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ABSTRACT

Spike cameras offer unique sensing capabilities but their sparse, asynchronous
output challenges semantic understanding, especially for Spike Video-Language
Alignment (Spike-VLA) where models like CLIP underperform due to modality
mismatch. We introduce SPKLIP, the first architecture specifically for Spike-VLA.
SPKLIP employs a hierarchical spike feature extractor that adaptively models
multi-scale temporal dynamics in event streams, and uses spike-text contrastive
learning to directly align spike video with language, enabling effective few-shot
learning. A full-spiking visual encoder variant, integrating SNN components into
our pipeline, demonstrates enhanced energy efficiency. Experiments show state-of-
the-art performance on benchmark spike datasets and strong few-shot generalization
on a newly contributed real-world dataset. SPKLIP’s energy efficiency highlights
its potential for neuromorphic deployment, advancing event-based multimodal
research. The source code and dataset are available at [link removed for anonymity].

1 INTRODUCTION

Inspired by retina, spike cameras (Huang et al.l |2023)) represent a paradigm shift for high-speed
motion perception, capable of operating at effective frame rates up to 40,000 Hz with an exceptional
dynamic range around 180 dB. This unique combination makes them ideal for capturing complex,
rapid dynamics often missed by conventional cameras. However, translating this raw sensing potential
into high-level semantic understanding remains a significant hurdle. Current approaches often resort
to converting the native, sparse spike event streams into static, image-like representations (Zhao
et al.| |2021b; [Fan et al., 2024a; Zhang et al., 2024bj |Chen et al.| |2025; [Wang et al.| 2021} Liang
et al., 2023} [Ercan et al.} |2023; [Rudnev et al., 2023). This simplification, while sometimes useful
for basic recognition, inadvertently discards the rich, continuous spatiotemporal information crucial
for interpreting fast-evolving actions and events — essential data for real-time applications like
autonomous navigation, robotic interaction, or high-speed quality control (Nahavandi et al., [2022;
Robinson et al., [2023)).

Furthermore, the remarkable progress achieved by vision-language models like CLIP (Radford
et al.l |2021b) in grounding semantics for standard RGB videos (Ma et al., 2022} |Wasim et al.,
2023; [Wang et al.,|2024c; [Luo et al.,[2022; Wang et al., [2024b; [Tang et al.,[2021) does not readily
transfer to the spike domain. These powerful models suffer severe performance degradation when
applied directly due to the fundamental mismatch between their dense, synchronous frame processing
assumptions and the asynchronous, event-driven nature of spike data. This incompatibility prevents
the direct leveraging of state-of-the-art (SOTA) semantic alignment techniques for advanced spike-
based perception, leaving a critical gap in our ability to interpret these information-rich data streams
linguistically. Bridging this gap necessitates overcoming challenges unique to spike video analysis:
specialized feature extraction for sparse, asynchronous data (Zhao et al., [2023} Xia et al., 2023;
Gallego et al., [2020; Messikommer et al., |2025; [Dong et al., [2024; Feng et al., [2024; Zhang et al.,
2024a; [Su et al., 2024; Zhao et al.} [2024} |Zhu et al., 2024), data scarcity for labeled spike videos
(Farchy et al.; 2013 |Lund & Miglino, [1996; Koos et al., 2010; (Carpin et al., 2007; [Koopman et al.|
2024), and the need for algorithmic efficiency in power-constrained scenarios (Menghanil 2023} (Tay:
et al., [2022).

To address these multifaceted challenges and unlock the potential of spike cameras for high-level
scene understanding, we introduce SPKLIP (Spike-based Cross-modal Learning with CLIP). To
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our knowledge, SPKLIP is the first neural network architecture specifically designed for Spike
Video-Language Alignment (Spike-VLA). SPKLIP aims to achieve robust semantic interpretation
of high-speed dynamic scenes directly from spike event streams through multimodal contrastive
learning, explicitly tackling the limitations of prior work. Alongside algorithmic innovations, we
contribute a new real-world spike video dataset to foster research under realistic conditions.

Our core contributions are:

* A Novel Spike-VLA Architecture: We introduce SPKLIP, the first end-to-end framework
for Spike Video-Language Alignment. It features a hierarchical spike feature extractor
(HSFE) specifically designed for sparse, high-frequency spike data streams—unlike conven-
tional extractors—and employs Spike-Text Contrastive Learning (STCL) to directly align
raw spike video with text, bypassing intermediate frame conversion.

* Energy-Performance Trade-off Analysis and Real-World Validation: We develop a
Full-Spiking Visual Encoder (FSVE) as an exploratory study integrating SNN principles,
providing the first analysis of the complex trade-offs between energy efficiency and perfor-
mance for the Spike-VLA task. Furthermore, SPKLIP’s effectiveness and generalization,
including few-shot learning, are validated on a newly contributed real-world spike video
dataset, which we also release to the community.

 Establishing a Strong Baseline: Through comprehensive experiments, SPKLIP is shown
to significantly outperform adapted conventional vision-language models on spike-VLA.

