continuous large model training prior to data selection, which is inherent in conventional active learn-
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Figure 1: Overview of the PruneFuse Method: (1) An untrained neural network is initially pruned to form a
structured, pruned network θp. (2) This pruned network θp queries the dataset to select prime candidates for
annotation, similar to active learning techniques. (3) θp is then trained on these labeled samples to form the
trained pruned network θ∗p . (4) The trained pruned network θ∗p is fused with the base model θ, resulting in a
fused model. (5) The fused model is further trained on a selected subset of the data, incorporating knowledge
distillation from θ∗p . Blue feedback indicates the PruneFuse V2 strategy deliniated in Section 4.6 that utilizes the
trained fused model to create the pruned model.

ing methods. By employing pruned networks as data selectors, PruneFuse ensures computationally
efficient selection of informative samples which leads to overall superior generalization. Furthermore,
we propose the novel concept of fusing these pruned networks with the original untrained model,
enhancing model initialization and accelerating convergence during training.

We demonstrate the broad applicability of PruneFuse across various network architectures, providing
researchers and practitioners with a flexible tool for efficient data selection in diverse deep learning
settings. Extensive experimentation on CIFAR-10, CIFAR-100, Tiny-ImageNet-200, and ImageNet-
1K datasets shows that PruneFuse achieves superior performance to state-of-the-art active learning
methods while significantly reducing computational costs.

2 RELATED WORKS

Data Selection. Recent studies have explored techniques to improve the efficiency of data selection
in deep learning. Approaches such as Core-Set selection (Sener and Savarese, 2017), BatchBALD
(Kirsch et al., 2019), and Deep Bayesian Active Learning (Gal et al., 2017) aim to select informative
samples using techniques like diversity maximization and Bayesian uncertainty estimation. Parallelly,
the domain of active learning has unveiled strategies, such as uncertainty sampling (Shen et al., 2017;
Sener and Savarese, 2018; Kirsch et al., 2019), expected model change-based approach (Freytag
et al., 2014; Käding et al., 2016), and query-by-density (Sener and Savarese, 2017). These techniques
prioritize samples that can maximize information gain, thereby enhancing model performance with
minimal labeling effort. While these methods achieve efficient data selection, they still require
training large models for the selection process, resulting in significant computational overhead. Other
strategies such as (Killamsetty et al., 2021a) optimize this selection process by matching the gradients
of subset with training or validation set based on orthogonal matching algorithm and (Killamsetty
et al., 2021b) performs meta-learning based approach for online data selection. SubSelNet (Jain
et al., 2024) proposes to approximate a model that can be used to select the subset for various
architectures without retraining the target model, hence reducing the overall overhead. However, it
involves pre-training routine which is very costly and needed again for any change in data or model
distribution. SVP (Coleman et al., 2019) introduces to use small proxy models for data selection
but discards these proxies before training the target model. Additionally, structural discrepancies
between the proxy and target models may result in sub-optimal data selections. Our approach also
builds on this foundation of using small model (which in our case is a pruned model) but it enables
direct integration with the target model through the fusion process. This ensures that the knowledge
acquired during data selection is retained and actively contributes to the training of the original model.
Also, the architectural coherence between the pruned and the target model provides a more seamless
and effective mechanism for data selection, enhancing overall model performance and efficiency.
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Efficient Deep Learning. Efficient deep learning has gained significant attention in recent years.
Methods such as Neural Architecture Search (NAS) (Zoph and Le, 2016; Wan et al., 2020), network
pruning (Han et al., 2015), quantization (Dong et al., 2020; Jacob et al., 2018; Zhou et al., 2016), and
knowledge distillation (Hinton et al., 2015; Yin et al., 2020) have been proposed to reduce model
size and computational requirements. Neural Network pruning has been extensively investigated as a
technique to reduce the complexity of deep neural networks (Han et al., 2015). Pruning strategies can
be broadly divided into Unstructured Pruning (Dong et al., 2017; Guo et al., 2016; Park et al., 2020)
and Structured Pruning (Li et al., 2016; He et al., 2017; You et al., 2019; Ding et al., 2019) based on
the granularity and regularity of the pruning scheme. Unstructured pruning often yields a superior
accuracy-size trade-off whereas structured pruning offers practical speedup and compression without
necessitating specialized hardware. While pruning literature suggests pruning after training (Renda
et al., 2020) or during training (Zhu and Gupta, 2017; Gale et al., 2019), recent research explore
the viability of pruning at initialization (Lee et al., 2018; Frankle et al., 2020; Tanaka et al., 2020;
Frankle et al., 2020; Wang et al., 2020). In our work, we leverage the benefits of model pruning at
initialization to create a small representative model for efficient data selection, allowing for the rapid
identification of informative samples while minimizing computational requirements.

3 BACKGROUND AND MOTIVATION

Efficient data selection is paramount in modern machine learning applications, especially when
dealing with deep neural networks. The subset selection problem can be framed as the challenge of
selecting a subset s from a dataset D = (xi, yi)

n
i=1 such that a model θ trained on s approximates

the performance of the same model trained on the full dataset,

argmin
s

∣∣E(x,y)∈s[l(x, y; θ)]− E(x,y)∈D[l(x, y; θ)]
∣∣ (1)

Where E(x,y)∈s[l(x, y; θ)] is the expected loss on the selected subset s and E(x,y)∈D[l(x, y; θ)] is the
expected loss on whole dataset.

3.1 SUBSET SELECTION FRAMEWORK

Active Learning is widely utilized iterative approach tailored for situations with abundant unlabeled
data. Given a classification task with C classes and a large pool of unlabeled samples U , AL
revolves around selectively querying the most informative samples from U for labeling. The process
commences with an initial set of randomly sampled data s0 from U , which is subsequently labeled.
In subsequent rounds, AL augments the labeled set L by adding newly identified informative samples.
This cycle repeats until a predefined number of labeled samples b are selected.

3.2 NETWORK PRUNING AND ITS RELEVANCE

Network pruning emerges as a potent tool to reduce the complexity of neural networks. By elimi-
nating redundant parameters, pruning preserves vital network functionalities while streamlining its
architecture. Pruning strategies can be broadly categorized into Unstructured Pruning and Structured
Pruning. Unstructured Pruning targets individual weight removal independent of their location. While
it trims down the overall number of parameters, tangible performance gains on conventional hardware
often demand extensive pruning (Park et al., 2016). On the other hand, Structured Pruning emphasizes
the removal of larger constructs like kernels, channels, or layers. Its strength lies in preserving dense
computations, which not only yields a leaner network but also bestows immediate performance im-
provements (Liu et al., 2017). Given its computational benefits, particularly in expediting evaluations
and aligning with hardware optimizations, we opted for Structured Pruning over its counterpart.

Importantly, pruned networks maintain the architectural coherence of the original model. This
coherence makes them inherently more suitable for tasks such as data selection. Unlike heavily
modified or entirely different models that can be used for data selection Coleman et al. (2019); Jain
et al. (2024), the pruned model echoes the original structure, particularly advantageous in recognizing
and prioritizing data samples that resonate with the patterns of the original network. The goal is
clear to develop a data selection strategy that conserves computational resources, minimizes memory
overhead, and potentially improves model generalization.
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4 PRUNEFUSE

In this section, we delineate the PruneFuse methodology. The procedure begins with network pruning
at initialization, offering a streamlined model for data selection. Upon attaining the desired data
subset, the pruned model undergoes a fusion process with the original network, leveraging the
structural coherence between them. The fused model is subsequently refined through knowledge
distillation, enhancing its performance. An overall view of our proposed methodology is illustrated
in Fig. 1. We modify the problem in Eq. 1 as follows:

Let sp be the subset selected using a pruned model θp and s be the subset selected using the original
model θ. We want to minimize:

argmin
sp

∣∣E(x,y)∈sp [l(x, y; θ, θp)]− E(x,y)∈D[l(x, y; θ)]
∣∣ (2)

ϴ

(a) θ trajectory

ϴ𝒑ϴ𝒑
∗

(b) θp trajectory

ϴ𝑭=Fuse(ϴ, ϴ𝒑
∗ ) ϴ

ϴ𝒑
∗

(c) θF with a refined trajectory due to fusion

Figure 2: Evolution of training trajectories. Pruning
θ to θp tailors the loss landscape from 2a to 2b, allowing
θp to converge on an optimal configuration, denoted as
θ∗p . This model, θ∗p , is later fused with the original θ,
which provides better initialization and offer superior
trajectory for θF to follow, as depicted in 2c.

Where E(x,y)∈sp [l(x, y; θ, θp)] is the expected
loss on subset sp (selected using θp) when
evaluated using the original model θ and
E(x,y)∈D[l(x, y; θ)] is the expected loss on full
dataset D when trained using the original model
θ. Furthermore, the subset can be defined
as sp = {(xi, yi) ∈ D | score(xi, yi; θp) ≥ τ}
where score(xi, yi; θp) represents the score as-
signed to each sample selected using θp. The
score function can be based on various strategies
such as Least Confidence, Entropy, or Greedy k-
centers. τ defines the threshold used in the score-
based selection methods (Least Confidence or
Entropy) to determine the inclusion of a sample
in sp.

The goal of the optimization problem is to select
sp such that when θ is trained on it, the perfor-
mance is as close as possible to training θ on the
full dataset D. Algorithm 1 describes the PruneFuse methodology precisely. The key insight is that
the subset sp selected using the pruned model θp is sufficiently representative and informative for
training the original model θ. This is because θp maintains a structure that is essentially identical
to θ, although with some nodes pruned. As a result, there is a strong correlation between θ and θp,
ensuring that the selection made by θp effectively minimizes the loss when θ is trained on sp. By
leveraging this surrogate θp, which is both computationally efficient and structurally coherent with θ,
we can select most representative data out of D to train θ.

4.1 PRUNING AT INITIALIZATION

Pruning at initialization has been demonstrated to uncover superior solutions compared to the
conventional approach of pruning an already trained network followed by fine-tuning (Wang et al.,
2020). Specifically, it shows potential in training time reduction, and enhanced model generalization.
In our methodology, we employ structured pruning due to its benefits such as maintaining the
architectural coherence of the network, enabling more predictable resource savings, and often leading
to better-compressed models in practice.

Consider an untrained neural network, represented as θ. Let each layer ℓ of this network have feature
maps or channels denoted by cℓ, with ℓ ∈ {1, . . . , L}. Channel pruning results in binary masks
mℓ ∈ {0, 1}dℓ

for every layer, where dℓ represents the total number of channels in layer ℓ. The
pruned subnetwork, θp, retains channels described by cℓ ⊙mℓ, where ⊙ symbolizes the element-wise
product. The sparsity p ∈ [0, 1] of the subnetwork illustrates the proportion of channels that are
pruned: p = 1−

∑
ℓ m

ℓ/
∑

ℓ d
ℓ.

