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Abstract

In many sequential decision-making problems (e.g., robotics control, game play-
ing, sequential prediction), human or expert data is available containing useful
information about the task. However, imitation learning (IL) from a small amount
of expert data can be challenging in high-dimensional environments with com-
plex dynamics. Behavioral cloning is a simple method that is widely used due to
its simplicity of implementation and stable convergence but doesn’t utilize any
information involving the environment’s dynamics. Many existing methods that
exploit dynamics information are difficult to train in practice due to an adversarial
optimization process over reward and policy approximators or biased, high variance
gradient estimators. We introduce a method for dynamics-aware IL which avoids
adversarial training by learning a single Q-function, implicitly representing both
reward and policy. On standard benchmarks, the implicitly learned rewards show a
high positive correlation with the ground-truth rewards, illustrating our method can
also be used for inverse reinforcement learning (IRL). Our method, Inverse soft-Q
learning (IQ-Learn) obtains state-of-the-art results in offline and online imitation
learning settings, significantly outperforming existing methods both in the number
of required environment interactions and scalability in high-dimensional spaces,
often by more than 3x.

1 Introduction

Imitation of an expert has long been recognized as a powerful approach for sequential decision-
making [29, 1], with applications as diverse as healthcare [39], autonomous driving [41], and playing
complex strategic games [8]. In the imitation learning (IL) setting, we are given a set of expert
trajectories, with the goal of learning a policy which induces behavior similar to the expert’s. The
learner has no access to the reward, and no explicit knowledge of the dynamics.

The simple behavioural cloning [34] approach simply maximizes the probability of the expert’s
actions under the learned policy, approaching the IL problem as a supervised learning problem.
While this can work well in simple environments and with large quantities of data, it ignores the
sequential nature of the decision-making problem, and small errors can quickly compound when the
learned policy departs from the states observed under the expert. A natural way of introducing the
environment dynamics is by framing the IL problem as an Inverse RL (IRL) problem, aiming to learn
a reward function under which the expert’s trajectory is optimal, and from which the learned imitation
policy can be trained [1]. This framing has inspired several approaches which use rewards either
explicitly or implicitly to incorporate dynamics while learning an imitation policy [17, 10, 33, 22].
However, these dynamics-aware methods are typically hard to put into practice due to unstable
learning which can be sensitive to hyperparameter choice or minor implementation details [21].

In this work, we introduce a dynamics-aware imitation learning method which has stable, non-
adversarial training, allowing us to achieve state-of-the-art performance on imitation learning bench-
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Table 1: A comparison of various algorithms for imitation learning. “Convergence Guarantees”
refers to if a proof is given that the algorithm converges to the correct policy with sufficient data.
We consider an algorithm “directly optimized” if it consists of an optimization algorithm (such as
gradient descent) applied to the parameters of a single function
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marks. Our key insight is that much of the difficulty with previous IL methods arises from the
IRL-motivated representation of the IL problem as a min-max problem over reward and policy [17, 1].

This introduces a requirement to separately model the reward and policy, and train these two functions
jointly, often in an adversarial fashion. Drawing on connections between RL and energy-based
models [13, 14], we propose learning a single model for the QQ-value. The (Q-value then implicitly
defines both a reward and policy function. This turns a difficult min-max problem over policy and
reward functions into a simpler minimization problem over a single function, the )-value. Since our
problem has a one-to-one correspondence with the min-max problem studied in adversarial IL [17],
we maintain the generality and guarantees of these previous approaches, resulting in a meaningful
reward that may be used for inverse reinforcement learning. Furthermore, our method may be used to
minimize a variety of statistical divergences between the expert and learned policy. We show that we
recover several previously-described approaches as special cases of particular divergences, such as
the regularized behavioural cloning of [30], and the conservative Q-learning of [23].

In our experiments, we find that our method is performant even with very sparse data - surpassing
prior methods using one expert demonstration in the completely offline setting - and can scale to
complex image-based tasks like Atari reaching expert performance. Moreover, our learnt rewards are
highly predictive of the original environment rewards.

Concretely, our contributions are as follows:
* We present a modified Q)-learning update rule for imitation learning that can be implemented
on top of soft-Q learning or soft actor-critic (SAC) algorithms in fewer than 15 lines of code.

