
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

NOVEL RL APPROACH FOR EFFICIENT ELEVATOR
GROUP CONTROL SYSTEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

The management of elevator traffic in large buildings is crucial for ensuring low
passenger travel times and energy consumption. We optimize the Elevator Group
Control System (EGCS) using a novel Reinforcement Learning (RL) approach.
Existing methods, including heuristic-based and pattern detection algorithms, of-
ten fall short in handling the complex and stochastic nature of elevator systems.
This research proposes an end-to-end RL-based approach. A custom elevator sim-
ulation environment representing the 6-elevator, 15-floor system at Vrije Univer-
siteit Amsterdam (VU) is developed as a Markov Decision Process (MDP). Key
innovations include a novel action space encoding to handle the combinatorial
complexity of elevator dispatching, the introduction of infra-steps to model con-
tinuous passenger arrivals, and a tailored reward signal to improve learning effi-
ciency. Additionally, we explore various ways of adapting the discounting factor
to the infra-step formulation. We investigate RL architectures based on Duel-
ing Double Deep Q-learning, showing that the proposed RL-based EGCS adapts
to fluctuating traffic patterns, learns from a highly stochastic environment, and
thereby outperforms a traditional rule-based algorithm.

1 INTRODUCTION

1.1 PROBLEM DESCRIPTION

In large structures, complex multi-lift systems cater to the high transportation demands. The system
responsible for determining which elevators to dispatch in response to passenger requests is known
as the Elevator Group Control System (EGCS). The EGCS plays a vital role in ensuring low wait
times and energy efficiency (Fernandez & Cortes, 2015). Traditional rule-based control methods
can be efficient in simple environments but fail to adapt to the complexity of modern buildings with
varying traffic patterns. Reinforcement Learning (RL) offers a promising alternative for optimizing
EGCSs by allowing systems to autonomously learn from experience and adapt to complex environ-
ments.

Designing an EGCS to efficiently match passengers with available lifts presents several challenges.
First, upon registering a floor button press (hall call), the EGCS must choose from multiple carts with
varying speeds, positions, destinations, and passenger loads. It may even dispatch more than one
cart to serve a new passenger. Second, the system does not know the new passenger’s destination
until they enter the elevator and register a car button press inside it (car call). Similarly, it only
knows the number of passengers associated with a hall call once they board the elevator and register
their destinations. The agent must therefore deal with a high level of stochasticity in environment
transitions. Third, traffic patterns fluctuate throughout the day, with morning up-peaks and afternoon
down-peaks placing the highest demands on elevator capacity. The system can also undergo long-
term changes, such as if a building becomes busier over the years. The agent needs to be robust
to handle the varying traffic patterns or long term changes. Lastly, solutions must be computed in
real-time.

1.2 RULE-BASED APPROACHES

Traditional elevator control systems are often based on rule-based algorithms (Fernandez & Cortes,
2015). An example is the ETD algorithm (Smith, 2002), which minimizes the total trip time for

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

every new passenger while considering the slowdown incurred to existing passengers. Another
popular rule-based approach is sectorization, where the individual elevators are assigned a specific
range of floors and respond to hall calls only within these floors (Kameli & Collins, 1996). Idling
floors are selected dynamically, for example based on Particle Swarm Optimization (Li et al., 2007)
or Dynamic Programming (DP) in combination with traffic pattern detection (Chan & So, 1995).
Despite their utility, these algorithms are often too inflexible to deal with varying usage patterns
throughout the time of the day, day of the weeks and other key parameters, limiting their optimization
potential (Cortés et al., 2012).

1.3 RL IN EGCS

RL is highly effective for control-related tasks, enabling an agent to autonomously learn a robust
policy through interaction with an environment. When integrated with Deep Learning, RL allows
the agent to recognize patterns in the environment data and make fine-grained decisions. This self-
learning ability makes RL adaptable to highly specific scenarios, enhancing its suitability for real-
world applications. RL is a well-established paradigm, widely applied in domains such as reservoir
operation (Castelletti et al., 2010) and complex game-playing (Vinyals et al., 2019).

RL has been applied to EGCSs in limited capacities. Early works such as Crites & Barto (1998)
demonstrated the feasibility of RL in optimizing elevator routing. Interestingly, they framed the
problem as a Multi-Agent Reinforcement Learning (MARL) problem by having one separate RL
controller per elevator. Given the use of a Q-table, the approach faces issues of scalability.

Recent works have integrated deep learning with RL, such as Wei et al. (2020). The authors for-
malize their solution as a Single-Agent Reinforcement Learning (SARL) problem and implement
an Advantage Actor-Critic (A3C) model. They give the model full access to the group sizes and
destination floors of future passengers, which are normally unknown to the system. This creates a
performance advantage usually unachievable in the real-world.

