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ABSTRACT

Large Language Models (LLMs) have demonstrated the strong potential to assist
both clinicians and the general public with their extensive medical knowledge.
However, their application in healthcare is constrained due to concerns about
the privacy of data used in training, which prevents the integration of private
and personal information because of security and ethical issues. Moreover, if
their capabilities can be enhanced with information retrieval to access up-to-date
knowledge, the current integration of LLMs with Information retrieval lacks robust-
ness to imperfect retrieval, which can hinder their effectiveness and even reduce
overall performance. In this work, we address this challenge by introducing the
Retrieval-Augmented Thought Process (RATP). Given access to external knowl-
edge, RATP formulates the thought generation of LLMs as a multiple-step decision
process. To optimise such a thought process, RATP leverages Monte-Carlo Tree
Search and learns a proxy reward function that permits cost-efficient inference.
On a private dataset of electronic medical records, deliberately excluded from any
LLM training set, RATP achieves 35% additional accuracy compared to in-context
retrieval-augmented generation for the question-answering task.

1 INTRODUCTION

Recent advancements in Large Language Models (LLMs) trained on extensive datasets have show-
cased their enhanced capabilities in diverse tasks such as question-answering (Kamalloo et al., 2023),
conversational abilities with humans (Bubeck et al., 2023) and notably providing medical knowledge
(Singhal et al., 2022; Lee et al., 2023b). Yet, their usage in healthcare is hindered by their limited
proficiency in accessing and accurately handling private data.

Private data is any sensitive knowledge deliberately kept unavailable to LLMs during training
due to ethical or business considerations. This includes, for example, medical records (Pampari
et al., 2018; Jia et al., 2020; Alsentzer et al., 2022) or banking details. These data must be excluded
from large language model training sets because once learned, their privacy cannot be ensured (Kim
et al., 2023; Zeng et al., 2024a; Carlini et al., 2023). This creates a significant barrier to LLM usage
in healthcare as organisations cannot risk potential Personal Identifiable Information (PII) leaks,
especially under regulations such as GDPR which protect closely the usage of such data. Furthermore,
private databases are frequently updated, sometimes daily, making the knowledge embedded within
a model’s parameters quickly outdated. Continuously retraining the model with new data involves
significant computational and financial resources (Brown et al., 2020) which can be afforded by very
few organisations. Hence, relying solely on LLMs, regardless of their increasing size, is impractical.

Thus, in scenarios such as administrative tasks (e.g., letters, discharge summaries) (Thirunavukarasu
et al., 2023) or decision aids (semi-autonomous diagnostic)(Lee et al., 2023a), where accessing
information from a private database is required, the fusion of LLMs’ capabilities with external
knowledge sources becomes crucial. While Retrieval-Augmented Generation (RAG) (Lewis et al.,
2021) has introduced the LLM and information retrieval pairing with the embedded cross-product
between a query and the documents, recent works have shown its lack of robustness to unsuccessful
retrieval (Yao et al., 2023c), to the extend that it can negatively impact performance (Yoran et al.,
2024).

Additionally, beyond the privacy issue, external knowledge can potentially address some of the
inherent limitations of LLMs (Delétang et al., 2023). Importantly, it enables the LLMs to recall
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Figure 1: Retrieval-Augmented Thought Process overview. 1⃝ The frozen LLM lthought given an answer ŷ
to the question x by using the extra context sT . 2⃝ The thought process starts from the question x and outputs
the best thought found st to help answering x. The actions {ai} are decided by the MCTS with feedback from
the scoring model. This component is detailed in Figure 2. 3⃝ The information retrieval system interacts with
the thought process by answering its queries with retrieved documents {Ii}.

information from outside of their limited context window which is particularly beneficial in multi-turn
dialogues (Xu et al., 2024). Furthermore, grounding LLMs with factual external knowledge reduces
the production of factual inaccuracies and hallucinations (Borgeaud et al., 2022; Zhang et al., 2023),
which are major issues impacting their performance, especially in less common domains or when
dealing with private data. Moreover, using external knowledge allows the clinician to trace back the
source of the information, unlike the implicit knowledge stored in model parameters. Hence, it has
the potential to improve the accuracy and transparency of responses, addressing two noted limitations
of LLMs that hinder their impact in healthcare (Thirunavukarasu et al., 2023). Consequently, this
approach could support various medical applications detailed in Appendix A.

