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ABSTRACT

Being able to cooperate with diverse humans is an important component of many
economically valuable AI tasks, from household robotics to autonomous driving.
However, generalizing to novel humans requires training on data that captures the
diversity of human behaviors. Adversarial training is a promising method that
allows dynamic data generation and ensures that agents are robust. It creates a
feedback loop where the agent’s performance influences the generation of new
adversarial data, which can be used immediately to train the agent. However,
adversarial training is difficult to apply in a cooperative task; how can we train an
adversarial cooperator? We propose a novel strategy that combines a pre-trained
generative model to simulate valid cooperative agent policies with adversarial
training to maximize regret. We call our method GOAT: Generative Online
Adversarial Training. In this framework, GOAT dynamically searches the latent
space of the generative model for coordination strategies where the learning policy—
the Cooperator agent—underperforms. GOAT enables better generalization by
exposing the Cooperator to various challenging interaction scenarios. We maintain
realistic coordination strategies by keeping the generative model frozen, thus
avoiding adversarial exploitation. We evaluate GOAT with real human partners, and
the results demonstrate state-of-the-art performance on the Overcooked benchmark,
highlighting its effectiveness in generalizing to diverse human behaviors. 1

1 INTRODUCTION

In multi-agent human-AI cooperation (Carroll et al., 2020), training a cooperative agent to generalize
across diverse human behaviors remains a formidable challenge. Distribution shift, limited training
data, and highly dynamic human decision-making make training these systems difficult. Without
adequate coverage of all possible human interactions, AI agents learn brittle policies and struggle to
generalize to novel, unseen behaviors in real human cooperation partners.

Adversarial training (Tucker et al., 2020; Cui et al., 2023; Fujimoto & Pedersen, 2022; Rutherford
et al., 2024) could provide a computationally efficient solution for training robust Cooperators by
exposing both the Cooperator agent’s limitations and underexplored areas of the partner strategy
space. It can be used to automatically generate a curriculum of challenging tasks targeted to the
learner’s weaknesses, resulting in a more robust policy Dennis et al. (2021). Yet despite its potential,
adversarial training within cooperative AI introduces unique challenges; what does it mean to train
an adversarial cooperator? In a single-agent task, Adversary’s sole objective is to challenge the
learning agent as much as possible by minimizing its performance. However, in a collaborative
task, the adversarial agent has to find weaknesses in the learner while still simulating a realistic
cooperative partner policy. If the adversary is not constrained to such policies, then it can become
overly combative, resorting to strategies that sabotage the cooperation task, and is thus no longer a
valid simulation of what a human cooperation partner might do. The challenge lies in simulating

1Please check out our live interactive demo, game play videos, and training code at our website https:
//sites.google.com/view/goat-2025/home
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Figure 1: Adversarial training framework for cooperative agents. (Left) A generative model encodes
simulated agents into a latent space to learn diverse agent strategies, which are then used to generate
different types of training partners. (Right) GOAT samples new partners to maximize the Cooperator
agent’s regret, defined as the performance gap between self-play (the partner playing with itself) and
cross-play (the partner playing with the Cooperator). The key idea is that the adversarial objective
is constrained by the frozen generative model, which prevents it from generating self-sabotaging
partners. But by applying regret-based adversarial training to search over the policies that can be
generated by the model, we can expose the Cooperator to a curriculum of challenging training
partners, ensuring it is robust to interacting with diverse human partners at test time.

realistic yet challenging partners that maintain cooperative intentions while simultaneously correcting
weaknesses in the AI agent’s policy.

For single-agent tasks, techniques like Unsupervised Environment Design (UED) (Dennis et al.,
2021; Parker-Holder et al., 2022; Jiang et al., 2021) constrains the Adversary so that it can only
generate valid tasks for which there is a solution. This is accomplished by maximizing the learning
agent’s regret, which is the performance gap between the optimal agent and the learning agent. The
regret objective proves effective because it challenges the learning agent by continuously identifying
difficult but achievable scenarios where the agent currently underperforms. In the cooperative setting,
attempts have been made to create a regret-like objective (Charakorn et al., 2023; Villin et al., 2025;
Rutherford et al., 2024; Wang et al., 2025; Erlebach & Cook, 2024). In methods like Charakorn
et al. (2023), a diverse population is trained by optimizing for the difference between self-play and
cross-play performance. However, naively applying this type of adversarial objective can lead to
policies learning to sabotage the game. While attempts have been made to add additional objectives
to counterbalance this effect (Sarkar et al., 2023). However, this approach is not able to address the
issue that minimizing cross-play inherently incentivizes overly adversarial, uncooperative behavior.