Another approach developed recently by Wan et al. (2024) improves upon previous limitations by
using a Dueling Double Deep Q-learning agent trained in a discrete-event simulation. The agent
is only prompted for an action whenever a passenger arrives in the system or an elevator reaches a
new floor. They adapt the discounting factor formulation to be able to deal with varying time in-
between steps. The authors developed an end-to-end RL controller, capable of fully functioning as
an EGCS in a 20-floor, 4-cart environment. One drawback of their implementation is the design of
the action space. They require a decision from the RL controller every time any elevator reaches a
new floor while moving. The controller should then choose whether to stop at the floor or continue
past it. When stopped, the controller should decide at every new event whether to stay idle, go up
or go down. This induces a large and complex action space and a large action density in a learning
episode, making the problem difficult.

1.4 AIMS AND CONTRIBUTIONS

This paper presents an RL-based EGCS to address the shortcomings of the current approaches, with
both methodological and practical contributions.

Our contributions can be summarized as follows:

1.4.1 METHODOLOGICAL CONTRIBUTIONS

• We formulate the elevator routing problem as an MDP to allow for RL interaction,

• We propose the use of infra-steps to adapt to the continuous nature of passenger arrivals,
while allowing the RL agent to model and learn from the system dynamics occurring be-
tween discrete decision points,

• We design and test a specialized discounting strategy tailored to the infra-step formula-
tion, enabling the RL agent to account for variable time intervals between actions, thus
improving the overall learning and decision-making process,

• We design two RL architectures based on Dueling Double Deep Q-learning and compare
them.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

1.4.2 PRACTICAL CONTRIBUTIONS

• We develop a realistic elevator simulation environment that closely mirrors the 6-elevator,
15-floor system at Vrije Universiteit (VU) Amsterdam, using data collected in June 2023.
This simulator allows us to validate and test the performance of the proposed RL-based
EGCS reliably,

• We introduce a novel action space encoding, specifically tailored to the elevator dispatching
problem, which is designed to side-step the combinatorial complexity typically associated
with this problem domain,

• We design the reward signal to provide more frequent feedback to the RL agent, with the
goal of improving learning efficiency and accelerating convergence by addressing the issue
of sparse rewards,

• The RL-based solution we propose outperforms a modern rule-based system in terms of
passenger travel time, offering a promising alternative for real-world EGCS implementa-
tion.

Through these contributions, our work advances the methodological understanding of how RL can
be adapted to the continuous and complex nature of elevator systems. It also demonstrates the
feasibility of an RL-based EGCS in real-world applications.

2 METHODOLOGY

2.1 ELEVATOR SIMULATION

Floor and elevator button presses were recorded at the VU Amsterdam in June 2023 and passenger
arrival times and destinations were reconstructed based on that data. Hall calls were matched to
the relevant car calls in order to deduce the destination of a passenger group. As there was no
way of knowing how many people were behind one car call, we estimated the group size per car
call by sampling from a geometric distribution as had been done in previous research (Sorsa et al.,
2021). We define the distribution parameters per hour based on Sorsa et al. (2021), as they provide
distribution parameters that were stable across a wide range of building types and locations. A
summary of traffic patterns that were recorded can be seen in Figure 1.

2.2 DISCRETE-EVENT ENVIRONMENT

2.3 MARKOV DECISION PROCESS

An RL agent learns a policy that maximizes cumulative rewards by interacting with its environment.
The environment is formulated as a Markov Decision Process (MDP). An MDP is formalized as a
tuple (S,A, P,R, γ), where S is the set of states produced by the environment and observable by
the agent, A is the set of actions available to the agent, P (s′|s, a) is the probability of arriving in
state s′ after taking action a in state s. R(s, a) is the reward of taking action a in state s, and γ is
the discount factor.

An agent interacting with an MDP aims to find a policy π that maximizes the expected discounted
reward Gπ .

Gπ = E

[∞∑
t=0

γtR(st, at)

∣∣∣∣π
]

(1)

where t represents all the timesteps-to-be until the terminal state, R(st, at) is the reward obtained
for taking action at in state st, and the policy π determines the actions.

2.3.1 ACTION SPACE

A key challenge in optimizing EGCS using RL is designing a suitable action space to be used in the
MDP.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

0 5 10 15 20
Hour

0

50

100

150

200

250

300
Fr

eq
ue

nc
y

Direction of group arrivals per hour

up
down

Figure 1: Distribution of travel directions. The
morning shows a majority of upward travel,
lunchtime is both directions, and the evening
has more downward travel, although the peak
is not as pronounced as the morning up-peak.

Figure 2: Construction of the reward in a total
environment run by a trained RL agent.

Wei et al. (2020) and Wan et al. (2024) define the action space for every elevator to either continue
or stop at the next floor, leading to an action space of 2n, where n is the amount of elevators. This
reduces the action space, but the action density is high as the system is prompted for an action every
time any elevator reaches a new floor.

Alternatively, the EGCS can act on a higher level by matching each active hall call to an elevator,
and the lower-level movement decisions are then delegated to a module that makes the carts stop at
every floor for which the cart has a hall call assigned. However, in a multi-elevator system, each
elevator can respond to each hall call, leading to significant combinatorial complexity in the number
of possible actions. In a system with n elevators and m active hall calls, there are nm possible
assignments (Hamdi & Mulvaney, 2007).

