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M2-VLP: Enhancing Multilingual Vision-Language Pre-Training
via Multi-Grained Alignment

Anonymous Author(s)

Abstract
Recently, multilingual Vision-Language Pre-training (mVLP) has
shown remarkable progress in learning joint representations across
different modalities and languages. However, most existing meth-
ods learn semantic alignment at a coarse-grained level and fail to
capture fine-grained correlations between different languages and
modalities. To address this, we propose aMulti-grainedMultilingual
Vision-Language Pre-training (M2-VLP) model, which aims to learn
cross-lingual cross-modal alignment at different semantic granu-
lar levels. In cross-lingual interaction, the model learns the global
alignment of parallel sentence pairs and the word-level correla-
tions. In cross-modal interaction, the model aligns images with
captions and image regions with corresponding words. To inte-
grate the cross-lingual and cross-modal alignment above, we pro-
pose a unified multi-grained contrastive learning paradigm. Under
zero-shot cross-lingual and fine-tuned multilingual settings, ex-
tensive experiments on vision-language downstream tasks across
twenty languages demonstrate the effectiveness of M2-VLP over
competitive contrastive models. The anonymous code is available
in https://anonymous.4open.science/r/M2-VLP-ANNO-27BA.

CCS Concepts
• Computing methodologies → Natural language processing.

Keywords
Multilingual vision-language pre-training, Multi-modal alignment,
Cross-lingual Transfer
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1 Introduction
Vision-Language Pre-training (VLP) research plays a pivotal role
in shaping the future landscape of the internet, as it greatly en-
hances the intelligence of web applications (e.g., search engines
[42] and recommendation [45]). Typically, VLP models learn cross-
modal joint representations from large-scale image-text pairs dur-
ing the pre-training stage, which are then fine-tuned on down-
stream vision-language tasks, such as visual question answering,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WWW ’25, April 28–May 02, 2025, Sydney, Australia
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

Figure 1: An illustration of the differences between existing
mVLP methods and M2-VLP. Most existing methods align
cross-lingual cross-modal representations at a coarse-grained
level, while M2-VLP performs multi-grained aligning.

image captioning, and image-text retrieval [7]. While most works
are based on English, recent studies on multilingual VLP (mVLP)
have attempted to overcome the language barrier by extending VLP
models to multilingual scenarios. By aligning the representations
from different modalities and languages, mVLP models achieve
promising results on various cross-lingual cross-modal downstream
tasks[6, 30, 34, 52].

However, most existing mVLP methods only learn cross-lingual
and cross-modal alignment at a coarse-grained level, ignoring the
critical role of explicit fine-grained semantic alignment. As illus-
trated in Figure 1 (a, b), previous methods can be categorized mainly
into two paradigms: (a) The translation-based methods [6, 34, 52]
extend English image-text pairs to other languages using trans-
lation engines, subsequently performing VLP on the generated
multilingual data. (b) The unified modeling methods [30] aim to

1
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align cross-modal image-text pairs and cross-lingual translation
pairs within a unified framework. Despite their advances, the pre-
training paradigms of these models are limited to coarse-grained
level, lacking explicit supervision to capture fine-grained correla-
tions between different languages and modalities.

In this paper, we explore cross-lingual cross-modal alignment
from the perspective of human learning. When we learn a new
language, the initial step is to memorize the vocabulary and align
the vocabulary with our native language. Similarly, when young
children learn to recognize images, they are first taught to asso-
ciate the objects depicted in the image with the corresponding con-
cepts. These observations suggest that fine-grained token-token
and region-token aligning signals may be effective in understanding
detailed correlations in both cross-lingual and cross-modal interac-
tion. Inspired by this, we introduce a Multi-grained Multilingual
Vision-Language Pre-training model, namely M2-VLP. As shown
in Figure 1 (c), the model integrates four aligning tasks with dif-
ferent granular levels through a unified multi-grained contrastive
learning strategy. In cross-modal contrastive, M2-VLP aligns global
images with English captions at a coarse-grained level, and im-
age regions with corresponding English phrases at a fine-grained
level. In cross-lingual contrastive, the model simultaneously learns
sentence-level and token-level alignment using parallel translation
pairs. Through a unified formulation for different data streams, the
model achieves multi-grained cross-lingual cross-modal cascading
alignment without any multilingual image-text pairs. To further
improve cross-lingual and cross-modal interactions, M2-VLP per-
forms three Masked Language Modeling (MLM) tasks, including
Vision MLM (VMLM), cross-lingual MLM (xMLM), and Translation
Language Modeling (TLM).

Under zero-shot cross-lingual and fine-tuned multilingual set-
tings, we demonstrate the effectiveness of M2-VLP across a broad
range of downstream vision-language tasks, including visually-
grounded natural language inference, visual question answering,
visual reasoning, and image-text retrieval. Our experiments cover
a set of 20 target languages from diverse language families. Ex-
perimental results show that M2-VLP significantly outperforms
competitive mVLP models with an averaged improvement of 2.9%
and 10.6% on cross-lingual vision-language understanding and re-
trieval tasks in the IGLUE benchmark. Visualization analysis of
the proposed model further demonstrates its ability to perform
fine-grained cross-modal and cross-lingual interactions.

Our contributions can be summarized as follows:

• We present M2-VLP, the first known effort to explicitly
learn multi-grained cross-lingual and cross-modal aligning
in multilingual vision-language pre-training.

• A unified contrastive learning strategy is proposed to learn
Vision-to-English and English-to-X languages alignment in
a multi-grained manner. With English serving as the align-
ing bridge, it achieves cross-lingual cross-modal aligning
without any multilingual image-text data.

• Extensive experiments on 7 vision-language tasks across 20
languages demonstrate the effectiveness ofM2-VLP. Further
analysis is conducted to show the fine-grained aligning
ability across different modals and languages.