2 RELATED WORK

Video action recognition has evolved significantly. Early approaches often relied on handcrafted
spatiotemporal features, such as HOG and MBH (Dalal & Triggs, [2005} |Laptev et al., 2008; |Wang &
Schmid, 2013} [Zhu et al., |2016bza), combined with classifiers like SVMs (Cortes & Vapnik, |1995;
Scholkopf et al.,[1998])). Subsequently, deep learning frameworks, including 3D CNNs (Tran et al.,
2015; Noor & Parkl |[2023} [Wang et al., 2024a)), SlowFast networks (Feichtenhofer et al.,|2019; Dai
et al.l 2023} [Bae et al., [2024), and Temporal Shift Modules (TSM) (Lin et al., [2019), achieved
substantial performance gains by effectively modeling temporal correlations within sequences of
dense frames. However, the computational demands and reliance on dense video data associated with
these methods have motivated exploration into alternative sensing modalities. Event cameras and
spike cameras have emerged as promising alternatives, offering benefits like low power consumption,
high dynamic range, and high temporal resolution sensing. Research in this area has explored various
ways to utilize these sensors. For instance, some works focus on fusing data from conventional
cameras with event streams using Transformers and Spiking Neural Networks (SNNs) (Wang et al.,
2023} |[Fan et al.,2024b; Hwang et al.,[2024} Zhou et al.|[2024b} Ren et al.,[2023};|Yao et al., 2023}, |Gao
et al.,|2025)). Others have integrated event features with semantic priors via multimodal Transformers
(Li et al.L 2023} Zhou et al.,|2024a; |[Kong et al., 2024 L1 et al.| 2025). Processing spike data effectively
involves addressing its unique characteristics, such as signal sparsity and noise patterns. Aligning
these unique event streams directly with textual semantics presents an interesting avenue for further
research. Recent advancements have also focused on enhancing action recognition by integrating
textual information with visual data. Techniques include using large language models (LLMs) to
enrich action semantics from spatiotemporal descriptors (Chen et al.,|2024; Wang et al.,|2024d) and
generating video-conditional text embeddings (Kahatapitiya et al., [ 2024)). These studies highlight the
value of multimodal approaches, often involving fusion strategies between text and RGB or event
data representations.

3 METHODOLOGY

We propose a hybrid architecture, SPKLIP, which learns joint representations from spike video streams
and raw text tokens, enabling end-to-end learning. The main architecture of SPKLIP, illustrated
in Fig. [T} is to enhance the ability of the visual encoder to extract spike modality features. More
specifically, a dedicated Hierarchical Spike Feature Extractor (HSFE) is constructed, addressing the
challenges posed by the sparse and asynchronous nature of spike data (Fig.[Th). Also, a hierarchical
feature fusion module is used to align closely with textual descriptions, enabling applications in
various downstream tasks such as video question answering and text-to-video retrieval.
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Figure 1: Illustration of the proposed end-to-end Spike-Based Video Understanding Framework
(SPKLIP). This framework primarily consists of four key components: the Hierarchical Spike Feature
Extractor (HSFE), the SpatioTemporal Attentive Residual Network (STAR-Net) module, a Text
Encoder, and a Contrastive Learning Framework. Each component plays a critical role in enabling
robust and efficient video understanding.

3.1 SPIKE CAMERA

Spike cameras are inspired by the sampling principle of retina fovea, which consists of an array of
pixels, each of which continuously accumulates incident light intensity 7(¢). When the accumulated
charge reaches a predefined threshold 6, the pixel fires a spike signal (i.e., a “pulse”) and resets the
integrator to initiate a new “integrate-and-fire” cycle. Under this mechanism, the instantaneous charge
A(t) on the integrator is formulated as:

A(t) = (/Ota~l(x) d;v) mod 0, )

where a represents the photoelectric conversion rate. Ideally, spikes can be triggered at arbitrary time
instants ¢, satisfying: fg’“ a - I(x)dz = k@, which implies A(t;) = 0, with k denoting the spike
index. However, constrained by circuit limitations, spike detection must be discretized. Pixels output
spikes as discrete-time signals S(n), where spike flags are periodically checked at intervals ¢t = nT’
(n=1,2,...), with T being a microsecond-scale interval. Specifically: If a spike flag is detected at
t =nT, S(n) = 1isrecorded, and the flag is reset to prepare for the next spike. Otherwise, S(n) = 0
is recorded. Under continuous light exposure, all pixels on the sensor operate simultaneously and
independently, firing spikes to encode photon arrivals. The sensor employs high-speed polling to
inspect the binary spike status (”0” or ”1”) of each pixel, generating an H x W spike frame. Over
time, the camera outputs a sequence of such frames, forming an H x W x N binary spike stream
S(x,y,n). Detailed principles of spike camera can be found in Appendix

3.2 HIERARCHICAL SPIKE FEATURE EXTRACTOR (HSFE)

HSFE comprises two key components: Multi-Scale Temporal Filtering (MTF) and Spatial Attention
(SA). MTF balances noise suppression and motion detail preservation. Fixed-time window methods
struggle to reconcile noise suppression with motion detail preservation in asynchronous, sparse spike
streams (Zhao et al.| [2021a). To address this, MTF adaptively models temporal dynamics at varying
scales. The input spike stream [B, T, C, H, W] is first reshaped into [T x C, H, W] and divided into
five temporally overlapping sub-blocks via a sliding window (radius=30, step=45). Each sub-block
centers on a key time step, defined as:

Bblocki =S [ti — I'win : t; + I'win + 1] , )
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where S is the original stream and 7, is the window radius.

Multi-scale convolutional branches extract features with adaptive temporal resolutions. Each sub-
block is processed in parallel using convolutional kernels with varying input channel dimensions.
Reducing channel count broadens temporal coverage (simulating longer “virtual exposure time”)
but sacrifices fine-grained details, while increasing channels focuses on short-time high-frequency
features (e.g., rapid motion). A learnable temporal mask M; € R'*** dynamically weights spikes
via element-wise multiplication: H\"
branch .

= Convy, (M; o Bplock, )» Where k; denotes channel size for

Photon conservation governs multi-branch channel allocation. The total photon quantity within each
spike cycle is physically constrained by the camera’s trigger mechanism:

Photon total = 6 - |¢,] - > Si(x,y),
i€¢n 3)
i Photon total
P X ————————.
T‘Z.
Here, 0 is the threshold, ¢,, denotes the virtual exposure window, and S;(z, y) is the binary spike
signal. This constraint ensures that larger k; (higher channel counts) reduce temporal coverage 7T; for
high-frequency motion capture, while smaller k; extend 7 to stabilize static regions. This design
follows a fluid-container analogy: fixing Photon_total, increasing base area (k;) reduces height (77),
and vice versa.

