
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PRUNEFUSE: EFFICIENT DATA SELECTION VIA
WEIGHT PRUNING AND NETWORK FUSION

Anonymous authors
Paper under double-blind review

ABSTRACT

Efficient data selection is crucial for enhancing the training efficiency of deep
neural networks and minimizing annotation requirements. Traditional methods
often face high computational costs, limiting their scalability and practical use.
We introduce PruneFuse, a novel strategy that leverages pruned networks for
data selection and later fuses them with the original network to optimize training.
PruneFuse operates in two stages: First, it applies structured pruning to create
a smaller pruned network that, due to its structural coherence with the original
network, is well-suited for the data selection task. This small network is then trained
and selects the most informative samples from the dataset. Second, the trained
pruned network is seamlessly fused with the original network. This integration
leverages the insights gained during the training of the pruned network to facilitate
the learning process of the fused network while leaving room for the network to
discover more robust solutions. Extensive experimentation on various datasets
demonstrates that PruneFuse significantly reduces computational costs for data
selection, achieves better performance than baselines, and accelerates the overall
training process.

1 INTRODUCTION

Deep learning models have achieved remarkable success across various domains, ranging from image
recognition to natural language processing (Ren et al., 2015; Long et al., 2015; He et al., 2016).
However, the performance of models heavily relies on the access of large amounts of labeled data for
training (Sun et al., 2017). In practical real-world applications, the process of manually annotating
massive datasets can be prohibitively expensive and time-consuming. Data selection techniques
such as Active Learning (Gal et al., 2017) offer a promising solution to address this challenge by
iteratively selecting the most informative samples from the unlabeled dataset for annotation. The
goal of active learning is to reduce the labeling costs while maintaining or even improving model
performance. Nowadays, due to tremendous increase in data and model complexity, traditional active
learning techniques requiring large models to be trained iteratively to perform data selection, can
result in significant computational costs. This computational burden restricts the scalability of active
learning methods, particularly in scenarios where training large models is impractical due to resource
constraints.

In this paper, we propose a novel strategy for efficient data selection in active learning setting that
overcomes the limitations of traditional approaches. Our approach builds up on the concept of
model pruning, which selectively reduces the complexity of neural networks while preserving their
accuracy. By utilizing small pruned networks as reusable data selectors, we eliminate the need to train
large models, specifically during the data selection phase, thus significantly reducing computational
demands. By enabling swift identification of the most informative samples, our method not only
enhances the efficiency of active learning but also ensures its scalability and cost-effectiveness in
resource-limited settings. Additionally, we employ these pruned networks to train the final model
through a fusion process, effectively harnessing the insights from the trained networks to accelerate
convergence and improve the generalization of the final model.

Main Contribution. To summarize, our key contribution is to introduce PruneFuse, an efficient and
rapid data selection technique that leverages pruned networks. This approach mitigates the need for
continuous large model training prior to data selection, which is inherent in conventional active learn-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

4
1

23

Pruning Fusion

Loss
× 𝜆

× (1 − 𝜆)

5

r % 𝑻𝒔𝒚𝒏𝒄 = 0

Figure 1: Overview of the PruneFuse Method: (1) An untrained neural network is initially pruned to form a
structured, pruned network θp. (2) This pruned network θp queries the dataset to select prime candidates for
annotation, similar to active learning techniques. (3) θp is then trained on these labeled samples to form the
trained pruned network θ∗p . (4) The trained pruned network θ∗p is fused with the base model θ, resulting in a
fused model. (5) The fused model is further trained on a selected subset of the data, incorporating knowledge
distillation from θ∗p . Blue feedback indicates the PruneFuse V2 strategy deliniated in Section 4.6 that utilizes the
trained fused model to create the pruned model.

ing methods. By employing pruned networks as data selectors, PruneFuse ensures computationally
efficient selection of informative samples which leads to overall superior generalization. Furthermore,
we propose the novel concept of fusing these pruned networks with the original untrained model,
enhancing model initialization and accelerating convergence during training.

We demonstrate the broad applicability of PruneFuse across various network architectures, providing
researchers and practitioners with a flexible tool for efficient data selection in diverse deep learning
settings. Extensive experimentation on CIFAR-10, CIFAR-100, Tiny-ImageNet-200, and ImageNet-
1K datasets shows that PruneFuse achieves superior performance to state-of-the-art active learning
methods while significantly reducing computational costs.

2 RELATED WORKS

Data Selection. Recent studies have explored techniques to improve the efficiency of data selection
in deep learning. Approaches such as Core-Set selection (Sener and Savarese, 2017), BatchBALD
(Kirsch et al., 2019), and Deep Bayesian Active Learning (Gal et al., 2017) aim to select informative
samples using techniques like diversity maximization and Bayesian uncertainty estimation. Parallelly,
the domain of active learning has unveiled strategies, such as uncertainty sampling (Shen et al., 2017;
Sener and Savarese, 2018; Kirsch et al., 2019), expected model change-based approach (Freytag
et al., 2014; Käding et al., 2016), and query-by-density (Sener and Savarese, 2017). These techniques
prioritize samples that can maximize information gain, thereby enhancing model performance with
minimal labeling effort. While these methods achieve efficient data selection, they still require
training large models for the selection process, resulting in significant computational overhead. Other
strategies such as (Killamsetty et al., 2021a) optimize this selection process by matching the gradients
of subset with training or validation set based on orthogonal matching algorithm and (Killamsetty
et al., 2021b) performs meta-learning based approach for online data selection. SubSelNet (Jain
et al., 2024) proposes to approximate a model that can be used to select the subset for various
architectures without retraining the target model, hence reducing the overall overhead. However, it
involves pre-training routine which is very costly and needed again for any change in data or model
distribution. SVP (Coleman et al., 2019) introduces to use small proxy models for data selection
but discards these proxies before training the target model. Additionally, structural discrepancies
between the proxy and target models may result in sub-optimal data selections. Our approach also
builds on this foundation of using small model (which in our case is a pruned model) but it enables
direct integration with the target model through the fusion process. This ensures that the knowledge
acquired during data selection is retained and actively contributes to the training of the original model.
Also, the architectural coherence between the pruned and the target model provides a more seamless
and effective mechanism for data selection, enhancing overall model performance and efficiency.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Efficient Deep Learning. Efficient deep learning has gained significant attention in recent years.
Methods such as Neural Architecture Search (NAS) (Zoph and Le, 2016; Wan et al., 2020), network
pruning (Han et al., 2015), quantization (Dong et al., 2020; Jacob et al., 2018; Zhou et al., 2016), and
knowledge distillation (Hinton et al., 2015; Yin et al., 2020) have been proposed to reduce model
size and computational requirements. Neural Network pruning has been extensively investigated as a
technique to reduce the complexity of deep neural networks (Han et al., 2015). Pruning strategies can
be broadly divided into Unstructured Pruning (Dong et al., 2017; Guo et al., 2016; Park et al., 2020)
and Structured Pruning (Li et al., 2016; He et al., 2017; You et al., 2019; Ding et al., 2019) based on
the granularity and regularity of the pruning scheme. Unstructured pruning often yields a superior
accuracy-size trade-off whereas structured pruning offers practical speedup and compression without
necessitating specialized hardware. While pruning literature suggests pruning after training (Renda
et al., 2020) or during training (Zhu and Gupta, 2017; Gale et al., 2019), recent research explore
the viability of pruning at initialization (Lee et al., 2018; Frankle et al., 2020; Tanaka et al., 2020;
Frankle et al., 2020; Wang et al., 2020). In our work, we leverage the benefits of model pruning at
initialization to create a small representative model for efficient data selection, allowing for the rapid
identification of informative samples while minimizing computational requirements.

3 BACKGROUND AND MOTIVATION

Efficient data selection is paramount in modern machine learning applications, especially when
dealing with deep neural networks. The subset selection problem can be framed as the challenge of
selecting a subset s from a dataset D = (xi, yi)

n
i=1 such that a model θ trained on s approximates

the performance of the same model trained on the full dataset,

argmin
s

∣∣E(x,y)∈s[l(x, y; θ)]− E(x,y)∈D[l(x, y; θ)]
∣∣ (1)

Where E(x,y)∈s[l(x, y; θ)] is the expected loss on the selected subset s and E(x,y)∈D[l(x, y; θ)] is the
expected loss on whole dataset.

3.1 SUBSET SELECTION FRAMEWORK

Active Learning is widely utilized iterative approach tailored for situations with abundant unlabeled
data. Given a classification task with C classes and a large pool of unlabeled samples U , AL
revolves around selectively querying the most informative samples from U for labeling. The process
commences with an initial set of randomly sampled data s0 from U , which is subsequently labeled.
In subsequent rounds, AL augments the labeled set L by adding newly identified informative samples.
This cycle repeats until a predefined number of labeled samples b are selected.

3.2 NETWORK PRUNING AND ITS RELEVANCE

Network pruning emerges as a potent tool to reduce the complexity of neural networks. By elimi-
nating redundant parameters, pruning preserves vital network functionalities while streamlining its
architecture. Pruning strategies can be broadly categorized into Unstructured Pruning and Structured
Pruning. Unstructured Pruning targets individual weight removal independent of their location. While
it trims down the overall number of parameters, tangible performance gains on conventional hardware
often demand extensive pruning (Park et al., 2016). On the other hand, Structured Pruning emphasizes
the removal of larger constructs like kernels, channels, or layers. Its strength lies in preserving dense
computations, which not only yields a leaner network but also bestows immediate performance im-
provements (Liu et al., 2017). Given its computational benefits, particularly in expediting evaluations
and aligning with hardware optimizations, we opted for Structured Pruning over its counterpart.

Importantly, pruned networks maintain the architectural coherence of the original model. This
coherence makes them inherently more suitable for tasks such as data selection. Unlike heavily
modified or entirely different models that can be used for data selection Coleman et al. (2019); Jain
et al. (2024), the pruned model echoes the original structure, particularly advantageous in recognizing
and prioritizing data samples that resonate with the patterns of the original network. The goal is
clear to develop a data selection strategy that conserves computational resources, minimizes memory
overhead, and potentially improves model generalization.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

4 PRUNEFUSE

In this section, we delineate the PruneFuse methodology. The procedure begins with network pruning
at initialization, offering a streamlined model for data selection. Upon attaining the desired data
subset, the pruned model undergoes a fusion process with the original network, leveraging the
structural coherence between them. The fused model is subsequently refined through knowledge
distillation, enhancing its performance. An overall view of our proposed methodology is illustrated
in Fig. 1. We modify the problem in Eq. 1 as follows:

Let sp be the subset selected using a pruned model θp and s be the subset selected using the original
model θ. We want to minimize:

argmin
sp

∣∣E(x,y)∈sp [l(x, y; θ, θp)]− E(x,y)∈D[l(x, y; θ)]
∣∣ (2)

ϴ

(a) θ trajectory

ϴ𝒑ϴ𝒑
∗

(b) θp trajectory

ϴ𝑭=Fuse(ϴ, ϴ𝒑
∗) ϴ

ϴ𝒑
∗

(c) θF with a refined trajectory due to fusion

Figure 2: Evolution of training trajectories. Pruning
θ to θp tailors the loss landscape from 2a to 2b, allowing
θp to converge on an optimal configuration, denoted as
θ∗p . This model, θ∗p , is later fused with the original θ,
which provides better initialization and offer superior
trajectory for θF to follow, as depicted in 2c.

Where E(x,y)∈sp [l(x, y; θ, θp)] is the expected
loss on subset sp (selected using θp) when
evaluated using the original model θ and
E(x,y)∈D[l(x, y; θ)] is the expected loss on full
dataset D when trained using the original model
θ. Furthermore, the subset can be defined
as sp = {(xi, yi) ∈ D | score(xi, yi; θp) ≥ τ}
where score(xi, yi; θp) represents the score as-
signed to each sample selected using θp. The
score function can be based on various strategies
such as Least Confidence, Entropy, or Greedy k-
centers. τ defines the threshold used in the score-
based selection methods (Least Confidence or
Entropy) to determine the inclusion of a sample
in sp.

The goal of the optimization problem is to select
sp such that when θ is trained on it, the perfor-
mance is as close as possible to training θ on the
full dataset D. Algorithm 1 describes the PruneFuse methodology precisely. The key insight is that
the subset sp selected using the pruned model θp is sufficiently representative and informative for
training the original model θ. This is because θp maintains a structure that is essentially identical
to θ, although with some nodes pruned. As a result, there is a strong correlation between θ and θp,
ensuring that the selection made by θp effectively minimizes the loss when θ is trained on sp. By
leveraging this surrogate θp, which is both computationally efficient and structurally coherent with θ,
we can select most representative data out of D to train θ.

4.1 PRUNING AT INITIALIZATION

Pruning at initialization has been demonstrated to uncover superior solutions compared to the
conventional approach of pruning an already trained network followed by fine-tuning (Wang et al.,
2020). Specifically, it shows potential in training time reduction, and enhanced model generalization.
In our methodology, we employ structured pruning due to its benefits such as maintaining the
architectural coherence of the network, enabling more predictable resource savings, and often leading
to better-compressed models in practice.