2 Related Works
2.1 Multilingual Language Models
Recent studies [10, 11, 13] have demonstrated the effectiveness
of multilingual pre-trained language models on various down-
stream tasks. Multilingual BERT [13] is the first work to extend the
monolingual pre-training to the multilingual setting by perform-
ing masked language modeling (MLM) on large-scale multilingual
corpora. XLM [11] introduced translation language modeling to
achieve better cross-lingual alignment, while XLM-R [10] further
enlarged the model size and training corpora. Based on these mod-
els, several methods have been proposed to enhance multilingual
representation through different perspectives. InfoXLM [8] intro-
duces sentence-level contrastive loss, aiming to maximize the mu-
tual information between translation pairs. HICTL [46] bridges the
semantic discrepancy across languages through hierarchical con-
trastive learning. UniPropmt [17] introduces a language-agnostic
prompting model to alleviate the effort of designing multilingual
prompt templates for different languages. MLM-GC [2] leverages
the global co-occurrence information from multilingual corpora to
enhance semantic alignment. EMMA-X [16] integrates cross-lingual
representation learning with semantic relation prediction within
an expectation-maximization framework. In addition, several stud-
ies focus on improving language-agnostic representations [9] and
mitigating the influence of linguistic discrepancy [23] between the
source and target languages.

2.2 Vision-Language Pre-training
Based on the way of integrating features from vision and language,
VLP models generally fall into two categories: dual-encoder and
fusion-encoder architecture.

The dual-encoder model [20, 36] consists of an image encoder
and a text encoder to encode images and text separately. Then, it
adopts straightforwardmethods such as shallow attention layer [24]
or dot product [20, 36] to model the interaction between different
modalities. However, the simple interaction is not enough to handle
tasks that require complex reasoning, such as visual reasoning and
visual question answering [19].

The fusion-encoder model takes text embeddings and image
features as input and employs a deep fusion encoder to learn vision-
language interaction. VisualBERT [27] and VL-BERT [41] implic-
itly align elements of an input text and associated image regions
with self-attention. Instead of simply using image-text pair, OS-
CAR [29] incorporates object detection tags within the image to
enhance the fusion encoder to better align different modalities.
ALBEF [26] utilizes a text and a vision encoder to independently
learn intra-modal interaction, followed by a fusion-encoder with
cross-attention for cross-modal interaction. BEIT-3 [44] proposes
a multiway transformer by performing masked data modeling on
images, texts, and image-text pairs. Besides, some approaches lever-
age the pre-trained Large Language Models (LLM) to enhance VLP.
For example, Flamingo [3] aligns the vision encoder and LLM using
a perceiver resampler, which shows remarkable few-shot perfor-
mance. BLIP-2 [25] bridges the modality gap with a lightweight
querying transformer. LLAVA [33] connects the visual encoder of
CLIP [36] with the language decoder Vicuna [50], and conducts
end-to-end fine-tuning on generated instructional vision-language

2
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dataset. Due to the scarcity of large-scale multilingual image-text
data, most VLP methods mainly focus on English.

2.3 Multilingual Vision-Language Pre-training
As multilingual language models advance rapidly, some research
attempts to explore universal representations across multiple lan-
guages and modalities. MURAL [18] extends the ALIGN [20] model
to multilingual settings by applying multi-task contrastive learning
on image-text pairs and translation pairs. To construct multilin-
gual image-text pairs, M-CLIP [6] and UC2 [52] extend English-
only datasets via machine translation, and leverage the generated
datasets for vision-language alignment. As these methods highly
depend on the quality of the translation engine, some research
has attempted alternative paradigms. RC3 [51] applies regularized
contrastive learning that constrains the representation proximity
of weakly-aligned multilingual vision-language inputs. M3P [34]
enforces explicit alignment through a code-switching strategy, re-
placing English words in image-text pairs with their synonyms
in the target languages. Li et al. [30] proposes a weakly super-
vised framework to effectively unify cross-lingual and cross-modal
pre-training, achieving remarkable results on various cross-lingual
vision-language tasks.

3 Methodology
In this section, we present a multi-grained multilingual framework
M2-VLP. We first briefly introduce the three types of data streams
used for pre-training in section 3.1. Then we describe the model
architecture and pre-training objectives in section 3.2 and 3.3 re-
spectively.

3.1 Data Stream
We use three data streams: multilingual text stream, parallel text
stream, and monolingual image-text stream. Different from most
previous methods, our approach does not rely on machine transla-
tion engines or multilingual image-text datasets. Details regarding
the three data streams are as follows:

Multilingual Text Stream To learn cross-lingual modeling,
we use multilingual text stream as model input. Given 𝑁 lan-
guages {𝐿𝑖 }𝑁𝑖=1, we construct a multilingual text dataset 𝐷𝑀 =

∪𝑁
𝑖=1{𝑥

𝐿𝑖
𝑗
}𝑁𝐿𝑖

𝑗=1 , where 𝑁𝐿𝑖 denotes the number of training sentences

in language 𝐿𝑖 and 𝑥
𝐿𝑖
𝑗

is the 𝑗-th sentence in language 𝐿𝑖 . Due
to significant differences in data size for different languages, sen-
tences are sampled according to a multinomial distribution [10].
This sampling increases the proportion of low-resource languages
and alleviates the training bias towards high-resource languages.

Parallel Text Stream To learn cross-lingual semantic align-
ment, we apply parallel text stream. Given 𝑁 languages {𝐿𝑖 }𝑁𝑖=1, we
construct an English-X parallel text dataset𝐷𝑇 = ∪𝑁

𝑖=1{𝑥
𝐸𝑛
𝑗
, 𝑦

𝐿𝑖
𝑗
}𝑁𝐿𝑖

𝑗=1 ,

where {(𝑥𝐸𝑛
𝑗
, 𝑦

𝐿𝑖
𝑗
)} is the 𝑗-th English-𝐿𝑖 translation pair and 𝑁

′
𝐿𝑖

denotes the number of translation pairs in 𝐿𝑖 .
Monolingual Image-Text Stream To learn cross-modal mod-

eling, we use monolingual image-text stream. This data stream
consists of two parts: coarse-grained image-caption data and fine-
grained region-token data. We denote image-caption data as 𝐷𝐼 =