In order to avoid both problems, we formalize the action space differently. We only prompt the
EGCS for an action when a new passenger or passenger group enters the system and registers a
hall call. The EGCS then decides which elevator(s) to send to the new hall call. The hall call floor
is then added to the selected elevator(s)’s destination queue, and each elevator then independently
works on emptying their destination queue automatically, without requiring further input from the
RL agent. Passenger expectations dictate that the elevator should always stop at a floor for which
a car call is registered and it should empty its destination queue in the direction of travel before
reversing. These constraints imply that there is only one course of action possible, and there is no
need to make further action decisions.

2.3.2 INFRA-STEPS

Traditional RL frameworks typically operate in time-discrete MDPs. Because of the asynchronous
nature of elevator arrivals in our environment, there is a variable time in-between decision moments
where the agent is prompted for an action. We implement a discrete-event environment and introduce
the concept of infra-steps, defined as intervals of 0.1 seconds during which the system refreshes
elevator positions and processes events. When an event appears, the environment fetches the present
state and prompts the agent for an action. There can therefore be a variable number of infra-steps
between steps. However, the agent still only interacts with the environment at every step, as in the
basic formulation of discrete-time RL. This mechanism is illustrated in Figure 3.

2.3.3 DISCOUNTING FACTOR

An important implication of the infra-step formulation is determining how to address discounting
regarding the variable time between the steps. One option is to apply discounting on the infra-step
level, which means the reward is summed up at every infra-step and discounted appropriately. The
resulting modified Bellman equation is the following:

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 3: Discrete-event formulation of the environment. The simulation updates every 0.1 seconds
and verifies if a hall call has been registered. The environment processes automatic behaviour. Only
when a hall call is registered does it return the state to the agent and prompt it for an action.

V (st) =

N−1∑
t=0

γt ∗R(st, at) + γN ∗ V (st+N) (2)

where R(st, at) is the reward obtained at infra-step t after taking action at in state st, and t is the
infra-step indicator. The agent cannot change its action in-between two states. γ is the discount
factor and V (st) and V (st+N) are the values of state st and next state st+N , respectively.

Another option is to entirely abstract away from the variable timing between steps and discount every
next step by the same discount factor, regardless of the infra-step amount. This means that even
though the environment is a discrete-event scenario, the agent sees it as a discrete-time environment.
The reward then simply becomes the sum of rewards acquired between st and st+N . The Value
function is then the traditional Bellman equation:

V (st) =

N−1∑
t=0

R(st, at) + γ ∗ V (st+N) (3)

There are limited theoretical foundations for such a problem, and one notable article that imple-
ments a discrete-event formulation (Wan et al., 2024) employs the variable discounting approach
without further theoretical justifications. We tested both approaches in practice and compared them
experimentally.

2.3.4 ENVIRONMENT STATE AND REWARDS

To build a state s, we selected features from the elevator environment that were most relevant to the
RL agent. The state s was composed of the following elements:

1. The floor the current hall call has been registered at (0 - 15)

2. The direction of the current hall call, -1 when going down, 1 when going up

3. Time, as a fraction of the day (0 - 1)

4. Day of the week, as an integer (1 - 7)

5. For every elevator, an encoding of its position in meters, divided by the total building height
(0 - 1)

6. For every elevator, its ETD score

7. Speed for every elevator in meters per second, negative when going down, positive when
going up (-2.5 - 2.5)

8. Current weight in every elevator, in kilograms.

The ETD score was a measure of the general busyness of every elevator as designed by the ETD
algorithm (Smith, 2002) (see section 2.4.1)

The primary reward signal the agent receives from the environment is a negative reward for each
passenger either waiting on a floor or traveling in an elevator. The system therefore aims to clear

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

state shared representation

action dimension 1

action dimension 2

action dimension 3
0
1

argmax

0
1

argmax

0
1

argmax

state shared representation

1 0 0 0 0 0

0 1 0 0 0 0

1 1 1 0 0 0

1 1 0 1 0 0

argmax

Combinatorial Branching

Figure 4: Comparison of both RL agent architectures.

all passengers to minimize negative rewards. However, there can be a large amount of steps in busy
times in between an action taken by the agent and the moment the passenger exits the system. To
make a more direct connection between actions and rewards, we introduced extra reward signals that
the agent got earlier:

1. Wait floor and Wait elev are the penalties incurred at every infra-step for every passenger
currently waiting at a floor or travelling in an elevator, respectively.

2. Loading is the reward obtained when a passenger boards an elevator.

3. Arrival is the reward when a passenger is dropped off at their destination.

4. Moving is the penalty incurred at every infra-step for every moving elevator. This is in-
cluded to give the EGCS a sense of energy preservation.

5. Elevator full is the penalty incurred when an elevator is full and cannot accept a passenger
while serving a hall call.

The rewards were balanced manually against each other. The sum and relative importance of rewards
of one environment run can be seen in Figure 2. The state was normalized per element before
being passed to the neural network. Mean and standard deviation of the training data were used for
normalization. Further details on the state elements and rewards can be consulted in the Appendix
A.1.