* We introduce a simple framework to minimize a wide range of statistical distances: Integral
Probability Metrics (IPMs) and f-divergences, between the expert and learned distributions.

* We empirically show state-of-art results in a variety of imitation learning settings: online
and offline IL. On the complex Atari suite, we outperform prior methods by 3-7x while
requiring 3x less environment steps.

* We characterize our learnt rewards and show a high positive correlation with the ground-truth
rewards, justifying the use of our method for Inverse Reinforcement Learning.

2 Background

Preliminaries We consider environments represented as a Markov decision process (MDP), which
is defined by a tuple (S, A, pg, P,7,7). S, A represent state and action spaces, py and P(s|s, a)
represent the initial state distribution and the dynamics, (s, a) represents the reward function, and



v € (0,1) represents the discount factor. RS*4 = {z : & x A — R} will denote the set of all
functions in the state-action space and R will denote the extended real numbers R U {co}. Section
3 and 4 will work with finite state and action spaces S and A, but our algorithms and experiments
later in the paper use continuous environments. II is the set of all stationary stochastic policies that
take actions in A given states in S. We work in the y-discounted infinite horizon setting, and we
will use an expectation with respect to a policy = € II to denote an expectation with respect to
the trajectory it generates: E.[r(s,a)] £ E[Y ;o v'r(st, at)], where so ~ po, a; ~ m(-|s¢), and
st41 ~ P(:|st, ar) for t > 0. For a policy 7 € II, we define its occupancy measure p, : S x A — R
as pr(s,a) = m(als) >, ' P (s = s|r). We refer to the expert policy as g and its occupancy
measure as pg. In practice, mg is unknown and we have access to a sampled dataset of demonstrations.
For brevity, we refer to p, as p for a learnt policy in the paper.

Soft (Q-functions For a reward r € RS*4 and m ¢ I, the soft Bellman operator B”
RSXA — RS*A defined as (B"Q)(s,a) = 7(s,a) + YEyup(s,a)V™(s') with V7(s) =
Eqr(.|s) [Q(s,a) —log m(a|s)]. The soft Bellman operator is contractive [ 3] and defines a unique
soft Q-function for r, given as Q = B™ Q.

Max Entropy Reinforcement Learning For a given reward function » € RS*A, maximum

entropy RL [14, 5] aims to learn a policy that maximizes the expected cumulative discounted reward
along with the entropy in each state: max, g Ex[r(s, a)] + H (7). Where H (1) £ E,[—log 7 (a|s)]
is the discounted causal entropy of the policy 7. The optimal policy satisfies [42, 5]:
. 1
7 (als) = 7 exp (Q(s,a)), (1

where () is the soft Q-function and Z; is the normalization factor given as ) , exp (Q (s, a’)).

@ satisfies the soft-Bellman equation:
Q(s,a) =7(s,a) + VEyp(|s,a) [1og Z exp(Q(s’, a'))} (2)

In continuous action spaces, Z5 becomes intractable and soft actor-critic methods like SAC [13] can
be used to learn an explicit policy.

Max Entropy Inverse Reinforcement Learning Given demonstrations sampled using the
policy mg, maximum entropy Inverse RL aims to recover the reward function in a fam-
ily of functions R that rationalizes the expert behavior by solving the optimization problem:
max,ecr Milgemn Eqy[r(s,a)] — (Ex[r(s,a)] + H(w)), where the expected reward of g is em-
pirically approximated. It looks for a reward function that assigns high reward to the expert policy
and a low reward to other policies, while searching for the best policy for the reward function in an
inner loop.

The Inverse RL objective can be reformulated in terms of its occupancy measure, and with a convex
reward regularizer ¢ : RS*A — R [17]

mascmin L(r, ) = By, [r(s,0)] — E,r(s, 0)] — H(x) — 6(r) ®)

In general, we can exchange the max-min resulting in an objective that minimizes the statistical
distance parameterized by v, between the expert and the policy [17]

i L = mind - H 4
minmax L(m, 7) = mindy (p, pp) — H(m), 4)

with dy, £ 9*(pg — p), where 1* is the convex conjugate of 1.