To reduce the model complexity, we employ channel pruning procedure prune(C, p). This prunes
to a sparsity p via two primary functions: i) score(C): This operation assigns scores zℓ ∈ Rdℓ

to
every channel in the network contingent on their magnitude (using the L2 norm). The channels
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C are represented as (c1, . . . , cL). and ii) remove(Z, p): This process takes the magnitude scores
Z = (z1, . . . , zL) and translates them into masks mℓ such that the cumulative sparsity of the network,
in terms of channels, is p. We employ a one-shot channel pruning that scores all the channels
simultaneously based on their magnitude and prunes the network from 0% sparsity to p% sparsity
in one cohesive step. Although previous works suggest re-initializing the network to ensure proper
variance (van Amersfoort et al., 2020). However, since the performance increment is marginal, we
retain the weights of the pruned network before training.

4.2 DATA SELECTION VIA PRUNED MODEL

We begin by randomly selecting a small subset of data samples, denoted as s0, from the unlabeled
pool U = {xi}i∈[n] where [n] = {1, ..., n}. These samples are then annotated. The pruned model
θp is trained on this labeled subset s0, resulting in the trained pruned model θ∗p. With θ∗p as our
tool, we venture into the larger unlabeled dataset U to identify samples that are prime candidates for
annotation.

Algorithm 1 PruneFuse
Input: Unlabeled dataset U , Initial labeled dataset s0,
labeled dataset L, original model θ, prune model θp,
fuse model θF , maximum budget b, pruning ratio p,
scored jth data sample Dj .
1: Randomly initialize θ
2: θp ← Prune(θ, p) //structure pruning
3: θ∗p ← Train θp on s0

4: L← s0

5: while |L| ≤ b do
6: Compute score(x; θ∗p) for all x ∈ U
7: Dk = topk[Dj ∈ U ]j∈[k]

8: Query labels yk for selected samples Dk

9: Add (Dk, yk) to L
10: θ∗p ← Train θp on L

11: θF ← Fuse(θ, θ∗p)
12: θ∗F ← Fine-tune θF on L

13: return L, θ∗F

Regardless of the scenario, our method em-
ploys three distinct criteria for data selec-
tion: Least Confidence (LC) (Settles, 2012),
Entropy (Shannon, 1948), and Greedy k-
centers (Sener and Savarese, 2017). Least
Confidence based selection gravitates to-
wards samples where the pruned model ex-
hibits the least confidence in its predic-
tions. The confidence score is essen-
tially the highest probability the model as-
signs to any class label. Thus, the uncer-
tainty score for a given sample xi based on
LC is defined as score(xi; θp)LC = 1 −
maxŷ P (ŷ|xi; θ

∗
p). In Entropy-Based selec-

tion, the entropy of the model’s predictions
is the focal point. Samples with high en-
tropy indicate situations where θ∗p is am-
bivalent about the correct label. For each
sample in U , the uncertainty based on en-
tropy is computed as score(xi; θp)Entropy =
−
∑

ŷ P (ŷ|xi; θ
∗
p) logP (ŷ|xi; θ

∗
p). Subsequently, we select the top-k samples exhibiting the highest

uncertainty scores, proposing them as prime candidates for annotation. The objective of Greedy
k-centres algorithm is to cherry-pick k centers from the dataset such that the maximum distance
of any sample from its nearest center is minimized. The algorithm proceeds in a greedy manner
by selecting the first center arbitrarily and then iteratively selecting the next center as the point
that is furthest from the current set of centers. The selection is mathematically represented as
x = argmaxx∈U minc∈centers d(x, c) where centers is the current set of chosen centers and d(x, c) is
the distance between point x and center c. While various metrics can be employed to compute this
distance, we opt for the Euclidean distance since it is widely used in this context.

4.3 TRAINING OF PRUNED MODEL

Once we have selected the samples from U , they are annotated to obtain their respective labels. These
freshly labeled samples are assimilated into the labeled dataset L. At the start of each training cycle,
a fresh pruned model θp is generated. Training from scratch in every iteration is vital to prevent the
model from developing spurious correlations or overfitting to specific samples (Coleman et al., 2019).
This fresh start ensures that the model learns genuine patterns in the updated labeled dataset without
carrying over potential biases from previous iterations. The training process adheres to a typical
deep learning paradigm. Given the dataset L with samples (xi, yi), the aim is to minimize the loss
function: L(θp, L) = 1

|L|
∑|L|

i=1 Li(θp, xi, yi), where Li denotes the individual loss for the sample xi.
Training unfolds over multiple iterations (or epochs). In each iteration, the weights of θp are updated
using backpropagation with an optimization algorithm like stochastic gradient descent (SGD).
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This process is inherently iterative as in Active Learning. After each round of training, new samples
are chosen, annotated, and the model is reinitialized and retrained from scratch. This cycle persists
until certain stopping criteria, e.g. labeling budget or desired performance, are met. With the
incorporation of new labeled samples at every stage, θ∗p progressively refines its performance,
becoming better suited for the subsequent data selection phase.

4.4 FUSION WITH THE ORIGINAL MODEL

After achieving the predetermined budget, the next phase is to integrate the insights from the trained
pruned model θ∗p into the untrained original model θ. This step is crucial, as it amalgamates the
learned knowledge from the pruned model with the expansive architecture of the original model,
aiming to harness the best of both worlds.

Rationale for Fusion. Traditional pruning and fine-tuning methods often involve training a large
model, pruning it down, and then fine-tuning the smaller model. While this is effective, it does not
fully exploit the potential benefits of the larger, untrained model. The primary reason is that the
pruning process might discard useful structures and connections within the original model that were
not yet leveraged during initial training. By fusing the trained pruned model with the untrained
original model, we aim to create a model that combines the learned knowledge by θ∗p with the broader,
unexplored model θ.

The Fusion Process. Fusion is executed by transferring the weights from the trained pruned model’s
weight matrix θ∗p to the corresponding locations within the weight matrix of the untrained original
model θ. This results in a new, fused weight matrix:

θF = Fuse(θ, θ∗p)

Let’s represent a model θ as a sequence of layers, where each layer L consists of filters (for CNNs).
We can denote the ith filter of layer j in model θ as F θ

i,j . Given: θ is the original untrained model
and θ∗p is the trained pruned model. For a specific layer j, θ has a set of n filters {F θ

1,j , F
θ
2,j , ...F

θ
n,j}

and θ∗p has a set of m filters {F θ∗
p

1,j , F
θ∗
p

2,j , ...F
θ∗
p

m,j} where m ≤ n due to pruning. The fusion process
for layer j can be mathematically represented as:

F θF
i,j =

{
F

θ∗
p

i,j if F
θ∗
p

i,j exists
F θ
i,j otherwise

Where F θF
i,j is the ith filter of layer j in the fused model θF . Another approach is that the pruned

weights are dispersed over the whole network (an expansion fusion), however, it requires a more
complex mapping function. Assuming we have a dispersion function D that maps the filters of θ∗p to
multiple filters in θ, the fusion can be represented as:

F θF
i,j =

{
D(F

θ∗
p

i,j ) if F
θ∗
p

i,j exists
F θ
i,j otherwise

Here, D is the dispersion function that averages weights, distributes them across multiple filters, or
uses other strategies to disperse the pruned weights across the original model’s architecture.

Advantages of Retaining Unaltered Weights: By copying weights from the trained pruned model
θ∗p into their corresponding locations within the untrained original model θ, and leaving the remaining
weights of θ yet to be trained, we create a unique blend. The weights from θ∗p encapsulate the
knowledge acquired during training, providing a foundation. Meanwhile, the rest of the untrained
weights in θ still have their initial values, offering an element of randomness. This duality fosters a
richer exploration of the loss landscape during subsequent training. Fig. 2 illustrates the transforma-
tion in training trajectories resulting from the fusion process. The trained weights of θ∗p provides a
better initialization, while the unaltered weights serve as gateways to unexplored regions in the loss
landscape. This strategic combination in the fused model θF enables the discovery of potentially
superior solutions that neither the pruned nor the original model might have discovered on their own.

4.5 REFINEMENT VIA KNOWLEDGE DISTILLATION

After the fusion process, our resultant model, θF , embodies a synthesis of insights from both the
trained pruned model θ∗p and the original model θ. Although we show that PruneFuse based on
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discussed strategy above outperforms baseline active learning, to further optimize and enhance this
amalgamated knowledge, we engage in a fine-tuning phase making use of Knowledge Distillation
(KD). KD traditionally facilitates a student model to learn and emulate the behavior of a large
complex teacher model. While this technique has been employed in various scenarios, its application
in our context is unique and particularly advantageous. Given the seamless integration capability
of our pruned model, KD stands as a robust tool to complement the learning process. In essence,
it’s not merely about transferring knowledge; it’s about leveraging the insights from θ∗p to enrich the
training of fused model θF . During the fine-tuning phase, we can make use of two losses. The first
is the Cross-Entropy Loss, which quantifies the divergence between the predictions of θF and the
actual labels in dataset L. The second is the Distillation Loss, which measures the difference in the
softened logits of θF and θ∗p . These softened logits are derived by tempering logits of θ∗p , which in our
case is the teacher model, with a temperature parameter before applying the softmax function. The
composite loss for the fine-tuning phase is formulated as a weighted average of the Cross-Entropy
and Distillation losses. The iterative enhancement of θF is governed by:

θ
(t+1)
F = θ

(t)
F − α∇

θ
(t)
F

(
λLCross Entropy(θ

(t)
F , L) + (1− λ)LDistillation(θ

(t)
F , θ∗p)

)
Here α represents the learning rate, while λ functions as a coefficient to balance the contributions of
the two losses. Incorporating KD in the fine-tuning phase provides a structured approach to harness
the insights of the pruned model θ∗p . By doing so, we aim to ensure that the fused model θF not only
retains the trained weights of pruned model but also reinforce this knowledge iteratively, optimizing
the performance of θF in subsequent tasks.

4.6 PRUNEFUSE V2: ITERATIVE PRUNING OF FUSED MODEL

Algorithm 2 PruneFuse V2: Iterative Fused
Pruning for Efficient Data Selection
Input: AL rounds R, Sync interval Tsync, U , s0, L,
θ, θp, θF , b, p.
1: θp ← Prune(θ, p) // Random pruning
2: θ∗p ← Train θp on s0

3: L← s0

4: for r = 1 to R do
5: Select Dk from U using score(x; θ∗p)
6: Add (Dk, yk) to L rounds
7: Train θ∗p on L
8: if r%Tsync == 0 then
9: θF ← Fuse(θ, θ∗p) // Fuse after Tsync

10: θ∗F ← Fine-tune θF on L
11: θp ← Prune(θ∗F , p) // Prune fused model
12: θ∗p ← Fine-tune θp on L

13: return L, θ∗F

PruneFuse V2 introduces a strategy to update
pruned model, θp, from the trained fused model
θ∗F at predefined intervals Tsync. Algorithm 2
describes the PruneFuse V2 methodology pre-
cisely. In each active learning cycle, θp, ob-
tained by pruning a randomly initialized net-
work, is trained on the labeled dataset L and sub-
sequently employed to score the unlabeled data
U . At every Tsync cycle, the pruned model θp, is
obtained by pruning the trained fused model θ∗F ,
which will be fine-tune with labeled dataset L to
get θ∗p and then employed to score the unlabeled
data U in the subsequent rounds.