SA enhances critical time steps and suppresses noise. An attention module a(-) learns modula-
tion weights to prioritize relevant temporal scales: [W( ). Wt(m)] = a([Ht(l), e 7Ht(m)}). The
output is a stacked feature map: I = [W( ) o H, (1) W(m) H (m)] Here, m is the branch
count, and o denotes element-wise multiplication. The module applies MTF and SA to five adjacent

spike blocks { B2, Bj1, By, Br1, B2}, generating coarse estimates {Ilg, In, Iy, Iq, I,«g} that de-
scribe instantaneous intensity characteristics across time steps, jointly modeling short-term temporal
dependencies.
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Figure 2: This figure illustrates the mechanism of the HSFE module. By employing a Temporal
Mask and convolutions with varying channel sizes, the HSFE adaptively balances noise suppression
with motion preservation. For example, in A, features are extracted at different temporal scales
corresponding to the fast-moving basketball, the medium-speed person, and the static basketball hoop.
The resulting features are then concatenated and processed by a Spatial Attention module, which
computes weights to enhance the contribution of the most informative temporal steps.
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3.3 SPATIOTEMPORAL ATTENTIVE RESIDUAL NETWORK (STAR-NET)

The coarse-grained instantaneous light intensity features Ijo, I;1, Iy, 11, I2 output by HSFE are
processed through a two-stage fusion module to model long-range spatiotemporal dependencies:
MAPResNet and Transformer. MAPResNet enables hierarchical feature extraction with hybrid
attention. As the backbone network, MAPResNet (Modified Attention-Pooling ResNet), integrates
CNNs and global attention for multi-scale feature learning. It follows a hierarchical design with three
components: (1) A stem module with three stacked convolutions (3x3 kernels, stride=2) for initial
feature extraction; (2) Four residual block groups (with 2, 2, 2, 2 bottleneck blocks) progressively
expanding channel dimensions from 64 to 2048 via 4x expansion ratios; (3) An attention Vgooling
module applying multi-head self-attention (h = 8) over flattened spatial tokens (% X =z5) with
learnable positional encodings. This hybrid CNN-transformer architecture combines local feature
extraction (via residual bottlenecks (He et al.l [2015)) with global attention pooling, following recent
paradigms (Vaswani et al., [2023). Input features Ijo, I;1, I, I-1, L2 are first processed by the stem
module, then refined through residual blocks, and finally compressed into high-level representations
[B, D] via attention pooling. This extends attention-pooling strategies in vision-language pretraining
(Radford et al.,[2021al).

Transformer-based temporal fusion models long-range dependencies. A Transformer encoder captures
cross-frame relationships in the time series. Features from MAPResNet are stacked along the temporal
dimension as [T, B, D], then processed by multi-head self-attention:

Attention(@, K, V) = softma (QKT) V. €))
y LAy = X .

Vdy,
The output retains shape [T, B, D], now encoding temporal context. Finally, global feature pooling
averages across time:

T
1
global feature = T tz:; temporal featureslt, :|, %)
producing a compact representation Fs; € [B, D], as illustrated in Fig. .

3.4 SPIKE-TEXT CONTRASTIVE LEARNING (STCL)

STAR-Net extracts unified embeddings for spike-based videos and natural language texts, enabling
cross-modal alignment via contrastive learning. Text encoder maps language tokens into a shared
semantic space.

The text encoder follows the BERT architecture (Devlin et al.,2019)), converting discrete text tokens
into continuous embeddings. Specifically: (1) Input tokens are mapped to vectors via a learnable
token embedding layer; (2) Positional encodings are added to preserve sequential context; (3) A
Transformer encoder captures contextual dependencies; (4) Output features are projected through a
‘text projection® layer to align with the visual embedding space (Fig. [Ik).

Contrastive loss maximizes inter-modal similarity and intra-modal discrimination. Given video
embeddings v; € [B,embed_dim] and text embeddings ¢; € [B, embed_dim], the objective is to
align positive pairs while separating negatives:

B . .
re 1 Z log Bexp (sun(.vi, t;)/7T) ‘o Bexp (snn(.ti, v;)/T) . ©)
B i=1 Zj:l exp (sim(v;, t;)/7) Zj:l exp (sim(t;,v;)/7)
Here B is batch size, sim(v, t) cosine similarity between v and ¢, and 7 learnable temperature parame-
ter (Logit_scale) controlling similarity distribution smoothness. This symmetric loss formulation

ensures mutual alignment: videos are attracted to matched texts and repelled by mismatches, and
vice versa.

3.5 FULL-SPIKING VISUAL ENCODER (FSVE)

We propose a pure spiking visual encoder (FSVE) that integrates Spiking ResNets with a Spiking
Temporal Transformer for event stream processing. The architecture combines leaky integrate-
and-fire neurons with temporal-dependent normalization for stable spatial feature extraction, and
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a spike-driven self-attention mechanism enabling energy-efficient spatiotemporal modeling. This
co-design achieves end-to-end spike-domain computation while preserving biological plausibility.
See Fig.[3]and Appendix for details.
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Figure 3: Architecture overview of FSVE. (a) Spiking ResNets extract spatial features with LIF
neurons and TDBN (Hu et al.l |2021). (b) E-SDSA module (Yao et al.,|2025b) implements spike-
driven attention with threshold normalization and sparse computation.

4 EXPERIMENT

4.1 EXPERIMENTAL SETTINGS

Datasets We employed HMDB51-S, UCF101-S, and a custom dataset as primary experimental
data. The first two datasets were generated by converting the renowned HMDBS51 and UCF101
datasets using the SpikeCV toolkit (Zheng et al.l 2024)), preserving most characteristics of the spike
modality. The self-built dataset comprises 30 action categories (e.g., badminton bat swings, table
tennis forehand loops, and other high-speed, high-dynamic movements) captured in real-world
scenarios using a spike camera. HMDBS51-S contains 51 action categories with 6,849 spike videos,
while UCF101-S consists of 101 action categories encompassing 13,320 spike videos. All videos
maintain a resolution of 320x240 pixels, with frame counts varying between 2,000 and 4,000 frames.