{(𝐼 𝑗 , 𝑥𝐸𝑛𝑗 )}𝑁𝐼

𝑗=1, where (𝐼 𝑗 , 𝑥𝐸𝑛𝑗 ) represents an image-caption pair
and 𝑁𝐼 is the number of image-caption samples. For images in
𝐷𝐼 , we also construct fine-grained region-token dataset 𝐷𝑅 =

{(𝑅 𝑗 , 𝑥
𝐸𝑛
𝑗
)}𝑁𝑅

𝑗=1, where (𝑅 𝑗 , 𝑥
𝐸𝑛
𝑗
) denotes an region-token pair and

𝑁𝑅 is the number of region-token samples. Note that the "token"
here can not only be a word, but also textual phrases that describe a
specific region of the image. Specifically, we utilize the existing im-
age annotations of object detection and region description to form
region-token pairs. Based on region and object coordinate labels,
we cut the original images to obtain region 𝑅 𝑗 . 𝑥𝐸𝑛𝑗 for objects are
original object labels. If an object annotation contains additional
attributes (e.g., color or shape), we concatenate the attributes with
the original labels as the region description. 𝑥𝐸𝑛

𝑗
for regions are

phrases that describe the specific regions in original images. Fur-
thermore, we augment 𝐷𝐼 and 𝐷𝑅 with a code-switching strategy,
in which the model randomly replaces tokens in image-text pairs
with their target language synonyms.

3.2 Model Architecture
As illustrated in Figure 2, we construct a two-steam framework that
contains a vision encoder to learn visual features, a text encoder to
learn textual features, and a fusion encoder to learn cross-modal
interactions. The text and vision encoders adopt standard Trans-
former [13] architecture with 𝑁𝑉 and 𝑁𝑇 layers respectively.

Specifically, texts and images are fed into the corresponding
uni-modal encoders to perform intra-modal interaction. Since our
method is based on multi-grained aligning, "image" can refer to a
global image or a specific region, and "text" can refer to a complete
caption or a text phrase describing the corresponding region. For
text input, we feed it to the text encoder and get the text repre-
sentation 𝑇 = {𝑡𝑐𝑙𝑠 , 𝑡1, ..., 𝑡𝑛}. For image input, the vision encoder
transforms images into fixed-size 𝑚 patches to get image repre-
sentation 𝐼 = {𝑖𝑐𝑙𝑠 , 𝑖1, ..., 𝑖𝑚}. Similar to language models [13], a
special token [CLS] is prepended to the image patches, serving as
the representation of the global image.

After that, image and text representations are fed into the fusion
encoder. To learn the alignment between different modalities and
languages, we follow [30] to adopt a pluggable cross-attention layer
in the fusion module, which allows different routines for different
data streams. For image-text stream 𝐷𝐼 and 𝐷𝑅 , the cross-attention
layers are activated to learn cross-modal interaction. Mathemati-
cally, the cross-attention between text feature 𝑥𝑡 and image feature
𝑥𝑖 can be denoted as

𝑞 = 𝑥𝑡W𝑞, 𝑘 = 𝑥𝑖W𝑘 , 𝑣 = 𝑥𝑖W𝑣,

Attention(𝑞, 𝑘, 𝑣) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 ( 𝑞𝑘
𝑇√︁
𝑑𝑘

) · 𝑣, (1)

where W𝑞 ∈ R𝑑𝑚×𝑑𝑞 , W𝑘 ∈ R𝑑𝑚×𝑑𝑘 , and W𝑣 ∈ R𝑑𝑚×𝑑𝑣 are
learnable weight matrices, and 𝑑𝑚 , 𝑑𝑞 , 𝑑𝑘 , and 𝑑𝑣 are dimensions of
the input embedding, query, key, and value vectors. For parallel text
stream 𝐷𝑇 , the cross-attention layers are activated to learn cross-
language interaction. The cross-attention query, key, and value
vectors of parallel text input (𝑥𝑝 , 𝑥𝑞) can be formulated as

𝑞 = 𝑥𝑝W𝑞, 𝑘 = 𝑥𝑞W𝑘 , 𝑣 = 𝑥𝑞W𝑣 . (2)
3
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Figure 2: Illustration of the proposed framework. M2-VLP consists of vision, text, and fusion encoders. Modules with the same
color share the same parameters. We use cuboids with different colors to highlight the data flow within the model. L with
different subscripts denotes different pre-training losses.

For unpaired text stream 𝐷𝑀 , the cross-attention layers are
skipped. Different from previous methods that learn cross-modal
and intra-modal modeling in a single self-attention layer, the plug-
gable cross-attention modules can learn extensive interaction and
semantic alignment.

3.3 Pre-training Objectives
We optimize M2-VLP by employing two types of pre-training ob-
jectives. On top of the uni-modal encoders, the model performs
multi-grained contrastive learning. On top of the fusion encoder,
the model is trained by masked language modeling and vision-
language matching. Our goal is to achieve Vision-to-X languages
alignment by learning multi-grained Vision-to-English alignments
and English-to-X languages alignments. In this way, the model
learns cascading alignments between Vision-English-X languages,
with English serving as the aligning bridge.

3.3.1 Multi-grained contrastive learning. To cascadingly align
unimodal representations before fusion, we propose a unified multi-
grained contrastive learning to simultaneously align both of the
English-to-Vision and English-to-X languages. For a batch of 𝑁
pairs {(𝐴𝑖 , 𝐵𝑖 )}𝑁𝑖 , 𝐵𝑖 is the positive sample for 𝐴𝑖 , and the other
𝑁 − 1 samples within the batch are negative samples. Specifically,
(𝐴𝑖 , 𝐵𝑖 ) refers to an image-text pair or a translation text pair. For
each pair, we calculate the softmax-normalized 𝐴-to-𝐵 similarity
as:

𝒑𝐴2𝐵𝑛 (𝐴) = 𝑒𝑥𝑝 (𝑠𝑖𝑚(𝐴, 𝐵𝑛)/𝜏)∑𝑁
𝑛=1 𝑒𝑥𝑝 (𝑠𝑖𝑚(𝐴, 𝐵𝑛)/𝜏)