By periodically synchronizing the pruned model
with the fused model at regular Tsync intervals,
PruneFuse V2 effectively balances computa-
tional efficiency with data selection precision
compared to PruneFuse Algorithm 1. This itera-
tive refinement process enables the pruned model to leverage the robust architecture of fused model,
allowing it to evolve dynamically with each cycle and leading to continuous performance improve-
ments. As a result, PruneFuse V2 achieves a more optimal trade-off between accuracy and efficiency
compared to the Algorithm 1, enhancing the active learning process while maintaining computational
viability. We provide detailed error analysis of this strategy in Supplementary Materials.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. The effectiveness of our approach is assessed on different image classification datasets;
CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100 (Krizhevsky et al., 2009), TinyImageNet-200 (Le
and Yang, 2015), and ImageNet-1K (Deng et al., 2009) with an input size of 32×32×3 for CIFAR-10
and CIFAR-100, 64× 64× 3 for TinyImageNet, and 224× 224× 3 for ImageNet-1K. CIFAR-10 is
partitioned into 50,000 training and 10,000 test samples, CIFAR-100 contains 100 classes and has
500 training and 100 testing samples per class, whereas TinyImageNet-200 contains 200 classes with
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Method Params

CIFAR-10 CIFAR-100

Params

Tiny-ImageNet-200 ImageNet-1K
Label Budget (b) Label Budget (b) Label Budget (b) Label Budget (b)

(Million) 10% 20% 30% 40% 50% 10% 20% 30% 40% 50% (Million) 10% 20% 30% 40% 50% 10% 20% 30% 40% 50%
Baseline 0.85 80.53 87.74 90.85 92.24 93.00 35.99 52.99 59.29 63.68 66.72 25.56 14.86 33.62 43.96 49.86 54.65 52.97 64.52 69.30 71.98 73.56

(AL)

PruneFuse 0.21 80.92 88.35 91.44 92.77 93.65 40.26 53.90 60.80 64.98 67.87 6.10 18.71 39.70 47.41 51.84 55.89 55.03 65.12 69.72 72.07 73.86
(p = 0.5)

PruneFuse 0.13 80.58 87.79 90.94 92.58 93.08 37.82 52.65 60.08 63.7 66.89 3.92 19.25 38.84 47.02 52.09 55.29 54.69 65.13 69.74 72.48 74.00
(p = 0.6)

PruneFuse 0.07 80.19 87.88 90.70 92.44 93.40 36.76 52.15 59.33 63.65 66.84 2.23 18.32 39.24 46.45 52.02 55.63 53.73 64.43 68.95 71.81 73.84
(p = 0.7)

PruneFuse 0.03 80.11 87.58 90.50 92.42 93.32 36.49 50.98 58.53 62.87 65.85 1.02 18.34 37.86 47.15 51.77 55.18 53.08 64.00 69.00 71.79 73.64
(p = 0.8)

Table 1: Performance Comparison of Baseline and PruneFuse on CIFAR-10, CIFAR-100 and Tiny ImageNet-
200. This table summarizes the test accuracy of final models (original in case of AL and Fused in PruneFuse) for
various pruning ratios (p) and labeling budgets(b). Params corresponds to the number of parameters of the data
selector model. Least Confidence is used as a metric for subset selection and different architectures (ResNet-56
for CIFAR-10 and CIFAR-100 while ResNet-50 for Tiny-ImageNet-200 and ImageNet-1K) are utilized.
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Figure 3: Computation Comparison of PruneFuse and Baseline (Active Learning). This figure illustrates
the total number of FLOPs utilized by PruneFuse, compared to the baseline Active Learning method, for selecting
subsets with specific labeling budgets b = 10%, 30%, 50%. The experiments are conducted on the CIFAR-10
dataset using the ResNet-56 architecture. Subfigures (a), (b), (c), and (d) correspond to different pruning ratios
(0.5, 0.6, 0.7, and 0.8, respectively).

500 training, 50 validation, and 50 test samples per class. ImageNet-1K, a more challenging dataset,
consists of 1,000 classes with approximately 1.2 million training images and 50,000 validation images,
providing a comprehensive benchmark for evaluating large-scale image classification models.

Implementation Details. We used ResNet-50, ResNet-56, ResNet-110, and ResNet-164 architecture
in our experiments. We pruned these architectures using the Torch-Prunnig library (Fang et al., 2023)
for different pruning ratios p = 0.5, 0.6, 0.7, and 0.8 to get the pruned architectures. We trained the
model for 181 epochs following the setup in Coleman et al. (2019) for CIFAR-10 and CIFAR-100
and for 100 epochs for TinyImageNet-200 and ImageNet-1K. We use the mini-batch of 128 for
CIFAR-10 and CIFAR-100 and 256 for TinyImageNet-200 and ImageNet-1K. For all the experiments
SGD is used as an optimizer (further details are provided in Suplementary Materials A.3). We took
Active Learning (AL) as a baseline for the proposed technique and initially, we started by randomly
selecting 2% of the data. For the first round, we added 8% from the unlabeled set, then 10% in each
subsequent round, until reaching the label budget, b. After each round, we retrained the models from
scratch, as described in the methodology. All experiments are carried out independently 3 times and
then the average is reported.

5.2 RESULTS AND DISCUSSIONS

Main Experiments. We compare the performance of the PruneFuse with the baseline AL across
different model architectures, datasets, labeling budgets, and data selection metrics (detailed results
are provided in Supplementary Materials A.4). These experiments aim to demonstrate superior
generalization performance and computational efficiency. Table 1 summarizes the performance
of baseline and different variants of PruneFuse on various datasets. Results show that PruneFuse
consistently outperforms the baseline in most cases. The accuracy advantage in case of high pruning
ratio, e.g. in the case of p = 0.7, demonstrates the effectiveness of superior data selection performance
and fusion. Fig. 3 (a), (b), (c), and (d) shows the trade-off between accuracy and the computational
complexity of the baseline and PruneFuse variants in terms of Floating Point Operations (FLOPs)
for different labeling budgets. The FLOPs are computed for the whole training duration of the
pruned network and the selection process for a given budget. Different variants of PruneFuse, with
pruning ratios p = 0.5, p = 0.6, p = 0.7, and p = 0.8, offer users the flexibility to choose a version
based on their computational resources. For instance, PruneFuse (p = 0.8) requires significantly
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Method Params Label Budget (b), Tsync = 1 Label Budget (b), Tsync = 2

(Million) 20% 30% 40% 50% 60% 20% 30% 40% 50% 60%
Baseline 0.85 88.51 91.46 93.04 93.61 93.83 88.51 91.46 93.04 93.61 93.83

PruneFuse V2 (p = 0.5) 0.21 88.52 91.76 93.15 93.78 93.90 88.59 91.47 93.05 93.84 93.88
PruneFuse V2 (p = 0.6) 0.13 88.53 91.71 93.08 93.67 93.90 88.14 91.47 92.87 93.57 93.79
PruneFuse V2 (p = 0.7) 0.07 88.37 91.47 93.00 93.33 93.69 88.41 91.51 92.67 93.46 93.72

Table 2: Performance of PruneFuse V2 with Tsync = 1 and Tsync = 2 for different pruning ratios and label
budgets.

Method Label Budget (b)
10% 20% 30% 40% 50%

Baseline (AL) 80.53 87.74 90.85 92.94 93.00

BALD 80.61 88.11 91.21 92.98 93.36

SVP 80.76 87.31 90.77 92.59 92.95

PruneFuse 80.92 88.35 91.44 92.77 93.65
PruneFuse V2 81.23 88.52 91.76 93.15 93.78

PruneFuse V2 + BALD 80.71 88.38 91.44 93.16 93.58

Table 3: Comparison with Baselines for Resnet-56
on Cifar-10.

Method Selection Label Budget (b)
Size (k) 20% 40% 60%

Baseline (AL) 5,000 88.51 93.04 93.83

PruneFuse V2 5,000 88.82 93.15 93.90
Baseline (AL) 10,000 86.92 92.51 93.81

PruneFuse V2 10,000 87.49 93.11 94.04

Table 4: Ablation study of k on Cifar-10 using
ResNet-56 with (p = 0.5).

lower computational resources while still achieving good accuracy performance. PruneFuse V2
(p = 0.5) strikes an effective balance between accuracy and computation. It consistently provides high
accuracy with moderate FLOPs, making it an ideal choice for scenarios where both performance and
computational efficiency are critical. Compared to the baseline AL, both PruneFuse and PruneFuse
V2 demonstrates superior performance at every label budget, all while reducing the computational
cost. Detailed Complexity Analysis and Error Analysis for PruneFuse are provided in Supplementary
Materials A.1 and A.2, respectively.
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Figure 4: Comparison of PruneFuse with SVP. Scat-
ter plot shows final accuracy on target model against
the model size for different ResNet models on CIFAR-
10, b = 50%. (a) shows ResNet-14 (with p = 0.5 and
p = 0.6) and ResNet-8 models are used as data selec-
tors for PruneFuse and SVP, respectively. While in (b),
PruneFuse utilizes ResNet20 (i.e. p = 0.5 and p = 0.6)
and SVP utilizes ResNet-8 models.

PruneFuse V2. We further evaluate PruneFuse
V2 and compared it’s efficacy against baseline
AL. We conducted experiments by varying the
synchronization interval Tsync to evaluate the
impact of the frequency at which the pruned
model is fused with the original model. Specif-
ically, we used Tsync = 1, where the pruned
model is updated from the trained fused model
after every round, and Tsync = 2, where this up-
date happens after every two rounds. For a fair
comparison, we modified the baseline to con-
tinue retraining the network from the previous
round, rather than reinitializing it. While this
provided a slight improvement for the baseline,
PruneFuse still outperformed it by a significant
margin.

As shown in Table 2, Tsync = 1 leads to better performance due to more frequent updates and
refinements of the pruned model. However, Tsync = 2 also shows strong results with fewer updates,
offering a balance between computational efficiency and accuracy. At higher label budgets (e.g., 60%),
both approaches perform similarly, indicating that PruneFuse can adapt to different synchronization
intervals without significant performance degradation.

These results highlight that while more frequent updates Tsync = 1 results in better data selection,
Tsync = 2 offers a more computationally efficient alternative without compromising much on
accuracy. This flexibility makes PruneFuse an effective solution for a variety of resource-constrained
scenarios.

Comparison with Baselines. Table 3 delineates a performance comparison of PruneFuse with
baseline techniques, including SVP and BALD, across various labeling budgets b for efficient training
of a target model (ResNet-56) on the CIFAR-10 dataset. Here, SVP employs a ResNet-20 as its data
selector, with a model size of 0.26 M. In contrast, PruneFuse uses a 50% pruned ResNet-56, reducing
its data selector size to 0.21 M. BALD similar to baseline AL, uses ResNet-56 for data selection based
on Bayesian uncertainty. Performance metrics demonstrate that PruneFuse consistently outperforms
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Figure 5: Impact of Model Fusion on PruneFuse Performance: This figure compares the accuracy over
epochs between fused and non-fused training approaches within the PruneFuse framework. Experiments are
conducted using the ResNet-56 on the CIFAR-10. Subfigures (a), (b) and (c) correspond to pruning ratios
p = 0.5, 0.6 and 0.7, respectively.