How can we ensure that the adversarial agent can only generate cooperative behaviors that do not
engage in self-sabotage but can still fully explore the space of challenging partner strategies? We
propose a novel adversarial training method to achieve these criteria. We first pre-train a generative
model of partner strategies on diverse cooperation data, following Liang et al. (2024). We then place
this generative model into an adversarial training loop, where we train an Adversary to search for
embedding vectors that, when passed through the generative model, decode into simulated partners
that maximize the Cooperator’s regret. Because we only update the weights of the Adversary and
not the generative model, we ensure that all generated partners are cooperative, thereby addressing
the intentional sabotage seen in adversarial training. In GOAT, the Adversary is motivated
to maximize the regret, searching for valid coordination strategies where the Cooperator agent
underperforms. In contrast, the Cooperator attempts to adapt to the Adversary and minimize the
regret. Unlike previous adversarial approaches that risk learning degenerate strategies, this cyclic
training method provides a natural curriculum for the Cooperator agent and unlocks the benefits of
adversarial training for robustly generalizing to cooperate with diverse partners.

We evaluate GOAT on three distinct domains: 1) One-Step Cooperative Matrix Game (CMG); 2)
Cooperative Reaching Game (CRG); and 3) Overcooked (Carroll et al., 2020), a popular human-AI
zero-shot coordination benchmark. We compare to 5 competitive baselines (Zhao et al., 2022; Sarkar
et al., 2023; Liang et al., 2024; Strouse et al., 2022; Carroll et al., 2020) and show that GOAT achieves
improved performance across all three popular environments. In the Overcooked environment,
we tested GOAT live against real, novel human partners and found that it significantly improves
cooperation performance.

The contributions of this paper are as follows:
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• We introduce a novel adversarial training method for zero-shot coordination that trains both
the Adversary and Cooperator agents online in a common payoff game, resulting in a dynamic
curriculum where the Adversary searches over the space of partner policies that a generative
model can simulate. The generative model is limited to simulating cooperative partners, which
ensures the adversarial training process generates challenging but realistic cooperative partners.

• We outperform 5 competitive baselines across 3 distinct popular cooperative environments.

• We perform a real-time evaluation with novel human partners, using the popular Overcooked
benchmark (Carroll et al., 2020) commonly used in human-AI cooperation research like Strouse
et al. (2022); Charakorn et al. (2023); Zhao et al. (2022); Sarkar et al. (2023); Liang et al. (2024). As
compared to recent high-scoring techniques, we show that our method leads to the best cooperation
performance with diverse people.

2 RELATED WORK

Zero-shot coordination (ZSC). Human-AI coordination requires training cooperative agents that
can generalize to interactions with different humans in zero-shot settings, and thus navigate a vast
coordination behavior space. (Hu et al., 2020; Kirk et al., 2023). Behavior cloning (Carroll et al.,
2020) is limited by expensive and often scarce human data. Self-Play (SP) (Samuel, 1959; Silver
et al., 2017; 2018; OpenAI et al., 2019) is an automatic training algorithm that does not need human
data but converges to rigid policies that generalize poorly to novel human partners. Population-Based
Training (PBT) (Jaderberg et al., 2017; Vinyals et al., 2019; Parker-Holder et al., 2020; Jung et al.,
2020) has become a popular automatic training paradigm for ZSC, in which a Cooperator policy is
trained using a large population of simulated partners (Hong et al., 2018; Strouse et al., 2022; Lupu
et al., 2021; Charakorn et al., 2023; Zhao et al., 2022; Sarkar et al., 2023).

Population diversity objectives. In an effort to ensure the simulated agent population covers diverse
human strategies, various methods (Hong et al., 2018; Parker-Holder et al., 2020; Wu et al., 2023;
Lupu et al., 2021; Zhao et al., 2022; Charakorn et al., 2023; Sarkar et al., 2023; Rahman et al., 2023;
Yuan et al., 2023) improve PBT by optimizing the diversity of the agents in the population. The
population can be created by reward-shaping (Tang et al., 2021; Yu et al., 2023), manual design
(Ghosh et al., 2020; Wang et al., 2022; Xie et al., 2021), and quality diversity (Canaan et al., 2019;
Pugh et al., 2016; Wu et al., 2023; Fontaine & Nikolaidis, 2021). However, these methods typically
use domain knowledge and fail to generalize and scale. Statistical methods like (Hong et al., 2018;
Eysenbach et al., 2018; Parker-Holder et al., 2020; Derek & Isola, 2021; Lupu et al., 2021; Zhao
et al., 2022) automate the diverse population generation, but Sarkar et al. (2023) demonstrated that
trajectory distribution methods can result in minor variations in the policies rather than behaviorally
different policies.

Min-Max optimization. Another line of work maximizes diversity by training self-play policies
while minimizing cross-play rewards with the policies in the population (Cui et al., 2023; Charakorn
et al., 2023; Rahman et al., 2023; 2024; Villin et al., 2025; Sarkar et al., 2023). However, agents might
learn to sabotage the cross-play game while retaining high self-play performance with handshaking
protocols, such that if their partner fails to complete the handshake correctly, they throw the game.
To address this, Sarkar et al. (2023) introduces mixed-play, balancing self-play and cross-play by
randomly sampling initial game states from both. However, such a solution still leads to rigid
policies that fail to generalize, and does not address the fundamental problem that training a partner
to minimize cross-play incentives sabotage. In this work, we only sample partners from a frozen,
pre-trained generative model; since we do not train the partner policy on the adversarial objective,
we prevent handshaking and sabotage. In addition, unlike prior work on this topic, we use online
adversarial training to find and exploit weaknesses in the cooperator, instead of using adversarial
objectives to pre-train a diverse partner population.