However, current literature still faces several desiderata to be fulfilled simultaneously for LLM and
external knowledge pairing:

1. Guaranteeing data privacy.
2. Processing batches of documents beyond the LLM’s context window.
3. Exploit reasoning capabilities of LLMs to filter out irrelevant or noisy information.
4. Ensuring Transparency of the retrieval-augmented thought process.

To fulfil these desiderata we introduce the Retrieval-Augmented Thought Process (RATP) in Figure 1.
RATP enhances the thought generation capabilities of LLMs by treating it as a multi-step decision-
making process utilising external knowledge sources.

Our contributions include:

1. Formally, we formulate the open-book question-answering task as a sequential decision-making
problem. In light of this new formalism, we compare existing methods and, in collaboration with
clinicians from different specialities and countries, highlight the significance of retrieval-augmented
thought processes for healthcare applications.

2. Methodologically, we introduce the RATP, which leverages Monte-Carlo Tree Search to combine
the reasoning capabilities of Large Language Models and the access to external knowledge.

3. Empirically, using publicly available LLMs, we evaluate RATP’s effectiveness on the emrQA
dataset and EHRQA dataset, two QA datasets on real medical materials (electronic medical records
(EMRs) and discharge summaries) kept private from LLMs training.
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2 PRELIMINARIES

The Question Answering Task We consider the general setting of question-answering where an
autonomous machine learning model provides answer ŷ ∼ Y given an input query x ∼ X . Given
the state-of-the-art performance achieved by LLMs, in our work we consider the machine learning
model to be a general-purpose LLM ℓ. The loss of the task can be evaluated through a metric R with
E(x,y)∼(X ,Y)R(ŷ, y), where ŷ = ℓ(x)

Open-Book QA In healthcare applications, there are many scenarios where an external knowledge
database is a must to answer questions as privacy concerns and/or computational costs prevent this
knowledge from being encoded in the LLM’s weight. For instance, redacting discharge summaries
or pre-screenings of patients are tasks that require the information contained in private electronic
medical records. Without loss of generality, we use K to denote the space of external knowledge,
the LLM ℓ then answers the query with a subset of the knowledge, such that ŷ = ℓ(K,x) — as in
the most general cases, the knowledge database can be too large to be fed to the ℓ. The problem of
finding the most appropriate piece of information is known as the information retrieval (IR) problem:

K∗ = argmax
K∈K

R(ŷ, y) where ŷ = ℓ(x,K). (1)

3 RETRIEVAL-AUGMENTED THOUGHT PROCESS

In this section, we first use formal language to define the retrieval-augmented thought process as an
MDP in Sec. 3.1; we then introduce Monte-Carlo Tree Search as an efficient and effective planning
algorithm to solve the MDP in Sec. 3.2; finally, we discuss practical implementation choices of the
scoring model in MCTS in Sec. 3.3.

3.1 MULTI-STEP THOUGHT GENERATION AS A MARKOV DECISION PROCESS

Figure 2: Modeling the thought process. Each thought
is generated from previous thoughts and/or documents,
effectively creating a graph. The planning policy control-
ling the construction of this graph is detailed in Figure 3.

Formally, we define the multi-step thought gen-
eration as a Markov Decision Process (MDP),
denoted asM = (S,A, P, r,X , T ). S is the
state space. In our context, the state space is
the space of thought process — the current
reasoning graph leading to the answers. A
state s is composed of previous thoughts ϕ
and previous actions. A is the action space;
in our context, the action space contains all
possible combinations of thoughts in the cur-
rent thought process st. For ease of nota-
tion, any external document K is also con-
sidered to be a thought. P is the dynamics,
in our context, the transition dynamics is
known and instantiated as feeding the com-
bined thoughts to a properly prompted LLM
ℓthought to generate a new thought, i.e., st+1 =
(st, at, ϕt+1) with ϕt+1 = ℓthought(at). R is
the reward function that evaluates the final an-
swer. We denote the query x as the initial
thought ϕ0 = x (hence the thought process
also initializes with s0 = x). Therefore, the query distribution X is the initial state distribution. T is
the problem horizon — the maximal number of reasoning steps.

