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ABSTRACT

Even though machine learning force fields are quite accurate in the prediction of
forces and energies in the sampled region, they fail to extrapolate, which results
in the unphysical behavior of the system during molecular dynamics simulations.
We propose to overcome this problem by performing data augmentation. To ex-
pand the original dataset random perturbations of atoms were performed. The
corresponding increase in the energy of the system was calculated under the as-
sumption of harmonicity. The required spring constants were obtained from the
original dataset by fitting a gaussian mixture model to the bond lengths distribu-
tion. The resulting force field performance was improved in the regions far from
training data.

1 INTRODUCTION

Molecular dynamics (MD) simulation is a powerful tool to study systems’ physical and chemical
properties involving millions of atoms. Force field prediction is an essential part of MD simulations.
There are different ways one can predict forces acting on each atom of the system that vary in their
computational complexity and the resulting accuracy.

Machine learning-based force-fields (ML-FFs) fill the gap between computationally efficient but less
accurate classical force fields and computationally expensive ab initio calculations, which resolve
quantum molecular effects. The inputs to ML-FFs are the atomic positions and types, with outputs
being the forces acting on each atom and the total energy of the system. The double and single
bonds, used in classical FFs, are only models of reality and do not capture quantum effects. ML-
FFs thus seek to efficiently model the enormous range of chemical possibilities arising from ab
initio calculations, obviating preconceived notions and knowledge of fixed bonds. Being a universal
function approximation, only training data limits ML-FFs (Unke et al., 2021).

Data augmentation has been employed successfully in a vast array of image classification problems,
summarized in (Shorten & Khoshgoftaar). In essence, training images can have a variety of manip-
ulations employed but retain the same label. More recent work has explored data augmentation in
natural language processing (Shorten et al.), where linguistic constraints can be applied to reduce the
overfitting effect. We seek to continue this paradigm by using physics-informed data augmentation
to enhance ML-FFs.

Even though ML-FFs are quite accurate in the prediction of forces and energies in the sampled
region, they fail to extrapolate (Fig. 1). This results in unphysical behavior of the system during MD
simulations. As we can see in Fig. 1 there appears an unphysical energy barrier for the SchNet model
followed by a constant region compared to ab initio reference that has a steady increase before going
to the constant region. Besides that, when the distance between two atoms goes to zero, the energy
should go to infinity. However, for the ML-FF, the energy can actually experience a decrease in
that region. We want to solve the preceding problems by explicitly incorporating into the model the
increase in energy while moving away from the sampled data. By preventing the energy decrease,
we hope to avoid going over the barrier and the atoms colliding with each other.
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Figure 1: One-dimensional cut through the potential energy surface of ethanol along the O–H bond distance
for different ML-FFs (solid blue, yellow, and orange lines) compared to ab initio reference data (dashed black
line). The typical training region is highlighted grayUnke et al. (2021).

2 METHODS

2.1 SCHNET MODEL

We employ the SchNet architecture (Schütt et al.) for ML-FFs, which encodes physical constraints
such as requiring smooth energy and force prediction as atom locations vary, and invariance in
atom indexing and translation. Specifically, the forces and energies are respectively equivariant and
invariant under rotations.

We developed a private fork of (Axelrod et al.), which is an implementation of SchNet in the Py-
Torch (Paszke et al., 2019) framework. Our fork includes streamlined routines for the generation
of augmented data, and we plan to incorporate our functionality at some point in the future. The
hyperparameters used for our network are provided in the appendix.

Our data came from a 500 kelvin simulation of an ethanol molecule using ab initio molecular dy-
namics, meaning that nuclei trajectories were integrated over time using force fields calculated by
solving for the electronic wavefunction and nuclei charges. The data is open and may be found in
the git repository (Axelrod et al.).