Real Dataset Preprocessing Pipeline In the real dataset acquisition and processing pipeline, we
used a spike camera to obtain data at an original resolution of 416 x 250. For model compatibility, we
first performed center cropping to adjust the frame size to 320 x 240. To maximize sample diversity
and enhance model generalizability, continuous long videos for each action category were captured by
multiple, distinct individuals. Through this rigorous pre-processing of the long videos, we ultimately
yielded a robust dataset comprising 96 x 30 samples (96 samples per category x 30 categories) for
subsequent evaluation.

Implementation Since this work proposes the first architecture of its kind, the visual encoder in our
model was trained from scratch without utilizing any pretrained weights. The training configuration
employed a batch size of 8 over 30 epochs with a learning rate of 2e-5, optimized by the AdamW
algorithm. Our model directly processes spike-modality data without requiring any reconstruction
preprocessing. The framework was implemented using PyTorch and trained on NVIDIA A100 GPUs.

4.2 COMPARATIVE ANALYSIS OF VIDEO-CLIPS AND SPKLIP

Methods designed for RGB modality underperform on spike data, while SPKLIP achieves SOTA
results. As shown in Table[T] we compare state-of-the-art visual encoders for video-based spike data
semantic understanding. The table is structured into three parts:

(1) Top 4 rows: RGB-based methods (X-CLIP, Vita-CLIP, MotionPrompt, OmniCLIP) evaluated on
HMDBS51 with CLIP-400M pretrained weights (Liu et al.,|2024)). (2) Middle 2 rows: RGB-based
methods (M2-CLIP, Vita-CLIP), adapted to spike modality by input dimension adjustments while
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retaining original architectures. Details are provided in the Appendix [A.3] (3) Bottom row: Our
SPKLIP model for spike modality with ResNet-18 backbone trained from scratch.

All datasets maintain 240x320 resolution. After 30 epochs, we evaluate Top-1/Top-5 accuracy using
official learning rates and optimizers. This structured comparison highlights the performance gap
between RGB and spike modality methods.

Table 1: Comparison of Top-1/Top-5 accuracy between SPKLIP and SOTA RGB/Spike-based
methods on HMDBS51(-S) datasets. (+A indicates that the model has been adapted)

Type Method Reference Pre-trained ACC Dataset
Top-1 (%) Top-5 (%)

X-CLIP ECCV-2022  CLIP-400M  70.94 93.39 HMDB51

RGB Vita-CLIP CVPR-2023  CLIP-400M  71.18 94.12 HMDB51

MotionPrompt ACM MM-2023 CLIP-400M  72.89 93.21 HMDB51

OmniCLIP ECAI-2024  CLIP-400M  76.64 95.89 HMDB51
Spike M2-CLIP (A) AAAI-2024 - 39.57 8596 HMDBS5I-S
Vita-CLIP (A) CVPR-2023 - 45.31 87.14  HMDBSI-S
SPKLIP (ours) - - 91.15 99.75 HMDBS5I1-S

Our results underscore the necessity of a specialized architectural design for the spike modality. To
establish a fair comparison, we meticulously adapted prominent conventional models, including
M2-CLIP and Vita-CLIP, to process the spike data. Despite this direct adaptation, their performance
on the HMDBS51-S dataset collapsed, as evidenced in Table [1] This confirms that, despite being
adapted for spike inputs, conventional architectures (e.g. Vision Transformers), which are optimized
for dense pixels, fundamentally struggle with the sparse, event-driven nature of spike streams.

In stark contrast, our SPKLIP, an architecture natively designed for this modality, achieves a superior
91.15% Top-1 accuracy on the same task. This performance gap is not merely an incremental
improvement but a demonstration of SPKLIP’s valid spatiotemporal feature extraction framework,
establishing a critical and robust new benchmark for spike-based vision.

4.3 EVALUATE WITH DATA FROM REAL SHOTS

The Sim-to-Real Domain Gap as a Challenge. To validate our model’s generalization, we first
quantify the significant sim-to-real domain gap. Our analysis confirms both a key similarity and two
significant differences:

Fundamental Similarity: Both domains are fundamentally sparse. The vast majority (99%) of pixel
activity in both distributions is concentrated in the low-count 0-30 spike range, providing a common
sparse foundation.

Significant Differences: (1) Motion Statistics: The real data represents sparse, local motion” (e.g.,
clapping, mean activity 0.0179), while the synthetic data represents “dense, global motion” (mean
0.0576). (2) Artifact Patterns: Each domain contains unique, high-intensity noise; real data shows
sensor-specific artifacts (e.g., peak ~60 horizontal lines), while synthetic data shows algorithmic
artifacts (e.g., peak ~30 background blocks).

A detailed breakdown of this analysis, including quantitative charts and qualitative heatmaps (see
Fig.[AT}, 2, 3), is provided in Appendix This substantial gap in both motion statistics and noise
patterns makes sim-to-real transfer a non-trivial challenge. We therefore adopt a few-shot adaptation
approach to validate our pre-trained model’s ability to cross this gap and generalize to real-world
spike streams.

Few-shot adaptation validates simulation-to-reality generalization. We evaluate our model’s perfor-
mance on a self-collected, real-world dataset. Due to the domain gap between physical spike cameras
and simulated environments, we adopt a few-shot adaptation approach: most model parameters
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remain frozen, with only the final two layers of STAR-Net fine-tuned. As shown in Fig.[d] we test
2-shot, 4-shot, 6-shot, and 8-shot settings to assess generalization.

Figure 4: Performance Evaluation on Real Spike Camera Data: (A) 3D visualization of raw spike
stream; (B) Processed video (wave); (C) Confusion matrix, which displays a subset of 4 high-speed
action categories from the total 30 classes for clarity. Top-1 accuracy: 55.17% (2 shots), 73.11% (4
shots), 85.78% (6 shots), 88.12% (8 shots).

Performance improves consistently with increased shot counts. Results show progressive improve-
ment as shot counts increase: (1) 2 shots: 55.17% Top-1 accuracy (limited adaptation capacity); (2)
4 shots: 73.11% (+17.94%), demonstrating rapid learning with minimal data; (3) 6 shots: 85.78%
(+12.67%), approaching full-dataset performance; (4) 8 shots: 88.12% (+2.34%), achieving near-
optimal accuracy.