Generative models for Cooperation. Derek & Isola (2021); Wang et al. (2023); Liang et al. (2024)
show that generative models can be trained on policies to simulate diverse and valid collaborative
policies. Recently, Liang et al. (2024) proposed training a Variational Autoencoder (Kingma &
Welling, 2022), on simulated cooperative agent trajectories to generate synthetic training data to
improve human-AI coordination. This approach outperforms previous methods because the generative
model enables sampling random novel partner strategies that interpolate between or combine strategies
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from the data. GOAT leverages this approach to proactively generate challenging novel partners
strategies to train the cooperator robustly.

3 PRELIMINARIES

Two-player Markov game: We consider the two-player Markov game (Littman, 1994) as a tuple(
S, A1, A2, r, T , γ

)
where S is the state space shared by all the agents. A1 and A2 denote

the action space of agents such that at each time step in the environment, and each agent selects
one action a1,t ∈ A1, a2,t ∈ A2 sampled from their own action space according to their policies
π1 : S → P(A1) and π2 : S → P(A2). After taking these actions, they receive a shared immediate
reward r : S × A1 × A2 → R. The system then transitions to the next state st+1 according to
the transition dynamics T (st+1 | st, a1,t, a2,t) ∈ P(S) where P(S) denotes the set of probability
distributions over S. The parameter γ ∈ [0, 1) is the discount factor that weights immediate versus
future rewards. The expected joint return is captured by J(π1, π2) = E

[∑∞
t=0 γ

t r(st, a1,t, a2,t)
]

which sums the discounted rewards from each timestep.

Generative model of cooperation strategies: Following Liang et al. (2024), we train a Variational
Auto-Encoder (VAE) (Kingma & Welling, 2022) on diverse cooperative strategies. The VAE is
trained to reconstruct the partner’s actions from a dataset of coordination trajectories D, which is
obtained from interactions between simulated PBT (Population-Based Training) agents within the
environment. Here, we use a fixed agent population with training methods like Maximum Entropy
Population (Zhao et al., 2022) and CoMeDi (Sarkar et al., 2023) to provide the simulated partner
agents. The VAE consists of an encoder q(z|τ ;ϕ), which maps a trajectory τ = (s0, a0, ..., sT ) to
a latent space, where ϕ represents the parameters of the decoder. The decoder p(at|z, τ0..t−1;ϕ)
predicts actions at autoregressively using the latent z and the agent’s history τ0..t−1. The VAE model
is optimized using the ELBO loss described in (Kingma & Welling, 2022). The distribution of partner
policies is therefore learned through the encoder’s posterior q(z|τ) over the dataset, which maps
trajectories with different cooperation styles to different regions of the latent space. The KL term
regularizes these posteriors towards the prior p(z) = N (0, I). Sampling z ∼ N (0, I), the decoder
p(at|z, τ0..t−1;ϕ) generates a partner policy corresponding to one cooperation style, and diverse
policies can be generated by sampling multiple latents from the prior. VAE thus learns a smooth
distribution over partner policies in dataset D. The β parameter that balances reconstruction accuracy
against the KL divergence in the ELBO loss, ensuring the latent space resembles a standard normal
distribution N (0, I). The choice of β leads to a tradeoff between reconstruction quality and encoding
disentangled latent representations (Burgess et al., 2018). We experiment with various β values to get
better disentangled representations.

4 GOAT: GENERATIVE ONLINE ADVERSARIAL TRAINING

We introduce GOAT, which combines generative modeling with online regret-based adversarial
training to enable robust human-AI coordination.

Adversarially minimizing Cross-Play (XP) performance. We begin by introducing an adversarial
training objective based on the XP performance of the Cooperator πC and an adversarial partner
πA. The adversary πA attempts to minimize cooperation performance, while a Cooperator policy πC

attempts to maximize it. This type of optimization is widely known as minimax optimization in game
theory:

JXP = max
πC

min
πA

J(πC , πA) (1)

As may be obvious, attempting to train agents to cooperate via XP minimization leads to a fun-
damentally misaligned optimization objective because it conflicts with the cooperative objective
of maximizing common payoff. The Adversary agent is incentivized to develop behaviors that
intentionally sabotage interactions rather than generate meaningful cooperation trajectories.

Generating adversarial cooperative agents. To address the above issues, we propose adding a
pre-trained generative model (VAE) with frozen weights into the adversarial training loop. We
hypothesize that adding a generative model trained solely on cooperative policy data will ensure that
adversarial training generates only valid cooperative partners. By design, the generative model is not
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capable of simulating self-sabotage or handshaking behaviors. Instead, we train a separate Adversary
policy to search for embedding vectors z that decode into partners that minimize XP performance for
the specific Cooperator agent we seek to train. The Adversary can thus search over a well-structured,
continuous latent space, allowing a smooth optimization landscape.