2.2 DATA AUGMENTATION

In order to incorporate the energy increase into the SchNet model, we augment the original data
set by including global statistical information into individual data points. The input data sets to
train SchNet-like models almost always come from ab initio molecular dynamics simulations (Unke
et al., 2021), and our technique relies on this fact. Without having the training data sampled from an
ab initio molecular dynamics calculation, our assumptions are incorrect, so attention must be paid
to the source of the training data.

Because the input training data to SchNet is a bonded molecule in equilibrium, the atoms tend to
cluster in energy troughs which are approximately governed by quadratic behavior for small vari-
ations from the equilibrium position. From thermodynamics we know that if the energy trough is
characterized as E(r) = E0 +

1
2k||r||

2, then the distribution of time-averaged atom locations fol-

lows a Gaussian distribution with probability density function proportional to exp
(
− k

2kBT ||r||
2
)

,

where k is known as a spring constant in kcal mol−1 Å−2, ||r|| is the change in distance between
the original equilibrium and new positions of the atoms in Å, kB is Boltzmann’s constant in kcal
mol−1 K−1, and T is the temperature in K. The spring constant in this equation will be the basis of
our data augmentation technique, as for each unique pair of atom types, we will be able to estimate
this spring constant by fitting the data (e.g. to a Gaussian) for which we can empirically estimate

2



Under review as a workshop paper at ICLR 2023

Figure 2: Pairwise distance correlations for the 500 kelvin ethanol molecule data set.

its parameters and thus find an estimate for k, since T is fixed. This simple model serves as our
conceptual basis.

However, in a larger system, atoms interact with multiple neighbors, so a simple model with few
parameters (e.g. a regular Gaussian) does not necessarily characterize the system. For these atoms
in larger molecules, a model with more parameters (e.g. a Gaussian mixture model) will be required
to accurately fit the data.

We introduce the methodology for which we estimate the values of k, which first begins by prepro-
cessing a set of data for which the spring constants can be estimated. To preprocess a data set, we
loop over each point and compute pairwise distances from each atom to all other types of atoms.
Careful attention must be paid to avoid double-counting. From there, a model for the pairwise dis-
tance correlation can be developed, where our spring constant will depend on not only the types of
atoms in each pair but also the distance between the atoms.

Our exploration of these data sets has revealed that Gaussian mixture models (GMMs) model multi-
body interactions very well. Indeed, Fig. 2 illustrates this: GMMs match the histograms on a data set
consisting of 1000 configurations of an ethanol molecule. The selection of the number of Gaussians
in each mixture is a hyperparameter for our data augmentation technique, which may be important
for modeling atom species with many different spring constants dependent on their distance.

We produced an augmented data set by including new data where the positions of the original atoms
are perturbed by a small random vector ||∆ri|| ∈ (0, ϵ] over n randomly chosen atoms in the ge-
ometry for 1 ≤ i ≤ n. The perturbation vector is different for each atom, noting that both ϵ and
n are hyperparameters of the model. However, since the original data set is large and duplicating
the entire data set is expensive, we randomly choose l geometries for which to do the augmentation.
Note that l is also a hyperparameter of the model.

The corresponding change in energy is then approximated by the spring constant belonging to the
nearest Gaussian in terms of interatomic spacing. This allows the global statistical behavior of the
molecule to be reflected in individual augmented data points. The change in the energy gradient due
to the spring constant is similarly evaluated as k∆ri.

3 RESULTS

3.1 SPRING CONSTANTS

Fig. 2 depicts the fit of the Gaussian mixture models to each of the pairwise distance correlations
shown as histograms. By our reasoning, the inverse variances are equal to k/(kBT )., where the data
was generated at 500 K, and kB = 1.987 · 10−3 kcal/mol. In order to determine which value of k to
use for a pair of atoms, we interpolate by selecting the nearest spring constant. This is representative
of the mean and variance of each component of the GMM, without weights.
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3.2 IMPROVEMENT OF POTENTIAL ENERGY SURFACE FAR FROM SAMPLING REGION