Consider an untrained neural network, represented as θ. Let each layer ℓ of this network have feature
maps or channels denoted by cℓ, with ℓ ∈ {1, . . . , L}. Channel pruning results in binary masks
mℓ ∈ {0, 1}dℓ

for every layer, where dℓ represents the total number of channels in layer ℓ. The
pruned subnetwork, θp, retains channels described by cℓ ⊙mℓ, where ⊙ symbolizes the element-wise
product. The sparsity p ∈ [0, 1] of the subnetwork illustrates the proportion of channels that are
pruned: p = 1−

∑
ℓ m

ℓ/
∑

ℓ d
ℓ.

To reduce the model complexity, we employ channel pruning procedure prune(C, p). This prunes
to a sparsity p via two primary functions: i) score(C): This operation assigns scores zℓ ∈ Rdℓ

to
every channel in the network contingent on their magnitude (using the L2 norm). The channels

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

C are represented as (c1, . . . , cL). and ii) remove(Z, p): This process takes the magnitude scores
Z = (z1, . . . , zL) and translates them into masks mℓ such that the cumulative sparsity of the network,
in terms of channels, is p. We employ a one-shot channel pruning that scores all the channels
simultaneously based on their magnitude and prunes the network from 0% sparsity to p% sparsity
in one cohesive step. Although previous works suggest re-initializing the network to ensure proper
variance (van Amersfoort et al., 2020). However, since the performance increment is marginal, we
retain the weights of the pruned network before training.

4.2 DATA SELECTION VIA PRUNED MODEL

We begin by randomly selecting a small subset of data samples, denoted as s0, from the unlabeled
pool U = {xi}i∈[n] where [n] = {1, ..., n}. These samples are then annotated. The pruned model
θp is trained on this labeled subset s0, resulting in the trained pruned model θ∗p. With θ∗p as our
tool, we venture into the larger unlabeled dataset U to identify samples that are prime candidates for
annotation.

Algorithm 1 PruneFuse
Input: Unlabeled dataset U , Initial labeled dataset s0,
labeled dataset L, original model θ, prune model θp,
fuse model θF , maximum budget b, pruning ratio p,
scored jth data sample Dj .
1: Randomly initialize θ
2: θp ← Prune(θ, p) //structure pruning
3: θ∗p ← Train θp on s0

4: L← s0

5: while |L| ≤ b do
6: Compute score(x; θ∗p) for all x ∈ U
7: Dk = topk[Dj ∈ U]j∈[k]

8: Query labels yk for selected samples Dk

9: Add (Dk, yk) to L
10: θ∗p ← Train θp on L

11: θF ← Fuse(θ, θ∗p)
12: θ∗F ← Fine-tune θF on L

13: return L, θ∗F

Regardless of the scenario, our method em-
ploys three distinct criteria for data selec-
tion: Least Confidence (LC) (Settles, 2012),
Entropy (Shannon, 1948), and Greedy k-
centers (Sener and Savarese, 2017). Least
Confidence based selection gravitates to-
wards samples where the pruned model ex-
hibits the least confidence in its predic-
tions. The confidence score is essen-
tially the highest probability the model as-
signs to any class label. Thus, the uncer-
tainty score for a given sample xi based on
LC is defined as score(xi; θp)LC = 1 −
maxŷ P (ŷ|xi; θ

∗
p). In Entropy-Based selec-

tion, the entropy of the model’s predictions
is the focal point. Samples with high en-
tropy indicate situations where θ∗p is am-
bivalent about the correct label. For each
sample in U , the uncertainty based on en-
tropy is computed as score(xi; θp)Entropy =
−
∑

ŷ P (ŷ|xi; θ
∗
p) logP (ŷ|xi; θ

∗
p). Subsequently, we select the top-k samples exhibiting the highest

uncertainty scores, proposing them as prime candidates for annotation. The objective of Greedy
k-centres algorithm is to cherry-pick k centers from the dataset such that the maximum distance
of any sample from its nearest center is minimized. The algorithm proceeds in a greedy manner
by selecting the first center arbitrarily and then iteratively selecting the next center as the point
that is furthest from the current set of centers. The selection is mathematically represented as
x = argmaxx∈U minc∈centers d(x, c) where centers is the current set of chosen centers and d(x, c) is
the distance between point x and center c. While various metrics can be employed to compute this
distance, we opt for the Euclidean distance since it is widely used in this context.

4.3 TRAINING OF PRUNED MODEL

Once we have selected the samples from U , they are annotated to obtain their respective labels. These
freshly labeled samples are assimilated into the labeled dataset L. At the start of each training cycle,
a fresh pruned model θp is generated. Training from scratch in every iteration is vital to prevent the
model from developing spurious correlations or overfitting to specific samples (Coleman et al., 2019).
This fresh start ensures that the model learns genuine patterns in the updated labeled dataset without
carrying over potential biases from previous iterations. The training process adheres to a typical
deep learning paradigm. Given the dataset L with samples (xi, yi), the aim is to minimize the loss
function: L(θp, L) = 1

|L|
∑|L|

i=1 Li(θp, xi, yi), where Li denotes the individual loss for the sample xi.
Training unfolds over multiple iterations (or epochs). In each iteration, the weights of θp are updated
using backpropagation with an optimization algorithm like stochastic gradient descent (SGD).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

This process is inherently iterative as in Active Learning. After each round of training, new samples
are chosen, annotated, and the model is reinitialized and retrained from scratch. This cycle persists
until certain stopping criteria, e.g. labeling budget or desired performance, are met. With the
incorporation of new labeled samples at every stage, θ∗p progressively refines its performance,
becoming better suited for the subsequent data selection phase.

4.4 FUSION WITH THE ORIGINAL MODEL

After achieving the predetermined budget, the next phase is to integrate the insights from the trained
pruned model θ∗p into the untrained original model θ. This step is crucial, as it amalgamates the
learned knowledge from the pruned model with the expansive architecture of the original model,
aiming to harness the best of both worlds.

Rationale for Fusion. Traditional pruning and fine-tuning methods often involve training a large
model, pruning it down, and then fine-tuning the smaller model. While this is effective, it does not
fully exploit the potential benefits of the larger, untrained model. The primary reason is that the
pruning process might discard useful structures and connections within the original model that were
not yet leveraged during initial training. By fusing the trained pruned model with the untrained
original model, we aim to create a model that combines the learned knowledge by θ∗p with the broader,
unexplored model θ.

The Fusion Process. Fusion is executed by transferring the weights from the trained pruned model’s
weight matrix θ∗p to the corresponding locations within the weight matrix of the untrained original
model θ. This results in a new, fused weight matrix:

θF = Fuse(θ, θ∗p)

Let’s represent a model θ as a sequence of layers, where each layer L consists of filters (for CNNs).
We can denote the ith filter of layer j in model θ as F θ

i,j . Given: θ is the original untrained model
and θ∗p is the trained pruned model. For a specific layer j, θ has a set of n filters {F θ

1,j , F
θ
2,j , ...F

θ
n,j}

and θ∗p has a set of m filters {F θ∗
p

1,j , F
θ∗
p

2,j , ...F
θ∗
p

m,j} where m ≤ n due to pruning. The fusion process
for layer j can be mathematically represented as:

F θF
i,j =

{
F

θ∗
p

i,j if F
θ∗
p

i,j exists
F θ
i,j otherwise

Where F θF
i,j is the ith filter of layer j in the fused model θF . Another approach is that the pruned

weights are dispersed over the whole network (an expansion fusion), however, it requires a more
complex mapping function. Assuming we have a dispersion function D that maps the filters of θ∗p to
multiple filters in θ, the fusion can be represented as:

F θF
i,j =

{
D(F

θ∗
p

i,j) if F
θ∗
p

i,j exists
F θ
i,j otherwise

Here, D is the dispersion function that averages weights, distributes them across multiple filters, or
uses other strategies to disperse the pruned weights across the original model’s architecture.

Advantages of Retaining Unaltered Weights: By copying weights from the trained pruned model
θ∗p into their corresponding locations within the untrained original model θ, and leaving the remaining
weights of θ yet to be trained, we create a unique blend. The weights from θ∗p encapsulate the
knowledge acquired during training, providing a foundation. Meanwhile, the rest of the untrained
weights in θ still have their initial values, offering an element of randomness. This duality fosters a
richer exploration of the loss landscape during subsequent training. Fig. 2 illustrates the transforma-
tion in training trajectories resulting from the fusion process. The trained weights of θ∗p provides a
better initialization, while the unaltered weights serve as gateways to unexplored regions in the loss
landscape. This strategic combination in the fused model θF enables the discovery of potentially
superior solutions that neither the pruned nor the original model might have discovered on their own.

4.5 REFINEMENT VIA KNOWLEDGE DISTILLATION

After the fusion process, our resultant model, θF , embodies a synthesis of insights from both the
trained pruned model θ∗p and the original model θ. Although we show that PruneFuse based on

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

discussed strategy above outperforms baseline active learning, to further optimize and enhance this
amalgamated knowledge, we engage in a fine-tuning phase making use of Knowledge Distillation
(KD). KD traditionally facilitates a student model to learn and emulate the behavior of a large
complex teacher model. While this technique has been employed in various scenarios, its application
in our context is unique and particularly advantageous. Given the seamless integration capability
of our pruned model, KD stands as a robust tool to complement the learning process. In essence,
it’s not merely about transferring knowledge; it’s about leveraging the insights from θ∗p to enrich the
training of fused model θF . During the fine-tuning phase, we can make use of two losses. The first
is the Cross-Entropy Loss, which quantifies the divergence between the predictions of θF and the
actual labels in dataset L. The second is the Distillation Loss, which measures the difference in the
softened logits of θF and θ∗p . These softened logits are derived by tempering logits of θ∗p , which in our
case is the teacher model, with a temperature parameter before applying the softmax function. The
composite loss for the fine-tuning phase is formulated as a weighted average of the Cross-Entropy
and Distillation losses. The iterative enhancement of θF is governed by:

θ
(t+1)
F = θ

(t)
F − α∇

θ
(t)
F

(
λLCross Entropy(θ

(t)
F , L) + (1− λ)LDistillation(θ

(t)
F , θ∗p)

)
Here α represents the learning rate, while λ functions as a coefficient to balance the contributions of
the two losses. Incorporating KD in the fine-tuning phase provides a structured approach to harness
the insights of the pruned model θ∗p . By doing so, we aim to ensure that the fused model θF not only
retains the trained weights of pruned model but also reinforce this knowledge iteratively, optimizing
the performance of θF in subsequent tasks.

4.6 PRUNEFUSE V2: ITERATIVE PRUNING OF FUSED MODEL

Algorithm 2 PruneFuse V2: Iterative Fused
Pruning for Efficient Data Selection
Input: AL rounds R, Sync interval Tsync, U , s0, L,
θ, θp, θF , b, p.
1: θp ← Prune(θ, p) // Random pruning
2: θ∗p ← Train θp on s0

3: L← s0

4: for r = 1 to R do
5: Select Dk from U using score(x; θ∗p)
6: Add (Dk, yk) to L rounds
7: Train θ∗p on L
8: if r%Tsync == 0 then
9: θF ← Fuse(θ, θ∗p) // Fuse after Tsync

10: θ∗F ← Fine-tune θF on L
11: θp ← Prune(θ∗F , p) // Prune fused model
12: θ∗p ← Fine-tune θp on L

13: return L, θ∗F

PruneFuse V2 introduces a strategy to update
pruned model, θp, from the trained fused model
θ∗F at predefined intervals Tsync. Algorithm 2
describes the PruneFuse V2 methodology pre-
cisely. In each active learning cycle, θp, ob-
tained by pruning a randomly initialized net-
work, is trained on the labeled dataset L and sub-
sequently employed to score the unlabeled data
U . At every Tsync cycle, the pruned model θp, is
obtained by pruning the trained fused model θ∗F ,
which will be fine-tune with labeled dataset L to
get θ∗p and then employed to score the unlabeled
data U in the subsequent rounds.