We formalize this adversarial training algorithm by modifying the previous JXP formulation in Eq. 1.
Now, the Adversary policy conditions on a randomly sampled z ∼ N (0, I), and transforms it to pro-
duce an Adversary embedding z′ = πA(z). This modified z′ is fed to the decoder p(at|z′, τ0:t−1; θ)

of the generative model to produce the actions of the simulated partner policy πP . Let ππA(z)
P be the

partner policy produced by having the adversary πA choose an embedding which is then simulated
with the generative model. Then, the optimization problem is as follows:

max
πC

min
πA

Ez∼N (0,I)

[ ∞∑
t=0

γt r(st, πC(a
C
t |τ0:t−1), p(a

P
t |πA(z), τ0:t−1; θ))

]
(2)

=max
πC

min
πA

Ez∼N (0,I)[J(πC , π
πA(z)
P )] (3)

This objective no longer directly trains the partner policy on the adversarial objective, but instead
uses the adversary to steer the pre-trained generative model to select partners.

Regret-based adversarial cooperative training. Because Eq. 3 is still fundamentally a minimax
objective, it does not guarantee effective exploration in the partner space because it optimizes for
worst-case returns. Therefore, the Adversary will only search for the worst agents that the generative
model can simulate. Instead, we would like to formulate a better objective that encourages searching
for meaningful partner policies that could have good performance, but for which the Cooperator still
fails to perform well. Thus, we propose using a regret objective to generate a realistic curriculum for
the Cooperator agent. As proposed initially by Robbins (1952), regret is the performance gap between
the returns of an agent-chosen strategy and the returns of the optimal strategy that could have been
selected with perfect foresight. We formalize regret in the cooperative setting as the performance
gap between the cross-play (XP) performance an agent achieves with a partner πP , and πP ’s optimal
self-play (SP) performance, E[J(πP , πP )], which is the score it achieves when paired with itself.

Regret(πP , πC) = E[J(πP , πP )− J(πP , πC)] = JSP − JXP (4)

GOAT objective. At the start of the training process, GOAT samples z from the standard normal
distribution and transforms it to the effective latent vector z′. This latent vector z′ is then used to
generate the partner policy πP using the frozen weights of the VAE decoder p(at|z′, τ0:t−1; θ). The
partner policy πP is then paired with itself to evaluate SP returns and with πC to evaluate XP returns.
Regret is evaluated after collecting the returns from both games. The Adversary is trained to choose z′
to maximize regret, while the Cooperator policy is trained to maximize its cooperation performance.
The full objective of the GOAT game is thus:

min
πC

max
πA

Regret(π
πA(z)
P , πC) (5)

The online optimization, as shown in algorithm 1, ensures that the Adversary is incentivized to
continually discover new partner strategies that are challenging for the Cooperator, by searching the
latent space to maximize regret. The Cooperator, in turn, learns to adapt to these partner strategies by
minimizing the regret. This cyclic behavior naturally trains the Cooperator to learn to cooperate with
diverse strategies, from more straightforward to increasingly complex ones. For invalid partners, the
optimal policy cannot achieve positive returns, resulting in zero regret and providing no incentive to
the Adversary. This property of regret promotes exploration that leads to curriculum generation to
increasingly generate complex yet solvable tasks to train the Cooperator agent.

5 EXPERIMENTS

Our experimental evaluation is designed to assess how well our adversarial training procedure can
improve zero-shot cooperation performance, both in simulation and with real humans.

Environments. We evaluate GOAT using three popular coordination benchmarks: 1) One-Step
Cooperative Matrix Game (CMG) (Lupu et al., 2021; Zhao et al., 2022; Charakorn et al., 2023), 2)
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(a) CMG Payoff Matrix (b) Self-Play (c) MEP (d) CoMeDi

(e) GAMMA (f) MiniMax (g) GOAT (h) Expected Reward

Figure 2: a) Cooperative Matrix Game. b) to g) Policy probability distribution to show coverage of
different methods on the CMG payoff matrix h) Total expected rewards for each method, assuming
we uniformly sample partners and each method gets a payoff for each partner proportional to the
amount of coverage they have for the reward block.

Cooperative Reaching Game (CRG) (Rahman et al., 2023; 2024; Charakorn et al., 2023), and 3)
Overcooked (Carroll et al., 2020).

• One-Step Cooperative Matrix Game (CMG). CMG is a single-step game where two agents (Row
and Column) independently select an action by choosing a row and a column, respectively, and the
intersection of their choices returns the associated reward according to the payoff matrix. Both
agents receive the same reward. A typical payoff matrix in CMG is defined by (M, {km}, {rm})
where M is the number of solutions, km is the number of compatible actions, and rm is the reward
associated with each solution. We use a challenging layout shown in figure 2a with three scenarios:
no reward, suboptimal rewards, and global maximum reward.