Starting the query s0 = x, an external policy π : S 7→ A determines whether the LLM continues to
develop the existing thought with either external knowledge or another existing thought, i.e., a0 =
π(s0). Then, the LLM ℓthought transits the thought process (state) to s1 = (s0, a0, ϕ1) with ϕ1 =
ℓthought(a0), and an action a1 will be generated by a1 = π(s1), consequently, we have s2 =
(s1, a1, ϕ2) with ϕ2 = ℓthought(a1), a2 = π(s2), ... Such a thought process terminates until the
maximal reasoning timestep T is reached, and the final thought ϕT = ℓthought(aT−1) will be used to
generate the final answer of the initial query: ŷ = ℓout(x, ϕT ), where ℓout denotes a frozen LLM.
The reward function R provides an episodic scalar feedback only at the end of a thought process:
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rT = R(ŷ, y), and rt<T = 0. In our work, we use sπ = (ϕ0, a0, ϕ1, a1, ..., ϕT ) to denote the above
thought process generated with policy π, and consider the policy optimization problem:

π∗ = argmax
π

E(x,y)∼(X ,Y),ŷ∼sπ [R(ŷ, y)]

3.2 PLANNING WITH MONTE CARLO TREE SEARCH

Given the vast action space in the above problem and the fact that the system dynamics model (i.e., the
thought generation LLM ℓthought) is accessible during inference, we choose to use Monte Carlo Tree
Search (MCTS) (Coulom, 2007; Browne et al., 2012) for effective and efficient decision optimization.
MCTS explores the tree of decisions and returns the best action found. In our case, we use MCTS
to build the graph of thoughts and documents. Guided by our scoring system, MCTS realizes the
trade-off between exploiting the best thought and exploring other thoughts. In the tree-search, the
root ϕ0 is the initial query x and each node is a thought ϕ. The children of a given thought are the
thoughts generated from it. The 4 key steps of MCTS are Selection, Expansion, Simulation, and
Backpropagation. Figure 3 illustrates one step of the MCTS decision process by summarising the
action of these four functions. This step is repeated until the answer is found or we reach the thought
process decision step limit T .

Documents
<<SYS>>You are a thought generation

agent. Given previous THOUGHTS
and factual DOCUMENTS, generate a
new thought that gathers the relevant

elements required to answer the
following QUESTION. <<SYS>>

THOUGHTS :

DOCUMENTS :

QUESTION :

Prompt

Scoring
model

Documents

2. Expansion : First, we use
the scores to select the

thoughts and documents to be
paired with the expanded

thought.

We then prompt a language model
using the selected nodes to generate

a new thought

3. Simulation : 
the scoring

models estimate
the interest of the

new thought

4. Backprogation : we update of the UCT values1. Selection : the next thought to be expanded is
selected by recursively following the UCT formula. 

(To ensure clarity, only a subset
of nodes is represented.)

New thoughts are generated by repating these four steps until we reach the final thought 

Figure 3: One complete step from our MCTS decision process. It is divided into four functions, which
are repeated until we find the answer or the thought process size limit is reached. The Selection, Expansion,
Simulation, and Backpropagation functions are described in section 3.2. Their associated algorithm can be
found in Appendix G.

Selection. In the selection, we decide which thought to be expanded. From the root ϕ0 of our graph,
we explore the graph until finding a thought ϕi that has never been used to generate another thought:
a node without children. The exploration is guided by the Upper Confidence bounds applied to Trees
(UCT) formula (Kocsis & Szepesvári, 2006; Sabharwal et al., 2012). When we meet a node with
children, we choose to explore the child with the highest UCT value. For the ith thought that has
been visited ni times, with a score qi, and whose parents have been visited Ni times, the UCT value

expression with an exploration parameter c is qi
ni

+ c
√

ln(Ni)
ni

Expansion. The thought ϕi selected in the previous step is paired with other thoughts (including
external documents) to generate a new thought. The choice to choose documents or thoughts for the
pairing is decided by the probability pdoc and the scoring model (see section 3.3). Then, the chosen
thoughts and documents are combined with a prompt template (see examples in Appendix B.1) and
given to lthought to generate the new thought.

Simulation. In our case, the simulation function computes the score of the new thought by using one
of the scoring models described in section 3.3.

Backpropagation. This function recursively updates the UCT value of every node that has led to the
new thought. Starting from this new node, it uses the new thought’s score and the updated visit counts
in the UCT formula to modify the UCT value of each parent until the root or documents are reached.

Documents retrieval. As the number of documents in the collection can be very large, we perform
an initial document retrieval step using traditional retriever models Additional retrieval queries are
made when needed. The initial implementation of the framework used Contriever (Izacard et al.,

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

2022a) but other retrieval models, in particular for different modalities (images, tables), can be used
to broaden the applicability of the RATP framework.