3 Inverse soft Q-learning (IQ-Learn) Framework

A naive solution to the IRL problem in (Eq. 3) involves (1) an outer loop learning rewards and (2)
executing RL in an inner loop to find an optimal policy for them. However, we know that this optimal
policy can be obtained analytically in terms of soft Q-functions (Eq. 1). Interestingly, as we will show



later, the rewards can also be represented in terms of () (Eq. 2). Together, these observations suggest
it might be possible to directly solve the IRL problem by optimizing only over the ()-function.

To motivate the search of an imitation learning algorithm that depends only on the -function, we
characterize the space of ()-functions and policies obtained using Inverse RL. We will study 7 € II,
r € R and Q-functions Q € Q where R = Q = RS*4, We assume II is convex, compact and that
7 € II'. We define V™ (s) = Equn(|s) [Q(s,a) — log m(als)].

We start with analysis developed in [17]: The regularized IRL objective L(r, ) given by Eq. 3, is
concave in the policy and convex in rewards. And has a unique saddle point where it is optimized.

To characterize the Q-functions it is useful to transform the optimization problem over rewards to a
problem over -functions. We can get a one-to-one correspondence between r and ):

Define the inverse soft bellman operator 7™ : RS*A — RS*4 such that
(TﬂQ)(& a) = Q(Sv CL) - VES’NP(S,Q)VW(S,)a

Lemma 3.1. The inverse soft bellman operator T™ is bijective, and for any r, (T™)~'r is the unique
contraction of BT.

The proof of this lemma is in Appendix A.l. For a policy 7, we are thus justified in changing
between rewards and their corresponding soft-Q functions. We can freely transform functions from
the reward-policy space: IT x R to the QQ-policy space: II x €2, giving us the lemma:

Lemma 3.2. If L(m,r) =K, [r(s,a)] —E,[r(s,a)] — H(m) — ¢ (r) and

J(m Q) =E, [(TTQ)(s,a)] = E,[(T7Q)(s,a)] — H(w) — (T7Q), then for all policies 7 € TI,
L(m,r) = J(m,(T™) ) forallr € R, and J (7,Q) = L(m, T™Q), for all Q € Q.

Lemma 3.1 and 3.2 allow us to adapt the Inverse RL objective L(7, ) to learning ) through 7 (7, Q).

Simplifying our new objective (using Lemma A.3 in Appendix):

j(ﬂv Q) = ]ES,GNﬂE [Q - VES’NP('\S,IL)VTF(S/)] - (1 - 7)E50~p0 [VF(SO)] - d)(TFQ)v &)

We are now ready to study J (7, @), the Inverse RL optimization problem in the Q-policy space. As
the regularizer 1/ depends on both ) and 7, a general analysis over all functions in RS f becomes
too difficult. We restrict ourselves to regularizers induced by a convex function g : R — R such that

Ug(r) = Epply(r(s; a))] (6)
This allows us to simplify our analysis to the set of all real functions while retaining generality’. We
further motivate this choice in Section 4.

Proposition 3.3. In the Q-policy space, there exists a unique saddle point (7*, Q™) that optimizes J .
ie QF = argmaxgeqmingen J(m, Q) and 7* = argmin, . maxqgeq J (7, Q). Furthermore,

7 and r* = T™ Q* are the solution to the Inverse RL objective L(w, ).
Thus we have, maxgeco mingen J (7, Q) = max,er Mingen L(m, 7).

This tells us, even after transforming to ()-functions we have retained the saddle point property of the
original IRL objective and optimizing J (7, ()) recovers this saddle point. In the Q-policy space, we
can get an additional property:

Proposition 3.4. For a fixed @), argmin, .y J(m, Q) is the solution to max entropy RL with rewards
r = T7™Q. Thus, this forms a manifold in the Q-policy space, that satisfies

rlals) = - exp(Q(s, ),

S

with normalization factor Zs = exp Q(s, a) and ¢ defined as the T corresponding to Q.

Proposition 3.3 and 3.4 are telling us that if we know @, then the inner optimization problem in
terms of policy is trivial, and obtained in a closed form! Thus, we can recover an objective that only
requires learning Q:

maxmin J (7, Q) = max J (mq,Q) (7

Qe well
Furthermore, we have:

!The full policy class satisfies all these assumptions
2 Averaging over the expert occupancy allows 1 to adjust to arbitrary experts and accommodate multimodality



Proposition 3.5. Let 7*(Q) = J (g, Q). Then J* is concave in Q.

Thus, this new optimization objective is well-behaved and is maximized only at the saddle point.