• Cooperative Reaching Game (CRG). CRG is a 5x5 grid world, with |A| = 5, where two agents
need to reach the same goal location simultaneously to receive rewards. For agents to cooperate
and receive rewards, they must reach and stay in any of the same goal coordinates. An ideal
Cooperator should chase their partner to the same goal or persuade them to follow the same goal.
We evaluate GOAT and prior baselines against 11 heuristic agent teammates described in detail in
appendix E.

• Overcooked. A state-of-the-art collaborative, real-time benchmark where two players need
to cooperate by dividing cooking tasks and avoiding obstructing each other. Identifying the
opposite player’s intent and behavior is key to determining how to coordinate with the other agent

Algorithm 1 GOAT

Training VAE on trajectory dataset D = τi
N
i=1 where τ = {si, ai, ri}Ni=1

Initialize: VAE Decoder p(at|z′, τ0..t−1; θ), Adversary πA, Cooperator πC

while not converged do
Sample z ∼ N (0, I)
Map z′ = πA(z)
Generate πP = p(at|z′, τ0..t−1; θ)
Collect Partner self-play returns J(πP , πP )
Collect Partner-Cooperator returns J(πP , πC)
Compute REGRET = J(πP , πP )− J(πP , πC)
Train Adversary Policy (πA) with RL to maximize REGRET
Train Cooperator Policy (πC) with RL to minimize REGRET

end while
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effectively. We test GOAT on the most challenging tasks with a diverse strategy space. Counter
Circuit introduced in Carroll et al. (2020), and a more complex layout introduced by Liang et al.
(2024), Multi-Strategy Counter.

GOAT implementation & Baselines: Training the Adversary is RL-algorithm-agnostic as it does
not depend on state and is a one-step optimization process. To keep the optimization loop simpler, the
Cooperator is trained using PPO, and the Adversary is trained using REINFORCE. Details on the KL-
regularization of the VAE, training procedure for GOAT, and other architecture and hyperparameters
are available in the Appendix. We compare to 5 competitive prior baselines on human-AI coordination:
Behavior Cloning (BC) partners with RL cooperator (Carroll et al., 2020) (BC+RL), PBT methods
Fictitious Co-Play (FCP) (Strouse et al., 2022), maximum entropy population (MEP) (Zhao et al.,
2022), CoMeDi Sarkar et al. (2023), and GAMMA trained on MEP (MEP+GAMMA) Liang et al.
(2024), which previously showed state-of-the-art performance in real human evaluations.

Human Evaluation: We conducted a user study with 40 participants to discover which method
best coordinated with humans in a real-time evaluation in Overcooked, recording the team scores.
Participants were recruited from the Prolific online crowdsourcing platform following an IRB-
approved protocol. Each participant was tasked with completing 6 total rounds of the Overcooked
game with an AI agent partner, where each round presented a different agent model among one of the
baselines or our method. In order to minimize trends due to gameplay order, the agent models are
loaded in randomized order, with a randomly sampled checkpoint chosen from 1 of 5 random seeds.

6 EXPERIMENTAL RESULTS

Figure 3: CRG: Average reward ob-
tained against the 11 Heuristic Agent
teammates across 5 seeds of each
method. Sum row highlighted in
red shows the summation of rewards,
where the maximum possible reward
is 11.

RQ1: Can GOAT discover and exploit multiple coopera-
tive strategies? For GOAT to be effective at generalizing to
novel partners, the adversary should be able to discover and
exploit all rewarding cooperative modes. We first test this
question with the CMG environment, using a population size
of 8 for all baseline PBT methods. To train the VAE using
the population of CoMeDi agents, we use the same procedure
as GAMMA Liang et al. (2024), which pairs each of the 8
row and column agents in the population together to generate
trajectory data. Since VAE does not have a population, it can
generate many more agents than PBT methods.

As seen in Figure 2b and 2c, the baselines’ Self-Play and MEP
fail to cover all modes, implying they would not generalize
to partners that used those modes. CoMedi 2d and GAMMA
2e discover all the regions and give the highest priority to
the global maximum, but spread probability mass roughly
equally across all other modes, regardless of their payoff.
Whereas MiniMax 2f converges to the worst-case scenario.
In contrast, GOAT not only covers all the modes but also
is better at assigning higher probability to more rewarding
modes (for example, assigning low probability to modes 3,
4, and 7, which have low payoff). Thus, GOAT achieves
good coverage while also focusing on maximizing return.
This is also evident in Figure 3, which shows the results
of evaluating each method in the CRG environment. Here
we see that GOAT achieves the highest average score when
teamed with all 11 heuristic partner agents.