3.3 SCORING MODELS

Oracle Score To score the value of each thought, a naive way is to use the QA LLM ℓout, which takes
the query x and any given thought ϕ as inputs and outputs the answer to the question. An oracle score
can be defined by comparing this generated answer to the true answer with the metric score R of the
QA task. However, such a perfect signal is by definition not available at inference time. Therefore,
two scoring models are introduced as proxies of such signals. Details on the implementation and
comparison of the scoring models can be found in Appendix C.

Model-Based Estimation. In the first approach, we propose a model-based method to learn a proxy
reward function Rθ that estimates the oracle scores using a training dataset. Specifically, when
running MCTS on the training data, we would be able to generate an offline dataset that contains
various thought combinations (ϕ(i), ϕ(j)), and whether those thoughts are informative enough to
solve the original query x:

r(i,j) = R(ℓout(ℓthought(ϕ
(i), ϕ(j)), x), y).

Given such an offline dataset D = {ϕ(i), ϕ(j), r(i,j)}(i,j), Rθ can be optimized through

θ ← argmin
θ
||Rθ(ϕ

(i), ϕ(j))− r(i,j)||2 (2)

and used as a proxy of the Oracle score during inference time when we do not have access to the true
answers. Rθ is typically instantiated as an MLP or XGboost model.

Self-critics score. However, acknowledging that such an offline dataset may not always exist. We
also introduce the second approach based on LLM self-critic. In the literature, using an LLM as a
self-criticism agent is widely applied to reflect on a previous LLM answer and improve it (Welleck
et al., 2022; Chen et al., 2023; Gou et al., 2023). It has been reported that LLM can detect their own
mistake when prompted with their previous outputs. Thus, we leverage this ability by asking the
LLM to predict if a thought is accurate and contains all the information to answer the query.

4 RELATED WORK

Table 1: Comparison with Related work. The desiderata laid down in Section 1 are considered. RATP is the
only method that fulfills them all.

Method Guarantee
Privacy

LLM-
Training-Free

Unconstrained
context

Reasoning
Ability

Interpretable

Pre-trained LLM ✗ ✗ ✗ ✗ ✗

Fine-tuned LLM ✗ ✗ ✗ ✗ ✗

RAG ✓ ✓ ✗ ✗ ✗

Self-RAG ✗ ✗ ✓ ✓ ✓

RATP ✓ ✓ ✓ ✓ ✓

Private data and LLM Recent studies have extensively demonstrated the vulnerability of private data
processed during LLM training (Plant et al., 2022; Kandpal et al., 2022; Panda et al., 2024; Carlini
et al., 2023; Zeng et al., 2024a; Kim et al., 2023). The primary issue is the LLM’s memorisation
of data, which cannot be prevented during pre-training (Carlini et al., 2023) or fine-tuning (Zeng
et al., 2024a). This memorisation makes LLMs susceptible to malicious extraction attacks. Since
no method fully prevents this memorisation (Kandpal et al., 2022), the safest approach is to exclude
private data from training datasets and use RAG instead (Zeng et al., 2024b). Despite recognition of
the problem, few solutions have been proposed. To the best of our knowledge, this is the first paper to
propose and benchmark a solution using a private dataset.

Thought Processes as New Prompting Strategies Recent advancements in prompting strategies
have greatly improved the reasoning capabilities of Large Language Models. This progress began
with the Chain of Thought (CoT) approach by (Wei et al., 2023), which breaks down complex
problems into simpler steps, known as thoughts. Building on CoT, subsequent research has focused
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Table 2: Theoretical comparison between RATP and other thought processes with the lens of the Information
Retrieval as Multi-step decision-making problem formalism.

Thought
Process

MDP Characterization
∗

Learning Target
†

MDP Solver

LLM T = 0, A = ∅ π : X 7→ Y Pre-Training

RAG T = 1, A = K π : X 7→ K mink ∈ K||k − x||2

CoT T = 1, A = X̂ π : X 7→ X̂ minx̂ ∈ X̂ ||x̂− x||2

ToT A = [N ] π : X 7→ AT BFS/DFS

GoT A = GraphOPs π : X 7→ AT Graph Pattern
Self-RAG A = K∗ π : X 7→ K∗ LLM Fine-Tuning

RAT T = N , A = K π : X 7→ X mink ∈ K||k − x||2

RATT A = KN π : XN 7→ X mink ∈ K||k − x||2

HippoRAG A = K π : K 7→ K2 Personalized PageRank

RATP A = {K ∪ [N ]}d π : S 7→ A MCTS
∗ RAG: the action is selecting a document; CoT: the action is selecting a prompt from a set of expert demonstration X̂ ; ToT: the action is

selecting from the N generated thoughts; GoT: the action is defined as different graph operators; Self-RAG: the action is selecting the
relevant segments from the retrieved document; RAT: the action is selecting a document for each thought; RATT: the action is selecting a
subset of the documents; HippoRAG the action is selecting a document; RATP: the action is selecting a subset of the external documents
and existing thoughts of size d.