2.4 AGENTS

2.4.1 BASELINE AGENT

To assess the performance of our RL algorithm, we implemented the rule-based ETD algorithm
developed by Smith (2002). The ETD algorithm aims to minimize the total time impact incurred by
serving a new passenger in the system. It minimizes the time to serve the passenger itself while also
considering the impact on other passengers’ journey time if a certain elevator were to pick up the
passenger. This is formalized with the following equation:

Coste = ETDe +
∑
p

Delaye,p

where ETDe is the Estimated Time to Destination in seconds for elevator e and Delaye,p is the
delay in seconds incurred to passenger p currently being served by elevator e. The cost for elevator e
is the sum of the time it will take to serve the passenger plus the delay incurred to all other passengers
p currently served by elevator e. The elevator e with the lowest total cost is chosen.

This algorithm is effective because it directly minimizes the system’s target metric: the total travel
time per passenger. The algorithm is still in use nowadays in many ThyssenKrupp elevator systems
(Latif et al., 2016).

We further validated our baseline agent by comparing it to other types of baseline algorithms. See
Appendix A.2 for comparisons.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

2.4.2 RL AGENT

At every step where a hall call is registered, the environment provides the current state and the agent
is then responsible for deciding which elevator(s) it will send to the hall call.

We created several variations of an RL agent based on a Dueling Double Deep Q-learning architec-
ture.

1. Combinatorial Action Space: The RL agent computes the Q-values for all combinations
of elevators responding to the new hall call, from one to three elevators. This results in an
action space of C(6, 3)+C(6, 2)+C(6, 1) = 41 outputs. The chosen action is the argmax
over all outputs.

2. Action Branching: Inspired by the work of Tavakoli et al. (2018), we employ an action
branching strategy. The state is processed commonly by a shared NN, and branches off to
six individual NN’s, where each elevator makes an independent binary decision (respond
or not to a call). This decomposes the high-dimensional action space into multiple lower-
dimensional sub-spaces, and results in an action space of 6 ∗ 2 = 12 outputs. The chosen
action is the aggregate of the argmax of every branch.

Both architectures are shown in Figure 4.

3 RESULTS AND DISCUSSION

RL agents were trained on 10M steps and evaluated periodically on the validation environment. The
best performing agent was selected and tested 20 times in the test environment to estimate final
performance. Training details are provided in the Appendix A.3.

3.1 AGENT DESIGN AND COMPARISON TO BASELINE

We tested the difference in the NN architectures employed. We compared the Combinatorial ar-
chitecture, where every action combination is a single output, to the Branching architecture, where
separate outputs control one elevator each. We also compared both algorithms to the baseline ETD
algorithm. Figure 5 shows experimental results.

Both versions of the RL agent beat the baseline by about 2 seconds per passenger, or approximately
10%.

The Combinatorial agent is largely superior to the Branching agent. Interestingly, the average wait
time per passenger is similar, although the Branching agent spends more energy. Looking at the
number of elevators sent per call, we see that the Branching agent often sends fewer than one elevator
to a call on average, meaning it sometimes sends zero elevators to a hall call. It thereby incurs a
large negative reward every time. It is unable to coordinate its branches well enough to avoid this
situation. As coordination between multiple sub-actions is crucial in this problem, the agent benefits
from having one central decision-making module, outweighing the disadvantage of more complex
input and output spaces.

Further experiments on the agent action space design were conducted, as well as additional tests
to assess the robustness and adaptability of the agent by running it on a busier environment than it
was initially trained on. The results of these experiments can be seen in Appendix A.4 and A.5,
respectively.

3.2 DISCOUNTING FACTOR

We compared the fixed discounting scheme to the variable discounting scheme as explained in Equa-
tions 2 and 3. Figure 6 shows experimental results.

As is apparent in the average rewards obtained and the average passenger waiting times, the fixed
discounting approach works best for two main reasons.

First, the number of infra-steps contained in a step is highly variable. During the daytime, arrivals
can happen within one infra-step of each other or even on the same infra-step, whereas during the

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Bran
ch

ing

Com
bin

ato
ria

l

ETDAge
nt

Agent

10
6

10
5

10
4

10
3

10
2

10
1

10
00

10
0

10
1

10
2

10
3

re
w

ar
d

(lo
g

sc
al

e)

Total reward

Bran
ch

ing

Com
bin

ato
ria

l

ETDAge
nt

Agent

26.5

27.0

27.5

28.0

28.5

w
ai

t t
im

e
(s

)

Average passenger wait time

Bran
ch

ing

Com
bin

ato
ria

l

ETDAge
nt

Agent

710000

720000

730000

740000

750000

760000

770000

en
er

gy
 c

on
su

m
pt

io
n

(A
rb

. u
ni

ts
)

Total energy consumption

Bran
ch

ing

Com
bin

ato
ria

l

ETDAge
nt

Agent

0.9

1.0

1.1

1.2

1.3

1.4

1.5

am
ou

nt
 o

f e
le

va
to

rs

Average amount of elevators responding per call

Figure 5: Comparison of the Branching and the Combinatorial architecture to baseline. The reward
is in log scale. Error bars represent SD for 20 runs on the test environment.