. (3)

Similarly, 𝐵-to-𝐴 similarity is:

𝒑𝐵2𝐴
𝑛 (𝐵) = 𝑒𝑥𝑝 (𝑠𝑖𝑚(𝐵,𝐴𝑛)/𝜏)∑𝑁

𝑛=1 𝑒𝑥𝑝 (𝑠𝑖𝑚(𝐵,𝐴𝑛)/𝜏)
, (4)

where 𝜏 is a learnable temperature parameter and the function
𝑠𝑖𝑚(·) calculate the cosine similarity between 𝐴 and 𝐵. For the 𝑖-th
pair, let 𝒚𝐴2𝐵 (𝐴) and 𝒚𝐵2𝐴 (𝐵) denote the ground-truth one-hot
similarity, where negative pairs have a probability of 0 and the
positive pair has a probability of 1. The contrastive loss of pair
(𝐴, 𝐵) is defined as the cross-entropy 𝐻 between 𝒑 and 𝒚:

L𝐶𝐿 =
1
2
E(𝐴,𝐵)∼𝐷𝐼 ,𝑅,𝑇

[𝐻 (𝒚𝐴2𝐵 (𝐴),𝒑𝐴2𝐵 (𝐴))+

𝐻 (𝒚𝐵2𝐴 (𝐵),𝒑𝐵2𝐴 (𝐵))] .
(5)

In multi-grained contrastive, pair (𝐴𝑖 , 𝐵𝑖 ) can be four types of
data inputs. In the coarse-grained level, pair (𝐴𝑖 , 𝐵𝑖 ) can be an
embedded vector of an image-caption pair (from data stream 𝐷𝐼 )
or a textual translation pair (from data stream 𝐷𝑇 ). In fine-grained
level, (𝐴𝑖 , 𝐵𝑖 ) can be embedded vector of a region-token pair (from
data stream 𝐷𝑅 ) or a token-token pair (from word align matrix𝑀
of data stream 𝐷𝑇 ).

As shown on the right side of Figure 2, since no labeledword pairs
are accessible, we utilize unsupervised word aligner (FastAlign[14])
to construct word align matrixM for translation pairs. Specifically,

4
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for every translation pair (𝑥,𝑦) in data stream𝐷𝑇 , the elementM𝑖, 𝑗

of word align matrixM in 𝑖-th row and 𝑗-th column is defined as:

M𝑖, 𝑗 =

{
1, if word𝑤𝑥

𝑖
is synonym of𝑤𝑦

𝑗
,

0, otherwise,
(6)

where𝑤𝑥
𝑖
is the 𝑖-th word of sentence 𝑥 and𝑤𝑦

𝑗
is the 𝑗-th word

of sentence 𝑦. With the word align matrix𝑀 , the model is able to
construct positive and negative samples in token-token contrastive
learning.

Corresponding to the four types of multi-grained input data
above, the contrastive loss functions can be denoted asL𝐼𝐶𝐶 (image-
caption contrastive),L𝑅𝑇𝐶 (region-token contrastive),L𝑆𝐿𝐶 (sentence-
level contrastive), and L𝑇𝐿𝐶 (token-level contrastive) respectively.
Therefore, the overall objective function of multi-grained con-
trastive learning is:

L𝑀𝐶𝐿 = 𝜆(L𝐼𝐶𝐶 + L𝑆𝐿𝐶 ) + (1 − 𝜆) (L𝑅𝑇𝐶 + L𝑇𝐿𝐶 ), (7)

where 𝜆 is a scale hyper-parameter to balance coarse-grained con-
trastive and fine-grained contrastive.

3.3.2 Masked language modeling. Masked language modeling
(MLM) is a simple but effective self-learning paradigm that has
been proven in multiple domains [7, 13]. As shown in Figure 2,
we design three variants of MLM: Vision MLM (VMLM) on image-
caption pairs in 𝐷𝐼 and region-token pairs in 𝐷𝑅 , cross-lingual
MLM (xMLM) on multilingual texts in 𝐷𝑀 , translation language
modeling (TLM) on translation sentence pairs in 𝐷𝑇 .

In VMLM, the model predicts the masked tokens based on both
the image and unmasked tokens from texts. During the prediction
process, the model needs to understand the masked word associated
features of the image, which helps to learn cross-modal interac-
tion. xMLM predicts the masked tokens in the multilingual texts.
Previous studies [10, 11, 13] have indicated that xMLM training
helps encode different languages into the shared embedding space,
improving the model’s ability in multilingual modeling and cross-
language transfer. In TLM, the model can attend to both the English
sentence and its translation to predict a masked token, thereby
encouraging the alignment of representations across different lan-
guages.

In all three tasks, we randomly mask out the input tokens with
a probability of 15%. Mathematically, we denote a masked text as
𝑇 , a masked parallel text pair as (𝑇𝑋 ,𝑇𝑌 ),and a masked image-text
pair as (𝑇𝐼 , 𝐼 ). The complete MLM pre-training loss L𝑀𝐿𝑀 can be
obtained by summing up theL𝑥𝑀𝐿𝑀 ,L𝑇𝐿𝑀 , andL𝑉𝑀𝐿𝑀 together:

L𝑀𝐿𝑀 = E
𝑇∼𝐷𝑀

[𝐻 (𝒚𝑚𝑙𝑚 (𝑇 ),𝒑𝑚𝑙𝑚 (𝑇 ))]

+ E(𝑇𝑋 ,𝑇𝑌 )∼𝐷𝑇
[𝐻 (𝒚𝑚𝑙𝑚 (𝑇𝑋 ,𝑇𝑌 ),𝒑𝑚𝑙𝑚 (𝑇𝑋 ,𝑇𝑌 ))]

+ E(𝑇𝐼 ,𝐼 )∼𝐷𝐼 ,𝑅
[𝐻 (𝒚𝑚𝑙𝑚 (𝑇𝐼 , 𝐼 ),𝒑𝑚𝑙𝑚 (𝑇𝐼 , 𝐼 ))],

(8)

where 𝒑𝑚𝑙𝑚 is the predicted probability for a masked token, and
𝒚𝑚𝑙𝑚 is a one-hot vocabulary distribution where the ground-truth
token has a probability of 1.