In Appendix C, we expand

on our analysis and charac- N - *)(,Saddle point w‘ Saddle point
. . . % ™, T >

terize the.behav1or for ’d1f- g g Policy miima

ferent choices of regularizer S 8 Manifold
S . ~ 1

1, while giving proofs of all e é P 7= - exp(Q)

our propositions. Figure 1 5 3 S :

summarizes the properties 2 ©

for the IRL ObjeCtiVe: there L(-,7) Convex J (-, Q) Quasi-convex

exists a optimal policy man-

ifold depending on @, al- policy policy

lowing optimization along Figure 1: Properties of IRL objective in reward-policy space and Q-policy
it (using J*) to converge to  Space.

the saddle point. We further present analysis of IL. methods that learn Q-functions like SQIL [33]
and ValueDICE [22] and find subtle fallacies affecting their learning.

Note that although the same analysis holds in the reward-policy space, the optimal policy manifold
depends on (), which isn’t trivially known unlike when in the Q-policy space.

4 Approach

In this section, we develop our inverse soft-Q learning (IQ-Learn) algorithm, such that it recovers the
optimal soft (Q-function for a MDP from a given expert distribution. We start by learning energy-based
models for the policy similar to soft ()-learning and later learn an explicit policy similar to actor-critic
methods.

4.1 General Inverse RL Objective

For designing a practical algorithm using regularizers of the form v, (from Eq. 6), we define g using

. ) _Jz—0o(x) ifzxeRy
a concave function ¢ : Ry, — R, such that g(x) = { 1 oo otherwise
with the rewards constrained in I2,;.

For this choice of 1), the Inverse RL objective L(, ) takes the form of Eq. 4 with a distance measure:
dy(p, pE) = maxBop [¢(r(s,a))] = Eo[r(s, )], (®)

This forms a general learning objective that allows the use of a wide-range of statistical distances
including Integral Probability Metrics (IPMs) and f-divergences (see Appendix B). 3

4.2 Choice of Statistical Distances

While choosing a practical regularizer, it can be useful to obtain certain properties on the reward
functions we recover. Some (natural) nice properties are: having rewards bounded in a range, learning
smooth functions or enforcing a norm-penalty.

In fact, we find these properties correspond to the Total Variation distance, the Wasserstein-1 dis-
tance and the y2-divergence respectively. The regularizers and the induced statistical distances are
summarized in Table 2:

Table 2: Enforced reward property, corresponding regularizer ¢ and statistical distance (Rmax, K, € RT)

Reward Property P dy

Bound range 1 = 01if |r| < Rmax and 400 otherwise | 2Rmax - TV (p, pr)
Smoothness 1 = 0if ||7||luip < K and +oo otherwise K -Wi(p,pE)
L2 Penalization P(r) = ar? = x*(p,pE)

*We recover IPMs when using identity ¢ and restricted reward family R



We find that these choice of regularizers* work very well in our experiments. In Appendix B, we
further give a table for the well known f-divergences, the corresponding ¢ and the learnt reward
estimators, along with a result ablation on using different divergences. Compared to x2, we find other
f-divergences like Jensen-Shannon result in similar performances but are not as readily interpretable.

4.3 Inverse soft-Q update (Discrete control)

Optimization along the optimal policy manifold gives the concave objective (Prop 3.5):

max T(Q) =By [0(Q(s,a) = YEy wp(s,a) V()] = (1 = ) Epy [V*(50)]; ©)

with V*(s) = log >, exp Q(s, a).

For each (), we get a corresponding reward (s, a) = Q(s, a) =YEg p(.|s,a)[log >, exp Q (s',a’)].
This correspondence is unique (Lemma A.l in Appendix), and every update step can be seen as
finding a better reward for IRL.

Note that estimating V*(s) exactly is only possible in discrete action spaces. Our objective forms a
variant of soft-Q learning: to learn the optimal ()-function given an expert distribution.

4.4 Inverse soft actor-critic update (Continuous control)

In continuous action spaces, it might not be possible to exactly obtain the optimal policy ¢, which
forms an energy-based model of the ()-function, and we use an explicit policy 7 to approximate 7.