SVP across label budgets ranging from 10% to 50%. For example, PruneFuse achieves 80.92%
accuracy at a 10% label budget and peaks at 93.65% at 50%, compared to SVP’s 80.76% and
92.95%, respectively. Fig. 4 further illustrates the comparison in terms of model sizes. The
enhanced PruneFuse V2 shows even greater performance, particularly with Tsync = 1, where more
frequent updates enable it to reach 93.78% accuracy at 50%. This highlights the efficiency of
PruneFuse’s data selection and fusion process over traditional methods like SVP. BALD, while
demonstrating competitive results at higher label budgets (e.g., 93.36% at 50%), remains slightly
behind PruneFuse’s performance. Nevertheless, BALD can be seamlessly integrated with PruneFuse.
This integration, seen in PruneFuse V2 + BALD, capitalizes on the strengths of both methods,
yielding improved performance. Notably, PruneFuse V2 + BALD achieves 93.16% accuracy at a
40% label budget, illustrating the potential of combining these approaches for even better results in
high-budget scenarios.

Additional Experiments and Ablation Studies. Method Selection Metric Label Budget (b)
10% 20% 30% 40% 50%

Baseline
(AL)

Least Conf 38.41 51.39 65.53 70.07 73.05
Entropy 36.65 57.58 64.98 69.99 72.90
Random 39.31 57.53 63.84 67.75 70.79
Greedy k 39.76 57.40 65.20 69.25 72.91

PruneFuse
(p = 0.5)

Least Conf 42.88 59.31 66.95 71.45 74.32
Entropy 42.99 59.32 66.83 71.18 74.43
Random 43.72 58.58 64.93 68.75 71.63
Greedy k 43.61 58.38 66.04 69.83 73.10

Table 5: Effect of Different Data Selection Metrics
on CIFAR-100 using ResNet-164 architecture.

Fig. 5 demonstrates the effect of fusion across
various pruning ratios, the models trained with
fusion in-place perform better than those trained
without fusion, achieving higher accuracy levels
at an accelerated pace. The rapid convergence
is most notable in initial training phases, where
fusion model benefits from the initialization pro-
vided by the integration of weights from a trained
pruned model θ∗p with an untrained model θ. The strategic retention of untrained weights introduces
a beneficial stochastic component to the training process, enhancing the model’s ability to explore
new regions of the parameter space. This dual capability of exploiting prior knowledge and exploring
new configurations enables the proposed technique to consistently outperform, making it particularly
beneficial in scenarios with sparse label data. Table 4 demonstrates the effect of selection size k.
PruneFuse V2 consistently outperforms the Baseline AL in terms of selection size indicating the
efficacy of the data selection. The impact of different selection metrics (Least Confidence, Entropy,
Random, and Greedy K Centers) is presented in Table 5 across both the Baseline and PruneFuse
methods. In both cases, the Least Confidence metric surfaces as particularly effective in optimizing
label utilization and model performance. The results show that regardless of the label budget and
strategy utilized for data selection, PruneFuse consistently performs superior as compared to Baseline.
Ablation study of Knoweledge distillation is provides in Suplementary Materials A.6.

6 CONCLUSION

In this work, we present PruneFuse, a novel strategy that integrates pruning with network fusion
to optimize the data selection pipeline for deep learning. PruneFuse leverages a small pruned
model for data selection, which then seamlessly fuses with the original model, providing fast and
better generalization while significantly reducing computational costs. Our extensive evaluations
across CIFAR-10, CIFAR-100, Tiny-ImageNet-200, and ImageNet-1K demonstrate that PruneFuse
consistently outperforms existing baselines, establishing its efficiency and efficacy. PruneFuse offers
a scalable, practical, and flexible solution to enhance the training efficiency of neural networks,
particularly in resource-constrained settings.
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A SUPPLEMENTARY MATERIALS

This supplementary material provides additional details, analyses, and results to complement the
main paper. The content is organized into the following subsections:

1. Complexity Analysis (A.1): A detailed breakdown of the computational complexity of
PruneFuse and its components.

2. Error Analysis for PruneFuse (A.2): An error analysis outlining theoretical guarantees for
the proposed framework.

3. Implementation Details (A.3): Specific details about the experimental setup, hyperparame-
ters, and configurations used in our experiments.

4. Performance Comparison with Different Datasets, Selection Metrics, and Architectures
(A.4): Results demonstrating PruneFuse’s adaptability across datasets and architectures.

5. Ablation Study of Fusion (A.5): Analysis of the impact of the fusion process on PruneFuse’s
performance.

6. Ablation Study of Knowledge Distillation in PruneFuse (A.6): An evaluation of the role
of knowledge distillation in improving performance.

7. Comparison with SVP (A.7): A comparison highlighting differences and improvements
over the SVP baseline.

8. Ablation Study on the Number of Selected Data Points (k) (A.8): Investigation of how
varying k affects PruneFuse’s performance.

9. Impact of Early Stopping on Performance (A.9): Evaluation of the utility of early stopping
when integrated with PruneFuse.

10. Performance Comparison Across Architectures and Datasets (A.10): Additional results
comparing PruneFuse’s performance on various architectures and datasets.

11. Performance at Lower Pruning Rates (A.11): Results demonstrating PruneFuse’s effec-
tiveness at lower pruning rates.

12. Comparison with Recent Coreset Selection Techniques (A.12): Evaluation of PruneFuse’s
performance with recent coreset selection methods.

13. Effect of Various Pruning Strategies and Criterion (A.13): Analysis of different pruning
techniques and criteria on PruneFuse’s performance.

14. Detailed Runtime Analysis of PruneFuse (A.14): A detailed runtime analysis of PruneFuse
compared to baseline methods.

Each section provides additional insights, evaluations, and experiments to further validate and explain
the effectiveness of the proposed approach.
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A.1 COMPLEXITY ANALYSIS

Given P and N represent the total number of parameters in the pruned and dense model, where
P ≪ N , the computational costs can be summarized as follows:

Initial Training on s0:

PruneFuse: O (|s0| × P × T ) +O (P × logP ) one time pruning cost
Baseline AL: O (|s0| ×N × T )

Data selection round with current labeled pool L:

PruneFuse: O (|L| × P × T ) +O (|U | × P ) selection
Baseline AL: O (|L| ×N × T ) +O (|U | ×N) selection

Training of the final model on the final labeled set L:

PruneFuse: O (|L| ×N × T ) +O (P ) one time fusion cost
Baseline AL: O (|L| ×N × T )

Total training complexity:

PruneFuse: O (|s0| × P × T ) +O (P × logP ) +R× [O (|L| × P × T ) +O (|U | × P )]

+O (|L| ×N × T ) +O(P )

PruneFuse V2: O (|s0| × P × T ) +O (P × logP ) +R× [O (|L| × P × T ) +O (|U | × P )]

+ Fsync ∗ [O (|L| ×N × T ) +O(P ) +O (|L| × P × T ) +O (P × logP )]

+O (|L| ×N × T ) +O(P )

Baseline AL: O (|s0| ×N × T ) +R× [O (|L| ×N × T ) +O (|U | ×N)] +O (|L| ×N × T )

Here T represents the total number of Epochs for a training round of AL which in our case is set
to 181. U is the whole unlabeled dataset and R represents the total number of AL rounds. Fsync

represent the frequency of iterative pruning based on the fused model.

We can see that the major training costs in Active Learning (AL) arise from the repeated use of a large,
dense model, which significantly increases computational expenses, especially across multiple rounds
of data selection. By using a smaller surrogate (pruned model) for these rounds, as implemented in
PruneFuse, the training cost and overall computation are reduced substantially. This approach leads
to a more efficient and cost-effective data selection process, allowing for better resource utilization
while maintaining high performance.

A.2 ERROR ANALYSIS FOR PRUNEFUSE

We analyze the error in PruneFuse by decomposing it into two components: selection error, arising
from training the pruned model on a subset sp of the full dataset D, and pruning error, resulting from
the reduced capacity of the pruned model θp. We demonstrate how the synchronization frequency
Fsync controls both errors and present a convergence result under reasonable assumptions.

The optimization problem is formulated as:

min
sp

∣∣E(x,y)∈sp [l(x, y; θp)]− E(x,y)∈D [l(x, y; θ)]
∣∣ (3)

where sp ⊂ D is the selected subset, θp is the pruned model, and θ is the full model. Our goal is
to minimize the difference in expected loss between the pruned model on the subset sp and the full
model on the full dataset D.
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We make the following assumptions to formalize the error bounds:

Assumption 1. The loss function l(x, y; θ) is Lipschitz continuous with respect to the model parame-
ters θ, with constant L:

|l(x, y; θ1)− l(x, y; θ2)| ≤ L∥θ1 − θ2∥

Assumption 2. The pruned subset sp is assumed to be an i.i.d. sample from the full dataset D, and
the expected loss over sp approximates that over D with high probability. Specifically, there exists a
constant δ such that: ∣∣E(x,y)∈sp [l(x, y; θ)]− E(x,y)∈D[l(x, y; θ)]

∣∣ ≤ δ

Assumption 3. After each synchronization step, the pruned model θp is updated to reduce its distance
from the full model θ. Specifically, the synchronization reduces the distance by a factor α, where
0 < α < 1, meaning:

∥θt+1
p − θ∥ ≤ α∥θtp − θ∥

Selection Error. The selection error, denoted Esel, arises from training the pruned model on the
subset sp rather than the full dataset D. Using assumptions 1 and 2, we can bound this error as:

Esel ≤ L∥θp − θ∥+ δ (4)

where δ is the subset approximation error and L is the Lipschitz constant of the loss function.

Furthermore, since θp’s representational power improves with synchronization, we express ∥θp − θ∥
as decreasing over time due to synchronization. The representational power of θp improves with
synchronization, so:

Esel ≤
C0

Fsync
L+ δ (5)

Where C0 represents the initial distance between the pruned model θp and the full model θ and Fsync

is the frequency of synchronization.

Pruning Error. The pruning error, denoted Eprune, arises from the reduced capacity of the pruned
model θp. By Assumption 1 and 3, the pruning error can be controlled by the distance between θp
and θ. The error is reduced after each synchronization step as:

Eprune ≤
Cθ

Fsync
(6)

where Cθ is a constant reflecting the magnitude of the pruning error, and Fsync is the synchronization
frequency. More frequent synchronization decreases the pruning error.

Total Error. The total error Etotal is the sum of the selection error Esel and the pruning error Eprune.
Substituting the bounds for each component, we obtain:

Etotal = Esel + Eprune ≤
C0L+ Cθ

Fsync
+ δ (7)

Furthermore, under assumption A3, synchronization leads to the following convergence result for the
distance between θp and θ:

∥θtp − θ∥ ≤ αt∥θ0p − θ∥ (8)

where t is the number of synchronization steps. Thus, after t steps, the pruned model converges to
the full model with an exponential rate controlled by α.

The total error decreases as the synchronization frequency Fsync increases. Moreover, under reasonable
assumptions, the pruned model θp converges to the full model θ over time with an exponential rate.
The bound shows that synchronization not only reduces the pruning error but also improves the
pruned model’s ability to generalize on the selected subset, minimizing the selection error.
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(a) p = 0.5, b = 10% (b) p = 0.5, b = 30% (c) p = 0.5, b = 50%

Figure 6: Ablation Study of Fusion on PruneFuse (p = 0.5). Experiments are performed on ResNet-56
architecture with CIFAR-10.