By periodically synchronizing the pruned model
with the fused model at regular Tsync intervals,
PruneFuse V2 effectively balances computa-
tional efficiency with data selection precision
compared to PruneFuse Algorithm 1. This itera-
tive refinement process enables the pruned model to leverage the robust architecture of fused model,
allowing it to evolve dynamically with each cycle and leading to continuous performance improve-
ments. As a result, PruneFuse V2 achieves a more optimal trade-off between accuracy and efficiency
compared to the Algorithm 1, enhancing the active learning process while maintaining computational
viability. We provide detailed error analysis of this strategy in Supplementary Materials.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. The effectiveness of our approach is assessed on different image classification datasets;
CIFAR-10 (Krizhevsky et al., 2009), CIFAR-100 (Krizhevsky et al., 2009), TinyImageNet-200 (Le
and Yang, 2015), and ImageNet-1K (Deng et al., 2009) with an input size of 32×32×3 for CIFAR-10
and CIFAR-100, 64× 64× 3 for TinyImageNet, and 224× 224× 3 for ImageNet-1K. CIFAR-10 is
partitioned into 50,000 training and 10,000 test samples, CIFAR-100 contains 100 classes and has
500 training and 100 testing samples per class, whereas TinyImageNet-200 contains 200 classes with

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Method Params

CIFAR-10 CIFAR-100

Params

Tiny-ImageNet-200 ImageNet-1K
Label Budget (b) Label Budget (b) Label Budget (b) Label Budget (b)

(Million) 10% 20% 30% 40% 50% 10% 20% 30% 40% 50% (Million) 10% 20% 30% 40% 50% 10% 20% 30% 40% 50%
Baseline 0.85 80.53 87.74 90.85 92.24 93.00 35.99 52.99 59.29 63.68 66.72 25.56 14.86 33.62 43.96 49.86 54.65 52.97 64.52 69.30 71.98 73.56

(AL)

PruneFuse 0.21 80.92 88.35 91.44 92.77 93.65 40.26 53.90 60.80 64.98 67.87 6.10 18.71 39.70 47.41 51.84 55.89 55.03 65.12 69.72 72.07 73.86
(p = 0.5)

PruneFuse 0.13 80.58 87.79 90.94 92.58 93.08 37.82 52.65 60.08 63.7 66.89 3.92 19.25 38.84 47.02 52.09 55.29 54.69 65.13 69.74 72.48 74.00
(p = 0.6)

PruneFuse 0.07 80.19 87.88 90.70 92.44 93.40 36.76 52.15 59.33 63.65 66.84 2.23 18.32 39.24 46.45 52.02 55.63 53.73 64.43 68.95 71.81 73.84
(p = 0.7)

PruneFuse 0.03 80.11 87.58 90.50 92.42 93.32 36.49 50.98 58.53 62.87 65.85 1.02 18.34 37.86 47.15 51.77 55.18 53.08 64.00 69.00 71.79 73.64
(p = 0.8)

Table 1: Performance Comparison of Baseline and PruneFuse on CIFAR-10, CIFAR-100 and Tiny ImageNet-
200. This table summarizes the test accuracy of final models (original in case of AL and Fused in PruneFuse) for
various pruning ratios (p) and labeling budgets(b). Params corresponds to the number of parameters of the data
selector model. Least Confidence is used as a metric for subset selection and different architectures (ResNet-56
for CIFAR-10 and CIFAR-100 while ResNet-50 for Tiny-ImageNet-200 and ImageNet-1K) are utilized.

0 1 2 3 4 5 6 7
Computation (FLOPs) 1016

80

82

84

86

88

90

92

94

A
cc

ur
ac

y
(%

)

b=10%

b=30%

b=50%

b=10%

b=30%

b=50%

b=10%

b=30%

b=50%

Baseline(AL)
PruneFuse(p=0.5)
PruneFuse V2(p=0.5)

0 1 2 3 4 5 6 7
Computation (FLOPs) 1016

80

82

84

86

88

90

92

94

A
cc

ur
ac

y
(%

)

b=10%

b=30%

b=50%

b=10%

b=30%

b=50%

b=10%

b=30%

b=50%

Baseline(AL)
PruneFuse(p=0.6)
PruneFuse V2(p=0.6)

0 1 2 3 4 5 6 7
Computation (FLOPs) 1016

80

82

84

86

88

90

92

94

A
cc

ur
ac

y
(%

)

b=10%

b=30%

b=50%

b=10%

b=30%

b=50%

b=10%

b=30%

b=50%

Baseline(AL)
PruneFuse(p=0.7)
PruneFuse V2(p=0.7)

0 1 2 3 4 5 6 7
Computation (FLOPs) 1016

80

82

84

86

88

90

92

94

A
cc

ur
ac

y
(%

)

b=10%

b=30%

b=50%

b=10%

b=30%

b=50%

b=10%

b=30%

b=50%

Baseline(AL)
PruneFuse(p=0.8)
PruneFuse V2(p=0.8)

(a) p = 0.5 (b) p = 0.6 (c) p = 0.7 (d) p = 0.8

Figure 3: Computation Comparison of PruneFuse and Baseline (Active Learning). This figure illustrates
the total number of FLOPs utilized by PruneFuse, compared to the baseline Active Learning method, for selecting
subsets with specific labeling budgets b = 10%, 30%, 50%. The experiments are conducted on the CIFAR-10
dataset using the ResNet-56 architecture. Subfigures (a), (b), (c), and (d) correspond to different pruning ratios
(0.5, 0.6, 0.7, and 0.8, respectively).

500 training, 50 validation, and 50 test samples per class. ImageNet-1K, a more challenging dataset,
consists of 1,000 classes with approximately 1.2 million training images and 50,000 validation images,
providing a comprehensive benchmark for evaluating large-scale image classification models.

Implementation Details. We used ResNet-50, ResNet-56, ResNet-110, and ResNet-164 architecture
in our experiments. We pruned these architectures using the Torch-Prunnig library (Fang et al., 2023)
for different pruning ratios p = 0.5, 0.6, 0.7, and 0.8 to get the pruned architectures. We trained the
model for 181 epochs following the setup in Coleman et al. (2019) for CIFAR-10 and CIFAR-100
and for 100 epochs for TinyImageNet-200 and ImageNet-1K. We use the mini-batch of 128 for
CIFAR-10 and CIFAR-100 and 256 for TinyImageNet-200 and ImageNet-1K. For all the experiments
SGD is used as an optimizer (further details are provided in Suplementary Materials A.3). We took
Active Learning (AL) as a baseline for the proposed technique and initially, we started by randomly
selecting 2% of the data. For the first round, we added 8% from the unlabeled set, then 10% in each
subsequent round, until reaching the label budget, b. After each round, we retrained the models from
scratch, as described in the methodology. All experiments are carried out independently 3 times and
then the average is reported.

5.2 RESULTS AND DISCUSSIONS

Main Experiments. We compare the performance of the PruneFuse with the baseline AL across
different model architectures, datasets, labeling budgets, and data selection metrics (detailed results
are provided in Supplementary Materials A.4). These experiments aim to demonstrate superior
generalization performance and computational efficiency. Table 1 summarizes the performance
of baseline and different variants of PruneFuse on various datasets. Results show that PruneFuse
consistently outperforms the baseline in most cases. The accuracy advantage in case of high pruning
ratio, e.g. in the case of p = 0.7, demonstrates the effectiveness of superior data selection performance
and fusion. Fig. 3 (a), (b), (c), and (d) shows the trade-off between accuracy and the computational
complexity of the baseline and PruneFuse variants in terms of Floating Point Operations (FLOPs)
for different labeling budgets. The FLOPs are computed for the whole training duration of the
pruned network and the selection process for a given budget. Different variants of PruneFuse, with
pruning ratios p = 0.5, p = 0.6, p = 0.7, and p = 0.8, offer users the flexibility to choose a version
based on their computational resources. For instance, PruneFuse (p = 0.8) requires significantly

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Method Params Label Budget (b), Tsync = 1 Label Budget (b), Tsync = 2

(Million) 20% 30% 40% 50% 60% 20% 30% 40% 50% 60%
Baseline 0.85 88.51 91.46 93.04 93.61 93.83 88.51 91.46 93.04 93.61 93.83

PruneFuse V2 (p = 0.5) 0.21 88.52 91.76 93.15 93.78 93.90 88.59 91.47 93.05 93.84 93.88
PruneFuse V2 (p = 0.6) 0.13 88.53 91.71 93.08 93.67 93.90 88.14 91.47 92.87 93.57 93.79
PruneFuse V2 (p = 0.7) 0.07 88.37 91.47 93.00 93.33 93.69 88.41 91.51 92.67 93.46 93.72

Table 2: Performance of PruneFuse V2 with Tsync = 1 and Tsync = 2 for different pruning ratios and label
budgets.

Method Label Budget (b)
10% 20% 30% 40% 50%

Baseline (AL) 80.53 87.74 90.85 92.94 93.00

BALD 80.61 88.11 91.21 92.98 93.36

SVP 80.76 87.31 90.77 92.59 92.95

PruneFuse 80.92 88.35 91.44 92.77 93.65
PruneFuse V2 81.23 88.52 91.76 93.15 93.78

PruneFuse V2 + BALD 80.71 88.38 91.44 93.16 93.58

Table 3: Comparison with Baselines for Resnet-56
on Cifar-10.

Method Selection Label Budget (b)
Size (k) 20% 40% 60%

Baseline (AL) 5,000 88.51 93.04 93.83

PruneFuse V2 5,000 88.82 93.15 93.90
Baseline (AL) 10,000 86.92 92.51 93.81

PruneFuse V2 10,000 87.49 93.11 94.04

Table 4: Ablation study of k on Cifar-10 using
ResNet-56 with (p = 0.5).

lower computational resources while still achieving good accuracy performance. PruneFuse V2
(p = 0.5) strikes an effective balance between accuracy and computation. It consistently provides high
accuracy with moderate FLOPs, making it an ideal choice for scenarios where both performance and
computational efficiency are critical. Compared to the baseline AL, both PruneFuse and PruneFuse
V2 demonstrates superior performance at every label budget, all while reducing the computational
cost. Detailed Complexity Analysis and Error Analysis for PruneFuse are provided in Supplementary
Materials A.1 and A.2, respectively.

2 3 4 5 6 7 8

Number of Parameters of Data Selector 104

90.8

90.9

91

91.1

91.2

91.3

91.4

91.5

A
cc

ur
ac

y
(%

)

Accuracy vs Model Size (Parameters)

R8

R14(p=0.5)

R14(p=0.6)

Proposed
SVP

3 4 5 6 7 8

Number of Parameters of Data Selector 104

91.7

91.8

91.9

92

92.1

92.2

92.3

92.4

A
cc

ur
ac

y
(%

)

Accuracy vs Model Size (Parameters)

R8

R20(p=0.5)

R20(p=0.6)

Proposed
SVP

(a) Target Model = ResNet-14 (b) Target Model = ResNet-20

Figure 4: Comparison of PruneFuse with SVP. Scat-
ter plot shows final accuracy on target model against
the model size for different ResNet models on CIFAR-
10, b = 50%. (a) shows ResNet-14 (with p = 0.5 and
p = 0.6) and ResNet-8 models are used as data selec-
tors for PruneFuse and SVP, respectively. While in (b),
PruneFuse utilizes ResNet20 (i.e. p = 0.5 and p = 0.6)
and SVP utilizes ResNet-8 models.

PruneFuse V2. We further evaluate PruneFuse
V2 and compared it’s efficacy against baseline
AL. We conducted experiments by varying the
synchronization interval Tsync to evaluate the
impact of the frequency at which the pruned
model is fused with the original model. Specif-
ically, we used Tsync = 1, where the pruned
model is updated from the trained fused model
after every round, and Tsync = 2, where this up-
date happens after every two rounds. For a fair
comparison, we modified the baseline to con-
tinue retraining the network from the previous
round, rather than reinitializing it. While this
provided a slight improvement for the baseline,
PruneFuse still outperformed it by a significant
margin.

As shown in Table 2, Tsync = 1 leads to better performance due to more frequent updates and
refinements of the pruned model. However, Tsync = 2 also shows strong results with fewer updates,
offering a balance between computational efficiency and accuracy. At higher label budgets (e.g., 60%),
both approaches perform similarly, indicating that PruneFuse can adapt to different synchronization
intervals without significant performance degradation.

These results highlight that while more frequent updates Tsync = 1 results in better data selection,
Tsync = 2 offers a more computationally efficient alternative without compromising much on
accuracy. This flexibility makes PruneFuse an effective solution for a variety of resource-constrained
scenarios.

Comparison with Baselines. Table 3 delineates a performance comparison of PruneFuse with
baseline techniques, including SVP and BALD, across various labeling budgets b for efficient training
of a target model (ResNet-56) on the CIFAR-10 dataset. Here, SVP employs a ResNet-20 as its data
selector, with a model size of 0.26 M. In contrast, PruneFuse uses a 50% pruned ResNet-56, reducing
its data selector size to 0.21 M. BALD similar to baseline AL, uses ResNet-56 for data selection based
on Bayesian uncertainty. Performance metrics demonstrate that PruneFuse consistently outperforms

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0 50 100 150
Epoch

20

40

60

80

100

A
cc

ur
ac

y(
%

)

Fusion
w/o Fusion

0 50 100 150
Epoch

20

30

40

50

60

70

80

90

A
cc

ur
ac

y(
%

)

Fusion
w/o Fusion

0 50 100 150
Epoch

20

30

40

50

60

70

80

90

A
cc

ur
ac

y(
%

)

Fusion
w/o Fusion

(a) p = 0.5, b = 30% (b) p = 0.6, b = 30% (c) p = 0.7, b = 30%

Figure 5: Impact of Model Fusion on PruneFuse Performance: This figure compares the accuracy over
epochs between fused and non-fused training approaches within the PruneFuse framework. Experiments are
conducted using the ResNet-56 on the CIFAR-10. Subfigures (a), (b) and (c) correspond to pruning ratios
p = 0.5, 0.6 and 0.7, respectively.