This trend highlights the framework’s robust simulation-to-reality generalization, with minimal
fine-tuning required for real-world deployment.

4.4 ABLATION STUDY OF PROPOSED METHOD

Key components contribute progressively to model performance. We conduct ablation studies to
analyze the impact of individual components (MTF, SA, STAR-Net) on UCF101-S and HMDB51-S
datasets. The specific dataset transformation construction method is presented in detail in [A-8] All
experiments use ResNet-18 as the backbone and 250 input frames per spike video unless specified
otherwise. Table2land Table ] summarize results.

To evaluate the contribution of Photon conservation (equation[3) (which implements dynamic channel
slicing selection for early feature extraction branches through the channel step parameter), we
conducted an ablation experiment in Table 2} In the full model, the parallel convolutional branches in
HSFE enable simultaneous feature capture of both high-frequency rapid motion and low-frequency
stable regions. For the ablated model, we removed this channel slicing mechanism. Specifically, all
parallel convolutional branches in HSFE received and processed complete input feature maps, with
their respective input channels adjusted to the full count during initialization.

As evidenced by the results in Table 2] restricting the core functionality of HSFE leads to a 2.21%
degradation in Top-1 accuracy on HMDBS51-S compared to the complete SPKLIP model. This
performance gap demonstrates a substantial impact, conclusively validating the superior capability of
the HSFE module.
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Table 2: Ablation study demonstrating the contribution of the HSFE.
Model Configuration Dataset ACC(%) Top-1
HSFE (Ablation) HMDB51-S 88.94
HSFE (Full Model) HMDB51-S 91.15

We also conducted empirical studies on the number of temporal sub-blocks (which the HSFE
processes) to find an optimal balance. We report the Top-1 accuracy on HMDB51-S for 3, 5 (our
final model), and 7 sub-blocks.

Table 3: Ablation study on the number of HSFE temporal sub-blocks.
Number of Sub-blocks ~ Top-1 Accuracy (HMDB51-S)

3 Blocks 88.56%
5 Blocks (Ours) 91.15%
7 Blocks 90.46%

As shown in Table[3] the results clearly demonstrate an empirical trade-off: (1) Too Few (3 blocks):
Performance degraded significantly by 2.59%. This suggests that 3 sub-blocks are insufficient to
capture the full temporal context of actions in HMDBS51-S. (2) Too Many (7 blocks): Performance
also degraded (by 0.69%). We attribute this to “Temporal Context Pollution,” where 7 sub-blocks
cover an excessively long time window, forcibly introducing irrelevant “noise” (e.g., static states
before or after the core action), which is unsuitable for the characteristics of this dataset. Therefore,
"five sub-blocks’ is not an absolute hyperparameter, but rather the optimal empirical balance we found
for this benchmark, balancing ’insufficient context’ against ’context pollution’.

Table 4: Ablation study demonstrating the contribution of key components (MTF, SA, STAR-Net) to
Top-1 accuracy on UCF101-S and HMDBS51-S. The value is shown in the format of mean+-standard
deviation, calculated across 5 trials.

Components ACC(%) Top-1

MTF SA STAR-Net UCF101-S HMDB51-S

v X X 76.19 £ 0.46 80.80 +2.23
v v X 77.64+0.44 8242+1.84
v v v 86.43 +0.32 91.15 £2.21

MTF and SA improve spatial-temporal feature learning; STAR-Net enhances global context. We
split the HSFE module into two components, Multi-Scale Temporal Filtering (MTF) and Spatial
Attention (SA), and test their importance separately. Table 4] decomposes the contributions of MTF,
SA, and STAR-Net. (1) MTF: The limited performance of general-purpose models like M2CLIP
when directly applied to spike data (as shown in Table[I)) highlights the limitations of unspecialized
temporal filtering. In contrast, our MTF module alone (Table Et 76.19% on UCF101-S, 80.80%
on HMDBS51-S) effectively captures crucial motion details, validating the necessity of a tailored
approach for spike-based inputs. (2) SA: Adding SA to MTF further enhances spatial feature
extraction, achieving 1.45% and 1.62% gains. (3) STAR-Net: Integrating STAR-Net’s dual-stage
spatiotemporal fusion mechanism boosts performance by 8.79% (UCF101-S) and 9.73% (HMDB51-
S), demonstrating its ability to model complex long-range dependencies. These results validate the
incremental improvements from each component, confirming their collaborative role in advancing
spike-modality action recognition.
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4.5 VISUALIZATION OF TEMPORAL DYNAMICS

To analyse the internal temporal dynamics of our model, we conducted a visualisation experiment. To
truly isolate the dynamic features, we use PyTorch Hooks to extract the five feature vectors (V;...V5)
from the HSFE module. We then subtract the mean vector, V. to remove the static components.
Finally, we compute the cosine correlation heatmap of these five “dynamic-only” vectors, as shown

in Fig.[5

HSFE Internal Temporal Dynamics (R2-Q2) - "Centered” Feature Correlation HSFE Internal Temporal Dynamics (R2-Q2) - "Centered" Feature Correlation
Sample: "torwart de - Torwarttraining Werder Bremen catch * Sample: "YouTube smiles! smile "

Block 1 Block 1

Block 2

Block 3 Block 3 000

HSFE Temporal Block

Block 5 Block 5

Block 1 Block 2 lock ¢ Block 5 Block 1 Block Block 4 Block 5

Block ® Block 3
HSFE Temporal Block HSFE Temporal Block

Figure 5: Visualization of HSFE’s internal temporal dynamics using “centered” feature correlation
heatmaps.

As shown in Fig. 5] the heatmaps are not flat (i.e., not monochromatic) but exhibit highly structured,
content-dependent patterns. For instance, in the ”smile” sample (right), the neutral” feature (Block 1)
is strongly negatively correlated (~-0.4, blue) with the subsequent ’smiling” features (Blocks 2-5).
In contrast, the “catch” sample (left) shows a completely different complex pattern. This significant
“variation” in correlation and the “’pattern difference” across samples are definitive proof that our
HSFE module is not a static processor; it is dynamically extracting distinct, time-varying features
based on the video content.