A.3 IMPLEMENTATION DETAILS.

We used ResNet-50, ResNet-56, ResNet-110, and ResNet-164 architecture in our experiments. We
pruned these architectures using the Torch-Prunnig library (Fang et al., 2023) for different pruning
ratios p = 0.5, 0.6, 0.7, and 0.8 to get the pruned architectures. For CIFAR-10 and CIFAR-100, the
models were trained for 181 epochs, with an epoch schedule of [1, 90, 45, 45], and corresponding
learning rates of [0.01, 0.1, 0.01, 0.001], using a momentum of 0.9 and weight decay of 0.0005.
For TinyImageNet-200 and ImageNet-1K, the models were trained over an epoch schedule of [1,
1, 1, 1, 1, 25, 30, 20, 20], with learning rates of [0.0167, 0.0333, 0.05, 0.0667, 0.0833, 0.1, 0.01,
0.001, 0.0001], a momentum of 0.9, and weight decay of 0.0001. We use the mini-batch of 128 for
CIFAR-10 and CIFAR-100 and 256 for TinyImageNet-200 and ImageNet-1K. For all the experiments
SGD is used as an optimizer. We set the knowledge distillation coefficient λ to 0.3. We took Active
Learning (AL) as a baseline for the proposed technique and initially, we started by randomly selecting
2% of the data. For the first round, we added 8% from the unlabeled set, then 10% in each subsequent
round, until reaching the label budget, b. After each round, we retrained the models from scratch, as
described in the methodology. All experiments are carried out independently 3 times and then the
average is reported.

A.4 PERFORMANCE COMPARISON WITH DIFFERENT DATASETS, SELECTION METRICS, AND
ARCHITECTURES

To comprehensively evaluate the effectiveness of PruneFuse, we conducted additional experiments
comparing its performance with baseline utilizing other data selection metrics such as Least Confi-
dence, Entropy, and Greedy k-centers. Results are shown in Tables 6, 7, and 8 for various architectures
and labeling budgets. In all cases, our results demonstrate that PruneFuse mostly outperforms the
baseline using these traditional metrics across various datasets and model architectures, highlighting
the robustness of PruneFuse in selecting the most informative samples efficiently.

A.5 ABLATION STUDY OF FUSION

The fusion process is a critical component of the PruneFuse methodology, designed to integrate
the knowledge gained by the pruned model into the original network. Our experiments reveal that
models trained with the fusion process exhibit significantly better performance and faster convergence
compared to those trained without fusion. By initializing the original model with the weights from
the trained pruned model, the fused model benefits from an optimized starting point, which enhances
its learning efficiency and generalization capability. Fig. 6, 7 and 8 illustrates the training trajectories
and accuracy improvements when fusion takes places, demonstrating the tangible benefits of this
initialization. These results underscore the importance of the fusion step in maximizing the overall
performance of the PruneFuse framework.

A.6 ABLATION STUDY OF KNOWLEDGE DISTILLATION IN PRUNEFUSE

Table 10 demonstrates the effect of Knowledge Distillation on the PruneFuse technique relative to the
baseline Active Learning (AL) method across various experimental configurations and label budgets
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Method Selection Metric Label Budget (b)
10% 20% 30% 40% 50%

Baseline
AL

Least Conf 80.53 ± 0.20 87.74 ± 0.15 90.85 ± 0.11 92.24 ± 0.16 93.00 ± 0.11
Entropy 80.14 ± 0.41 87.63 ± 0.10 90.80 ± 0.36 92.51 ± 0.34 92.98 ± 0.03
Random 78.55 ± 0.38 85.26 ± 0.21 88.13 ± 0.35 89.81 ± 0.15 91.20 ± 0.05
Greedy k 79.63 ± 0.83 86.46 ± 0.27 90.09 ± 0.20 91.9 ± 0.08 92.80 ± 0.08

PruneFuse
p = 0.5

Least Conf 80.92 ± 0.41 88.35 ± 0.33 91.44 ± 0.15 92.77 ± 0.03 93.65 ± 0.14
Entropy 81.08 ± 0.16 88.74 ± 0.10 91.33 ± 0.04 92.78 ± 0.04 93.48 ± 0.04
Random 80.43 ± 0.27 86.28 ± 0.37 88.75 ± 0.17 90.36 ± 0.02 91.42 ± 0.12
Greedy k 79.85 ± 0.68 86.96 ± 0.38 90.20 ± 0.16 91.82 ± 0.14 92.89 ± 0.14

PruneFuse
p = 0.6

Least Conf 80.58 ± 0.33 87.79 ± 0.20 90.94 ± 0.13 92.58 ± 0.31 93.08 ± 0.42
Entropy 80.96 ± 0.16 87.89 ± 0.45 91.22 ± 0.28 92.56 ± 0.19 93.19 ± 0.26
Random 79.19 ± 0.57 85.65 ± 0.29 88.27 ± 0.18 90.13 ± 0.24 91.01 ± 0.28
Greedy k 79.54 ± 0.48 86.16 ± 0.60 89.50 ± 0.29 91.35 ± 0.06 92.39 ± 0.22

PruneFuse
p = 0.7

Least Conf 80.19 ± 0.45 87.88 ± 0.05 90.70 ± 0.21 92.44 ± 0.24 93.40 ± 0.11
Entropy 79.73 ± 0.87 87.85 ± 0.25 90.94 ± 0.29 92.41 ± 0.23 93.39 ± 0.20
Random 78.76 ± 0.23 85.50 ± 0.11 88.31 ± 0.19 89.94 ± 0.24 90.87 ± 0.17
Greedy k 78.93 ± 0.15 85.85 ± 0.41 88.96 ± 0.07 90.93 ± 0.19 92.23 ± 0.08

PruneFuse
p = 0.8

Least Conf 80.11 ± 0.28 87.58 ± 0.14 90.50 ± 0.08 92.42 ± 0.41 93.32 ± 0.14
Entropy 79.83 ± 1.13 87.50 ± 0.54 90.52 ± 0.24 92.24 ± 0.13 93.15 ± 0.10
Random 78.77 ± 0.66 85.64 ± 0.13 88.45 ± 0.33 89.88 ± 0.14 91.21 ± 0.43
Greedy k 78.23 ± 0.37 85.59 ± 0.25 88.60 ± 0.19 90.11 ± 0.11 91.31 ± 0.08

(a) CIFAR-10 using ResNet-56 architecture.

Method Selection Metric Label Budget (b)
10% 20% 30% 40% 50%

Baseline
AL

Least Conf 35.99 ± 0.80 52.99 ± 0.56 59.29 ± 0.46 63.68 ± 0.53 66.72 ± 0.33
Entropy 37.57 ± 0.51 52.64 ± 0.76 58.87 ± 0.38 63.97 ± 0.17 66.78 ± 0.27
Random 37.06 ± 0.64 51.62 ± 0.21 58.77 ± 0.65 62.05 ± 0.02 64.63 ± 0.16
Greedy k 38.28 ± 1.11 52.43 ± 0.24 58.96 ± 0.16 63.56 ± 0.30 66.30 ± 0.31

PruneFuse
p = 0.5

Least Conf 40.26 ± 0.95 53.90 ± 1.06 60.80 ± 0.44 64.98 ± 0.4 67.87 ± 0.17
Entropy 38.59 ± 1.67 54.01 ± 1.17 60.52 ± 0.19 64.83 ± 0.27 67.67 ± 0.33
Random 39.43 ± 0.99 54.60 ± 0.64 60.13 ± 0.96 63.91 ± 0.39 66.02 ± 0.3
Greedy k 39.83 ± 2.44 54.35 ± 0.41 60.40 ± 0.23 64.22 ± 0.25 66.89 ± 0.16

PruneFuse
p = 0.6

Least Conf 37.82 ± 0.83 52.65 ± 0.4 60.08 ± 0.22 63.7 ± 0.25 66.89 ± 0.46
Entropy 38.01 ± 0.79 51.91 ± 0.56 59.18 ± 0.31 63.53 ± 0.25 66.88 ± 0.18
Random 38.27 ± 0.81 52.85 ± 1.22 58.68 ± 0.68 62.28 ± 0.22 65.2 ± 0.48
Greedy k 38.44 ± 0.98 52.85 ± 0.74 59.36 ± 0.57 63.36 ± 0.75 66.12 ± 0.38

PruneFuse
p = 0.7

Least Conf 36.76 ± 0.63 52.15 ± 0.53 59.33 ± 0.17 63.65 ± 0.36 66.84 ± 0.43
Entropy 36.95 ± 1.03 50.64 ± 0.33 58.45 ± 0.36 62.27 ± 0.27 65.88 ± 0.28
Random 37.30 ± 1.24 51.66 ± 0.21 58.79 ± 0.13 62.67 ± 0.29 65.08 ± 0.08
Greedy k 38.88 ± 2.18 52.02 ± 0.77 58.66 ± 0.19 61.39 ± 0.11 65.28 ± 0.65

PruneFuse
p = 0.8

Least Conf 36.49 ± 0.20 50.98 ± 0.54 58.53 ± 0.50 62.87 ± 0.13 65.85 ± 0.32
Entropy 36.02 ± 1.30 51.23 ± 0.23 57.44 ± 0.11 62.65 ± 0.46 65.76 ± 0.30
Random 37.37 ± 0.85 52.06 ± 0.47 58.19 ± 0.30 62.19 ± 0.45 64.77 ± 0.29
Greedy k 37.04 ± 0.09 49.84 ± 0.49 56.13 ± 0.20 60.24 ± 0.42 62.92 ± 0.44

(b) CIFAR-100 using ResNet-56 architecture.