RQ2: Will adversarial training result in a more robust
Cooperator with better sample complexity in simulation? PBT methods rely on simulated
populations of self-play partners, and have poor coverage of actual human behaviors. Training a
Cooperator against them may not achieve satisfactory performance with people, and it may take a
long time to converge since the training does not focus on correcting weaknesses in the Cooperator,
but instead randomly samples from the population. We hypothesize that our adversarial training
technique can more efficiently search the space of partners to make an agent that is more robust and
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(a) Counter Circuit (b) Simulation Results (c) Human evaluation

(d) Multi-Strategy Counter (e) Simulation Results (f) Human evaluation

Figure 4: Overcooked: Carroll et al. (2020) first introduced the most challenging Counter Circuit
layout (a). To increase coordination complexity, Liang et al. (2024) introduced the Multi-Strategy
Counter layout (d), where players could choose between tomato and onion ingredients to cook soup.
This adds an additional coordination challenge where agents have to adapt to soup-making strategies
based on different ingredients. (b) & (e) are evaluation of GOAT against a human proxy model
trained with BC. We compare to 4 baselines, which are trained using simulated population data,
including the previous state-of-the-art method, GAMMA (Liang et al., 2024). Error bars show the
std. err. over 5 random seeds. (c) & (f) shows the evaluation of the performance of methods when
tested against real humans in two layouts: counter circuit and multi-strategy counter, respectively.

requires less training time. To validate this hypothesis, we investigate the Overcooked learning curves
of all simulated training methods, including our own, in Figure 4b and 4e. Here, we evaluate the
cooperation performance of the agents against a Human Proxy model (behavior-cloned (BC) model
trained on human data) as in prior work (Carroll et al., 2020; Strouse et al., 2022; Liang et al., 2024).
The human proxy enables the automatic evaluation of agents’ performance throughout training.

As is evident in the curves, GOAT achieves significantly higher performance than all 4 baselines in
both Overcooked layouts and increases performance more quickly than other techniques. We hypoth-
esize that adversarial exploration in the generative model’s latent space enables rapid coverage of
diverse human behaviors, ranging from simple coordination strategies to complex, context-dependent
strategies. By constraining the Adversary to valid cooperative policies, the method avoids degenerate
strategies and exposes the Cooperator to all the semantically diverse strategies that are beneficial
for generalizing to diverse partners. It efficiently targets training to weak points in the Cooperator’s
policy, and thus has lower sample complexity than traditional PBT methods.

RQ3: Can GOAT achieve improved cooperation performance when evaluated in real-time
with novel humans? The real test of a human-AI coordination algorithm is whether it can work
with actual people. As described in Section 5, we evaluated the Cooperator agents trained with
GOAT and the 5 baselines alongside real human partners in the Counter Circuit and the Multi-
Strategy Counter Overcooked layouts. We recruited novel human players with no prior exposure
to the agents. Figure 4c and 4f depict the evaluation results for the two layouts and all the agents
against human players. GOAT outperforms the previous baselines on both layouts. Even though
GOAT shows significant improvement over baselines on Counter Circuit simulation results, the
magnitude of the improvement over GAMMA is smaller (3%) on this layout. This is because
both methods are reaching close to optimal performance in this simpler environment. However,
on the more complex layout, Multi-Strategy Counter, GOAT leads to markedly higher cooperation
performance with real humans, with a 38% improvement over the previous state of the art. We
encourage readers to test these differences for themselves by visiting our webpage, which provides
an interactive demo in which you can play Overcooked with both GOAT and the baselines https:
//sites.google.com/view/goat-2025/home.
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(a) GOAT exploring the latent space (b) Regret vs Minimax Exploration

Figure 5: a) GOAT explores the latent space of the generative model across training episodes,
progressing from episode 0 (purple points) to episode 1750 (yellow points). At the same time,
GAMMA (red) remains stationary, maintaining a standard normal distribution cluster. b) Minimax
(red) mostly fixates on regions of low reward or poor behavior, while Regret (blue) explores more
broadly and generates a variety of challenging training scenarios.

RQ4: Will adversarial training create a curriculum of increasingly challenging strategies by
discovering them in latent space? The regret-driven adversarial framework is designed to create
a dynamic curriculum where the Cooperator must continually adapt to novel challenges. GOAT
identifies underperforming coordination strategies and generates increasingly complex cooperation
challenges, compelling the Cooperator to explore and master new behaviors. This iterative process
prevents the Cooperator from stagnating into rigid conventions, a common pitfall in self-play or
population-based methods. Figure 5a assesses how GOAT explores the latent space of the generative
model over the whole training interval. Each point represents a latent vector collected during training
episodes 0 to 1750. The Figure 5a compares GOAT embeddings to the distribution of embeddings of
the original GAMMA method (Liang et al., 2024) samples throughout training (red ball). We can see
that at the start of training, GOAT samples latent vectors distributed throughout this ball (shown in
purple). As training progresses, it chooses a particular region to exploit. After a few iterations, it
moves to a new region, presumably because the Cooperator has adapted to that strategy, and it is no
longer able to maximize regret. Finally, at the end of the training step in yellow, GOAT has traveled
across the latent space to explore particular regions (those with high regret) to find valid strategies
that exploit weaknesses in the Cooperator.