For any policy 7, we have a objective (from Eq. 5):
T (1, Q) =Epp[$(Q — VEap(fs,a) V()] = (1 = 7)Ep [V (50)] (10)
For a fixed @, soft actor-critic (SAC) update: minE;p qr(.|5)[Q(s,a) — log 7(a|s)], brings 7

closer to mg while always minimizing Eq. 10 (Lemma A.4 in Appendix). Here D is the distribution
of previously sampled states, or a replay buffer.

Thus, we obtain the modified actor-critic update rule to learn (Q-functions from the expert distribution:

1. For a fixed 7, optimize () by maximizing J (7, Q).
2. For afixed @, apply SAC update to optimize 7 towards 7.

This differs from ValueDICE [22], where the actor is updated adverserially and the objective may not
always converge (Appendix C).

5 Practical Algorithm

Pseudocode in Algorithm 1, shows our J-learning and actor-critic variants, with differences with
conventional RL algorithms in red (we optimize -7 to use gradient descent). We can implement our
algorithm IQ-Learn in 15 lines of code on top of standard implementations of (soft) DQN [14] for
discrete control or soft actor-critic (SAC) [13] for continuous control, with a change on the objective
for the -function. Default hyperparameters from [14, 13] work well, except for tuning the entropy
regularization. Target networks were helpful for continuous control. We elaborate details in Appendix
D.

5.1 Training methodology

Corollary 2.1 in Appendix A states E(s o) [V7(5) = VEgnp(5,a) V()] = (1 =) Egnp, [V (5)],
where 4 is any policy’s occupancy. We use this to stabilize training instead of using Eq. 9 directly.

Online: Instead of directly estimating E,, [V™ (s¢)] in our algorithm, we can sample (s, a, s") from
a replay buffer and get a single-sample estimate E(, , o)replay[V ™ (5) — 7V ™ (s")]. This removes
the issue where we are only optimizing () in the inital states resulting in overfitting of V™ (sg), and
improves the stability for convergence in our experiments. We find sampling half from the policy
buffer and half from the expert distribution gives the best performances. Note that this is makes our
learning online, requiring environment interactions.

“The additional scalar terms scale the entropy regularization strength and can be ignored in practice



Algorithm 1 Inverse soft Q-Learning (both variants)

1: Initialize Q-function (Qy, and optionally a policy ¢
Offline: Although E, [V™(sg)] 2: forstep¢in {1..N} do

can be estimated offline we still  3: Train Q-function using objective from Equation 9:
observe an overfitting issue. In- Orr1  0r — agVo[-T(0)] N
stead of requiring policy samples (Use V* for Q-learning and V™¢ for actor-critic)

4: (only with actor-critic) Improve policy 74 with SAC style
actor update:
¢t+1 <~ ¢t - awv¢Es~D,a~ﬂ¢(<\s) [Q(87 CL) - IOg 7r¢,(a|s)]

we use only expert samples to
estimate E(, 4 o)mexpert [V (5) —
yV7(s')] to sufficiently approxi- s

- : end for
mate the term. This methodology
gives us state-of-art results for of- _ _
fine 1L. Algorithm 2 Recover policy and reward
1: Given trained Q-function (Qy, and optionally a trained policy 74
5.2 Recovering rewards 2: Recover policy L
(Q-learning) 7 := Zexp Qo
Instead of the conventional reward (actor-critic) 7 := 7

3: For state s, action a and s’ ~ P(-|s, a)

function 7 (s, a) on state and action
(5,0) 4: Recover reward (s, a,s’) = Qo(s,a) — V7 (s')

pairs, our algorithm allows recov-
ering rewards for each transition
(s,a, s") using the learnt Q)-values
as follows:

r(s,a,5") = Q(s,a) =V (s') (11)

Now, By op(.|s,a) [Q(5,a) =YV (s')] = Q(s,a) = YEgp()s,a) [V (8')] = TTQ(s,a). This is
just the reward function r(s,a) we want. So by marginalizing over next-states, our expression
correctly recovers the reward over state-actions. Thus, Eq. 11 gives the reward over transitions.

Our rewards require s’ which can be sampled from the environment, or by using a dynamics model.