3.3.3 Vision-language matching. In the vision-language match-
ing (VLM) task, the model predicts whether a pair of an image
and a text sequence is matched. In practice, the image and its cor-
responding caption are regarded as positive pairs, whereas the

remaining examples in the batch are considered as negatives. To
predict the matching probability 𝒑𝑣𝑙𝑚 , the model utilizes the output
embedding of the [CLS] token from the fusion encoder as the joint
representation of the image-text pair (𝑉 ,𝑇 ). The VLM loss can be
denoted as:

L𝑉𝐿𝑀 = E(𝑉 ,𝑇 )∼𝐷𝐼 ,𝑅
[𝐻 (𝒚𝑣𝑙𝑚 (𝑉 ,𝑇 ),𝒑𝑣𝑙𝑚 (𝑉 ,𝑇 ))], (9)

where the ground-truth label is represented as a one-hot vector
𝒚𝑣𝑙𝑚 .

Finally, the overall pre-training objective of M2-VLP is defined
as:

L = L𝑀𝐶𝐿 + L𝑀𝐿𝑀 + L𝑉𝐿𝑀 (10)

4 Experiment
4.1 Pre-training Datasets

Table 1: Statistics of annotations in image-text datasets.

Dataset Images Captions Objects Regions

MSCOCO 0.12M 0.55M 0.45M —
Conceptual Captions 3.33M 3.33M — —

Visual Genome 0.10M — 2.0M 3.7M

In pre-training stage, we consider 21 languages, including Eng-
lish, to cover all target languages in downstream datasets. To con-
struct 𝐷𝑀 , a subset of 400M multilingual sentences is sampled from
the open-source dataset CC-100 [47], which is collected from the
CommonCrawl1 dump. As for 𝐷𝑇 , we use 20M English-centric
parallel sentences from WikiMatrix [37]. The specific language dis-
tribution in 𝐷𝑀 and 𝐷𝑇 is given in Appendix A.1. The data used to
construct 𝐷𝐼 and 𝐷𝑅 is detailed in Table 1. From Conceptual Cap-
tions [39], MSCOCO [31], and Visual Genome [22], we use 3.9M
image-caption pairs for 𝐷𝐼 , along with 6.1M region-token pairs for
𝐷𝑅 .

4.2 Pre-training Settings
For transformer modules, we adopt a base hidden size of 768 along
with 12 heads for both self-attention and cross-attention. Following
[26], we set 𝑁𝑇 = 𝑁𝐹 = 6 and 𝑁𝑉 = 12. The vision encoder is
initialized with [26]. The text encoder is initialized with the first six
layers of XLMR [10], while the fusion encoder is initialized with
the last six layers. Due to the absence of cross-attention modules
in the XLMR model, we initialize the cross-attention layers with
parameters of self-attention.

We optimize the model using the Adam optimizer for 240K steps.
Each training batch consists of 512 image-text pairs, 512 region-
token pairs, 2048 translation pairs, and 2048 multilingual sentences.
The learning rate is scheduled with a linear decay with 24K warmup
steps, where the peak learning rate is set as 1𝑒 − 4. The tokenizer
of the XLMR is employed to tokenize the text. The maximum text
sequence length of sentences in 𝐷𝑀 , 𝐷𝑇 , 𝐷𝐼 , and 𝐷𝑅 are set to
64, 50, 35, and 35 respectively. The model is pre-trained at image
resolution of 256 × 256 using 16 × 16 patch size. More details are
given in Appendix A.2.
1https://commoncrawl.org/

5



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

WWW ’25, April 28–May 02, 2025, Sydney, Australia Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 2: Results of zero-shot cross-lingual transfer on IGLUE benchmark. The en indicates the results on the English test
sets, while avg represents the average results for other target languages. IR and TR refer to image retrieval and text retrieval,
respectively.

Model

VNLI VQA Reasoning Retrieval

XVNLI xGQA MaRVL
xFlickr&CO WIT

IR TR IR TR
avg en avg en avg en avg en avg en avg en avg en

mUNITER 53.7 76.4 10.0 54.7 53.7 71.9 8.1 44.5 8.9 40.9 9.2 19.9 10.4 22.3
xUNITER 58.5 75.8 21.7 54.8 54.6 71.6 14.0 38.5 13.5 32.1 8.7 16.7 9.8 18.5
UC2 62.1 76.4 29.4 55.2 57.3 70.6 20.3 37.4 17.9 34.6 7.8 17.9 9.1 19.7
M3P 58.3 76.9 28.2 53.8 56.0 68.2 12.9 31.4 11.9 24.6 8.1 15.5 10.0 15.3
WS-mVLP 69.5 79.7 42.1 57.4 62.1 75.3 59.8 86.6 58.7 91.7 36.3 56.0 36.6 56.2
Ours 71.1 80.3 46.6 58.0 64.6 80.3 71.4 91.9 70.7 84.5 46.6 71.2 45.1 71.0

4.3 Downstream Tasks
We conduct comprehensive experiments to evaluate the proposed
model across two settings:

Zero-shot cross-lingual transfer in vision-language tasks:
To assess the cross-lingual transferability of the proposed model in
vision-language tasks, we evaluate M2-VLP on a recently released
IGLUE [5] benchmark. For all tasks in this scenario, we follow
a zero-shot cross-lingual transfer setting in which the model is
trained only in English and evaluated directly in other languages.
The five tasks of the IGLUE benchmark include:

• XVNLI Cross-lingual Visual Natural Language Inference
(XVNLI) [5] requires themodel to predict if a text-hypothesis
‘entails’, ‘contradicts’, or is ‘neutral’ to an image-premise.
The dataset is collected by combining SNLI [4] with its
multi-modal [27] and cross-lingual [1] counterparts.

• xGQA The Cross-lingual Grounded Question Answering
(xGQA) task [35] is collected by manually translating the
GQA validation set into 7 languages, while training data are
sourced from the English training set of GQA. It requires
a model to answer several types of structured questions
about an image.