Table 6: Performance Comparison of Baseline and PruneFuse on CIFAR-10 and CIFAR-100 with
ResNet-56 architecture. This table summarizes the test accuracy of final models (original in case of
AL and Fused in PruneFuse) for various pruning ratios (p), labeling budgets (b), and data selection
metrics.

on CIFAR-10 and CIFAR-100 datasets, using different ResNet architectures. The results indicate
that PruneFuse consistently outperforms the baseline method, both with and without incorporating
Knowledge Distillation (KD) from a trained pruned model. This superior performance is attributed to
the innovative fusion strategy inherent to PruneFuse, where the original model is initialized using
weights from a previously trained pruned model. The proposed approach gives the fused model an
optimized starting point, enhancing its ability to learn more efficiently and generalize better. The
impact of this strategy is evident across different label budgets and architectures, demonstrating its
effectiveness and robustness.
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Method Selection Metric Label Budget (b)
10% 20% 30% 40% 50%

Baseline
AL

Least Conf. 80.74 ± 0.04 87.80 ± 0.09 91.50 ± 0.09 93.19 ± 0.14 93.68 ± 0.17
Entropy 79.81 ± 0.18 88.46 ± 0.30 91.30 ± 0.15 92.83 ±0.30 93.47 ± 0.31
Random 79.99 ± 0.10 85.63 ± 0.03 88.07 ± 0.31 90.40 ± 0.42 91.42 ± 0.26
Greedy k 78.69 ± 0.58 87.46 ±0.20 90.72 ± 0.14 92.55 ±0.14 93.44 ± 0.07

PruneFuse
p = 0.5

Least Conf. 81.24 ± 0.43 88.70 ± 0.15 92.02 ± 0.10 93.32 ± 0.13 94.07 ± 0.06
Entropy 81.45 ± 0.39 88.90 ± 0.11 92.13 ± 0.15 93.49 ± 0.16 94.07 ± 0.05
Random 80.08 ± 0.86 86.52 ± 0.14 89.48 ± 0.16 90.82 ± 0.21 91.79 ± 0.04
Greedy k 80.40 ± 0.09 87.77 ± 0.13 90.74 ± 0.09 92.48 ± 0.22 93.53 ± 0.22

PruneFuse
p = 0.6

Least Conf. 81.12 ± 0.34 88.33 ± 0.31 91.57 ± 0.03 93.25 ± 0.21 93.90 ± 0.17
Entropy 80.02 ± 0.41 88.49 ± 0.18 91.51 ± 0.14 93.03 ± 0.11 93.94 ± 0.12
Random 78.55 ± 0.42 85.94 ± 0.34 88.77 ± 0.10 90.66 ± 0.20 92.02 ± 0.03
Greedy k 79.44 ± 0.28 87.05 ± 0.63 90.30 ± 0.15 92.15 ± 0.12 93.22 ± 0.04

PruneFuse
p = 0.7

Least Conf. 79.93 ± 0.06 88.04 ± 0.23 91.51 ± 0.34 92.90 ± 0.02 93.82 ± 0.09
Entropy 80.16 ± 0.27 87.78 ± 0.52 91.21 ± 0.13 92.99 ± 0.13 93.81 ± 0.12
Random 79.41 ± 0.36 86.14 ± 0.44 88.86 ± 0.11 90.35 ± 0.08 91.35 ± 0.24
Greedy k 78.58 ± 0.91 86.37 ± 0.36 89.70 ± 0.33 91.71 ± 0.18 92.97 ± 0.10

PruneFuse
p = 0.8

Least Conf. 80.34 ± 0.39 88.00 ± 0.13 91.22 ± 0.07 92.89 ± 0.23 93.80 ± 0.23
Entropy 79.61 ± 0.35 88.12 ± 0.00 90.94 ± 0.13 92.76 ± 0.14 93.54 ± 0.24
Random 78.94 ± 0.49 86.20 ± 0.10 89.11 ± 0.34 90.50 ± 0.22 91.42 ± 0.23
Greedy k 78.41 ± 0.76 85.90 ± 0.73 89.57 ± 0.51 91.38 ± 0.32 92.21± 0.22

(a) CIFAR-10 using ResNet-110 architecture.

Method Selection Metric Label Budget (b)
10% 20% 30% 40% 50%

Baseline
AL

Least Conf. 38.61 ±0.32 54.47 ±0.56 61.46 ±0.25 65.96 ±0.48 68.91 ± 0.40
Entropy 38.00 ± 0.99 54.71 ±0.83 60.82 ±0.15 66.19 ± 0.31 68.79 ± 0.50
Random 37.88 ± 1.03 52.84 ±0.11 59.41 ±0.34 64.11 ± 0.11 67.22 ± 0.36
Greedy k 37.41 ± 0.98 53.86 ±0.55 61.44 ±0.26 65.73 ± 0.50 68.17 ± 0.46

PruneFuse
p = 0.5

Least Conf. 41.42 ± 0.51 55.91 ± 0.36 62.43 ± 0.32 66.95 ± 0.20 69.79 ± 0.26
Entropy 40.83 ± 0.59 56.29 ± 0.83 62.62 ± 0.45 66.91 ± 0.02 69.96 ± 0.39
Random 40.36 ± 0.74 55.48 ± 0.25 61.14 ± 0.68 65.03 ± 0.42 67.85 ± 0.53
Greedy k 41.22 ± 0.46 55.70 ± 0.54 62.27 ± 0.02 66.20 ± 0.14 68.86 ± 0.14

PruneFuse
p = 0.6

Least Conf. 38.52 ± 1.49 54.90 ± 0.32 61.50 ± 0.77 66.14 ± 0.68 69.03 ± 0.24
Entropy 38.78 ± 1.35 53.13 ± 0.30 61.42 ± 0.14 65.62 ± 0.43 68.89 ± 0.09
Random 40.24 ± 0.90 53.38 ± 0.68 59.93 ± 0.12 64.70 ± 0.15 66.62 ± 0.24
Greedy k 39.99 ± 1.56 54.91 ± 2.23 61.04 ± 0.25 64.69 ± 0.63 67.60 ± 0.08

PruneFuse
p = 0.7

Least Conf. 37.83 ± 1.02 53.08 ± 0.25 61.41 ± 0.21 65.77 ± 0.43 68.03 ± 0.14
Entropy 36.53 ± 0.97 52.97 ± 0.76 59.82 ± 0.63 64.97 ± 0.13 68.64 ± 0.54
Random 39.46 ± 0.59 52.89 ± 0.77 59.92 ± 0.55 63.69 ± 0.25 66.30 ± 0.15
Greedy k 40.44 ± 0.13 52.56 ± 0.28 59.83 ± 0.45 64.50 ± 0.29 66.99 ± 0.50

PruneFuse
p = 0.8

Least Conf. 38.33 ± 0.58 52.89 ± 0.49 60.08 ± 0.32 65.12 ± 0.60 68.06 ± 0.56
Entropy 35.34 ± 0.98 51.88 ± 0.74 59.80 ± 0.82 64.58 ± 0.43 68.02 ± 0.17
Random 38.22 ± 0.39 53.37 ± 0.72 59.84 ± 0.43 64.31 ± 0.33 67.23 ± 0.25
Greedy k 37.72 ± 0.70 50.55 ± 1.79 57.39 ± 0.93 61.79 ± 0.53 65.21 ± 0.24

(b) CIFAR-100 using ResNet-110 architecture.

Table 7: Performance Comparison of Baseline and PruneFuse on CIFAR-10 and CIFAR-100 with
ResNet-110 architecture. This table summarizes the test accuracy of final models (original in case of
AL and Fused in PruneFuse) for various pruning ratios (p), labeling budgets (b), and data selection
metrics.

A.7 COMPARISON WITH SVP

Table 13 delineates a performance comparison of PruneFuse with SVP techniques, across various
labeling budgets b for the efficient training of a Target Model (ResNet-56). SVP employs a ResNet-20
as its data selector, with a model size of 0.26 M. In contrast, PruneFuse uses a 50% pruned ResNet-56,
reducing its data selector size to 0.21 M. Performance metrics show that as the label budget increases
from 10% to 50%, the PruneFuse consistently outperforms SVP across all label budgets. Specifically
on the target model, PruneFuse initiates at an accuracy of 82.68% with a 10% label budget and peaks
at 93.69% accuracy at a 50% budget, whereas SVP achieves 80.76% at 10% label budget and achieves
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Method Selection Metric Label Budget (b)
10% 20% 30% 40% 50%

Baseline
AL

Least Conf. 81.15 ± 0.52 89.4 ± 0.27 92.72 ± 0.10 94.09 ± 0.14 94.63 ± 0.18
Entropy 80.99 ± 0.44 89.54 ± 0.18 92.45 ± 0.16 94.06 ± 0.05 94.49 ± 0.09
Random 80.27 ± 0.18 87.00 ± 0.08 89.94 ± 0.13 91.57 ± 0.09 92.78 ± 0.04
Greedy k 80.02 ± 0.42 88.33 ± 0.47 91.76 ± 0.24 93.39 ± 0.22 94.40 ± 0.18

PruneFuse
p = 0.5

Least Conf. 83.03 ± 0.09 90.30 ± 0.06 93.00 ± 0.15 94.41 ± 0.08 94.63 ± 0.13
Entropy 82.64 ± 0.22 89.88 ± 0.27 93.08 ± 0.25 94.32 ± 0.12 94.90 ± 0.13
Random 81.52 ± 0.54 87.84 ± 0.15 90.14 ± 0.08 91.94 ± 0.18 92.81 ± 0.12
Greedy k 81.70 ± 0.13 88.75 ± 0.33 91.92 ± 0.07 93.64 ± 0.04 94.22 ± 0.09

PruneFuse
p = 0.6

Least Conf. 82.86 ± 0.38 90.22 ± 0.18 93.05 ± 0.10 94.27 ± 0.06 94.66 ± 0.08
Entropy 82.23 ± 0.39 90.18 ± 0.11 92.91 ± 0.15 94.28 ± 0.14 94.66 ± 0.14
Random 81.14 ± 0.26 87.51 ± 0.26 90.05 ± 0.20 91.82 ± 0.22 92.43 ± 0.20
Greedy k 81.11 ± 0.10 88.41 ± 0.18 91.66 ± 0.18 92.94 ± 0.12 94.17 ± 0.02

PruneFuse
p = 0.7

Least Conf. 82.76 ± 0.29 89.89 ± 0.17 92.83 ± 0.08 94.10 ± 0.08 94.69 ± 0.13
Entropy 82.59 ± 0.69 89.81 ± 0.24 92.77 ± 0.07 94.20 ± 0.20 94.74 ± 0.02
Random 80.88 ± 0.38 87.54 ± 0.26 90.09 ± 0.08 91.57 ± 0.26 92.64 ± 0.10
Greedy k 81.68 ± 0.40 88.36 ± 0.56 91.64 ± 0.40 93.02 ± 0.42 93.97 ± 0.51

PruneFuse
p = 0.8

Least Conf. 82.66 ± 0.09 89.78 ± 0.27 92.64 ± 0.14 94.08 ± 0.10 94.69 ± 0.17
Entropy 82.01 ± 0.88 89.77 ± 0.44 92.65 ± 0.09 94.02 ± 0.17 94.60 ± 0.18
Random 80.73 ± 0.49 87.43 ± 0.44 90.08 ± 0.12 91.40 ± 0.07 92.53 ± 0.18
Greedy k 79.66 ± 0.60 87.56 ± 0.12 90.79 ± 0.07 92.30 ± 0.12 93.17 ± 0.14

(a) CIFAR-10 using ResNet-164 architecture.