5.3 Implementation of Statistical Distances

Implementing TV and W; distances is fairly trivial and we give details in Appendix B. For the
x2-divergence, we note that it corresponds to ¢(z) = x — iwz. On substituting in Eq. 9, we get

glg‘é( EPE [(Q(S7 a) - FVES’N'P(<\S,G)V*(5,))] - (1 - ’Y)EPO [V*(SO)] - iEpE [(Q(S a’) - WES’NP('ls,a)V* (5/))2]

In a fully offline setting, this can be further simplified as (using the offline methodology in Sec 5.1):

1

min — By, [(Q(s.a) = V' (5)] + o [(Q5.0) = Eumpiina V()Y (12)

This is interestingly the same as the ()-learning objective in CQL [23], an state-of-art method for

offline RL (using 0 rewards), and shares similarities with regularized behavior cloning [33] °.

5.4 Learning state-only reward functions

Previous works like AIRL [10] propose learning rewards that are only function of the state, and claim
that these form of reward functions generalize between different MDPs. We find our method can
predict state-only rewards by using the policy and expert state-marginals with a modification to Eq. 9:

rQneaS)'l( j*(Q> = ]ESNPE(S) [EaNW(-\S) [¢(Q(Sa a) - ’YESWP(-IS,a)V*(S/))H - (1 - ’Y)E:Do [V*(SO)}

Interestingly, our objective no longer depends on the the expert actions 7 and can be used for IL
using only observations. For the sake of brevity, we expand on this in Section 1 in Appendix A.

6 Related Work

Classical IL: Imitation learning has a long history, with early works using supervised learning to
match a policy’s actions to those of the expert [15, 35]. A significant advance was made with the
formulation of IL as the composition of RL and IRL [29, I, 43], recovering the expert’s policy

The simplification to get Eq. (12) is not applicable in the online IL setting where our method differs



by inferring the expert’s reward function, then finding the policy which maximizes reward under
this reward function. These early approaches required a hand-designed featurization of the MDP,
limiting their applicability to complex MDPs. In this setting, early approaches [9, 31] noted a formal
equivalence between IRL and IL using an inverse Bellman operator similar to our own.

Online IL: More recent work aims to leverage the power of modern machine learning approaches to
learn good featurizations and extend IL to complex settings. Recent work generally falls into one
of two settings: online or offline. In the online setting, the IL algorithm is able to interact with the
environment to obtain dynamics information. GAIL [17] takes the nested RL/IRL formulation of
earlier work , optimizing over all reward functions with a convex regularizer. This results in the
objective in Eq. (3), with a max-min adversarial problem similar to a GAN [ 1]. A variety of further
work has built on this adversarial approach [21, 10, 3]. A separate line of work aims to simplify the
problem in Eq. (3) by using a fixed r or 7. In SQIL [33], r is chosen to be the 1-0 indicator on the
expert demonstrations, while ASAF [4] takes the GAN approach and uses a discriminator (with role
similar to 7) of fixed form, consisting of a ratio of expert and learner densities. AdRIL [38] is a recent
extension of SQIL, additionally assigning decaying negative reward to previous policy rollouts.

Offline IL: In the offline setting, the learner has no access to the environment. The simple behavioural
cloning (BC) [34] approach is offline, but doesn’t use any dynamics information. ValueDICE [22]
is a dynamics-aware offline approach with an objective somewhat similar to ours, motivated from
minimization of a variational representation of the KL-divergence between expert and learner policies.
ValueDICE requires adversarial optimization to learn the policy and Q-functions, with a biased
gradient estimator for training. We show a way to recover a unbiased gradient estimate for the
KL-divergence in Appendix C. The O-NAIL algorithm [2] builds on ValueDICE and combines with
an SAC update to obtain a method that is similar to our algorithm described in section 4.4, with the
specific choice of reverse KL-divergence as the relevant statistical distance. The EDM method [19]
incorporates dynamics via learning an explicit energy based model for the expert state occupancy,
although some theoretical details have been called into question (see [37] for details). The recent
AVRIL approach [6] uses a variational method to solve a probabilistic formulation of IL, finding a
posterior distribution over r and 7. Illustrating the potential benefits of alternative distances for IL, the
PWIL [7] algorithm gives a non-adversarial procedure to minimize the Wasserstein distance between
expert and learned occupancies. The approach is specific to the primal form of the VW, -distance,
while our method (when used with the Wasserstein distance) targets the dual form.