SVP across label budgets ranging from 10% to 50%. For example, PruneFuse achieves 80.92%
accuracy at a 10% label budget and peaks at 93.65% at 50%, compared to SVP’s 80.76% and
92.95%, respectively. Fig. 4 further illustrates the comparison in terms of model sizes. The
enhanced PruneFuse V2 shows even greater performance, particularly with Tsync = 1, where more
frequent updates enable it to reach 93.78% accuracy at 50%. This highlights the efficiency of
PruneFuse’s data selection and fusion process over traditional methods like SVP. BALD, while
demonstrating competitive results at higher label budgets (e.g., 93.36% at 50%), remains slightly
behind PruneFuse’s performance. Nevertheless, BALD can be seamlessly integrated with PruneFuse.
This integration, seen in PruneFuse V2 + BALD, capitalizes on the strengths of both methods,
yielding improved performance. Notably, PruneFuse V2 + BALD achieves 93.16% accuracy at a
40% label budget, illustrating the potential of combining these approaches for even better results in
high-budget scenarios.

Additional Experiments and Ablation Studies. Method Selection Metric Label Budget (b)
10% 20% 30% 40% 50%

Baseline
(AL)

Least Conf 38.41 51.39 65.53 70.07 73.05
Entropy 36.65 57.58 64.98 69.99 72.90
Random 39.31 57.53 63.84 67.75 70.79
Greedy k 39.76 57.40 65.20 69.25 72.91

PruneFuse
(p = 0.5)

Least Conf 42.88 59.31 66.95 71.45 74.32
Entropy 42.99 59.32 66.83 71.18 74.43
Random 43.72 58.58 64.93 68.75 71.63
Greedy k 43.61 58.38 66.04 69.83 73.10

Table 5: Effect of Different Data Selection Metrics
on CIFAR-100 using ResNet-164 architecture.

Fig. 5 demonstrates the effect of fusion across
various pruning ratios, the models trained with
fusion in-place perform better than those trained
without fusion, achieving higher accuracy levels
at an accelerated pace. The rapid convergence
is most notable in initial training phases, where
fusion model benefits from the initialization pro-
vided by the integration of weights from a trained
pruned model θ∗p with an untrained model θ. The strategic retention of untrained weights introduces
a beneficial stochastic component to the training process, enhancing the model’s ability to explore
new regions of the parameter space. This dual capability of exploiting prior knowledge and exploring
new configurations enables the proposed technique to consistently outperform, making it particularly
beneficial in scenarios with sparse label data. Table 4 demonstrates the effect of selection size k.
PruneFuse V2 consistently outperforms the Baseline AL in terms of selection size indicating the
efficacy of the data selection. The impact of different selection metrics (Least Confidence, Entropy,
Random, and Greedy K Centers) is presented in Table 5 across both the Baseline and PruneFuse
methods. In both cases, the Least Confidence metric surfaces as particularly effective in optimizing
label utilization and model performance. The results show that regardless of the label budget and
strategy utilized for data selection, PruneFuse consistently performs superior as compared to Baseline.
Ablation study of Knoweledge distillation is provides in Suplementary Materials A.6.

6 CONCLUSION

In this work, we present PruneFuse, a novel strategy that integrates pruning with network fusion
to optimize the data selection pipeline for deep learning. PruneFuse leverages a small pruned
model for data selection, which then seamlessly fuses with the original model, providing fast and
better generalization while significantly reducing computational costs. Our extensive evaluations
across CIFAR-10, CIFAR-100, Tiny-ImageNet-200, and ImageNet-1K demonstrate that PruneFuse
consistently outperforms existing baselines, establishing its efficiency and efficacy. PruneFuse offers
a scalable, practical, and flexible solution to enhance the training efficiency of neural networks,
particularly in resource-constrained settings.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. Advances in neural information processing systems, 28,
2015.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic
segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 3431–3440, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta. Revisiting unreasonable
effectiveness of data in deep learning era. In Proceedings of the IEEE international conference on
computer vision, pages 843–852, 2017.

Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep bayesian active learning with image data.
In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages
1183–1192. JMLR. org, 2017.

Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set
approach. arXiv preprint arXiv:1708.00489, 2017.

Andreas Kirsch, Joost Van Amersfoort, and Yarin Gal. Batchbald: Efficient and diverse batch
acquisition for deep bayesian active learning. Advances in neural information processing systems,
32, 2019.

Yanyao Shen, Hyokun Yun, Zachary Lipton, Yakov Kronrod, and Animashree Anandkumar. Deep
active learning for named entity recognition. In Proceedings of the 2nd Workshop on Repre-
sentation Learning for NLP, pages 252–256, Vancouver, Canada, August 2017. Association for
Computational Linguistics. doi: 10.18653/v1/W17-2630. URL https://www.aclweb.org/
anthology/W17-2630.

Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set
approach. In International Conference on Learning Representations, 2018. URL https://
openreview.net/forum?id=H1aIuk-RW.

Alexander Freytag, Erik Rodner, and Joachim Denzler. Selecting influential examples: Active
learning with expected model output changes. In Computer Vision–ECCV 2014: 13th European
Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part IV 13, pages 562–577.
Springer, 2014.

Christoph Käding, Erik Rodner, Alexander Freytag, and Joachim Denzler. Active and continuous
exploration with deep neural networks and expected model output changes. arXiv preprint
arXiv:1612.06129, 2016.

Krishnateja Killamsetty, Sivasubramanian Durga, Ganesh Ramakrishnan, Abir De, and Rishabh Iyer.
Grad-match: Gradient matching based data subset selection for efficient deep model training. In
International Conference on Machine Learning, pages 5464–5474. PMLR, 2021a.

Krishnateja Killamsetty, Durga Subramanian, Ganesh Ramakrishnan, and Rishabh Iyer. Glister: A
generalization based data selection framework for efficient and robust learning. AAAI, 2021b.

Eeshaan Jain, Tushar Nandy, Gaurav Aggarwal, Ashish Tendulkar, Rishabh Iyer, and Abir De.
Efficient data subset selection to generalize training across models: Transductive and inductive
networks. Advances in Neural Information Processing Systems, 36, 2024.

Cody Coleman, Christopher Yeh, Stephen Mussmann, Baharan Mirzasoleiman, Peter Bailis, Percy
Liang, Jure Leskovec, and Matei Zaharia. Selection via proxy: Efficient data selection for deep
learning. arXiv preprint arXiv:1906.11829, 2019.

11

https://www.aclweb.org/anthology/W17-2630
https://www.aclweb.org/anthology/W17-2630
https://openreview.net/forum?id=H1aIuk-RW
https://openreview.net/forum?id=H1aIuk-RW

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578, 2016.

Alvin Wan, Xiaoliang Dai, Peizhao Zhang, Zijian He, Yuandong Tian, Saining Xie, Bichen Wu,
Matthew Yu, Tao Xu, Kan Chen, et al. Fbnetv2: Differentiable neural architecture search for
spatial and channel dimensions. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 12965–12974, 2020.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

Zhen Dong, Zhewei Yao, Daiyaan Arfeen, Amir Gholami, Michael W Mahoney, and Kurt Keutzer.
Hawq-v2: Hessian aware trace-weighted quantization of neural networks. Advances in neural
information processing systems, 33:18518–18529, 2020.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig
Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for efficient
integer-arithmetic-only inference. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2704–2713, 2018.

Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. Dorefa-net: Train-
ing low bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint
arXiv:1606.06160, 2016.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Hongxu Yin, Pavlo Molchanov, Jose M Alvarez, Zhizhong Li, Arun Mallya, Derek Hoiem, Niraj K
Jha, and Jan Kautz. Dreaming to distill: Data-free knowledge transfer via deepinversion. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
8715–8724, 2020.

Xin Dong, Shangyu Chen, and Sinno Pan. Learning to prune deep neural networks via layer-wise
optimal brain surgeon. Advances in neural information processing systems, 30, 2017.

Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic network surgery for efficient dnns. Advances
in neural information processing systems, 29, 2016.

Sejun Park, Jaeho Lee, Sangwoo Mo, and Jinwoo Shin. Lookahead: A far-sighted alternative of
magnitude-based pruning. arXiv preprint arXiv:2002.04809, 2020.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural networks.
In Proceedings of the IEEE international conference on computer vision, pages 1389–1397, 2017.

Zhonghui You, Kun Yan, Jinmian Ye, Meng Ma, and Ping Wang. Gate decorator: Global filter pruning
method for accelerating deep convolutional neural networks. Advances in neural information
processing systems, 32, 2019.

Xiaohan Ding, Guiguang Ding, Yuchen Guo, and Jungong Han. Centripetal sgd for pruning very deep
convolutional networks with complicated structure. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 4943–4953, 2019.

Alex Renda, Jonathan Frankle, and Michael Carbin. Comparing rewinding and fine-tuning in neural
network pruning. arXiv preprint arXiv:2003.02389, 2020.

Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of pruning for model
compression. arXiv preprint arXiv:1710.01878, 2017.

Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. arXiv
preprint arXiv:1902.09574, 2019.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. Snip: Single-shot network pruning
based on connection sensitivity. arXiv preprint arXiv:1810.02340, 2018.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M Roy, and Michael Carbin. Pruning neural
networks at initialization: Why are we missing the mark? arXiv preprint arXiv:2009.08576, 2020.

Hidenori Tanaka, Daniel Kunin, Daniel L Yamins, and Surya Ganguli. Pruning neural networks
without any data by iteratively conserving synaptic flow. Advances in neural information processing
systems, 33:6377–6389, 2020.

Yulong Wang, Xiaolu Zhang, Lingxi Xie, Jun Zhou, Hang Su, Bo Zhang, and Xiaolin Hu. Pruning
from scratch. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages
12273–12280, 2020.

Jongsoo Park, Sheng Li, Wei Wen, Ping Tak Peter Tang, Hai Li, Yiran Chen, and Pradeep Dubey.
Faster cnns with direct sparse convolutions and guided pruning. arXiv preprint arXiv:1608.01409,
2016.

Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learn-
ing efficient convolutional networks through network slimming. In Proceedings of the IEEE
international conference on computer vision, pages 2736–2744, 2017.

Joost van Amersfoort, Milad Alizadeh, Sebastian Farquhar, Nicholas Lane, and Yarin Gal. Single
shot structured pruning before training. arXiv preprint arXiv:2007.00389, 2020.

Burr Settles. Active learning. Synthesis Lectures on Artificial Intelligence and Machine Learning, 6
(1):1–114, 2012.

Claude Elwood Shannon. A mathematical theory of communication. The Bell system technical
journal, 27(3):379–423, 1948.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7(7):3, 2015.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical
Image Database. In CVPR09, 2009.

Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi, and Xinchao Wang. Depgraph: Towards
any structural pruning. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 16091–16101, 2023.

Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio, and
Geoffrey J Gordon. An empirical study of example forgetting during deep neural network learning.
arXiv preprint arXiv:1812.05159, 2019.

Xiaobo Xia, Jiale Liu, Jun Yu, Xu Shen, Bo Han, and Tongliang Liu. Moderate coreset: A universal
method of data selection for real-world data-efficient deep learning. In The Eleventh International
Conference on Learning Representations, 2022.

Haizhong Zheng, Rui Liu, Fan Lai, and Atul Prakash. Coverage-centric coreset selection for high
pruning rates. arXiv preprint arXiv:2210.15809, 2022.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A SUPPLEMENTARY MATERIALS

This supplementary material provides additional details, analyses, and results to complement the
main paper. The content is organized into the following subsections:

1. Complexity Analysis (A.1): A detailed breakdown of the computational complexity of
PruneFuse and its components.

2. Error Analysis for PruneFuse (A.2): An error analysis outlining theoretical guarantees for
the proposed framework.

3. Implementation Details (A.3): Specific details about the experimental setup, hyperparame-
ters, and configurations used in our experiments.

4. Performance Comparison with Different Datasets, Selection Metrics, and Architectures
(A.4): Results demonstrating PruneFuse’s adaptability across datasets and architectures.

5. Ablation Study of Fusion (A.5): Analysis of the impact of the fusion process on PruneFuse’s
performance.

6. Ablation Study of Knowledge Distillation in PruneFuse (A.6): An evaluation of the role
of knowledge distillation in improving performance.

7. Comparison with SVP (A.7): A comparison highlighting differences and improvements
over the SVP baseline.

8. Ablation Study on the Number of Selected Data Points (k) (A.8): Investigation of how
varying k affects PruneFuse’s performance.

9. Impact of Early Stopping on Performance (A.9): Evaluation of the utility of early stopping
when integrated with PruneFuse.

10. Performance Comparison Across Architectures and Datasets (A.10): Additional results
comparing PruneFuse’s performance on various architectures and datasets.

11. Performance at Lower Pruning Rates (A.11): Results demonstrating PruneFuse’s effec-
tiveness at lower pruning rates.

12. Comparison with Recent Coreset Selection Techniques (A.12): Evaluation of PruneFuse’s
performance with recent coreset selection methods.

13. Effect of Various Pruning Strategies and Criterion (A.13): Analysis of different pruning
techniques and criteria on PruneFuse’s performance.

14. Detailed Runtime Analysis of PruneFuse (A.14): A detailed runtime analysis of PruneFuse
compared to baseline methods.