ETDAge
nt

Fixe
d d

isc
ou

nti
ng

Vari
ab

le
dis

co
un

tin
g

Agent

1500

1000

500

0

500

1000

re
w

ar
d

Total reward on validation environment

ETDAge
nt

Fixe
d d

isc
ou

nti
ng

Vari
ab

le
dis

co
un

tin
g

Agent

27.5

30.0

32.5

35.0

37.5

40.0

42.5

45.0

w
ai

t t
im

e
(s

)

average passenger wait time on validation environment

Figure 6: Comparing fixed to variable discounting schemes. Bars represent SD on 20 test environ-
ment runs.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

night, there might be hours between two arrivals, which results in tens of thousands of infra-steps.
On long inter-arrival times, the value of the next state quickly drops to a small value in Equation 2,
making for a very unstable learning problem. Further details on this problem can be consulted in
the Appendix A.6. Second, the problem balances itself out quite well: at low-peak hours, where
the inter-step time is long, nothing happens, and the system receives no reward, whereas in peak
times, the system receives very frequent rewards. By disregarding the inter-step length, the average
rewards remain similar in transitions, regardless of the time elapsed between the two decision points.
This is illustrated in Figure 7, where the average reward remains relatively uniform through step
lengths. The reward obtained in a transition is largely uncorrelated to the step length, making the
fixed discounting scheme more effective in practice.

4 LIMITATIONS AND FUTURE DIRECTIONS

40 30 20 10 0 10 20
Reward

0

25

50

75

100

125

150

175

200

S
te

p
le

ng
th

 (s
)

Reward X Step length

Figure 7: Distribution of step length and reward
per step. Data was cut off at 190 for better vi-
sualization, hence the ceiling data points (cutoff
was only for plotting).

To actually implement the trained EGCS in the
VU building, some limitations must be addressed.

Specific strategies are required for handling
unique situations, such as when an elevator is
out of service due to maintenance or emergency
mode such as fire. The RL EGCS could be inte-
grated with a rule-based complement to deal with
these specific scenarios.

An important area for performance improvement
is incorporating the ability to revise decisions
when they become sub-optimal. Currently, once
an elevator is dispatched to a hall call, it remains
committed to that choice, even if later hall calls
could make the initial decision less efficient. Ut-
goff & Connell (2011) propose a method where
decisions are continuously recalculated using lo-
cal search, allowing for substitution if a better so-
lution is found. However, due to the computa-
tional complexity of exploring the local solution
search space, their solution has limited success.
Even though the RL agent performs well as-is, it would be a notable improvement to provide it with
a framework where it can revisit certain decisions in situations where it would be beneficial.

A further area of interest is looking further into the trade-off of passenger travel time and energy
consumption. In our case, because of the balance of the sub-rewards, the agent implicitly learns
to prioritize passenger travel time over energy consumption. As a result, the EGCS achieves lower
passenger travel times than the ETD baseline but at a higher overall energy consumption cost. One
advantage of our approach is that it is trivial to shift the balance toward energy saving or passenger
travel time by changing the weights of the rewards in the environment. However, the agent would
need to be re-trained to learn a new reward balance.

Once these limitations are overcome, one would be able to assess the performance of the approach
in a real-life setting and to verify its ability to bridge the reality gap.

5 CONCLUSION

In this paper, we addressed the problem of optimizing complex elevator dispatching using a novel
RL approach. By formulating the problem as an MDP, we captured the inherent uncertainties and
complex nature of elevator systems, particularly with the introduction of infra-steps to simulate
continuous passenger arrivals.

Methodologically, we gained valuable insights by comparing two discounting schemes: fixed and
variable. The fixed discounting strategy proved more stable and effective in managing varying time
intervals between actions. Additionally, we compared two RL agent variants: the branching and
combinatorial agents. Our results show that the combinatorial architecture outperformed the branch-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

ing strategy, leading to more efficient decision-making. The innovative encoding of the action space
allowed us to overcome the typical combinatorial complexity in this domain.

On the practical side, using a custom-built simulation environment of a 6-elevator, 15-floor system
at VU Amsterdam, the proposed RL-based solution demonstrated superiority over a modern rule-
based system. The RL agent, utilizing the Dueling Double Deep Q-Learning algorithm, was able to
significantly reduce passenger travel times by efficiently adapting to complex traffic patterns. These
promising results underline the potential for practical implementation of RL-based control for real-
world elevator systems, particularly in environments with complex, stochastic traffic patterns that
can be optimized from data.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Lutfi Al-Sharif, Ahmad Hammoudeh, and Jannat Al-Saidi. Analysis and comparison of the two
sectoring approaches in elevator traffic systems. Building Services Engineering Research and
Technology, 40(5):611–626, 2019.

Andrea Castelletti, Stefano Galelli, Marcello Restelli, and Rodolfo Soncini-Sessa. Tree-based re-
inforcement learning for optimal water reservoir operation. Water Resources Research, 46(9),
2010.

WL Chan and Albert TP So. Dynamic zoning in elevator traffic control. In Elevator Technology 6
Proceedings of Elevcon 1995, volume 6, pp. 132, 1995.

Pablo Cortés, Joaquı́n R Fernández, José Guadix, and Jesús Muñuzuri. Fuzzy logic based con-
troller for peak traffic detection in elevator systems. Journal of Computational and Theoretical
Nanoscience, 9(2):310–318, 2012.