For this experiment, we used 200 geometries for augmentation in addition to 1000 from the original
data. From there, we vary the maximum displacement position of the perturbed atoms across the
values {0.01, 0.03, 0.05, 0.07, 0.09, 0.11, 0.2, 0.5}Å. After the model was fitted for each set of data
points, its physical behavior was confirmed via the energy conservation during molecular dynamics
runs in the NVE ensemble. To see if our model performance was improved we have calculated the
potential curve with respect to O-H distance (Fig. 3). We can see that the ab initio reference calcula-
tion follows a steep potential energy gradient far from the atoms’ equilibrium positions. The SchNet
model, when trained on raw data, fails to capture that behavior. The figure shows that at the cost
of slight biases in the equilibrium potential energy value, the potential energy prediction far from
the trough can be greatly improved. There is little correlation between the value of maximum dis-
placement and the introduced bias as well as the increase of potential energy far from equilibrium.
Therefore, the expected improvement of the potential curve is subject to hyperparameter optimiza-
tion. Overall, because of the increase in global accuracy, we expect our model will provide better
results when employed in molecular dynamics simulations leveraging force fields calculated by our
model.

Figure 3: Potential energy curves generated from augmented datasets for a few values of our aug-
mentation technique’s hyperparameters.

4 DISCUSSION

Our employed interpolation technique for the spring constants uses the analogy to a single Boltz-
mann distribution, so we employed the nearest interpolation scheme as a function of distance for
each type of atom pair. Future work could investigate linear interpolation schemes or other tech-
niques taking advantage of the structure of the Gaussian mixture model in that local spring constants
could be defined as an average weighted by each Gaussian. We suspect the latter approach would
provide better results due to faster transitions from one spring constant to another.

One weakness of our approach is that training data is assumed to always be at or near equilibrium.
As the temperature rises, the training data will include more points farther from equilibrium. In
this case, the energy is just as likely to decrease as it is to increase when moving from the original
point. Our approach, however, always assumes that an increase in potential energy is encountered.
Thus, the current approach can be improved by incorporating information on the energy gradient of
the augmented geometry. For instance, if the gradient aligns with the displacement, we decrement
energy and vice versa.
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Kristof T. Schütt, Farhad Arbabzadah, Stefan Chmiela, Klaus R. Müller, and Alexandre Tkatchenko.
Quantum-chemical insights from deep tensor neural networks. 8(1):13890. ISSN 2041-1723. doi:
10.1038/ncomms13890. URL https://www.nature.com/articles/ncomms13890.

Connor Shorten and Taghi M. Khoshgoftaar. A survey on Image Data Augmentation for Deep
Learning. 6(1):60. ISSN 2196-1115. doi: 10.1186/s40537-019-0197-0. URL https://doi.
org/10.1186/s40537-019-0197-0.

Connor Shorten, Taghi M. Khoshgoftaar, and Borko Furht. Text Data Augmentation for Deep
Learning. 8(1):101. ISSN 2196-1115. doi: 10.1186/s40537-021-00492-0. URL https:
//doi.org/10.1186/s40537-021-00492-0.

Oliver T. Unke, Stefan Chmiela, Huziel E. Sauceda, Michael Gastegger, Igor Poltavsky, Kristof T.
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A APPENDIX

Table 1: Hyperparameters for SchNet model trained on 500K ethanol dataset.
Parameter Value

n atom basis 256
n filters 256

n gaussians 32
cutoff 5.0

trainable gauss true
dropout rate 0.2

Table 2: Calculated GMM spring constants for 500 K ethanol data set.

Atom Pair Distance (Å) k (kcal mol−1 Å−2)

H-H 1.79 129
2.48 27.7
3.00 25.0
3.69 14.0

H-C 1.11 533
2.16 64.5
2.91 14.2

H-O 0.97 737
2.08 125
2.76 85.6
3.38 23.5

C-C 1.54 388

C-O 1.45 455
2.47 122
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