† RAG: the learning target is to prompt the query with external knowledge; CoT: the learning target is a prompting policy that selects the
prompt for each given query; ToT (and GoT): the learning target is to find the reasoning path out of the generated tree (or graph) of thoughts;
RAT: the learning target is modifying a thought; RATT: the learning target is summarising a set of thought; HippoRAG: the learning target
is building the Knowledge Graph; RATP: the learning objective is to find the markovian optimal thought generation paths; therefore, it is
much easier than searching for the thought sequences directly as in ToT and GoT.

on generating, combining, and selecting these thoughts. Notable methods include the Tree of Thought
(ToT) (Yao et al., 2023b) and Graph of Thought (GoT) (Besta et al., 2023), which offer greater
flexibility in thought combination. Similar to our approach, other strategies employ Reinforcement
Learning techniques, such as Monte Carlo Tree Search, to explore the thought space in constrained
reasoning problems like the Game of 24 and the 8-puzzle (Ding et al., 2023). However, these methods
rely heavily on LLM-generated content and are susceptible to hallucination, limiting their use in real
healthcare applications. Therefore, integrating these strategies with information retrieval is essential
for grounding them in reality. Additional presentation and comparison of popular thought processes
can be found in Appendix F.

Pairing Information Retrieval and LLM Integrating Information Retrieval with Large Language
Models significantly enhances the efficiency of accessing and processing vast amounts of information
(Shuster et al., 2022; Ai et al., 2023; Peng et al., 2023). One method involves pre-training LLMs with
IR models like Contriever (Izacard et al., 2022a; Guu et al., 2020; Izacard et al., 2022b). Another
method fine-tunes LLMs with task-specific tokens (Yao et al., 2023a) or adds layers to the model
structure (Hu et al., 2023), though these approaches require significant computational resources and
are vulnerable to extraction attacks. Alternatively, Retrieval-Augmented Generation (Lewis et al.,
2021; Ram et al., 2023) leverages LLMs’ in-context learning abilities to integrate IR data without
extensive additional training, thus avoiding sensitive data leaks. Iterative prompting techniques like
RAT or RATT (Wang et al., 2024; Zhang et al., 2024; Feng et al., 2023; Yu et al., 2023) enhance
their reasoning capabilities by integrating external knowledge from documents in a chain-of-thought
manner and/or with LLM fine-tuning (Asai et al., 2023), addressing the vulnerability of LLMs to
misleading documents (Ren et al., 2023). For the same reason, HipporRAG (Gutiérrez et al., 2024)
uses an LLM preprocessing of the document collection. Table 2 illustrates that the MDP formalism
developed in section 3.1 can analyse and compare all the popular iterative prompting strategies.

Our approach uniquely enhances RAG by safely and accurately handling healthcare-sensitive data,
utilising frozen LLMs to prevent training data leaks. We are the first to propose a method that grounds
a complete thought process, planned via reinforcement learning solutions, in factual documents for
private information retrieval.

4.1 EXPERIMENTAL SETUP

Main experimental setup: private medical datasets We analysed and benchmarked our method
on two real, private, and sensitive healthcare data. First, we consider unstructured EMRs. These
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EMRs have been gathered from 2004 to 2014 at the Partners HealthCare System, Boston, during the
i2b2 project (examples in Appendix B.1). They are paired with the emrQA dataset (Pampari et al.,
2018), which consists of open-ended medical questions based on patient records. These questions
were created in coordination with physicians and medical experts. To evaluate our performance
on open-ended questions, we used the Exact Match metric from SQuAD (Rajpurkar et al., 2016;
Izacard et al., 2022b; Ram et al., 2023). (Details in Appendix B.1.) Second, we focus on discharge
summaries. The EHRQA dataset (Bardhan et al., 2022) contains multiple-choice questions derived
from patients’ discharge summaries from the MIMIC-IV (Johnson et al., 2020) database, which
includes anonymized patient records from Beth Israel Deaconess Medical Center between 2008 and
2019. The questions are categorized into eight types: Treatment, Assessment, Problem, Etiology,
Sign/Symptom, Vitals, Test Results, History, Instruction, and Plan. Each question has been reviewed
and refined by three clinicians. A crucial property of both these datasets is that their access is
controlled preventing its use for LLM training.