RQ5: Ablation study of Minimax vs. Regret. In Section 4, we hypothesized that even with a
generative model in the loop, the purely adversarial minimax objective (Eq. 3) is misaligned with
effectively training agents to cooperate. While the generative model can prevent sabotage behavior,
because minimax focuses on worst-case scenarios, we hypothesized that a minimax adversary would
still focus too much on poorly performing or incompetent partners. In this experiment, we directly
compare training the GOAT adversary with either minimax (Eq. 3) or regret (Eq. 4) on the Multi-
Strategy Counter Overcooked layout. We further investigate the embeddings chosen by both types
of adversary throughout the training period in Figure 5b. We find that the minimax adversary
mostly fixates on a single region (red cluster in the plot) where the policies result in low-reward or
unproductive behaviors. One such example, shown as a video on our website, is where the minimax
agent avoids working with its partner and converges to doing just enough not to sabotage the task.
The team still receives rewards as the partner policy keeps completing the task uninterrupted. In
contrast, we see that the regret objective causes GOAT to move to multiple modes in the embedding
space over the course of training, exploring the latent space more effectively and thus covering a
wider range of interesting behaviors. As shown in game videos on our website, it starts by doing one
task, then shifts to another task, and then does both tasks simultaneously. We can also see robust
training instances like intentionally coming in the way or taking roles.
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7 CONCLUSION

Our work demonstrates that combining generative modeling with adversarial training provides an
effective approach for training AI agents that can coordinate with diverse human partners. Using
a generative model and regret-based optimization to constrain the adversary enables GOAT to
generate valid, meaningful cooperation partners while posing a curriculum of increasingly challenging
scenarios, adapted to the weaknesses of the Cooperator’s policy. Thus, we enable robust learning
without the risk of degenerate strategies. Experimental results on three cooperation tasks show that
GOAT achieves state-of-the-art performance in both simulated evaluations and studies with real
human partners. The improved coverage of the partner space demonstrated by our agents suggests
this approach can successfully and robustly achieve generalization to human behavior. Future work
could explore extending this framework to more complex collaborative tasks and investigating ways
to incorporate explicit human feedback during training.
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A REPRODUCIBILITY

We have our live interactive demo, extended experimental data, and code on our webpage, link on
first page.

B IMPLEMENTATION DETAILS

Generative models. The VAE model was trained on a dataset containing joint trajectories of two
players. This dataset was created by evenly sampling from the pairs in the simulated agent population
{π1, ..., πN}, generating 100k joint trajectories. The dataset was split in a 70/30 format for training
and evaluation. The VAE was trained using ELBO loss, and linear scheduling of the KL penalty
coefficient β was applied to control the KL divergence of the posterior distribution. Automatically,
checkpoints of VAE models of different strengths were saved. For CMG, the training data used for
VAE was 8 policies generated by CoMeDi on CMG. Due to a smaller amount of data, we used data
augmentation to train the VAE.

Cooperator Agent The Cooperator agent was trained using PPO (Schulman et al., 2017). To promote
exploration, the first 100M steps use reward shaping for dish and soup pick-up. We adapted our
codebase on the previous implementation of HSP (Yu et al., 2022) and GAMMA (Liang et al., 2024).

GOAT For GOAT policy training, we use the REINFORCE objective with KL divergence penalty to
keep the policy constrained in the VAE latent space. This objective requires two separate passes of
the environment to gather returns for self-play and cross-play.

C HYPERPARAMETERS

GOAT uses a simple policy and was trained using REINFORCE to generate latent vectors. The
architecture and hyperparameters are defined below.

hyperparameter value
network architecture 4-layer MLP

hidden dimension 128
activation function ReLU
output dimension 2× z_dim

optimizer Adam
learning rate 0.0005
weight decay 0.0001

latent dimension (z_dim) 16
KL coefficient 5.0

Table 1: Hyperparameters for GOAT Generator

The Cooperator agent is trained using MAPPO with all overcooked layouts having similar low-level
implementation details like architecture and hyperparameters. Every policy network has the same
structure, with a CNN coming after an RNN (we use GRU).

The architecture of the policy model and the generative model are comparable. The representations
are transformed into a variational posterior and action reconstruction predictions using an encoder
head and a decoder head.

D COMPUTATIONAL RESOURCES

Our primary tests were carried out on AMD EPYC 64-Core Processor and NVIDIA L40s/L40 clusters.
One Cooperator agent can be trained in roughly a day. The primary tests require roughly 24-36
GPU hours for Overcooked and 1 hour for rest of the environments. We perform some preliminary
experiments to determine the best training frameworks and hyperparameters.
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hyperparameter value
CNN kernels [3, 3], [3, 3], [3, 3]

CNN channels [32, 64, 32]
hidden layer size [64]

recurrent layer size 64
activation function ReLU

weight decay 0
environment steps 100M (simulated data) or 150M (human data)

parallel environments 200
episode length 400
PPO batch size 2× 200× 400

PPO epoch 15
PPO learning rate 0.0005

Generalized Advantage Estimator (GAE) λ 0.95
discounting factor γ 0.99

Table 2: Policy hyperparameters

hyperparameter value
CNN kernels [3, 3], [3, 3], [3, 3]