Robert H Crites and Andrew G Barto. Elevator group control using multiple reinforcement learning
agents. Machine learning, 33:235–262, 1998.

Joaquin R Fernandez and Pablo Cortes. A survey of elevator group control systems for vertical
transportation: A look at recent literature. IEEE Control Systems Magazine, 35(4):38–55, 2015.

Muna Hamdi and DJ Mulvaney. Prioritised a* search in real-time elevator dispatching. Control
Engineering Practice, 15(2):219–230, 2007.

Nader Kameli and James M Collins. Elevator downpeak sectoring, January 2 1996. US Patent
5,480,006.

MN Latif, M Kheshaim, and Saikat Kundu. A review of elevator dispatching systems. 2016.

Zhonghua Li, Hong-Zhou Tan, and Yunong Zhang. Particle swarm optimization applied to vertical
traffic scheduling in buildings. In Knowledge-Based Intelligent Information and Engineering
Systems: 11th International Conference, KES 2007, XVII Italian Workshop on Neural Networks,
Vietri sul Mare, Italy, September 12-14, 2007. Proceedings, Part I 11, pp. 831–838. Springer,
2007.

Rory Smith. Etd algorithm with destination dispatch and booster options. Elevator world, pp.
136–142, 2002.

Janne Sorsa, Marja-Liisa Siikonen, Juha-Matti Kuusinen, and Henri Hakonen. A field study and
analysis of passengers arriving at lift lobbies in social groups in multi-storey office, hotel and
residential buildings. Building Services Engineering Research and Technology, 42(2):197–210,
2021.

Arash Tavakoli, Fabio Pardo, and Petar Kormushev. Action branching architectures for deep rein-
forcement learning. In Proceedings of the aaai conference on artificial intelligence, volume 32,
2018.

Paul E Utgoff and Margaret E Connell. Real-time combinatorial optimization for elevator group
dispatching. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans,
42(1):130–146, 2011.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Juny-
oung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster
level in starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–354, 2019.

Jiansong Wan, Kanghoon Lee, and Hayong Shin. Traffic pattern-aware elevator dispatching via deep
reinforcement learning. Advanced Engineering Informatics, 61:102497, 2024.

Qinglai Wei, Lingxiao Wang, Yu Liu, and Marios M Polycarpou. Optimal elevator group control
via deep asynchronous actor–critic learning. IEEE transactions on neural networks and learning
systems, 31(12):5245–5256, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 DETAILS ON ENVIRONMENT DESIGN

The environment and agents were implemented in Python 3.11.

The weight of every new passenger that was included in the state, was sampled from a normal
distribution with mean 75 and standard deviation 10.

The weights of the rewards that the agent received are summarized in Table 1.

Reward Value When
Movement penalty -0.01 At every infra-step, for every elevator

currently moving
Waiting penalty -0.01 At every infra-step, for every passenger

currently waiting on a floor or in an el-
evator

Elevator full penalty -10 Once, when an elevator stops at a floor
to service a call but it is full

Arrival reward 2 Once, when a passenger disboards an
elevator

Loading reward 2 Once, when a passenger boards an ele-
vator

Zero elevators responding penalty -100 Once, when the agent sends 0 eleva-
tors to a hall call. Only relevant for the
Branching agent

Table 1: Rewards used to train the agent, their values, and when they are received by the environ-
ment.

A.2 ADDITIONAL BASELINES

To verify the performance of our Baseline agent, we compared it to additional, simpler baselines.

Hereunder are the simple baselines used:

1. Random Agent This agent assigns a random elevator to every hall call

2. First Agent This agent assigns elevator 1 (out of 6) to every hall call.

3. Closest Agent This agent assigns the elevator that is physically closest to the hall call
location, regardless of whether it is moving or how many passengers it is currently serving.

4. Sector Agent This agent splits the building into six equal zones, and every elevator re-
sponds to hall calls within its zone. This idea is still used in many elevator systems, al-
though in a more sophisticated configuration (Crites & Barto, 1998).

5. Least Busy Agent This agent assigns the hall call to the agent with the smallest number of
destinations in its current queue (hall calls + car calls).

We ran all baseline algorithms for 20 iterations on the test environment to get a reliable estimate of
average performance. Figure 8 shows that most agents perform better than the absolute baseline of
sending a random elevator to the hall call. The ETD baseline performs best overall. The LeastBusy
agent performs comparably to the ETD agents, although it is slightly less efficient. This is likely
because the length of the destination queue of an elevator is strongly related to its ETD score.
Surprisingly, the Sector agent performed worse than the Random agent. This is likely because
some floors see more traffic than others, and assigning only one elevator to those busy floors would
be comparable to always choosing the busiest elevator to respond to those calls. Modern Sector
algorithms adjust the zones dynamically based on observed traffic patterns and can have multiple
elevators per zone (Al-Sharif et al., 2019), avoiding this problem. Our implementation of the agent
is therefore too simplistic to reflect the performance of a modern Sector agent.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Figure 8: Total rewards of baseline agents on the test environment. Error bars represent the standard
deviation (SD) on 20 iterations of the test environment.