• MaRVL The Multicultural Reasoning over Vision and
Language (MaRVL) dataset [32] requires the model to de-
termine whether a textual description is true or false about
a pair of images. The task involves comparing two visual
representations and reasoning about the information in the
textual description.

• xFlickr&CO The dataset [5] is collected by combining
1000 images from Flickr30K [49] and MSCOCO [31] respec-
tively. It is a retrieval task with two subtasks: image-to-text
retrieval (TR) and text-to-image retrieval (IR). The image
captions encompass a total of eight languages, including
English.

• WIT Wikipedia-based Image Text dataset (WIT) [40]
is collected from Wikipedia in 108 languages. Similar to
xFlickr&CO, the tasks consist of retrieving the correct im-
age given a text (IR) and vice versa (TR). The English train-
ing set consists of 500K captions, and the evaluation set

comprises 10 languages, each containing at least 500 image-
text pairs.

Multilingual fine-tuning in vision-language tasks: To
evaluate the multilingual ability of the proposed model, we con-
duct experiments on image-text retrieval tasks. We consider two
settings, one is to train and test each language independently, and
the other is to combine all languages into a unified training set and
test on different languages. Following [30], We use multilingual
extensions of MSCOCO [31] and Multi30K [15], both of which offer
multilingual annotations for training.

• Multi30K This dataset extends Flickr30K [49] from Eng-
lish to German, French and Czech. It consists of 31,783
images, each paired with five captions in English and Ger-
man, and one caption in French and Czech. We follow the
data split in [30].

• MSCOCO This dataset contains 123,287 images and pro-
vides five captions per image in English. STAIR [48] ex-
tends the original MSCOCO with 820K Japanese captions.
Moreover, COCO-CN [28] extends MSCOCO with Chinese
captions for nearly 20K images. For English and Japanese,
we follow the data split in [21]. As for Chinese, we use the
original COCO-CN split.

In fine-tuning stage, we follow the task-specific hyper-parameters
in the baseline model [30]. We report accuracy for XVNLI, xGQA,
and MaRVL. For retrieval tasks, we use mean Recall (mR) as our
evaluation metric, which is an averaged score of R@1, R@5, and
R@10 on image-to-text retrieval and text-to-image retrieval tasks.

4.4 Baseline Models
We compare our model with recent competitive multilingual VLP
models: mUNITER [32], xUNITER [32], UC2 [52], M3P [34], and
WS-mVLP [30]. Among the baselines, mUNITER and xUNITER,
which are initialized from mBERT and XLM-R respectively, em-
ploy the UNITER architecture and are pre-trained with MLM on
both cross-lingual texts and English image-text pairs. M3P imple-
ments explicit alignment by employing a code-switching strategy,
replacing English words in image-text pairs with their respective
synonyms in the target languages. UC2 utilizes translation engines
to translate existing English-only image-text pairs into other five
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Table 3: Results of multilingual image-text retrieval on
Flickr30K and MSCOCO.

Model
Flickr30K MSCOCO

en de fr cs en zh ja

English only Finetune

UC2 87.2 74.9 74.0 67.9 88.1 82.0 71.7
M3P 87.4 58.5 46.0 36.8 88.6 53.8 56.0
WS-mVLP 94.9 84.4 86.1 77.2 89.6 83.3 73.1
Ours 95.3 88.6 90.3 85.9 90.7 88.9 83.3

Single Language Finetune

UC2 87.2 83.8 77.6 74.2 88.1 84.9 87.3
M3P 87.4 82.1 67.3 65.0 88.6 75.8 80.1
WS-mVLP 94.9 92.5 92.4 91.0 89.6 92.5 90.4
Ours 95.3 93.2 92.6 91.6 90.7 91.9 91.2

All-Language Finetune

UC2 88.2 84.5 83.9 81.2 88.1 89.8 87.5
M3P 87.7 82.7 73.9 72.2 88.7 86.2 87.9
WS-mVLP 95.3 93.6 93.8 92.4 90.4 92.6 90.0
Ours 95.2 94.0 93.8 92.8 90.8 92.7 91.6

languages and a visual-conditioned translation language model-
ing objective is introduced. WS-mVLP unifies cross-lingual and
cross-modal pre-training within a weakly supervised framework,
achieving remarkable results on the IGLUE benchmark. The exper-
imental results for the baseline models are sourced from [30].

4.5 Main Results
In order to comprehensively evaluate the multilingual performance
of the model, we conduct experiments under the settings of zero-
shot cross-lingual transfer and multilingual fine-tuning:

Cross-lingual Transfer As shown in Table 2,M2-VLP achieves
superior zero-shot cross-lingual performance across various vision-
language tasks. Specifically, compared to the best baseline WS-
mVLP, our model achieves an average accuracy improvement of
6.9% on zero-shot cross-lingual vison-language understanding tasks
including XVNLI, xGQA, and MaRVL. For retrieval tasks, M2-VLP
outperforms all compared models by a substantial margin in cross-
lingual settings. On the English test sets, our method exhibits the
best performance on all tasks except for TR in xFlickr&CO. These
results suggest that our multi-grained vision-language pre-training
can learn better alignment between image and multilingual texts.

Multilingual Fine-tune As shown in Table 3, We conduct ex-
periments on themultilingual extensions of Flickr30K andMSCOCO
under three settings, which are zero-shot English-only fine-tuning,
target language fine-tuning, and all-language fine-tuning. Com-
pared to the baseline models, M2-VLP shows improvement across
different languages. Under the setting of all-language fine-tuning,
the improvement is not prominent. In contrast, our model exhibits
more improvements under the cross-lingual transfer setting, pos-
sibly attributed to the additional fine-grained alignment between
different languages.

Table 4: Results of ablation studies. TLC is the abbreviation
for token-level contrastive, RTC for region-token contrastive,
and CS for code-switching.