Each section provides additional insights, evaluations, and experiments to further validate and explain
the effectiveness of the proposed approach.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A.1 COMPLEXITY ANALYSIS

Given P and N represent the total number of parameters in the pruned and dense model, where
P ≪ N , the computational costs can be summarized as follows:

Initial Training on s0:

PruneFuse: O (|s0| × P × T) +O (P × logP) one time pruning cost
Baseline AL: O (|s0| ×N × T)

Data selection round with current labeled pool L:

PruneFuse: O (|L| × P × T) +O (|U | × P) selection
Baseline AL: O (|L| ×N × T) +O (|U | ×N) selection

Training of the final model on the final labeled set L:

PruneFuse: O (|L| ×N × T) +O (P) one time fusion cost
Baseline AL: O (|L| ×N × T)

Total training complexity:

PruneFuse: O (|s0| × P × T) +O (P × logP) +R× [O (|L| × P × T) +O (|U | × P)]

+O (|L| ×N × T) +O(P)

PruneFuse V2: O (|s0| × P × T) +O (P × logP) +R× [O (|L| × P × T) +O (|U | × P)]

+ Fsync ∗ [O (|L| ×N × T) +O(P) +O (|L| × P × T) +O (P × logP)]

+O (|L| ×N × T) +O(P)

Baseline AL: O (|s0| ×N × T) +R× [O (|L| ×N × T) +O (|U | ×N)] +O (|L| ×N × T)

Here T represents the total number of Epochs for a training round of AL which in our case is set
to 181. U is the whole unlabeled dataset and R represents the total number of AL rounds. Fsync

represent the frequency of iterative pruning based on the fused model.

We can see that the major training costs in Active Learning (AL) arise from the repeated use of a large,
dense model, which significantly increases computational expenses, especially across multiple rounds
of data selection. By using a smaller surrogate (pruned model) for these rounds, as implemented in
PruneFuse, the training cost and overall computation are reduced substantially. This approach leads
to a more efficient and cost-effective data selection process, allowing for better resource utilization
while maintaining high performance.

A.2 ERROR ANALYSIS FOR PRUNEFUSE

We analyze the error in PruneFuse by decomposing it into two components: selection error, arising
from training the pruned model on a subset sp of the full dataset D, and pruning error, resulting from
the reduced capacity of the pruned model θp. We demonstrate how the synchronization frequency
Fsync controls both errors and present a convergence result under reasonable assumptions.

The optimization problem is formulated as:

min
sp

∣∣E(x,y)∈sp [l(x, y; θp)]− E(x,y)∈D [l(x, y; θ)]
∣∣ (3)

where sp ⊂ D is the selected subset, θp is the pruned model, and θ is the full model. Our goal is
to minimize the difference in expected loss between the pruned model on the subset sp and the full
model on the full dataset D.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

We make the following assumptions to formalize the error bounds:

Assumption 1. The loss function l(x, y; θ) is Lipschitz continuous with respect to the model parame-
ters θ, with constant L:

|l(x, y; θ1)− l(x, y; θ2)| ≤ L∥θ1 − θ2∥

Assumption 2. The pruned subset sp is assumed to be an i.i.d. sample from the full dataset D, and
the expected loss over sp approximates that over D with high probability. Specifically, there exists a
constant δ such that: ∣∣E(x,y)∈sp [l(x, y; θ)]− E(x,y)∈D[l(x, y; θ)]

∣∣ ≤ δ

Assumption 3. After each synchronization step, the pruned model θp is updated to reduce its distance
from the full model θ. Specifically, the synchronization reduces the distance by a factor α, where
0 < α < 1, meaning:

∥θt+1
p − θ∥ ≤ α∥θtp − θ∥

Selection Error. The selection error, denoted Esel, arises from training the pruned model on the
subset sp rather than the full dataset D. Using assumptions 1 and 2, we can bound this error as:

Esel ≤ L∥θp − θ∥+ δ (4)

where δ is the subset approximation error and L is the Lipschitz constant of the loss function.

Furthermore, since θp’s representational power improves with synchronization, we express ∥θp − θ∥
as decreasing over time due to synchronization. The representational power of θp improves with
synchronization, so:

Esel ≤
C0

Fsync
L+ δ (5)

Where C0 represents the initial distance between the pruned model θp and the full model θ and Fsync

is the frequency of synchronization.

Pruning Error. The pruning error, denoted Eprune, arises from the reduced capacity of the pruned
model θp. By Assumption 1 and 3, the pruning error can be controlled by the distance between θp
and θ. The error is reduced after each synchronization step as:

Eprune ≤
Cθ

Fsync
(6)

where Cθ is a constant reflecting the magnitude of the pruning error, and Fsync is the synchronization
frequency. More frequent synchronization decreases the pruning error.

Total Error. The total error Etotal is the sum of the selection error Esel and the pruning error Eprune.
Substituting the bounds for each component, we obtain:

Etotal = Esel + Eprune ≤
C0L+ Cθ

Fsync
+ δ (7)

Furthermore, under assumption A3, synchronization leads to the following convergence result for the
distance between θp and θ:

∥θtp − θ∥ ≤ αt∥θ0p − θ∥ (8)

where t is the number of synchronization steps. Thus, after t steps, the pruned model converges to
the full model with an exponential rate controlled by α.

The total error decreases as the synchronization frequency Fsync increases. Moreover, under reasonable
assumptions, the pruned model θp converges to the full model θ over time with an exponential rate.
The bound shows that synchronization not only reduces the pruning error but also improves the
pruned model’s ability to generalize on the selected subset, minimizing the selection error.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

0 50 100 150
Epoch

10

20

30

40

50

60

70

80

A
cc

ur
ac

y(
%

)

Fusion
w/o Fusion

0 50 100 150
Epoch

20

40

60

80

100

A
cc

ur
ac

y(
%

)

Fusion
w/o Fusion

0 50 100 150
Epoch

20

30

40

50

60

70

80

90

A
cc

ur
ac

y(
%

)

Fusion
w/o Fusion

(a) p = 0.5, b = 10% (b) p = 0.5, b = 30% (c) p = 0.5, b = 50%

Figure 6: Ablation Study of Fusion on PruneFuse (p = 0.5). Experiments are performed on ResNet-56
architecture with CIFAR-10.

A.3 IMPLEMENTATION DETAILS.

We used ResNet-50, ResNet-56, ResNet-110, and ResNet-164 architecture in our experiments. We
pruned these architectures using the Torch-Prunnig library (Fang et al., 2023) for different pruning
ratios p = 0.5, 0.6, 0.7, and 0.8 to get the pruned architectures. For CIFAR-10 and CIFAR-100, the
models were trained for 181 epochs, with an epoch schedule of [1, 90, 45, 45], and corresponding
learning rates of [0.01, 0.1, 0.01, 0.001], using a momentum of 0.9 and weight decay of 0.0005.
For TinyImageNet-200 and ImageNet-1K, the models were trained over an epoch schedule of [1,
1, 1, 1, 1, 25, 30, 20, 20], with learning rates of [0.0167, 0.0333, 0.05, 0.0667, 0.0833, 0.1, 0.01,
0.001, 0.0001], a momentum of 0.9, and weight decay of 0.0001. We use the mini-batch of 128 for
CIFAR-10 and CIFAR-100 and 256 for TinyImageNet-200 and ImageNet-1K. For all the experiments
SGD is used as an optimizer. We set the knowledge distillation coefficient λ to 0.3. We took Active
Learning (AL) as a baseline for the proposed technique and initially, we started by randomly selecting
2% of the data. For the first round, we added 8% from the unlabeled set, then 10% in each subsequent
round, until reaching the label budget, b. After each round, we retrained the models from scratch, as
described in the methodology. All experiments are carried out independently 3 times and then the
average is reported.

A.4 PERFORMANCE COMPARISON WITH DIFFERENT DATASETS, SELECTION METRICS, AND
ARCHITECTURES

To comprehensively evaluate the effectiveness of PruneFuse, we conducted additional experiments
comparing its performance with baseline utilizing other data selection metrics such as Least Confi-
dence, Entropy, and Greedy k-centers. Results are shown in Tables 6, 7, and 8 for various architectures
and labeling budgets. In all cases, our results demonstrate that PruneFuse mostly outperforms the
baseline using these traditional metrics across various datasets and model architectures, highlighting
the robustness of PruneFuse in selecting the most informative samples efficiently.

A.5 ABLATION STUDY OF FUSION

The fusion process is a critical component of the PruneFuse methodology, designed to integrate
the knowledge gained by the pruned model into the original network. Our experiments reveal that
models trained with the fusion process exhibit significantly better performance and faster convergence
compared to those trained without fusion. By initializing the original model with the weights from
the trained pruned model, the fused model benefits from an optimized starting point, which enhances
its learning efficiency and generalization capability. Fig. 6, 7 and 8 illustrates the training trajectories
and accuracy improvements when fusion takes places, demonstrating the tangible benefits of this
initialization. These results underscore the importance of the fusion step in maximizing the overall
performance of the PruneFuse framework.

A.6 ABLATION STUDY OF KNOWLEDGE DISTILLATION IN PRUNEFUSE

Table 10 demonstrates the effect of Knowledge Distillation on the PruneFuse technique relative to the
baseline Active Learning (AL) method across various experimental configurations and label budgets

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Method Selection Metric Label Budget (b)
10% 20% 30% 40% 50%

Baseline
AL

Least Conf 80.53 ± 0.20 87.74 ± 0.15 90.85 ± 0.11 92.24 ± 0.16 93.00 ± 0.11
Entropy 80.14 ± 0.41 87.63 ± 0.10 90.80 ± 0.36 92.51 ± 0.34 92.98 ± 0.03
Random 78.55 ± 0.38 85.26 ± 0.21 88.13 ± 0.35 89.81 ± 0.15 91.20 ± 0.05
Greedy k 79.63 ± 0.83 86.46 ± 0.27 90.09 ± 0.20 91.9 ± 0.08 92.80 ± 0.08

PruneFuse
p = 0.5

Least Conf 80.92 ± 0.41 88.35 ± 0.33 91.44 ± 0.15 92.77 ± 0.03 93.65 ± 0.14
Entropy 81.08 ± 0.16 88.74 ± 0.10 91.33 ± 0.04 92.78 ± 0.04 93.48 ± 0.04
Random 80.43 ± 0.27 86.28 ± 0.37 88.75 ± 0.17 90.36 ± 0.02 91.42 ± 0.12
Greedy k 79.85 ± 0.68 86.96 ± 0.38 90.20 ± 0.16 91.82 ± 0.14 92.89 ± 0.14

PruneFuse
p = 0.6

Least Conf 80.58 ± 0.33 87.79 ± 0.20 90.94 ± 0.13 92.58 ± 0.31 93.08 ± 0.42
Entropy 80.96 ± 0.16 87.89 ± 0.45 91.22 ± 0.28 92.56 ± 0.19 93.19 ± 0.26
Random 79.19 ± 0.57 85.65 ± 0.29 88.27 ± 0.18 90.13 ± 0.24 91.01 ± 0.28
Greedy k 79.54 ± 0.48 86.16 ± 0.60 89.50 ± 0.29 91.35 ± 0.06 92.39 ± 0.22

PruneFuse
p = 0.7

Least Conf 80.19 ± 0.45 87.88 ± 0.05 90.70 ± 0.21 92.44 ± 0.24 93.40 ± 0.11
Entropy 79.73 ± 0.87 87.85 ± 0.25 90.94 ± 0.29 92.41 ± 0.23 93.39 ± 0.20
Random 78.76 ± 0.23 85.50 ± 0.11 88.31 ± 0.19 89.94 ± 0.24 90.87 ± 0.17
Greedy k 78.93 ± 0.15 85.85 ± 0.41 88.96 ± 0.07 90.93 ± 0.19 92.23 ± 0.08

PruneFuse
p = 0.8

Least Conf 80.11 ± 0.28 87.58 ± 0.14 90.50 ± 0.08 92.42 ± 0.41 93.32 ± 0.14
Entropy 79.83 ± 1.13 87.50 ± 0.54 90.52 ± 0.24 92.24 ± 0.13 93.15 ± 0.10
Random 78.77 ± 0.66 85.64 ± 0.13 88.45 ± 0.33 89.88 ± 0.14 91.21 ± 0.43
Greedy k 78.23 ± 0.37 85.59 ± 0.25 88.60 ± 0.19 90.11 ± 0.11 91.31 ± 0.08

(a) CIFAR-10 using ResNet-56 architecture.