A.3 DETAILS ON AGENT TRAINING

The Combinatorial agent has three hidden fully-connected layers of size 128, 512, and 256 neurons,
respectively, with ReLU non-linearities. The total input size is 28, while the maximum output size
is 41 in the case of up to three elevators being allowed to respond to a hall call. The Branching agent
has the same main body, but the last layer before the output splits into six distinct branches of 128
neurons each before proceeding to the output layer. This NN has 28 input neurons and 12 output
neurons.

The optimizer used for these NNs is AdamW, with a learning rate of 5e-4. We also apply a Cosine
Annealing scheduler to the learning rate, which reduces the learning rate throughout training from
5e-4 to 0. This is done to stimulate exploration at first and exploitation later in the training. We use
the Huber loss function.

All further run parameters are set as described in Table 2.

For experiments, RL agents were trained on 10M steps of the train environment. The environment
was composed of 27684 steps, so the agent saw every transition ≈ 361 times. The mean and standard
deviation of state features of the training environment were used to normalize the state features of
the training, validation and test environment. The agent was evaluated 30 times at regular intervals
on the validation environment. The best agent on validation was retained as final agent. The selected
agents were then ran 20 times on a full run of the test environment to obtain an unbiased estimate of
the actual performance.

An example of learning curves of a full training run can be seen in Figure 9.

A.4 ACTION SPACE SIZE

We compared versions of the agent that could send up to one, two, or three elevators to a hall call.
The advantage of being able to send less elevators to a hall call is a reduced action space, at the cost
of a less expressive action space. The action space in case of being able to send one elevator max
is C(6, 1) = 6. In case of two elevators max, the action space is C(6, 2) + C(6, 1) = 21. In case
of three elevators max, the action space is C(6, 3) + C(6, 2) + C(6, 1) = 41 outputs. The agent is
never allowed to send zero elevators so that action was not included. We did not allow more than
three elevators to respond to a hall call as this would make the output size too large and would also
not be realistic in practice.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Figure 9: Example of a training run of 10M steps in the environment by the RL agent. The number
of elevators sent to a call is noisy but decreases, while the loss does not obviously decrease through
training. The reward obtained on the training environment increases through training, as well as the
reward obtained of the validation environment. The resulting average passenger waiting times and
energy consumption decrease, both on the training and on the validation environment.

1 m
ax

 el
ev

2 m
ax

 el
ev

s

3 m
ax

 el
ev

s

ETDAge
nt

Agent

200

0

200

400

600

800

re
w

ar
d

Total reward

1 m
ax

 el
ev

2 m
ax

 el
ev

s

3 m
ax

 el
ev

s

ETDAge
nt

Agent

27.0

27.5

28.0

28.5

w
ai

t t
im

e
(s

)

Average passenger wait time

1 m
ax

 el
ev

2 m
ax

 el
ev

s

3 m
ax

 el
ev

s

ETDAge
nt

Agent

710000

715000

720000

725000

730000

en
er

gy
 c

on
su

m
pt

io
n

(A
rb

. u
ni

ts
)

Total energy consumption

1 m
ax

 el
ev

2 m
ax

 el
ev

s

3 m
ax

 el
ev

s

ETDAge
nt

Agent

1.00

1.05

1.10

1.15

1.20

1.25

am
ou

nt
 o

f e
le

va
to

rs

Average amount of elevators responding per call

Figure 10: Effect of quantity of elevators sent for one hall call. Error bars represent SD on 20 test
environment iterations.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Parameter Value
Batch Size 32
Learning Rate 5e-4
Learn interval 10
Target network update interval 300
Discount factor 0.95
Training steps 10.000.000
Replay buffer size 10.000
Replay buffer initial size 10.000
Epsilon start 1
Epsilon end 0.1
Epsilon decay Exponential

Table 2: Parameters used for training. Learn interval is the number of steps between each forward-
backwards pass on the NN on a batch. The target network update interval is the interval at which
the target network updates itself with the online network values.

Figure 10 shows that the RL agent with one elevator performs slightly better than the baseline
already, although the difference is slight. It can obtain similar passenger wait times for a similar total
energy consumption. This confirms that the agent can extract useful patterns from the environment,
learn from it, and match the baseline’s performance.

Figure 10 also shows that the agent benefits from being able to send more than one elevator to a hall
call, as hypothesized. It achieves a higher reward than the one-elevator variant and the baseline due
to a reduced passenger wait time. However, it uses more energy to attain that goal. This finding
is central to our research, as it validates that the RL agent effectively and autonomously learns to
extract relevant information from the environment. It can then make efficient decisions to solve the
complex EGCS routing problem with its various dynamic sub-parts.

Surprisingly, allowing the system to send up to three elevators to a hall call slightly negatively
impacts the performance. It matches the average wait time of the two-elevator system but requires
more energy to do so, resulting in a lower reward. Figure 10 shows that the three-elevator system
sends more elevators per call than the two-elevator variant, increasing the energy spent. The lower
performance of the three-elevator system is notable, as it technically can execute all the actions of the
two-elevator system. Therefore, it should be able to attain at least the same performance. However,
the extra complexity in the action space (21 vs 41) likely makes it more challenging to train in the
same allotted training time, hence the inferior performance.