4.6 VALIDATING MULTIMODAL ALIGNMENT VIA TEXT-TO-VIDEO RETRIEVAL

To quantitatively substantiate that our framework learns a meaningful joint embedding space, we
conducted a rigorous text-to-spike-video retrieval task, moving beyond a simple classification mission.

The retrieval performance, detailed in Table[5] confirms the model’s strong alignment capabilities.
These results provide direct empirical evidence for the effectiveness of our cross-modal learning
strategy, validating that SPKLIP successfully maps sparse spike streams and natural language into
a shared, semantically coherent space. A detailed description of the implementation is available in

Appendix [A.4]

Table 5: Text-to-Video Retrieval Performance on Spike Datasets.
Datasets Recall@1 (R@1) Recall@5 (R@5) Recall@10 (R@10)

HMDB51-S 31.94% 63.12% 75.10%

5 CONCLUSION

This work introduced SPKLIP, the first architecture for Spike Video-Language Alignment (Spike-
VLA). Using a specialized Hierarchical Spike Feature Extractor and Spike-Text Contrastive Learning,
SPKLIP significantly outperformed adapted conventional models on benchmark spike datasets and
demonstrated effective few-shot learning on a new real-world dataset. Our full-spiking variant also
highlights a path towards energy-efficient semantic perception. SPKLIP provides a foundational
framework for advancing multimodal tasks with event-based data on neuromorphic platforms.
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DECLARATION OF LLLM USAGE

During the preparation of this manuscript, we used a Large Language Model (LLM) for assistance.
We only used the LLM to improve the clarity and readability of the text, which included correcting
the grammar, checking the spelling, and translating the text into English.

ETHICS STATEMENT

The research presented in this paper adheres to the highest ethical standards. The primary datasets
used, HMDBS51-S and UCF101-S, are derived from publicly available, widely used academic bench-
marks (HMDBS51 and UCF101) for action recognition, which do not contain personally identifiable or
sensitive information. Our custom-collected real-world dataset consists of anonymized recordings of
common human actions (e.g., clapping, waving) performed by consenting participants in non-public
settings. The work is foundational in nature, aiming to advance the scientific understanding of
spike-based vision, and we do not foresee any direct negative societal impacts or potential for misuse.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we commit to making our source code, including the
model architecture, training scripts, and evaluation protocols, publicly available upon publication.
Our experiments were conducted using PyTorch on NVIDIA A100 GPUs. The HMDBS51-S and
UCF101-S datasets were generated using the publicly available SpikeCV toolkit, and the conversion
process is detailed in the appendix. All hyperparameters, such as learning rate, batch size, and
optimizer details, are explicitly stated in section 4l The custom-collected dataset will also be released
to facilitate further research in the community.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS OF THE SPIKE CAMERA

A.1.1 IMAGING MECHANISM AND OUTPUT FORMAT

A spike camera is a bio-inspired sensor where each pixel independently accumulates incoming
photons. When the photon count at a pixel hits a fixed threshold, it fires a binary 1’ spike and
instantly resets. This means light intensity is encoded by the spike frequency.

The raw hardware output is a series of binary snapshots (H x W matrices of 1s and 0s) captured at
an extremely high frequency (e.g., 40,000 Hz). The full output is therefore a 3D binary data stream,
S(x,y,t), where (z,y) are pixel coordinates and ¢ is the discrete time step.

A.1.2 DEFINITION OF A "FRAME” AND TEMPORAL INFORMATION

While the individual spike fimings at each pixel is asynchronous (since they depend on light intensity),
the data readout is synchronous—all pixels are sampled simultaneously at a very high rate.

So, a ”frame” in this context is simply one of these high-frequency binary snapsheots, not a
conventional intensity image. The crucial temporal information is captured in the sequence of these
frames. By counting spikes over a time window, we can reconstruct brightness. By measuring the
time between spikes (Inter-Spike Interval), we can infer instantaneous changes in brightness. This
allows the camera to capture high-speed dynamics that traditional cameras miss due to motion blur.

A.2 AN ANALYSIS ABOUT THE SIM-TO-REAL DOMAIN GAP.

1. Fundamental Similarity (Sparsity): As shown in Fig. (Plot 1), both datasets share the
fundamental physical property of spike signals: high sparsity. Although their means differ, the vast
majority (99%) of all pixel activity in both distributions is concentrated in the low-count range (0-30
spikes per pixel). This shared sparsity provides a common foundation for our model.

2. Significant Domain Gap (Statistics & Artifacts): However, built upon this shared sparse
foundation, the two datasets diverge significantly:

(a) Motion Statistics (Local vs. Global): The statistics (Fig. Plot 1 & 2) differ because the nature
of the motion is different. The synthetic data (orange) is statistically denser (mean 14.77) and "’bursty”
(mean 0.0576) because it represents “dense, global motion” (e.g., full-body or camera movement). In
contrast, the real data (blue) is sparser (mean 4.65) and flat” (mean 0.0179) because it represents
’sparse, local motion” (e.g., only hands clapping while the body and background are static).

(b) Artifact Patterns (Sensor vs. Algorithm): The spatial heatmaps (Fig. [AT] Plot 3) confirm that each
domain has unique, high-intensity artifacts. The real data (Plot 3, Top) exhibits sensor-specific noise
(e.g., a horizontal line artifact with a peak intensity of ~60). The synthetic data (Plot 3, Bottom)
features algorithmic artifacts (e.g., “blocky” background noise with a peak intensity of ~30) from the
conversion process.

Conclusion (Robustness via Few-Shot): Our HSFE model must learn from a “difficult” pre-training
environment (dense, global motion + algorithmic artifacts). The fact that this pre-trained model
performs exceptionally well on the real-world dataset under a few-shot setting (as shown in Sec.
|.3) is the strongest proof of its robustness. It successfully bridges this significant domain gap,
demonstrating that it learned the transferable, underlying dynamics of motion itself, rather than
overfitting to either domain’s specific statistics or noise patterns.