Method Selection Metric Label Budget (b)
10% 20% 30% 40% 50%

Baseline
AL

Least Conf 35.99 ± 0.80 52.99 ± 0.56 59.29 ± 0.46 63.68 ± 0.53 66.72 ± 0.33
Entropy 37.57 ± 0.51 52.64 ± 0.76 58.87 ± 0.38 63.97 ± 0.17 66.78 ± 0.27
Random 37.06 ± 0.64 51.62 ± 0.21 58.77 ± 0.65 62.05 ± 0.02 64.63 ± 0.16
Greedy k 38.28 ± 1.11 52.43 ± 0.24 58.96 ± 0.16 63.56 ± 0.30 66.30 ± 0.31

PruneFuse
p = 0.5

Least Conf 40.26 ± 0.95 53.90 ± 1.06 60.80 ± 0.44 64.98 ± 0.4 67.87 ± 0.17
Entropy 38.59 ± 1.67 54.01 ± 1.17 60.52 ± 0.19 64.83 ± 0.27 67.67 ± 0.33
Random 39.43 ± 0.99 54.60 ± 0.64 60.13 ± 0.96 63.91 ± 0.39 66.02 ± 0.3
Greedy k 39.83 ± 2.44 54.35 ± 0.41 60.40 ± 0.23 64.22 ± 0.25 66.89 ± 0.16

PruneFuse
p = 0.6

Least Conf 37.82 ± 0.83 52.65 ± 0.4 60.08 ± 0.22 63.7 ± 0.25 66.89 ± 0.46
Entropy 38.01 ± 0.79 51.91 ± 0.56 59.18 ± 0.31 63.53 ± 0.25 66.88 ± 0.18
Random 38.27 ± 0.81 52.85 ± 1.22 58.68 ± 0.68 62.28 ± 0.22 65.2 ± 0.48
Greedy k 38.44 ± 0.98 52.85 ± 0.74 59.36 ± 0.57 63.36 ± 0.75 66.12 ± 0.38

PruneFuse
p = 0.7

Least Conf 36.76 ± 0.63 52.15 ± 0.53 59.33 ± 0.17 63.65 ± 0.36 66.84 ± 0.43
Entropy 36.95 ± 1.03 50.64 ± 0.33 58.45 ± 0.36 62.27 ± 0.27 65.88 ± 0.28
Random 37.30 ± 1.24 51.66 ± 0.21 58.79 ± 0.13 62.67 ± 0.29 65.08 ± 0.08
Greedy k 38.88 ± 2.18 52.02 ± 0.77 58.66 ± 0.19 61.39 ± 0.11 65.28 ± 0.65

PruneFuse
p = 0.8

Least Conf 36.49 ± 0.20 50.98 ± 0.54 58.53 ± 0.50 62.87 ± 0.13 65.85 ± 0.32
Entropy 36.02 ± 1.30 51.23 ± 0.23 57.44 ± 0.11 62.65 ± 0.46 65.76 ± 0.30
Random 37.37 ± 0.85 52.06 ± 0.47 58.19 ± 0.30 62.19 ± 0.45 64.77 ± 0.29
Greedy k 37.04 ± 0.09 49.84 ± 0.49 56.13 ± 0.20 60.24 ± 0.42 62.92 ± 0.44

(b) CIFAR-100 using ResNet-56 architecture.

Table 6: Performance Comparison of Baseline and PruneFuse on CIFAR-10 and CIFAR-100 with
ResNet-56 architecture. This table summarizes the test accuracy of final models (original in case of
AL and Fused in PruneFuse) for various pruning ratios (p), labeling budgets (b), and data selection
metrics.

on CIFAR-10 and CIFAR-100 datasets, using different ResNet architectures. The results indicate
that PruneFuse consistently outperforms the baseline method, both with and without incorporating
Knowledge Distillation (KD) from a trained pruned model. This superior performance is attributed to
the innovative fusion strategy inherent to PruneFuse, where the original model is initialized using
weights from a previously trained pruned model. The proposed approach gives the fused model an
optimized starting point, enhancing its ability to learn more efficiently and generalize better. The
impact of this strategy is evident across different label budgets and architectures, demonstrating its
effectiveness and robustness.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Method Selection Metric Label Budget (b)
10% 20% 30% 40% 50%

Baseline
AL

Least Conf. 80.74 ± 0.04 87.80 ± 0.09 91.50 ± 0.09 93.19 ± 0.14 93.68 ± 0.17
Entropy 79.81 ± 0.18 88.46 ± 0.30 91.30 ± 0.15 92.83 ±0.30 93.47 ± 0.31
Random 79.99 ± 0.10 85.63 ± 0.03 88.07 ± 0.31 90.40 ± 0.42 91.42 ± 0.26
Greedy k 78.69 ± 0.58 87.46 ±0.20 90.72 ± 0.14 92.55 ±0.14 93.44 ± 0.07

PruneFuse
p = 0.5

Least Conf. 81.24 ± 0.43 88.70 ± 0.15 92.02 ± 0.10 93.32 ± 0.13 94.07 ± 0.06
Entropy 81.45 ± 0.39 88.90 ± 0.11 92.13 ± 0.15 93.49 ± 0.16 94.07 ± 0.05
Random 80.08 ± 0.86 86.52 ± 0.14 89.48 ± 0.16 90.82 ± 0.21 91.79 ± 0.04
Greedy k 80.40 ± 0.09 87.77 ± 0.13 90.74 ± 0.09 92.48 ± 0.22 93.53 ± 0.22

PruneFuse
p = 0.6

Least Conf. 81.12 ± 0.34 88.33 ± 0.31 91.57 ± 0.03 93.25 ± 0.21 93.90 ± 0.17
Entropy 80.02 ± 0.41 88.49 ± 0.18 91.51 ± 0.14 93.03 ± 0.11 93.94 ± 0.12
Random 78.55 ± 0.42 85.94 ± 0.34 88.77 ± 0.10 90.66 ± 0.20 92.02 ± 0.03
Greedy k 79.44 ± 0.28 87.05 ± 0.63 90.30 ± 0.15 92.15 ± 0.12 93.22 ± 0.04

PruneFuse
p = 0.7

Least Conf. 79.93 ± 0.06 88.04 ± 0.23 91.51 ± 0.34 92.90 ± 0.02 93.82 ± 0.09
Entropy 80.16 ± 0.27 87.78 ± 0.52 91.21 ± 0.13 92.99 ± 0.13 93.81 ± 0.12
Random 79.41 ± 0.36 86.14 ± 0.44 88.86 ± 0.11 90.35 ± 0.08 91.35 ± 0.24
Greedy k 78.58 ± 0.91 86.37 ± 0.36 89.70 ± 0.33 91.71 ± 0.18 92.97 ± 0.10

PruneFuse
p = 0.8

Least Conf. 80.34 ± 0.39 88.00 ± 0.13 91.22 ± 0.07 92.89 ± 0.23 93.80 ± 0.23
Entropy 79.61 ± 0.35 88.12 ± 0.00 90.94 ± 0.13 92.76 ± 0.14 93.54 ± 0.24
Random 78.94 ± 0.49 86.20 ± 0.10 89.11 ± 0.34 90.50 ± 0.22 91.42 ± 0.23
Greedy k 78.41 ± 0.76 85.90 ± 0.73 89.57 ± 0.51 91.38 ± 0.32 92.21± 0.22

(a) CIFAR-10 using ResNet-110 architecture.

Method Selection Metric Label Budget (b)
10% 20% 30% 40% 50%

Baseline
AL

Least Conf. 38.61 ±0.32 54.47 ±0.56 61.46 ±0.25 65.96 ±0.48 68.91 ± 0.40
Entropy 38.00 ± 0.99 54.71 ±0.83 60.82 ±0.15 66.19 ± 0.31 68.79 ± 0.50
Random 37.88 ± 1.03 52.84 ±0.11 59.41 ±0.34 64.11 ± 0.11 67.22 ± 0.36
Greedy k 37.41 ± 0.98 53.86 ±0.55 61.44 ±0.26 65.73 ± 0.50 68.17 ± 0.46

PruneFuse
p = 0.5

Least Conf. 41.42 ± 0.51 55.91 ± 0.36 62.43 ± 0.32 66.95 ± 0.20 69.79 ± 0.26
Entropy 40.83 ± 0.59 56.29 ± 0.83 62.62 ± 0.45 66.91 ± 0.02 69.96 ± 0.39
Random 40.36 ± 0.74 55.48 ± 0.25 61.14 ± 0.68 65.03 ± 0.42 67.85 ± 0.53
Greedy k 41.22 ± 0.46 55.70 ± 0.54 62.27 ± 0.02 66.20 ± 0.14 68.86 ± 0.14

PruneFuse
p = 0.6

Least Conf. 38.52 ± 1.49 54.90 ± 0.32 61.50 ± 0.77 66.14 ± 0.68 69.03 ± 0.24
Entropy 38.78 ± 1.35 53.13 ± 0.30 61.42 ± 0.14 65.62 ± 0.43 68.89 ± 0.09
Random 40.24 ± 0.90 53.38 ± 0.68 59.93 ± 0.12 64.70 ± 0.15 66.62 ± 0.24
Greedy k 39.99 ± 1.56 54.91 ± 2.23 61.04 ± 0.25 64.69 ± 0.63 67.60 ± 0.08

PruneFuse
p = 0.7

Least Conf. 37.83 ± 1.02 53.08 ± 0.25 61.41 ± 0.21 65.77 ± 0.43 68.03 ± 0.14
Entropy 36.53 ± 0.97 52.97 ± 0.76 59.82 ± 0.63 64.97 ± 0.13 68.64 ± 0.54
Random 39.46 ± 0.59 52.89 ± 0.77 59.92 ± 0.55 63.69 ± 0.25 66.30 ± 0.15
Greedy k 40.44 ± 0.13 52.56 ± 0.28 59.83 ± 0.45 64.50 ± 0.29 66.99 ± 0.50

PruneFuse
p = 0.8

Least Conf. 38.33 ± 0.58 52.89 ± 0.49 60.08 ± 0.32 65.12 ± 0.60 68.06 ± 0.56
Entropy 35.34 ± 0.98 51.88 ± 0.74 59.80 ± 0.82 64.58 ± 0.43 68.02 ± 0.17
Random 38.22 ± 0.39 53.37 ± 0.72 59.84 ± 0.43 64.31 ± 0.33 67.23 ± 0.25
Greedy k 37.72 ± 0.70 50.55 ± 1.79 57.39 ± 0.93 61.79 ± 0.53 65.21 ± 0.24

(b) CIFAR-100 using ResNet-110 architecture.

Table 7: Performance Comparison of Baseline and PruneFuse on CIFAR-10 and CIFAR-100 with
ResNet-110 architecture. This table summarizes the test accuracy of final models (original in case of
AL and Fused in PruneFuse) for various pruning ratios (p), labeling budgets (b), and data selection
metrics.

A.7 COMPARISON WITH SVP

Table 13 delineates a performance comparison of PruneFuse with SVP techniques, across various
labeling budgets b for the efficient training of a Target Model (ResNet-56). SVP employs a ResNet-20
as its data selector, with a model size of 0.26 M. In contrast, PruneFuse uses a 50% pruned ResNet-56,
reducing its data selector size to 0.21 M. Performance metrics show that as the label budget increases
from 10% to 50%, the PruneFuse consistently outperforms SVP across all label budgets. Specifically
on the target model, PruneFuse initiates at an accuracy of 82.68% with a 10% label budget and peaks
at 93.69% accuracy at a 50% budget, whereas SVP achieves 80.76% at 10% label budget and achieves

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Method Selection Metric Label Budget (b)
10% 20% 30% 40% 50%

Baseline
AL

Least Conf. 81.15 ± 0.52 89.4 ± 0.27 92.72 ± 0.10 94.09 ± 0.14 94.63 ± 0.18
Entropy 80.99 ± 0.44 89.54 ± 0.18 92.45 ± 0.16 94.06 ± 0.05 94.49 ± 0.09
Random 80.27 ± 0.18 87.00 ± 0.08 89.94 ± 0.13 91.57 ± 0.09 92.78 ± 0.04
Greedy k 80.02 ± 0.42 88.33 ± 0.47 91.76 ± 0.24 93.39 ± 0.22 94.40 ± 0.18

PruneFuse
p = 0.5

Least Conf. 83.03 ± 0.09 90.30 ± 0.06 93.00 ± 0.15 94.41 ± 0.08 94.63 ± 0.13
Entropy 82.64 ± 0.22 89.88 ± 0.27 93.08 ± 0.25 94.32 ± 0.12 94.90 ± 0.13
Random 81.52 ± 0.54 87.84 ± 0.15 90.14 ± 0.08 91.94 ± 0.18 92.81 ± 0.12
Greedy k 81.70 ± 0.13 88.75 ± 0.33 91.92 ± 0.07 93.64 ± 0.04 94.22 ± 0.09

PruneFuse
p = 0.6

Least Conf. 82.86 ± 0.38 90.22 ± 0.18 93.05 ± 0.10 94.27 ± 0.06 94.66 ± 0.08
Entropy 82.23 ± 0.39 90.18 ± 0.11 92.91 ± 0.15 94.28 ± 0.14 94.66 ± 0.14
Random 81.14 ± 0.26 87.51 ± 0.26 90.05 ± 0.20 91.82 ± 0.22 92.43 ± 0.20
Greedy k 81.11 ± 0.10 88.41 ± 0.18 91.66 ± 0.18 92.94 ± 0.12 94.17 ± 0.02

PruneFuse
p = 0.7

Least Conf. 82.76 ± 0.29 89.89 ± 0.17 92.83 ± 0.08 94.10 ± 0.08 94.69 ± 0.13
Entropy 82.59 ± 0.69 89.81 ± 0.24 92.77 ± 0.07 94.20 ± 0.20 94.74 ± 0.02
Random 80.88 ± 0.38 87.54 ± 0.26 90.09 ± 0.08 91.57 ± 0.26 92.64 ± 0.10
Greedy k 81.68 ± 0.40 88.36 ± 0.56 91.64 ± 0.40 93.02 ± 0.42 93.97 ± 0.51

PruneFuse
p = 0.8

Least Conf. 82.66 ± 0.09 89.78 ± 0.27 92.64 ± 0.14 94.08 ± 0.10 94.69 ± 0.17
Entropy 82.01 ± 0.88 89.77 ± 0.44 92.65 ± 0.09 94.02 ± 0.17 94.60 ± 0.18
Random 80.73 ± 0.49 87.43 ± 0.44 90.08 ± 0.12 91.40 ± 0.07 92.53 ± 0.18
Greedy k 79.66 ± 0.60 87.56 ± 0.12 90.79 ± 0.07 92.30 ± 0.12 93.17 ± 0.14

(a) CIFAR-10 using ResNet-164 architecture.