Model XVNLI xGQA MaRVL
xFlickr&CO WIT
IR TR IR TR

Ours 71.1 46.6 64.6 71.4 70.7 46.6 45.1

𝑤/𝑜 𝑇𝐿𝐶 70.7 45.8 64.4 71.3 69.5 45.4 43.3
𝑤/𝑜 𝑅𝑇𝐶 70.1 46.4 64.1 70.3 68.1 45.6 43.7
𝑤/𝑜 𝐶𝑆 69.7 42.0 62.8 69.5 69.1 46.2 43.7

4.6 Ablation Study
We conduct ablation studies to investigate the effect of different
components in the proposed model. We discuss the following three
model variants:

• 𝑤/𝑜 𝑇𝐿𝐶 : This variant removes the token-level contrastive
objective L𝑇𝐿𝐶 , which means that the model aligns cross-
lingual texts with only sentence-level contrastive.

• 𝑤/𝑜 𝑅𝑇𝐶: In this setting, we remove region-token con-
trastive objective L𝑅𝑇𝐶 , which means the model only per-
forms coarse-grained cross-modal aligning with image-
caption contrastive.

• 𝑤/𝑜 𝐶𝑆 : This variant removes code-switching augmenta-
tion module (in section 3.1) for 𝐷𝐼 and 𝐷𝑅 .

The results are shown in table 4. In general, all three modules
have contributed to the model performance. Firstly, TLC showed
significant improvement in xGQA and WIT tasks, indicating their
sensitivity to cross-lingual fine-grained alignment. Secondly, RTC
demonstrates more noticeable improvement on the XVNLI and
xFlickr&CO datasets, indicating that token-region alignment may
be more important for these two tasks. Surprisingly, the CS module
has contributed the most to performance improvement. Previous
studies have demonstrated that randomly replacing English words
with their synonyms is a simple yet effective method that can
promote word-level cross-lingual alignment. Compared to retrieval
tasks, CS has shown greater improvement in XVNLI, xGQA, and
MaRVL tasks, achieving an average improvement of 2.6%. These
results demonstrate the importance of the proposed fine-grained
alignment training for cross-lingual vision-language tasks.

4.7 Visualization
Cross-attention Visualization To obtain an intuitive compre-
hension of the proposedmodel, we use Grad-CAM [38], a commonly
used "visual explanation" toolkit, to generate cross-attention loca-
tionmaps for the last layer of the fusion encoder. As shown in Figure
3, words from different languages that convey the same meaning
can activate to corresponding regions in the image. It indicates
that our model can effectively transfer the cross-modal alignment
knowledge learned from English to other languages. More examples
of cross-attention visualization are shown in Appendix B.2.
Cross-lingual Aligning To explore whether our model tends to
learn fine-grained cross-lingual alignment, we employ t-SNE [43] to
visualize the distances between representations of translation word
pairs. As Figure 4 shows, we sample 15 English-X translation word
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Figure 3: Grad-CAM visualization of the cross-attention between regions and corresponding words across different languages.

Figure 4: The tSNE visualization of the word representations. Each word pair is connected by a grey dotted line.

pairs (excluding stop words) from 𝐷𝐼 for four low-resource target
languages. The hidden states of the last transformer layer in the
fusion encoder serve as the word representations. Figure 4(a) shows
the t-SNE visualization of our model without fine-grained aligning
(without L𝑅𝑇𝐶 and L𝑇𝐿𝐶 )). We observe that only a few word pairs
are properly aligned and words from the same language are more
likely to gather in the hidden space. As for fully trained M2VLP in
Figure 4(b), even in the case of low-resource languages, the results
show that they achieve significant token-level semantic alignment
with English, which leads to better performance in cross-lingual
transfer. The cross-lingual aligning visualization of other languages
is presented in Appendix B.3.

5 Conclusion
In this paper, we propose M2-VLP to perform multi-grained mul-
tilingual vision-language pre-training. Our approach focuses on
enhancing fine-grained alignment in two dimensions: cross-lingual
and cross-modal. Specifically, we introduce two novel training ob-
jectives, RTC and TLC, to enhance semantic alignment between
image regions and corresponding phrases, as well as words in differ-
ent languages. Then we perform multi-grained multilingual vision-
language pre-training by unifying training paradigms from different
granular levels. Experimental results demonstrate that M2-VLP out-
performs previous state-of-the-art models on various cross-lingual
vision-language benchmarks.
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A Additional Implementation Details
A.1 Pre-training data
For parallel text data stream 𝐷𝑇 , we use all data of target languages
in WikiMatrix, totaling 20M English-centric parallel sentence pairs.
The data size distribution of training samples in different languages
is shown in Figure 5. As for multilingual data stream 𝐷𝑀 , due
to the significant differences in the number of training samples
for different languages, we follow [10] to sample 400M sentences
according to a multinomial distribution. We denote𝑛𝑖 is the number
of sentences in 𝐿𝑖 in the full dataset, and the sampling probabilities
{𝑞𝑖 }𝑖=1,2,...,𝑁 of language 𝐿𝑖 can be obtained by:

𝑞𝑖 =
𝑝𝛼
𝑖∑𝑁

𝑗=1 𝑝
𝛼
𝑗

with 𝑝𝑖 =
𝑛𝑖∑𝑁

𝑘=1 𝑛𝑘
(11)

We set 𝛼 = 0.3 following [30]. It increases the sampling proba-
bility of low-resource languages and alleviates the bias towards
high-resource languages. The language distribution in 𝐷𝑀 is illus-
trated in Figure 6. We use ISO-639 language codes to abbreviate all
languages.

Figure 5: Data size of different languages in 𝐷𝑇 .

A.2 Hyper-parameters
Our model consists of approximately 377M parameters, in which
theword embeddings for the large vocabulary account for 200M.We
apply RandAugment [12] to the input images. To prevent overfitting,
a dropout rate of 0.1 is utilized, along with a weight decay of 0.2 in
the optimizer. 𝜆 is set to 0.5 in Equation 7. In VMLM, xMLM, and
TLM, following [10], we keep 15% masking ratio, the replacements
are 10% random tokens, 10% unchanged, and 80% [MASK] tokens.
Following [26], we increase the image resolution to 384 × 384 and
interpolate the positional embeddings of image patches during the
fine-tuning stage. All experiments are conducted on 8 NVIDIA RTX
4090 GPUs.