A.3 ADAPTATION FOR TRADITIONAL MODELS

As a comparative study, we engineered a hybrid visual encoder to investigate whether a specialized
spike feature extractor could effectively bridge the modality gap for a conventional Vision Transformer
(ViT) backbone. This architecture, encapsulated in the HybridSpikeEncoder module, first
employs our Hierarchical Spike Feature Extractor (HSFE) as a sophisticated frontend. The HSFE
processes overlapping temporal blocks from the raw spike stream, translating the sparse, event-driven
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Figure Al: Quantitative and qualitative analysis of the Domain Gap between our synthetic data
(SpikeCV) and real-world data. The plots reveal fundamental differences in (1) per-pixel spike
distribution (synthetic is denser, mean 14.77 vs. 4.65), (2) temporal activity (synthetic is "bursty’
global motion, real is *flat’ local motion), and (3) spatial artifact patterns (synthetic ’block’ noise vs.
real ’sensor line’ noise).

data into a sequence of dense, feature-rich maps. These maps are then tokenized via a convolutional
“bridge” layer and subsequently fed into the ViT.

However, this approach yielded poor performance, failing to converge and achieving less than 40%
accuracy. We attribute this to a fundamental mismatch in inductive bias. The ViT is architected to find
patterns in the dense, spatially-correlated information of natural images. The feature maps produced
by the HSFE, while rich in temporal dynamics, do not possess the pixel-like spatial qualities that
the ViT is primed to learn from. This experiment demonstrates that merely adapting the input is
insufficient; effective spike video understanding requires a holistically designed architecture rather
than a simple fusion of disparate components.

A.4 VALIDATING MULTIMODAL ALIGNMENT VIA TEXT-TO-VIDEO RETRIEVAL

To validate that our model learns a meaningful joint embedding space between spike videos and
language—rather than merely performing single-modal classification—we conducted a challenging
text-to-video retrieval experiment.

The experimental setup was designed to be rigorous. Instead of relying on simple, single-category
keywords (e.g., "brushing teeth”), we leveraged the unique and semantically rich captions associated
with each video in the HMDBS51-S dataset as text queries. This instance-level retrieval task places
higher demands on the model, requiring it to grasp subtle correspondences between high-speed video
content and nuanced natural language descriptions.

Under this challenging setting on the HMDBS51-S dataset, our model demonstrated strong perfor-
mance. It achieved a Recall@1 (R@1) of 31.94%, a R@5 of 63.12%, and a R@10 of 75.10%.
These results provide direct, quantitative evidence that our model successfully learns a deep semantic
alignment between spike videos and text, confirming the multimodal capabilities central to our
framework’s design.
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A.5 IMPLEMENTATION DETAILS OF THE FULL-SPIKING VISUAL ENCODER (FSVE)

Building on SPKLIP, we propose a FSVE tailored for event streams of spike camera. Through the
synergistic design of MS-ResNets (Hu et al.,[2025) and Spiking Temporal Transformer, we achieve
end-to-end spatiotemporal feature learning in the pure spiking domain. The architecture is illustrated

in Fig.

Spiking ResNets extract spatial features with temporal-dependent normalization. To exploit SNNs’
inherent compatibility with spike data, we adapt MS-ResNets with spiking dynamics:

(1) Replace continuous activations with LIF neurons:

i@ >
S {1 if u® > thresh o

0 otherwise
(2) Introduce temporal-dependent Batch Normalization (TDBN) to stabilize membrane potential evo-
lution across time steps; (3) Define spiking residual function: S;11 = fipike (TDBN(Fipike (S1)) + Si)
where fpike converts membrane potentials to binary spikes {0,1}, and Fipike denotes spiking convo-
lution. For backpropagation, we use a rectangular surrogate gradient:

o5 _
du  2lens
with lens controlling gradient window width.

I (Ju — thresh| < lens) (8)

Spiking Temporal Transformer enables energy-efficient spatiotemporal correlation learning. We
adapt an efficient E-SDSA module (Yao et al.,|2025a)) and tailor it for spike-based vision tasks. The
module integrates two key components (Fig. [3p):

1. Spike-encoded QKV generation with threshold normalization: Query/key/value projections use
linear layers followed by spike normalization:
Qs = SN(Linear(U)), Kg = SN(Linear(U)), Vs = SN(Linear(U))
SN(z) = O(z — Vin), Vin = a - E[|z[]

where O is the Heaviside function, and « is a learnable scaling factor. This sparse encoding reduces
energy consumption compared to analog QKV generation.

©))

2. Sparse self-attention computation with threshold reparameterization: The attention operator
computes sparse correlations via:

KL
U’ = Linear (SN (QS\/ElS ® scale) . VS> (10)
Threshold reparameterization stabilizes learning:
Vin
Vi, = 11
T scale an

This design achieves two advantages: (1) Event-driven sparsity reduces computation; (2) Threshold
reparameterization stabilizes attention learning under varying input dynamics.

A.6 SNN ENERGY CONSUMPTION ANALYSIS

To evaluate the energy efficiency of our full-spiking architecture, we developed a detailed energy
model that accounts for both computational operations and crucial memory access costs. Our
model utilizes established energy cost parameters from Horowitz’s research on 45nm CMOS process
technology (Horowitz, 2014).

The parameters adopted for our estimation are as follows:
* Computational Cost (E¢): 4.6 pJ per 32-bit operation (for both MAC and AC).

* Neuron Update Cost (Ey7): 0.9 pJ per 32-bit operation.
* Memory Access Cost (E/): 5.0 pJ per 32-bit read/write from SRAM.

Based on these parameters, the energy models for the standard Artificial Neural Network (ANN) and
our Spiking Neural Network (SNN) architectures are formulated.
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ANN Energy Model The energy for the dense ANN baseline is the sum of its computational and
MEemory access costs.

Eann = (Total_ Ops x E¢) + (Memory_Reads X Fjr) (12)

SNN Energy Model The energy for the sparse SNN model accounts for actual synaptic operations
(SOPs), neuron potential updates, and all associated memory accesses.