Method Selection Metric Label Budget (b)
10% 20% 30% 40% 50%

Baseline
AL

Least Conf 38.41 ± 0.73 51.39 ± 0.30 65.53 ± 0.31 70.07 ± 0.17 73.05 ± 0.11
Entropy 36.65 ± 0.76 57.58 ± 0.63 64.98 ± 0.30 69.99 ± 0.17 72.90 ± 0.15
Random 39.31 ± 1.22 57.53 ± 0.26 63.84 ± 0.14 67.75 ± 0.14 70.79 ± 0.07
Greedy k 39.76 ± 0.58 57.40 ± 0.20 65.20 ± 0.31 69.25 ± 0.40 72.91 ± 0.29

PruneFuse
p = 0.5

Least Conf 42.88 ± 1.11 59.31 ± 0.70 66.95 ± 0.30 71.45 ± 0.42 74.32 ± 0.58
Entropy 42.99 ± 0.18 59.32 ± 1.25 66.83 ± 0.29 71.18 ± 0.40 74.43 ± 0.34
Random 43.72 ± 1.05 58.58 ± 0.61 64.93 ± 0.43 68.75 ± 0.57 71.63 ± 0.40
Greedy k 43.61 ± 0.91 58.38 ± 0.24 66.04 ± 0.21 69.83 ± 0.16 73.10 ± 0.39

PruneFuse
p = 0.6

Least Conf 41.86 ± 0.70 58.97 ± 0.50 66.61 ± 0.39 70.59 ± 0.11 73.60 ± 0.10
Entropy 42.43 ± 0.95 58.74 ± 0.80 65.97 ± 0.39 70.90 ± 0.48 73.70 ± 0.09
Random 42.53 ± 0.46 58.33 ± 0.42 65.00 ± 0.26 68.55 ± 0.30 71.46 ± 0.32
Greedy k 42.71 ± 0.91 58.41 ± 0.18 65.43 ± 0.69 69.57 ± 0.14 72.49 ± 0.25

PruneFuse
p = 0.7

Least Conf 42.00 ± 0.20 57.08 ± 0.36 66.41 ± 0.30 70.68 ± 0.29 73.63 ± 0.29
Entropy 41.01 ± 1.66 57.45 ± 0.50 65.99 ± 0.10 70.07 ± 0.54 73.45 ± 0.04
Random 42.76 ± 1.00 57.31 ± 0.07 64.12 ± 0.57 68.07 ± 0.24 70.88 ± 0.25
Greedy k 42.42 ± 0.32 57.58 ± 0.52 65.18 ± 0.51 68.55 ± 0.10 71.89 ± 0.16

PruneFuse
p = 0.8

Least Conf 41.19 ± 1.07 57.98 ± 9.70 65.22 ± 0.44 70.38 ± 0.22 73.17 ± 0.26
Entropy 39.78 ± 1.16 57.30 ± 0.41 65.19 ± 0.63 69.40 ± 0.34 72.82 ± 0.03
Random 42.08 ± 1.55 57.23 ± 0.47 64.05 ± 0.40 67.85 ± 0.19 70.62 ± 0.06
Greedy k 42.20 ± 1.21 57.42 ± 0.50 64.53 ± 0.21 68.01 ± 0.40 71.29 ± 0.14

(b) CIFAR-100 using ResNet-164 architecture.

Table 8: Performance Comparison of Baseline and PruneFuse on CIFAR-10 and CIFAR-100 with
ResNet-164 architecture. This table summarizes the test accuracy of final models (original in case of
AL and Fused in PruneFuse) for various pruning ratios (p), labeling budgets (b), and data selection
metrics.

92.95% accuracy at 50%. Notably, while the data selector of PruneFuse achieves a lower accuracy of
90.31% at b = 50% compared to SVP’s 91.61%, the target model utilizing PruneFuse-selected data
attains a superior accuracy of 93.69%, relative to 92.95% for the SVP-selected data. This disparity
underscores the distinct operational focus of the data selectors: PruneFuse’s selector is optimized
for enhancing the target model’s performance, rather than its own accuracy. Fig. 4(a) and (b) show
that target models ResNet-14 and ResNet-20, when trained with the data selectors of the PruneFuse
achieve significantly higher accuracy while using significantly less number of parameters compared
to SVP. These results indicate that the proposed approach does not require an additional architecture

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Method Label Budget (b)
10% 20% 30% 40% 50%

Baseline (AL) 14.86 ± 0.11 33.62 ± 0.52 43.96 ± 0.22 49.86 ± 0.56 54.65 ± 0.38

PruneFuse (p = 0.5) 18.71 ± 0.21 39.70 ± 0.31 47.41 ± 0.20 51.84 ± 0.10 55.89 ± 1.21

PruneFuse (p = 0.6) 19.25 ± 0.72 38.84 ± 0.70 47.02 ± 0.30 52.09 ± 0.29 55.29 ± 0.28

PruneFuse (p = 0.7) 18.32 ± 0.95 39.24 ± 0.75 46.45 ± 0.58 52.02 ± 0.65 55.63 ± 0.55

PruneFuse (p = 0.8) 18.34 ± 0.93 37.86 ± 0.42 47.15 ± 0.31 51.77 ± 0.40 55.18 ± 0.50

Table 9: Performance Comparison of Baseline and PruneFuse on Tiny ImageNet-200 with ResNet-
50 architecture, including test accuracy and corresponding standard deviations. This table summarizes
the test accuracy of final models (original in case of AL and Fused in PruneFuse) for various pruning
ratios (p) and labeling budgets (b).

0 50 100 150
Epoch

10

20

30

40

50

60

70

80

A
cc

ur
ac

y(
%

)

Fusion
w/o Fusion

0 50 100 150
Epoch

20

30

40

50

60

70

80

90

A
cc

ur
ac

y(
%

)

Fusion
w/o Fusion

0 50 100 150
Epoch

20

30

40

50

60

70

80

90

A
cc

ur
ac

y(
%

)

Fusion
w/o Fusion

(a) p = 0.6, b = 10% (b) p = 0.6, b = 30% (c) p = 0.6, b = 50%

Figure 7: Ablation Study of Fusion on PruneFuse (p = 0.6). Experiments are performed on ResNet-56
architecture with CIFAR-10.

for designing the data selector; it solely needs the target model (e.g. ResNet-14). In contrast, SVP
necessitates both the target model (ResNet-14) and a smaller model (ResNet-8) that functions as a
data selector.

Table 11 demonstrates the performance comparison of PruneFuse and SVP for small model archi-
tecture ResNet-20 on CIFAR-10. SVP achieves 91.88% performance accuracy by utilizing the data
selector having 0.074 M parameters whereas PruneFuse outperforms SVP by achieving 92.29%
accuracy with a data selector of 0.066 M parameters.

A.8 ABLATION STUDY ON THE NUMBER OF SELECTED DATA POINTS (k)

Table 12 presents an ablation study analyzing the effect of varying k on the performance of PruneFuse
on CIFAR-10 using the ResNet-56 architecture and least confidence as the selection metric. The
results demonstrate that the choice of k significantly impacts the quality of data selection and the final
performance of the model. As k increases, the selected subset quality diminishes as can be seen by
comparing performance of the target network when b = 30%. This study highlights the importance
of tuning k to achieve an optimal trade-off between computational efficiency and model accuracy.

0 50 100 150
Epoch

10

20

30

40

50

60

70

80

A
cc

ur
ac

y(
%

)

Fusion
w/o Fusion

0 50 100 150
Epoch

20

30

40

50

60

70

80

90

A
cc

ur
ac

y(
%

)

Fusion
w/o Fusion

0 50 100 150
Epoch

20

30

40

50

60

70

80

90

A
cc

ur
ac

y(
%

)

Fusion
w/o Fusion

(a) p = 0.7, b = 10% (b) p = 0.7, b = 30% (c) p = 0.7, b = 50%

Figure 8: Ablation Study of Fusion on PruneFuse (p = 0.7). Experiments are performed on ResNet-56
architecture with CIFAR-10.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Method Selection Metric Label Budget (b)
10% 20% 30% 40% 50%

Baseline
AL

Least Conf 80.53 87.74 90.85 92.24 93.00
Entropy 80.14 87.63 90.80 92.51 92.98
Random 78.55 85.26 88.13 89.81 91.20
Greedy k 79.63 86.46 90.09 91.90 92.80

PruneFuse
p = 0.5

(without KD)

Least Conf 81.08 88.71 91.24 92.68 93.46
Entropy 80.80 88.08 90.98 92.74 93.43
Random 80.11 85.78 88.81 90.20 91.10
Greedy k 80.07 86.70 89.93 91.72 92.67

PruneFuse
p = 0.5

(with KD)

Least Conf 80.92 88.35 91.44 92.77 93.65
Entropy 81.08 88.74 91.33 92.78 93.48
Random 80.43 86.28 88.75 90.36 91.42
Greedy k 79.85 86.96 90.20 91.82 92.89

(a) CIFAR-10 using ResNet-56 architecture.

Method Selection Metric Label Budget (b)
10% 20% 30% 40% 50%

Baseline
AL

Least Conf 81.15 89.4 92.72 94.09 94.63
Entropy 80.99 89.54 92.45 94.06 94.49
Random 80.27 87.00 89.94 91.57 92.78
Greedy k 80.02 88.33 91.76 93.39 94.40

PruneFuse
p = 0.5

(without KD)

Least Conf 83.82 90.26 93.15 94.34 94.90
Entropy 82.72 90.42 93.18 94.68 95.00
Random 81.94 88.04 90.37 91.93 92.67
Greedy k 81.99 89.04 92.14 93.40 94.44

PruneFuse
p = 0.5

(with KD)

Least Conf. 83.03 90.30 93.00 94.41 94.63
Entropy 82.64 89.88 93.08 94.32 94.90
Random 81.52 87.84 90.14 91.94 92.81
Greedy k 81.70 88.75 91.92 93.64 94.22

(b) CIFAR-10 using ResNet-164 architecture.

Method Selection Metric Label Budget (b)
10% 20% 30% 40% 50%

Baseline
AL

Least Conf 35.99 52.99 59.29 63.68 66.72
Entropy 37.57 52.64 58.87 63.97 66.78
Random 37.06 51.62 58.77 62.05 64.63
Greedy k 38.28 52.43 58.96 63.56 66.30

PruneFuse
p = 0.5

(without KD)

Least Conf 39.27 54.25 60.6 64.17 67.49
Entropy 37.43 52.57 60.57 64.44 67.31
Random 40.07 52.83 59.93 63.06 65.41
Greedy k 39.25 52.43 59.94 63.94 66.56

PruneFuse
p = 0.5

(with KD)

Least Conf 40.26 53.90 60.80 64.98 67.87
Entropy 38.59 54.01 60.52 64.83 67.67
Random 39.43 54.60 60.13 63.91 66.02
Greedy k 39.83 54.35 60.40 64.22 66.89

(c) CIFAR-100 using ResNet-56 architecture.

Table 10: Ablation Study of Knowledge Distillation on PruneFuse presented in a, b, and c with different
architectures and datasets.

A.9 IMPACT OF EARLY STOPPING ON PERFORMANCE

Table 14 explores the effect of utilizing an early stopping strategy alongside PruneFuse (p = 0.5)
on CIFAR-10 with the ResNet-56 architecture. The results indicate that early stopping not only
reduces training time of the fused model but also maintains comparable performance to fully trained
models. This highlights the compatibility of PruneFuse with training efficiency techniques such as
early stopping and showcases how the expedited convergence enabled by the fusion process further
enhances its practicality, particularly in resource-constrained environments.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Techniques Model Architecture No. of Parameters Label Budget (b)
(Million) 10% 20% 30% 40% 50%

SVP Data Selector ResNet-8 0.074 77.85 83.35 85.43 86.83 86.90

Target ResNet-20 0.26 80.18 86.34 89.22 90.75 91.88

PruneFuse Data Selector ResNet-20 (p = 0.5) 0.066 76.58 83.41 85.83 87.07 88.06

Target ResNet-20 0.26 80.25 87.57 90.20 91.70 92.29

Table 11: Comparison of SVP and PruneFuse on Small Models.