CNN channels [32, 64, 32]
hidden layer size [256]

recurrent layer size 256
activation function ReLU

weight decay 0.0001
parallel environments 200

episode length 400
epoch 500

chunk length 100
learning rate 0.0005

KL penalty coefficient β 0 → 1
latent variable dimension 16

Table 3: Hyperparameters for VAE models

E COOPERATIVE REACHING GAME: GAME LAYOUT & 11 HEURISTIC
AGENTS

Figure 6: Cooperative Reaching Game (CRG): Red and Blue are the two agents that should cooperate
to reach and stay on one of the goal coordinates in the corner. Yellow goal coordinates lead to a
reward of 1, and Green goal coordinates lead to a reward of 0.75.
• Heuristic H01: Selects actions moving teammates toward the nearest reward-providing coordinate.
• Heuristic H02: Selects actions moving teammates toward the reward-providing coordinate most

distant from their episode starting position.
• Heuristic H03: Moves teammates toward the nearest optimal reward-providing coordinate.
• Heuristic H04: Moves agents toward the optimal reward-providing coordinate most distant from

teammates’ initial episode location.
• Heuristic H05: Same as H4, but considers only suboptimal reward-providing coordinates instead

of optimal ones.
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• Heuristic H06: Same as H5, but teammates move toward the nearest suboptimal reward-providing
coordinate.

• Heuristic H07: At episode start, agents randomly select a reward-providing coordinate and move
toward it.

• Heuristic H08: Moves teammates toward the reward-providing coordinate nearest to their counter-
part agent’s location.

• Heuristic H09: Same as H8, but considers only optimal reward-providing coordinates as destina-
tions.

• Heuristic H10: Moves teammates directly toward their counterpart agent’s location.
• Heuristic H11: Always randomly selects actions from teammates’ available action set.

F TESTS ON CMG-S

(a) CMG-S layout (b) Self-play (c) TrajeDi

(d) MEP (e) CoMeDi (f) GOAT

Figure 7: We provide additional tests of the CMG-S problem space. In the problem space, rewards
flow in a direction that creates a smooth learning landscape for the algorithms to exploit. The policies
for the methods were aggregated and normalized into a heatmap. GOAT successfully assigns priorities
to regions.

G MINIMAX AND REGRET COMPARISON ON OVERCOOKED

Figure 8: Performance comparison between minimax vs GOAT objective on Multi-Strategy Counter
when evaluated against a held-out human behavior cloned model as a partner. Error bars are the
Standard Error of the Mean. GOAT outperforms MiniMax, but here MiniMax produces poor-
performing agents that fail to participate in coordination. See game videos on our website.
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H MODE DISCOVERY WITH RESPECT TO POPULATION SIZE.

Figure 9: Number of modes discovered by each baseline in Cooperative Matrix Game (CMG)
with respect to the population size. CoMeDi, GAMMA, and GOAT discover all the modes with a
population size of 8, but each one receives different rewards as shown earlier in Figure 2.

I GOAT USING DIFFERENT VAES TRAINED ON DIFFERENT AGENT DATA

Figure 10: Performance comparison between GOAT using VAE trained with MEP agents data
(purple line) vs GOAT using VAE trained with CoMeDi agents data (brown line) on Counter Circuit
Overcooked Layout.

J COOPERATIVE STRATEGIES LEARNED BY VAE

Figure 11: Left: We collect 4 cooperative policies on CMG-M using CoMeDi and then aggregate
them. Right: The policies are used for training the VAE, where the latent dimension is 2 and we
estimate the policy reconstruction from the VAE.

K BROADER IMPACT STATEMENT

Our work on human-AI coordination aims to provide humanity with better cooperative AI that can
adapt, understand, and generalize to diverse humans. While this could enhance collaborative robots,

18



autonomous vehicles, and assistive technologies, our method specifically improves generalization to
new partners without requiring extensive human data. GOAT has the potential to improve capabilities
for household robots, vehicles, and collaborative AI systems where seamless human interaction adds
value to people’s lives. This type of technology enhances human modeling, which can be deployed
widely to help people from all walks of life and of all age groups. We would also like to note that the
development of such an AI system will accelerate technological progress and requires responsible
development and deployment.

L LIMITATION

The effectiveness of this method depends on the training of VAE models and enough data available
for VAE to learn the distribution, instead of overfitting to a few examples. It would be a promising
method for fields like robotics and human-AI interaction, where data availability is not an issue. We
also found that in sparse reward problems, this method discovers solutions and trains the cooperator
robustly.

Figure 12: After training a VAE on a 4-population pool of CoMeDi agents, we visualize the generation
by interpolating the dimensions of the latent vector. Particularly for this example, we choose the
latent dimension to be 2. We can see that VAE trained on cooperative policies has only encoded
those policies in the latent space. As we move from one side of the plot to the other, we can see that
different cells are activated, and it covers the cooperative policies as seen in the Figure 11
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