7 Experiments

7.1 Experimental Setup

We compare 1Q-Learn ("IQ") to prior work on a diverse collection of RL tasks and environments -
ranging from low-dimensional control tasks: CartPole, Acrobot, LunarLander - to more challenging
continuous control MuJoCo tasks: HalfCheetah, Hopper, Walker and Ant. Furthermore, we test on
the visually challenging Atari Suite with high-dimensional image inputs. We compare on offline IL -
with no access to the the environment while training, and online IL - with environment access. We
show results on W7 and X2 as our statistical distances, as we found them more effective than TV
distance. In all cases, we train until convergence and average over multiple seeds. Hyperparameter
settings and training details are detailed in Appendix D.

7.2 Benchmarks

Offline I We compare to the state-of-art IL. methods EDM and AVRIL, following the same
experimental setting as [6]. Furthermore, we compare with ValueDICE which also learns Q-functions,
albeit with drawbacks such as adversarial optimization. We also experimented with SQIL, but found
that it was not competitive in the offline setting. Finally, we utilize BC as an additional IL baseline.

Online I  We use MuJoCo and Atari environments and compare against state-of-art online IL
methods: ValueDICE, SQIL and GAIL. We only show results on x? as W; was harder to stabilize
on complex environments®. Using target updates stabilizes the Q-learning on MuJoCo. For brevity,
further online IL results are shown in the Appendix D.

82 and W, can be used together to still have a convex regularization and is more stable



7.3 Results
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Figure 2: Offline IL results. We plot the average environment returns vs the number of expert trajectories.

Offline IL.  We present results on the three offline control tasks in Figure 2. On all tasks, 1Q strongly
outperforms prior works we compare to in performance and sample efficiency. Using just one expert
trajectory, we achieve expert performance on Acrobot and reach near expert on Cartpole.

Mujoco Control We present our re-
sults on the MuJoCo tasks using a Table 3: Mujoco Results. We show our performance on MuJoCo
single expert demo in Table 3. IQ control tasks using a single expert trajectory.

achieves expert-level performance in ~ Task GAIL | DAC | ValueDICE | IQ (Ours) || Expert
all the tasks while outperforming prior ~ Hopper 3252.5(3305.1| 3312.1 3546.4 || 3532.7
methods like ValueDICE and GAIL.  Half-Cheetah | 3080.0 [4080.6 | 3835.6 | 5076.6 || 5098.3
We did not find SQIL competitive in ~ Walker 4013.7[4107.9| 38426 | 51340 | 5274.5

: . P : Ant 2299.1 | 1437.5 1806.3 4362.9 |/ 4700.0
this setting, and skip it for brevity. Humanoid | 232.6 | 380.5 | 6445 | 5227.1 ||5312.8

Atari We present our results on

Atari using 20 expert demos in Figure 3. We reach expert performance on Space Invaders while
being near expert on Pong and Breakout. Compared to prior methods like SQIL, IQ obtains 3-7x
normalized score’ and converges in ~300k steps, being 3x faster compared to Q-learning based RL
methods that take more than 1M steps to converge. Other popular methods like GAIL and ValueDICE
perform near random even with 1M env steps.
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Figure 3: Atari Results. We show the returns vs the number of env steps. (Averaged over 5 seeds)

7.4 Recovered Rewards

IQ has the added benefit of recovering rewards and can be used for IRL. On Hopper task, our learned
rewards have a Pearson correlation of 0.99 with the true rewards. In Figure 4, we visualize our
recovered rewards in a simple grid environment. We elaborate details in Appendix D.

8 Discussion and Outlook

We present a new principled framework for learning soft-() functions for IL and recovering the optimal
policy and the reward, building on past works in IRL [43]. Our algorithm IQ-Learn outperforms prior
methods with very sparse expert data and scales to complex image-based environments. We also
recover rewards highly correlated with actual rewards. It has applications in autonomous driving and
complex decision-making, but proper considerations need to be taken into account to ensure safety

"normalizing rewards obtained from random behavior to 0 and expert to 1
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Figure 4: Reward Visualization. We use a discrete GridWorld environment with 5 possible actions: up, down,
left, right, stay. Agent starts in a random state. (With 30 expert demos)

and reduce uncertainty, before any deployment. Finally, human or expert data can have errors that
can propagate. A limitation of our method is that our recovered rewards depend on the environment
dynamics, preventing trivial use on reward transfer settings. One direction of future work could be to
learn a reward model from the trained soft-() model to make the rewards explicit.
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