Method Label Budget (b)
15% 30% 45% 60% 75%

Baseline (AL) 84.63 90.59 92.77 93.12 93.94

PruneFuse (p = 0.5) 85.80 91.13 93.72 93.84 94.10

(a) k = 7.5K.

Method Label Budget (b)
10% 20% 30% 40% 50%

Baseline (AL) 80.53 87.74 90.85 92.24 93.00

PruneFuse (p = 0.5) 80.92 88.35 91.44 92.77 93.65

(b) k = 5K.

Table 12: Ablation study of k on Cifar-10 using ResNet-56 architecture and least confidence as a selection
matric.

A.10 PERFORMANCE COMPARISON ACROSS ARCHITECTURES AND DATASETS

In Table 15, we present the performance comparison of Baseline and PruneFuse across various
architectures and datasets. These results demonstrate the adaptability of PruneFuse to different
network architectures, including ResNet-18, ResNet-50, and Wide-ResNet (W-28-10), as well as
datasets such as CIFAR-10, CIFAR-100, and ImageNet. The experiments confirm that PruneFuse
consistently improves performance over the baseline, highlighting its generalizability and robustness
across diverse scenarios.

A.11 PERFORMANCE AT LOWER PRUNING RATES

Table 16 provides a performance comparison of Baseline and PruneFuse with a lower pruning rate
of p = 0.4 on CIFAR-10 and CIFAR-100 using the ResNet-56 architecture. Least Confidence and
Entropy were used as selection metrics for these experiments. The results show that even at a lower
pruning rate, PruneFuse effectively selects high-quality data subsets, maintaining strong performance
in both datasets. These findings validate the method’s effectiveness across different pruning rates.

A.12 COMPARISON WITH RECENT CORESET SELECTION TECHNIQUES

Table 17 compares the performance of Baseline (Coreset Selection) and PruneFuse (p = 0.5) using
various recent selection metrics, including Forgetting Events (Toneva et al., 2019), Moderate (Xia et
al., 2022), and CSS (Zheng et al., 2022) on the CIFAR-10 dataset with the ResNet-56 architecture.

To incorporate these recent score metrics, which are specifically designed for coreset-based selection,
we utilized the coreset task setup. In this setup, the network is first trained on the entire dataset to
identify a representative subset of data (coreset) based on the selection metric. The accuracy of the
target model trained on the selected coreset is then reported. The results demonstrate that PruneFuse
seamlessly integrates with these advanced selection metrics, achieving competitive or superior
performance compared to the baseline while maintaining computational efficiency. This highlights
the versatility of PruneFuse in adapting to and enhancing existing coreset selection techniques.

A.13 EFFECT OF VARIOUS PRUNING STRATEGIES AND CRITERION

In Table 18, we evaluate the impact of different pruning techniques (e.g., static pruning, dynamic
pruning) and pruning criteria (e.g., L2 norm, GroupNorm Importance, LAMP Importance [Fang et al.
(2023)]) on the performance of PruneFuse (p = 0.5) on CIFAR-10 using the ResNet-56 architecture.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Method Model Architecture Params Label Budget (b)
(Million) 10% 20% 30% 40% 50%

SVP Data Selector ResNet-20 0.26 81.07 86.51 89.77 91.08 91.61

Target ResNet-56 0.85 80.76 87.31 90.77 92.59 92.95

PruneFuse Data Selector ResNet-56 (p = 0.5)) 0.21 78.62 84.92 88.17 89.93 90.31

Target ResNet-56 0.85 82.68 88.97 91.63 93.24 93.69

Table 13: Comparison with SVP.

Method Epochs Label Budget (b)
10% 20% 30% 40% 50%

Least Conf. 181 80.92±0.409 88.35±0.327 91.44±0.148 92.77±0.026 93.65±0.141
110 80.51±0.375 87.64±0.222 90.79±0.052 92.11±0.154 93.00±0.005

Entropy 181 81.08±0.155 88.74±0.103 91.33±0.045 92.78±0.045 93.48±0.042
110 80.51±0.401 87.46±0.416 90.97±0.116 92.2±0.108 92.88±0.264

Random 181 80.43±0.273 86.28±0.367 88.75±0.17 90.36±0.022 91.42±0.125
110 79.29±0.355 84.99±0.156 87.86±0.323 89.99±0.090 90.85±0.012

Greedy k. 181 79.85±0.676 86.96±0.385 90.20±0.164 91.82±0.136 92.89±0.144
110 79.36±0.274 86.36±0.455 89.67±0.319 91.19±0.302 91.91±0.021

Table 14: Performance Comparison when Early Stopping strategy is utilized alongside PruneFuse (p = 0.5).
Experiments are performed with Resnet-56 on CIFAR-10.

Method Label Budget (b)
10% 20% 30% 40% 50%

Baseline (AL) 83.12 90.07 92.71 94.07 94.81

PruneFuse (p = 0.5) 83.29 90.56 93.17 94.56 95.08

(a) ResNet-18 architecture on CIFAR-10.

Method Label Budget (b)
10% 20% 30% 40% 50%

Baseline (AL) 84.74 91.48 94.17 95.24 95.75

PruneFuse (p = 0.5) 85.65 92.27 94.65 95.73 96.24

(b) Wide-ResNet architecture on CIFAR-10.

Method Label Budget (b)
10% 20% 30% 40% 50%

Baseline (AL) 52.97 64.52 69.30 71.98 73.56

PruneFuse (p = 0.5) 55.03 65.12 69.72 72.07 73.86

(c) ResNet-50 architecture on ImageNet-1K.

Table 15: Performance Comparison of Baseline and PruneFuse presented in a, b, and b with different architec-
tures and datasets.

Static pruning involves pruning the entire network at once at the start of training, whereas dynamic
pruning incrementally prunes the network in multiple steps during training. In our implementation of
dynamic pruning, the network is pruned in five steps over the course of 20 epochs.

The results demonstrate that PruneFuse is highly adaptable to various pruning strategies, consistently
maintaining strong performance in data selection tasks. This flexibility underscores the robustness of
the framework across different pruning approaches and criteria.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Method Selection Metric Label Budget (b)
10% 20% 30% 40% 50%

Baseline (AL)
Least Confidence 80.53 87.74 90.85 92.24 93.00

Entropy 80.14 87.63 90.80 92.51 92.98

PruneFuse (p = 0.4)
Least Confidence 81.12 88.16 91.35 92.89 93.20

Entropy 80.94 88.27 91.09 92.73 93.38

(a) CIFAR-10

Method Selection Metric Label Budget (b)
10% 20% 30% 40% 50%

Baseline (AL)
Least Confidence 35.99 52.99 59.29 63.68 66.72

Entropy 37.57 52.64 58.87 63.97 66.78

PruneFuse (p = 0.4)
Least Confidence 38.73 54.35 60.75 64.80 67.08

Entropy 38.35 54.19 60.79 65.00 67.47

(b) CIFAR-100

Table 16: Performance Comparison of Baseline and PruneFuse(p = 0.4) on Cifar-10 and Cifar-100 using
ResNet-56 architecture.

Method Selection Metric Data Selector’s Target Model’s Accuracy
Params Params (b = 25%)

Baseline

Entropy 86.13
Least Confidence 86.50
Forgetting Events 0.85 Million 0.85 Million 86.01

Moderate 86.27
CSS 87.21

PruneFuse

Entropy 86.71
Least Confidence 86.68
Forgetting Events 0.21 Million 0.85 Million 87.84

Moderate 87.63
CSS 88.85

Table 17: Performance Comparison of Baseline (Coreset) and PruneFuse (p = 0.5) for Various selection
metrics including Forgetting Events (Toneva et al., 2019), Moderate (Xia et al., 2022), and CSS (Zheng et al.,
2022) on Cifar-10 dataset using ResNet-56 architecture.

A.14 RUNTIME COMPARISON OF DATA SELECTOR NETWORKS AND DETAILED BREAKDOWN
OF THE TRAINING RUNTIME FOR EACH COMPONENT OF PRUNEFUSE

Table 19 compares the training runtimes of the data selector network (pruned network for PruneFuse
and dense network for the baseline) across various network architectures. The reported times
correspond to the training phase of the data selector network prior to the final selection of the
subset (at b = 50%, label budget). Note that the variation in runtimes across different datasets is
due to the experiments being conducted on different servers, each equipped with specific GPUs
(e.g., 2080Ti, 3090, or A100). The results show that PruneFuse significantly reduces training time
due to the efficiency of the pruned network as compared to baseline, making it well suited for
resource-constrained environments.

Table 20 provides a detailed breakdown of the training run time for each component of PruneFuse,
including the data selector training time, the selection time, and the target network training time.
These measurements offer a comprehensive view of the computational requirements of PruneFuse,
demonstrating its efficiency compared to the baseline methods. The breakdown highlights that
the pruned network and the fusion process contribute to significant computational savings without
compromising performance.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Method Pruning Criteria Label Budget (b)
10% 20% 30% 40% 50%

Baseline (AL) - 80.53 87.74 90.85 92.24 93.00

PruneFuse Magnitude Imp. 79.73 87.16 91.08 92.29 93.19
GroupNorm Imp. 80.10 88.25 91.01 92.25 93.74

(Dynamic Pruning) LAMP Imp. 81.51 87.45 90.64 92.41 93.25

PruneFuse Magnitude Imp. 80.92 88.35 91.44 92.77 93.65
GroupNorm Imp. 80.84 88.20 91.19 93.01 93.03

(Static Pruning) LAMP Imp. 81.10 88.37 91.32 93.02 93.08

PruneFuse_V2 Magnitude Imp. 81.23 88.52 91.76 93.15 93.78
GroupNorm Imp. 81.09 88.77 91.77 93.19 93.68

(Static Pruning) LAMP Imp. 81.86 88.51 92.10 93.02 93.63

Table 18: Effect of different Pruning Techniques and Pruning Criterion on PruneFuse (p = 5) on Cifar-10
dataset with ResNet-56 architecture.

Datasets Data Selectors Training Runime
(Selection Models) (Minutes)

CIFAR-10 ResNet-56 (Baseline) 127.67
ResNet-56 (PruneFuse (p = 0.5)) 72.55
ResNet-56 (PruneFuse (p = 0.8)) 67.23
ResNet-18 (Baseline) 85.68
ResNet-18 (PruneFuse (p = 0.5)) 61.15
Wide ResNet (Baseline) 122.43
Wide ResNet (PruneFuse (p = 0.5)) 75.48

CIFAR-100 ResNet-164 (Baseline) 129.23
ResNet-164 (PruneFuse (p = 0.5)) 83.52
ResNet-164 (PruneFuse (p = 0.8)) 78.55
ResNet-110 (Baseline) 95.80
ResNet-110 (PruneFuse (p = 0.5)) 80.42
ResNet-110 (PruneFuse (p = 0.8)) 69.50

TinyImagenet-200 ResNet-50 (Baseline) 248.48
ResNet-50 (PruneFuse (p = 0.5)) 147.47
ResNet-50 (PruneFuse (p = 0.8)) 94.42

ImageNet-1K Resnet-50 (Baseline) 2081.3
ResNet-50 (PruneFuse (p = 0.5)) 951.17

Table 19: Training Runtime of data selector network i.e. pruned network in the case of PruneFuse and dense
network for baseline, for various network architectures. The reported time is the training time when the network
is trained before selecting final subset of the data (b = 50%).

Datasets
Label Budget Data Selectors Data Selection Time Target Model

(b) (Training Time) (Minutes) (Training Time)
(Minutes) (Minutes)

Baseline (AL) 10% 48.80 4.43 48.80
20% 99.23 3.50 99.23
30% 145.32 3.15 145.32
40% 195.38 2.72 195.38
50% 248.48 2.38 248.48

PruneFuse 10% 32.17 1.57 49.50
20% 61.70 1.67 99.99
30% 88.53 1.52 146.25
40% 117.10 1.37 196.28
50% 147.47 1.18 249.58

Table 20: Detailed Training time of Baseline and PruneFuse(p = 0.5) for TinyImageNet-200 for Resnet-50
using Least Confidence as selection metric.

26

	Introduction
	Related Works
	Background and Motivation
	Subset Selection Framework
	Network Pruning and Its Relevance

	PruneFuse
	Pruning at Initialization
	Data Selection via Pruned Model
	Training of Pruned Model
	Fusion with the Original Model
	Refinement via Knowledge Distillation
	PruneFuse V2: Iterative Pruning of Fused Model

	Experiments
	Experimental Setup
	Results and Discussions

	Conclusion
	Supplementary Materials
	Complexity Analysis
	Error Analysis for PruneFuse
	Implementation Details.
	Performance Comparison with different Datasets, Selection Metrics, and Architectures
	Ablation Study of Fusion
	Ablation Study of Knowledge Distillation in PruneFuse
	Comparison with SVP
	Ablation Study on the Number of Selected Data Points (k)
	Impact of Early Stopping on Performance
	Performance Comparison Across Architectures and Datasets
	Performance at Lower Pruning Rates
	Comparison with Recent Coreset Selection Techniques
	Effect of Various Pruning Strategies and Criterion
	Runtime Comparison of Data Selector Networks and Detailed Breakdown of the Training Runtime for each Component of PruneFuse