Esnn = (Actual_SOPs x E¢) + (Neuron_Updates X Ey7) + (Memory_Accesses X Epr)  (13)

The detailed breakdown of this analysis is presented in Table [6] The results highlight a critical trade-
off in SNN efficiency. While the SNN architecture reduces computational energy by an estimated
74.1% due to its inherent data sparsity, it also introduces substantial memory access overhead for
updating and retrieving neuron membrane potentials.

Table 6: Detailed energy consumption analysis including memory access costs.
Key Metrics ANN (Baseline) SNN (Our Model) Analysis

74.1% reduction

Computational Energy 1.3721] 0.356] due to sparsity

Memory Access Energy 0.0036J 0.7911] ;I;tgeﬁaclluuepgg:mbme
Total Estimated Energy 1.375) 1.147 ) (I)g'e6rztl)l energy saving
Memory Energy Ratio 0.26% 68.99% Bottleneck shifts

to memory access

This analysis reveals that SNNs often transform a compute-bound problem into a memory-bound
one, where frequent memory access becomes the new energy bottleneck. In our SNN model, memory-
related operations account for 68.99% of the total energy. Despite this shift, the substantial reduction
in computational requirements leads to a notable net energy saving of 16.6%, demonstrating the
overall efficiency advantage of the full-spiking approach.

A.7 EXPLORING FULL-SPIKE DYNAMICS: ARCHITECTURE AND EFFICIENCY OF SPKLIP

We also explored the performance of a full-spike dynamics model. To evaluate our framework’s
energy efficiency, we implemented a full-spiking version by converting the components of the visual
encoder to Spiking Neural Networks (SNNs). When the CNN part of the original visual encoder
was replaced with its SNN counterpart, the model’s accuracy on the UCF101-S dataset decreased to
74.14%. When all components of the visual encoder (including the Transformer) were converted to
SNNss, the performance dropped to 67.29%.

Based on an estimation model, the SNN architecture achieves an approximate 74.12% reduction
in computational energy compared to the standard ANN baseline, primarily due to the inherent
computational sparsity of SNNs.

This efficiency gain is also accompanied by a trade-off in accuracy. A detailed analysis of this
architecture, the energy estimation methodology, and results is available in Appendix [A.5] and

Appendix[A.6
A.8 VIDEO-TO-SPIKE PREPROCESSING PIPELINE

We design a two-stage preprocessing pipeline to convert conventional video data into standard spike
event streams: neural network-based frame interpolation and spike encoding.

A.8.1 FRAME INTERPOLATION FOR ENHANCED TEMPORAL RESOLUTION

Raw video frames from action recognition datasets (e.g., UCF101 and HMDB51) are processed
through a pre-trained video frame interpolation model. The model architecture contains:
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* Feature_extractor: Extracts hierarchical spatial features
* MultiScaleFlow.block: Estimates MultiScale optical flow
* Unet: Refines residual details via bidirectional optical flow guidance and mask fusion

The interpolation synthesizes intermediate frames using bidirectional alignment, mask fusion, and
residual correction. Temporal expansion factors are applied:

* UCF101: x10 frame rate expansion
* HMDBS51: x50 frame rate expansion

Output sequences are formatted as 4D tensors [T, H, W, C] where:

e T Temporal dimension
* H x W: Spatial resolution
e C' = 3: RGB channels

A.8.2 SPIKE ENCODING VIA TEMPORAL INTEGRATION

High-frame-rate RGB videos are converted to spike data through our encoding algorithm:

1. Frame conversion to grayscale with pixel normalization [0, 1]
2. Membrane potential accumulation: V; = V,_1 + I,

3. Spike generation:
. . 1 if Vi(z,y) >0
ke matrix|[¢ =
spike matrix(t, ., y] {0 otherwise
with threshold § = 5.0 and potential reset V; < V; — 0 after spike

4. Repeat until all frames processed
The stack_to_spike function generates binary spike tensors [T', H, W] with configurable:

* Additive noise injection
* Threshold 6 adjustment

Final serialization via SpikeToRaw function:

* Encodes 8 spikes per byte (binary compression)
* QOutputs .dat files for SPKLIP compatibility
* Decoding reconstructs Boolean tensor [T, H, W] during inference

The proposed two-stage preprocessing pipeline effectively bridges conventional videos and neuro-
morphic vision processing. By combining deep learning-based frame interpolation with bio-inspired
spike encoding, we achieve:

* Temporal Super-Resolution: Neural interpolation extends temporal sampling density by
10-50x through multi-scale optical flow and attention mechanisms, preserving physical
consistency in dynamic scenes

* Biologically Plausible Encoding: The temporal integration algorithm emulates retinal
neuron dynamics, converting intensity variations into sparse spike events with adaptive
threshold control

» System Compatibility: Serialized spike data (.dat) with byte-level compression ensures
seamless integration with SPKLIP-based neuromorphic classifiers

This pipeline enables efficient conversion of standard video datasets into spike-compatible formats
while maintaining configurable spatiotemporal properties, establishing a practical foundation for
spike-based action recognition research.
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Figure A1: This figure displays three components, A: the first frame of the original RGB video from
the UCF101 dataset, B: the spike lattices of the first five timesteps from the converted .dat file, C: the
first frame of the reconstructed grayscale video generated through the TFI conversion process.

To validate dataset conversion accuracy, we employed the Texture From Interval (TFI) algorithm
from the SpikeCV toolkit to reconstruct grayscale images from [T', H, W|]-dimensional spike tensors.
As it is shown in Fig[AT] This algorithm leverages the spatiotemporal sparsity and informational
potential of spike signals to approximate the texture structures of conventional images.

The TFI principle posits that temporal intervals between adjacent spikes reflect texture intensity:
shorter intervals indicate higher pixel activity and correspondingly brighter intensity. Specifically,
TFI calculates the nearest two spike timestamps within a maximum temporal window (+At) around
each target moment, then derives pixel-wise grayscale values based on their interval duration.

B TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

The source code and dataset are available at [link removed for anonymity].
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