Method Selection Metric Label Budget (b)
10% 20% 30% 40% 50%

Baseline
AL

Least Conf 38.41 ± 0.73 51.39 ± 0.30 65.53 ± 0.31 70.07 ± 0.17 73.05 ± 0.11
Entropy 36.65 ± 0.76 57.58 ± 0.63 64.98 ± 0.30 69.99 ± 0.17 72.90 ± 0.15
Random 39.31 ± 1.22 57.53 ± 0.26 63.84 ± 0.14 67.75 ± 0.14 70.79 ± 0.07
Greedy k 39.76 ± 0.58 57.40 ± 0.20 65.20 ± 0.31 69.25 ± 0.40 72.91 ± 0.29

PruneFuse
p = 0.5

Least Conf 42.88 ± 1.11 59.31 ± 0.70 66.95 ± 0.30 71.45 ± 0.42 74.32 ± 0.58
Entropy 42.99 ± 0.18 59.32 ± 1.25 66.83 ± 0.29 71.18 ± 0.40 74.43 ± 0.34
Random 43.72 ± 1.05 58.58 ± 0.61 64.93 ± 0.43 68.75 ± 0.57 71.63 ± 0.40
Greedy k 43.61 ± 0.91 58.38 ± 0.24 66.04 ± 0.21 69.83 ± 0.16 73.10 ± 0.39

PruneFuse
p = 0.6

Least Conf 41.86 ± 0.70 58.97 ± 0.50 66.61 ± 0.39 70.59 ± 0.11 73.60 ± 0.10
Entropy 42.43 ± 0.95 58.74 ± 0.80 65.97 ± 0.39 70.90 ± 0.48 73.70 ± 0.09
Random 42.53 ± 0.46 58.33 ± 0.42 65.00 ± 0.26 68.55 ± 0.30 71.46 ± 0.32
Greedy k 42.71 ± 0.91 58.41 ± 0.18 65.43 ± 0.69 69.57 ± 0.14 72.49 ± 0.25

PruneFuse
p = 0.7

Least Conf 42.00 ± 0.20 57.08 ± 0.36 66.41 ± 0.30 70.68 ± 0.29 73.63 ± 0.29
Entropy 41.01 ± 1.66 57.45 ± 0.50 65.99 ± 0.10 70.07 ± 0.54 73.45 ± 0.04
Random 42.76 ± 1.00 57.31 ± 0.07 64.12 ± 0.57 68.07 ± 0.24 70.88 ± 0.25
Greedy k 42.42 ± 0.32 57.58 ± 0.52 65.18 ± 0.51 68.55 ± 0.10 71.89 ± 0.16

PruneFuse
p = 0.8

Least Conf 41.19 ± 1.07 57.98 ± 9.70 65.22 ± 0.44 70.38 ± 0.22 73.17 ± 0.26
Entropy 39.78 ± 1.16 57.30 ± 0.41 65.19 ± 0.63 69.40 ± 0.34 72.82 ± 0.03
Random 42.08 ± 1.55 57.23 ± 0.47 64.05 ± 0.40 67.85 ± 0.19 70.62 ± 0.06
Greedy k 42.20 ± 1.21 57.42 ± 0.50 64.53 ± 0.21 68.01 ± 0.40 71.29 ± 0.14

(b) CIFAR-100 using ResNet-164 architecture.

Table 8: Performance Comparison of Baseline and PruneFuse on CIFAR-10 and CIFAR-100 with
ResNet-164 architecture. This table summarizes the test accuracy of final models (original in case of
AL and Fused in PruneFuse) for various pruning ratios (p), labeling budgets (b), and data selection
metrics.

92.95% accuracy at 50%. Notably, while the data selector of PruneFuse achieves a lower accuracy of
90.31% at b = 50% compared to SVP’s 91.61%, the target model utilizing PruneFuse-selected data
attains a superior accuracy of 93.69%, relative to 92.95% for the SVP-selected data. This disparity
underscores the distinct operational focus of the data selectors: PruneFuse’s selector is optimized
for enhancing the target model’s performance, rather than its own accuracy. Fig. 4(a) and (b) show
that target models ResNet-14 and ResNet-20, when trained with the data selectors of the PruneFuse
achieve significantly higher accuracy while using significantly less number of parameters compared
to SVP. These results indicate that the proposed approach does not require an additional architecture
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Method Label Budget (b)
10% 20% 30% 40% 50%

Baseline (AL) 14.86 ± 0.11 33.62 ± 0.52 43.96 ± 0.22 49.86 ± 0.56 54.65 ± 0.38

PruneFuse (p = 0.5) 18.71 ± 0.21 39.70 ± 0.31 47.41 ± 0.20 51.84 ± 0.10 55.89 ± 1.21

PruneFuse (p = 0.6) 19.25 ± 0.72 38.84 ± 0.70 47.02 ± 0.30 52.09 ± 0.29 55.29 ± 0.28

PruneFuse (p = 0.7) 18.32 ± 0.95 39.24 ± 0.75 46.45 ± 0.58 52.02 ± 0.65 55.63 ± 0.55

PruneFuse (p = 0.8) 18.34 ± 0.93 37.86 ± 0.42 47.15 ± 0.31 51.77 ± 0.40 55.18 ± 0.50

Table 9: Performance Comparison of Baseline and PruneFuse on Tiny ImageNet-200 with ResNet-
50 architecture, including test accuracy and corresponding standard deviations. This table summarizes
the test accuracy of final models (original in case of AL and Fused in PruneFuse) for various pruning
ratios (p) and labeling budgets (b).
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(a) p = 0.6, b = 10% (b) p = 0.6, b = 30% (c) p = 0.6, b = 50%

Figure 7: Ablation Study of Fusion on PruneFuse (p = 0.6). Experiments are performed on ResNet-56
architecture with CIFAR-10.

for designing the data selector; it solely needs the target model (e.g. ResNet-14). In contrast, SVP
necessitates both the target model (ResNet-14) and a smaller model (ResNet-8) that functions as a
data selector.

Table 11 demonstrates the performance comparison of PruneFuse and SVP for small model archi-
tecture ResNet-20 on CIFAR-10. SVP achieves 91.88% performance accuracy by utilizing the data
selector having 0.074 M parameters whereas PruneFuse outperforms SVP by achieving 92.29%
accuracy with a data selector of 0.066 M parameters.

A.8 ABLATION STUDY ON THE NUMBER OF SELECTED DATA POINTS (k)

Table 12 presents an ablation study analyzing the effect of varying k on the performance of PruneFuse
on CIFAR-10 using the ResNet-56 architecture and least confidence as the selection metric. The
results demonstrate that the choice of k significantly impacts the quality of data selection and the final
performance of the model. As k increases, the selected subset quality diminishes as can be seen by
comparing performance of the target network when b = 30%. This study highlights the importance
of tuning k to achieve an optimal trade-off between computational efficiency and model accuracy.
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(a) p = 0.7, b = 10% (b) p = 0.7, b = 30% (c) p = 0.7, b = 50%

Figure 8: Ablation Study of Fusion on PruneFuse (p = 0.7). Experiments are performed on ResNet-56
architecture with CIFAR-10.
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Method Selection Metric Label Budget (b)
10% 20% 30% 40% 50%

Baseline
AL

Least Conf 80.53 87.74 90.85 92.24 93.00
Entropy 80.14 87.63 90.80 92.51 92.98
Random 78.55 85.26 88.13 89.81 91.20
Greedy k 79.63 86.46 90.09 91.90 92.80

PruneFuse
p = 0.5

(without KD)

Least Conf 81.08 88.71 91.24 92.68 93.46
Entropy 80.80 88.08 90.98 92.74 93.43
Random 80.11 85.78 88.81 90.20 91.10
Greedy k 80.07 86.70 89.93 91.72 92.67

PruneFuse
p = 0.5

(with KD)

Least Conf 80.92 88.35 91.44 92.77 93.65
Entropy 81.08 88.74 91.33 92.78 93.48
Random 80.43 86.28 88.75 90.36 91.42
Greedy k 79.85 86.96 90.20 91.82 92.89

(a) CIFAR-10 using ResNet-56 architecture.

Method Selection Metric Label Budget (b)
10% 20% 30% 40% 50%

Baseline
AL

Least Conf 81.15 89.4 92.72 94.09 94.63
Entropy 80.99 89.54 92.45 94.06 94.49
Random 80.27 87.00 89.94 91.57 92.78
Greedy k 80.02 88.33 91.76 93.39 94.40

PruneFuse
p = 0.5

(without KD)

Least Conf 83.82 90.26 93.15 94.34 94.90
Entropy 82.72 90.42 93.18 94.68 95.00
Random 81.94 88.04 90.37 91.93 92.67
Greedy k 81.99 89.04 92.14 93.40 94.44

PruneFuse
p = 0.5

(with KD)

Least Conf. 83.03 90.30 93.00 94.41 94.63
Entropy 82.64 89.88 93.08 94.32 94.90
Random 81.52 87.84 90.14 91.94 92.81
Greedy k 81.70 88.75 91.92 93.64 94.22

(b) CIFAR-10 using ResNet-164 architecture.

Method Selection Metric Label Budget (b)
10% 20% 30% 40% 50%

Baseline
AL

Least Conf 35.99 52.99 59.29 63.68 66.72
Entropy 37.57 52.64 58.87 63.97 66.78
Random 37.06 51.62 58.77 62.05 64.63
Greedy k 38.28 52.43 58.96 63.56 66.30

PruneFuse
p = 0.5

(without KD)

Least Conf 39.27 54.25 60.6 64.17 67.49
Entropy 37.43 52.57 60.57 64.44 67.31
Random 40.07 52.83 59.93 63.06 65.41
Greedy k 39.25 52.43 59.94 63.94 66.56

PruneFuse
p = 0.5

(with KD)

Least Conf 40.26 53.90 60.80 64.98 67.87
Entropy 38.59 54.01 60.52 64.83 67.67
Random 39.43 54.60 60.13 63.91 66.02
Greedy k 39.83 54.35 60.40 64.22 66.89

(c) CIFAR-100 using ResNet-56 architecture.

Table 10: Ablation Study of Knowledge Distillation on PruneFuse presented in a, b, and c with different
architectures and datasets.

A.9 IMPACT OF EARLY STOPPING ON PERFORMANCE

Table 14 explores the effect of utilizing an early stopping strategy alongside PruneFuse (p = 0.5)
on CIFAR-10 with the ResNet-56 architecture. The results indicate that early stopping not only
reduces training time of the fused model but also maintains comparable performance to fully trained
models. This highlights the compatibility of PruneFuse with training efficiency techniques such as
early stopping and showcases how the expedited convergence enabled by the fusion process further
enhances its practicality, particularly in resource-constrained environments.
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Techniques Model Architecture No. of Parameters Label Budget (b)
(Million) 10% 20% 30% 40% 50%

SVP Data Selector ResNet-8 0.074 77.85 83.35 85.43 86.83 86.90

Target ResNet-20 0.26 80.18 86.34 89.22 90.75 91.88

PruneFuse Data Selector ResNet-20 (p = 0.5) 0.066 76.58 83.41 85.83 87.07 88.06

Target ResNet-20 0.26 80.25 87.57 90.20 91.70 92.29

Table 11: Comparison of SVP and PruneFuse on Small Models.

Method Label Budget (b)
15% 30% 45% 60% 75%

Baseline (AL) 84.63 90.59 92.77 93.12 93.94

PruneFuse (p = 0.5) 85.80 91.13 93.72 93.84 94.10

(a) k = 7.5K.

Method Label Budget (b)
10% 20% 30% 40% 50%

Baseline (AL) 80.53 87.74 90.85 92.24 93.00

PruneFuse (p = 0.5) 80.92 88.35 91.44 92.77 93.65

(b) k = 5K.

Table 12: Ablation study of k on Cifar-10 using ResNet-56 architecture and least confidence as a selection
matric.

A.10 PERFORMANCE COMPARISON ACROSS ARCHITECTURES AND DATASETS

In Table 15, we present the performance comparison of Baseline and PruneFuse across various
architectures and datasets. These results demonstrate the adaptability of PruneFuse to different
network architectures, including ResNet-18, ResNet-50, and Wide-ResNet (W-28-10), as well as
datasets such as CIFAR-10, CIFAR-100, and ImageNet. The experiments confirm that PruneFuse
consistently improves performance over the baseline, highlighting its generalizability and robustness
across diverse scenarios.