A.5 ADAPTABILITY TO BUSIER SCENARIOS

To test if the trained RL EGCS would be able to adapt to a building that grows busier over time,
we implemented an adapted busier version of the environment. The mean hall call group size was
multiplied by 1.5 and 2.0 to create busier scenarios. We compared the performance of the baseline
agent to our RL agent trained on the original environment to assess whether the agent could adapt
to a scenario it had not seen during training.

Figure 11 shows experimental results. The baseline agent and the RL agent collect more rewards
in one iteration of the 1.5x test environment, as there are more opportunities to pick up and drop
passengers, thereby earning more rewards. In the 1.5x and 2x cases, the RL agent trained on the
original 1x environment surpasses the baseline agent’s performance, even though it was not trained
on these specific scenarios. The baseline agent collects more rewards on the 1.5x scenario, but its
performance drops on the 2x scenario. The RL agent’s performance and energy efficiency drop in
busier scenarios but less so than the ETD agent’s performance. The average passenger wait time
grows with busyness but is always inferior to the ETD agent. This shows the flexibility of the policy
that the agent has learned in training and is a good indication of the robustness of the resulting
EGCS.

Interestingly, the RL EGCS sends fewer elevators per call in the 1.5x setting and even less in the
2x setting. This suggests that the system learnt that sending more than one elevator per call is only

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

ETDAge
nt

1x

Com
bin

ato
ria

l 1
x

ETDAge
nt

1.5
x

Com
bin

ato
ria

l 1
.5x

ETDAge
nt

2x

Com
bin

ato
ria

l 2
x

Agent

3000

2000

1000

0

1000

2000

3000

4000

re
w

ar
d

Total reward

ETDAge
nt

1x

Com
bin

ato
ria

l 1
x

ETDAge
nt

1.5
x

Com
bin

ato
ria

l 1
.5x

ETDAge
nt

2x

Com
bin

ato
ria

l 2
x

Agent

26

27

28

29

30

31

32

33

w
ai

t t
im

e
(s

)

Average passenger wait time

ETDAge
nt

1x

Com
bin

ato
ria

l 1
x

ETDAge
nt

1.5
x

Com
bin

ato
ria

l 1
.5x

ETDAge
nt

2x

Com
bin

ato
ria

l 2
x

Agent

710000

720000

730000

740000

750000

760000

770000

780000

en
er

gy
 c

on
su

m
pt

io
n

(A
rb

. u
ni

ts
)

Total energy consumption

ETDAge
nt

1x

Com
bin

ato
ria

l 1
x

ETDAge
nt

1.5
x

Com
bin

ato
ria

l 1
.5x

ETDAge
nt

2x

Com
bin

ato
ria

l 2
x

Agent

1.00

1.05

1.10

1.15

1.20

am
ou

nt
 o

f e
le

va
to

rs

Average amount of elevators responding per call

Figure 11: Performance of the RL agents in a 1.5x and 2x busier scenario. The RL agent is trained
on the original environment. Error bars represent SD on 20 iterations on the test environment.

0 5 10 15 20
Hour

0.8

1.0

1.2

1.4

1.6

1.8

E
le

va
to

rs
 re

sp
on

di
ng

Elevators responding to calls per hour

Figure 12: Average number of elevators responding to a hall call per hour. Hours 0-5 are empty as
there are no arrivals at these times in the test data.

beneficial in less busy times, as this ensures as many elevators as possible remain available for calls
in the immediate future during busy periods. Figure 12 corroborates this idea, as it shows that the
RL agent sends fewer elevators per call during lunchtime, which is the busiest period, as seen in
Figure 1. The late-night peak is also surprising, as we expect no need for more than one elevator
per call during quiet hours. As for the Zoning agent, the agent probably does not have enough data
points on these hours to make a reliable policy.

A.6 FIXED VS. VARIABLE DISCOUNTING PROBLEM

To illustrate the issue with the variable discounting approach, we calculated that the average number
of infra-steps per decision step is 328 in the training environment. For example, if we want to
set the average discount factor between steps as 0.95, the infra-step level discount factor must be
x328 = 0.95, or x ≈ 0.99999. However, during peak hours, where the inter-step time is often one

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

infra-step, the discount factor of the next state is close to 1. The large range in step sizes induces
instability when using the variable discounting approach.

17

	Introduction
	Problem description
	Rule-based approaches
	RL in EGCS
	Aims and Contributions
	Methodological Contributions
	Practical Contributions

	Methodology
	Elevator simulation
	Discrete-event environment
	Markov Decision Process
	Action space
	Infra-steps
	Discounting factor
	Environment state and rewards

	Agents
	Baseline agent
	RL agent

	Results and Discussion
	Agent design and comparison to baseline
	Discounting factor

	Limitations and future directions
	Conclusion
	Appendix
	Details on environment design
	Additional baselines
	Details on agent training
	Action space size
	Adaptability to busier scenarios
	Fixed vs. variable discounting problem