Figure 6: Data size of different languages in 𝐷𝑀 after sam-
pling.

Table 5: Language-specific results of zero-shot cross-lingual
transfer on XVNLI.

Model ar es fr ru avg

UC2 56.2 57.5 69.7 64.9 62.1
M3P 55.3 58.9 56.4 62.5 58.3
WS-mVLP 66.3 69.5 71.7 70.4 69.5
Ours 69.0 72.6 73.2 69.7 71.1

Table 6: Language-specific results of zero-shot cross-lingual
transfer on xGQA.

Model bn de id ko pt ru zh avg

UC2 20.0 42.9 28.7 21.4 30.4 31.0 31.2 29.4
M3P 18.6 33.4 32.5 25.1 31.4 27.5 28.7 28.2
WS-mVLP 31.9 48.7 45.3 39.1 47.0 39.0 43.4 42.1
Ours 41.2 50.3 49.3 44.1 49.4 45.3 46.4 46.6

B Additional Results and Analysis
B.1 Language-specific results
Language-specific results in all tasks are illustrated in Table 5,6,8,7,
and 9. Overall, we observe that our model exhibits more improve-
ment in low-resource languages compared to high-resource lan-
guages. This indicates that fine-grained semantic alignment can
partially compensate for performance bottlenecks caused by lim-
ited training resources. In the XVNLI task, our model achieves the
best results in all languages except Russian. In the xGQA task, M2-
VLP outperforms the baseline models in all languages and achieves
a 4.5% improvement on average. In the MaRVL task, our model
achieves the best performance in all five target languages, with an
average improvement of 2.5%. In the retrieval tasks of xFlickr&CO
and WIT, our model performs excellently in both text retrieval and
image retrieval. The above results demonstrate that our model has
good generalization capabilities across different languages.
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Figure 7: Grad-CAM visualization of the cross-attention. We evaluate the model’s ability to distinguish colors in different
languages.

Figure 8: Grad-CAM visualization of the cross-attention. We evaluate the model’s ability to distinguish animal postures in
different languages.

Table 7: Language-specific results of zero-shot cross-lingual transfer on xFlickr&CO.

Model
de es id ja ru tr zh avg

IR TR IR TR IR TR IR TR IR TR IR TR IR TR IR TR

UC2 28.6 23.9 16.0 15.3 14.6 13.6 24.3 22.4 20.0 16.8 7.2 7.0 31.6 26.3 20.3 17.9
M3P 13.4 11.9 13.4 12.2 13.2 12.1 10.3 9.7 16.0 14.5 7.8 8.4 16.5 14.8 12.9 11.9
WS-mVLP 58.2 57.2 69.6 68.7 62.7 60.6 49.8 48.2 63.2 62.6 50.8 50.8 64.2 63.2 59.8 58.7
Ours 67.4 67.2 77.5 77.6 71.1 70.1 65.9 64.8 75.4 75.3 69.7 68.2 73.1 72.0 71.4 70.7

Table 8: Language-specific results of zero-shot cross-lingual
transfer on MaRVL.

Model id sw ta tr zh avg

UC2 56.7 52.6 60.5 56.7 59.9 57.3
M3P 56.5 55.7 56.0 56.8 55.0 56.0
WS-mVLP 65.3 58.7 60.3 65.3 60.6 62.1
Ours 65.7 60.2 61.6 71.2 64.1 64.6

B.2 Additional cross-attention visualization
To further validate whether the model can capture fine-grained
image-text alignment information, we conduct additional visualiza-
tion analysis of the cross-attention layers for two images. In Figure
7, we input "brown horse" and "black horse" in different languages
to our model. The heatmap regions indicate model’s ability to dis-
tinguish color differences well, even in low-resource languages. In
Figure 8, we analyze the model’s ability to discern the postures of
elephants. Surprisingly, the cross-attention layers of our model can
effectively model the differences. The above visualization analysis
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Figure 9: Additional tSNE visualization of the word representations.

Table 9: Language-specific results of zero-shot cross-lingual transfer on WIT.

Model
ar bg da el et id ja ko tr vi mean

IR TR IR TR IR TR IR TR IR TR IR TR IR TR IR TR IR TR IR TR IR TR

UC2 6.6 8.3 8.8 7.7 9.4 10.4 8.8 11.6 4.7 6.0 9.9 11.5 9.8 10.8 4.3 5.7 7.5 8.8 8.5 9.9 7.8 9.1
M3P 8.9 8.3 8.8 9.8 9.4 11.8 9.7 12.0 5.4 8.2 8.7 10.9 7.0 8.4 6.1 7.1 6.5 10.6 10.8 12.7 8.1 10.0
WS-mVLP 37.3 37.8 30.8 31.4 41.8 40.7 37.7 37.3 26.5 26.9 47.1 44.0 31.9 33.3 25.6 26.0 36.1 40.8 48.1 47.3 36.3 36.6
Ours 48.2 46.9 42.6 41.1 51.7 49.7 48.6 46.3 37.4 35.0 55.5 53.6 39.5 38.2 33.9 35.1 49.7 46.7 59.1 58.2 46.6 45.1

demonstrates the model’s ability to model fine-grained information
in cross-lingual cross-modal scenarios.

B.3 Additional tSNE visualization
As shown in Figure 9, we also conduct tSNE visualization analysis
of word alignment for other languages. The translations of 15 Eng-
lish words are obtained from Google Translate2. We observe that
most languages achieve good word alignment, with relatively small
2https://translate.google.com/

distances between synonyms. From the perspective of language
families, languages (e.g. German, French, etc.) that belong to the
same Indo-European language family as English can align better.
However, only a few word pairs are properly aligned in Swahili.
From Figure 5 and Figure 6, we can see that the training data for
the Swahili language is the least in both 𝐷𝑇 and 𝐷𝑀 . We infer that
the insufficient amount of training data has prevented the model
from learning fine-grained word alignment between Swahili and
English.
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