A.11 PERFORMANCE AT LOWER PRUNING RATES

Table 16 provides a performance comparison of Baseline and PruneFuse with a lower pruning rate
of p = 0.4 on CIFAR-10 and CIFAR-100 using the ResNet-56 architecture. Least Confidence and
Entropy were used as selection metrics for these experiments. The results show that even at a lower
pruning rate, PruneFuse effectively selects high-quality data subsets, maintaining strong performance
in both datasets. These findings validate the method’s effectiveness across different pruning rates.

A.12 COMPARISON WITH RECENT CORESET SELECTION TECHNIQUES

Table 17 compares the performance of Baseline (Coreset Selection) and PruneFuse (p = 0.5) using
various recent selection metrics, including Forgetting Events (Toneva et al., 2019), Moderate (Xia et
al., 2022), and CSS (Zheng et al., 2022) on the CIFAR-10 dataset with the ResNet-56 architecture.

To incorporate these recent score metrics, which are specifically designed for coreset-based selection,
we utilized the coreset task setup. In this setup, the network is first trained on the entire dataset to
identify a representative subset of data (coreset) based on the selection metric. The accuracy of the
target model trained on the selected coreset is then reported. The results demonstrate that PruneFuse
seamlessly integrates with these advanced selection metrics, achieving competitive or superior
performance compared to the baseline while maintaining computational efficiency. This highlights
the versatility of PruneFuse in adapting to and enhancing existing coreset selection techniques.

A.13 EFFECT OF VARIOUS PRUNING STRATEGIES AND CRITERION

In Table 18, we evaluate the impact of different pruning techniques (e.g., static pruning, dynamic
pruning) and pruning criteria (e.g., L2 norm, GroupNorm Importance, LAMP Importance [Fang et al.
(2023)]) on the performance of PruneFuse (p = 0.5) on CIFAR-10 using the ResNet-56 architecture.
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Method Model Architecture Params Label Budget (b)
(Million) 10% 20% 30% 40% 50%

SVP Data Selector ResNet-20 0.26 81.07 86.51 89.77 91.08 91.61

Target ResNet-56 0.85 80.76 87.31 90.77 92.59 92.95

PruneFuse Data Selector ResNet-56 (p = 0.5)) 0.21 78.62 84.92 88.17 89.93 90.31

Target ResNet-56 0.85 82.68 88.97 91.63 93.24 93.69

Table 13: Comparison with SVP.

Method Epochs Label Budget (b)
10% 20% 30% 40% 50%

Least Conf. 181 80.92±0.409 88.35±0.327 91.44±0.148 92.77±0.026 93.65±0.141
110 80.51±0.375 87.64±0.222 90.79±0.052 92.11±0.154 93.00±0.005

Entropy 181 81.08±0.155 88.74±0.103 91.33±0.045 92.78±0.045 93.48±0.042
110 80.51±0.401 87.46±0.416 90.97±0.116 92.2±0.108 92.88±0.264

Random 181 80.43±0.273 86.28±0.367 88.75±0.17 90.36±0.022 91.42±0.125
110 79.29±0.355 84.99±0.156 87.86±0.323 89.99±0.090 90.85±0.012

Greedy k. 181 79.85±0.676 86.96±0.385 90.20±0.164 91.82±0.136 92.89±0.144
110 79.36±0.274 86.36±0.455 89.67±0.319 91.19±0.302 91.91±0.021

Table 14: Performance Comparison when Early Stopping strategy is utilized alongside PruneFuse (p = 0.5).
Experiments are performed with Resnet-56 on CIFAR-10.

Method Label Budget (b)
10% 20% 30% 40% 50%

Baseline (AL) 83.12 90.07 92.71 94.07 94.81

PruneFuse (p = 0.5) 83.29 90.56 93.17 94.56 95.08

(a) ResNet-18 architecture on CIFAR-10.

Method Label Budget (b)
10% 20% 30% 40% 50%

Baseline (AL) 84.74 91.48 94.17 95.24 95.75

PruneFuse (p = 0.5) 85.65 92.27 94.65 95.73 96.24

(b) Wide-ResNet architecture on CIFAR-10.

Method Label Budget (b)
10% 20% 30% 40% 50%

Baseline (AL) 52.97 64.52 69.30 71.98 73.56

PruneFuse (p = 0.5) 55.03 65.12 69.72 72.07 73.86

(c) ResNet-50 architecture on ImageNet-1K.

Table 15: Performance Comparison of Baseline and PruneFuse presented in a, b, and b with different architec-
tures and datasets.

Static pruning involves pruning the entire network at once at the start of training, whereas dynamic
pruning incrementally prunes the network in multiple steps during training. In our implementation of
dynamic pruning, the network is pruned in five steps over the course of 20 epochs.

The results demonstrate that PruneFuse is highly adaptable to various pruning strategies, consistently
maintaining strong performance in data selection tasks. This flexibility underscores the robustness of
the framework across different pruning approaches and criteria.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Method Selection Metric Label Budget (b)
10% 20% 30% 40% 50%

Baseline (AL)
Least Confidence 80.53 87.74 90.85 92.24 93.00

Entropy 80.14 87.63 90.80 92.51 92.98

PruneFuse (p = 0.4)
Least Confidence 81.12 88.16 91.35 92.89 93.20

Entropy 80.94 88.27 91.09 92.73 93.38

(a) CIFAR-10

Method Selection Metric Label Budget (b)
10% 20% 30% 40% 50%

Baseline (AL)
Least Confidence 35.99 52.99 59.29 63.68 66.72

Entropy 37.57 52.64 58.87 63.97 66.78

PruneFuse (p = 0.4)
Least Confidence 38.73 54.35 60.75 64.80 67.08

Entropy 38.35 54.19 60.79 65.00 67.47

(b) CIFAR-100

Table 16: Performance Comparison of Baseline and PruneFuse(p = 0.4) on Cifar-10 and Cifar-100 using
ResNet-56 architecture.

Method Selection Metric Data Selector’s Target Model’s Accuracy
Params Params (b = 25%)

Baseline

Entropy 86.13
Least Confidence 86.50
Forgetting Events 0.85 Million 0.85 Million 86.01

Moderate 86.27
CSS 87.21

PruneFuse

Entropy 86.71
Least Confidence 86.68
Forgetting Events 0.21 Million 0.85 Million 87.84

Moderate 87.63
CSS 88.85

Table 17: Performance Comparison of Baseline (Coreset) and PruneFuse (p = 0.5) for Various selection
metrics including Forgetting Events (Toneva et al., 2019), Moderate (Xia et al., 2022), and CSS (Zheng et al.,
2022) on Cifar-10 dataset using ResNet-56 architecture.

A.14 RUNTIME COMPARISON OF DATA SELECTOR NETWORKS AND DETAILED BREAKDOWN
OF THE TRAINING RUNTIME FOR EACH COMPONENT OF PRUNEFUSE

Table 19 compares the training runtimes of the data selector network (pruned network for PruneFuse
and dense network for the baseline) across various network architectures. The reported times
correspond to the training phase of the data selector network prior to the final selection of the
subset (at b = 50%, label budget). Note that the variation in runtimes across different datasets is
due to the experiments being conducted on different servers, each equipped with specific GPUs
(e.g., 2080Ti, 3090, or A100). The results show that PruneFuse significantly reduces training time
due to the efficiency of the pruned network as compared to baseline, making it well suited for
resource-constrained environments.

Table 20 provides a detailed breakdown of the training run time for each component of PruneFuse,
including the data selector training time, the selection time, and the target network training time.
These measurements offer a comprehensive view of the computational requirements of PruneFuse,
demonstrating its efficiency compared to the baseline methods. The breakdown highlights that
the pruned network and the fusion process contribute to significant computational savings without
compromising performance.
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Method Pruning Criteria Label Budget (b)
10% 20% 30% 40% 50%

Baseline (AL) - 80.53 87.74 90.85 92.24 93.00

PruneFuse Magnitude Imp. 79.73 87.16 91.08 92.29 93.19
GroupNorm Imp. 80.10 88.25 91.01 92.25 93.74

(Dynamic Pruning) LAMP Imp. 81.51 87.45 90.64 92.41 93.25

PruneFuse Magnitude Imp. 80.92 88.35 91.44 92.77 93.65
GroupNorm Imp. 80.84 88.20 91.19 93.01 93.03

(Static Pruning) LAMP Imp. 81.10 88.37 91.32 93.02 93.08

PruneFuse_V2 Magnitude Imp. 81.23 88.52 91.76 93.15 93.78
GroupNorm Imp. 81.09 88.77 91.77 93.19 93.68

(Static Pruning) LAMP Imp. 81.86 88.51 92.10 93.02 93.63

Table 18: Effect of different Pruning Techniques and Pruning Criterion on PruneFuse (p = 5) on Cifar-10
dataset with ResNet-56 architecture.

Datasets Data Selectors Training Runime
(Selection Models) (Minutes)

CIFAR-10 ResNet-56 (Baseline) 127.67
ResNet-56 (PruneFuse (p = 0.5)) 72.55
ResNet-56 (PruneFuse (p = 0.8)) 67.23
ResNet-18 (Baseline) 85.68
ResNet-18 (PruneFuse (p = 0.5)) 61.15
Wide ResNet (Baseline) 122.43
Wide ResNet (PruneFuse (p = 0.5)) 75.48

CIFAR-100 ResNet-164 (Baseline) 129.23
ResNet-164 (PruneFuse (p = 0.5)) 83.52
ResNet-164 (PruneFuse (p = 0.8)) 78.55
ResNet-110 (Baseline) 95.80
ResNet-110 (PruneFuse (p = 0.5)) 80.42
ResNet-110 (PruneFuse (p = 0.8)) 69.50

TinyImagenet-200 ResNet-50 (Baseline) 248.48
ResNet-50 (PruneFuse (p = 0.5)) 147.47
ResNet-50 (PruneFuse (p = 0.8)) 94.42

ImageNet-1K Resnet-50 (Baseline) 2081.3
ResNet-50 (PruneFuse (p = 0.5)) 951.17

Table 19: Training Runtime of data selector network i.e. pruned network in the case of PruneFuse and dense
network for baseline, for various network architectures. The reported time is the training time when the network
is trained before selecting final subset of the data (b = 50%).

Datasets
Label Budget Data Selectors Data Selection Time Target Model

(b) (Training Time ) (Minutes) (Training Time)
(Minutes) (Minutes)

Baseline (AL) 10% 48.80 4.43 48.80
20% 99.23 3.50 99.23
30% 145.32 3.15 145.32
40% 195.38 2.72 195.38
50% 248.48 2.38 248.48

PruneFuse 10% 32.17 1.57 49.50
20% 61.70 1.67 99.99
30% 88.53 1.52 146.25
40% 117.10 1.37 196.28
50% 147.47 1.18 249.58

Table 20: Detailed Training time of Baseline and PruneFuse(p = 0.5) for TinyImageNet-200 for Resnet-50
using Least Confidence as selection metric.
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