Additionnal experimental setup: Open-Domain Question Answering. We add a second experi-
mental setup to highlight the difference between the private and public knowledge settings. For the
latter, we consider the open-domain question-answering task using the Boolq dataset (Clark et al.,
2019). This widely-used dataset consists of closed-ended questions based on Wikipedia common
knowledge. (The analysis of this setting is in Appendix D).

4.2 ANALYSIS

Baselines. In this subsection, our methods are compared against two prevalent zero-shot open-domain
question-answering approaches. The first baseline, LLM (ŷ = ℓout(x)), involves directly prompting
an LLM with the question. The second baseline, RAG (ŷ = ℓout(x, k)), represents the in-context IR
method (Lewis et al., 2021; Ram et al., 2023). Here, the LLM generation process is augmented with
one document k retrieved from the knowledge base by Contriever (Izacard et al., 2022a).

Oracles methods use the oracle scoring system that requires the answers to the questions. As such,
these methods do not apply to answering new questions. They are included to demonstrate the
importance of information retrieval and the potential of our methods with an ideal scoring model.
MCTS oracle is the full method with the oracle score, and MCTS oracle w/o IR is identical but with
the information retrieval function deactivated. The former can generate thoughts from documents and
previous thoughts, while the latter can only access previous thoughts (K = ∅).

RATP. Two versions are introduced : MCTS self-critic and MCTS estimation are our MCTS
algorithms using the self-critic and offline model-based estimation scores, respectively. Tree-of-
Thought with IR (ToT \w IR) is an enhanced version of Tree-of-Thought (Yao et al., 2023b) which
integrates Information Retrieval as delineated in Figure 2.

Table 3: Ablation study for the Private Knowledge Question Answering task (emrQA dataset). We report
the Exact Match accuracy (%). The margins of error are computed by bootstrapped student-t tests (95%). The
thought process size is 25.

Baseline Oracle RATP
LLM RAG MCTS oracle

w\o IR
MCTS
oracle

ToT \w IR MCTS
self-critic

MCTS
Estimation

34 (±0.6) 24 (±0.4) 52 (±0.4) 88 (±0.3) 64 (±0.7) 67 (±0.5) 71 (±0.5)

Even without access to patient records, the LLM correctly answers 34% of the time by leveraging
its prior knowledge of standard prescriptions. For instance, when asked, ”What is the drug strength
of aspirin prescribed to the patient?”, the LLM correctly infers the default dosage of 1mg. Table
3 indicate that adding a document to the prompt (RAG) leads to worse performance. This aligns
with previous studies showing that RAG can be unreliable, depending on the dataset, retriever model,
and knowledge base (Ram et al., 2023; Yoran et al., 2024). We identify two main reasons for this
performance decline: current retriever models often fail to find relevant documents in large knowledge
bases (Yao et al., 2023c), and LLMs can be confused by retrieved information, particularly when
it is irrelevant or noisy (Yoran et al., 2024). Takeaway: Our experiment confirms that adding
information in context can reduce LLM performance.

The enhanced performance of our methods, underscores that our thought process can guide
an LLM from an initially incorrect answer to a correct one : E(X ,Y)[R(ℓout(s0), y)] ≥
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E(X ,Y)[R(ℓout(sT ), y)]. This phenomenon is evidenced by the increase in accuracy correlating
with the size of the thought process, as depicted in Figure 4: the LLM’s performance improves after
processing multiple documents and generating several thoughts. Notably, the thought process not
only allows the viewing of more documents compared to other methods but also strengthens resilience
against both unsuccessful information retrieval and misleading documents, as exemplified in Figure
16 in the appendix. In this example, our MCTS method is not misled by irrelevant document 1 and 3
and eventually succeeds in extracting pertinent information from note 2. Takeaway: the knowledge
provided by RATP increases substantially the number of correct answers.

Figure 4: Evolution of the accuracy and the number of
LLM queries on the emrQA dataset. When we increase the
thought process size (i.e. the number of thoughts generated),
the accuracy increases but the number of LLM queries too.

Even with the oracle score, RATP is not
flawless. Incorrect answers occur when the
LLM cannot revise its stance within the
thought process size limit, T . This happens
if all retrieved documents are irrelevant, the
LLM cannot use them effectively, or it fix-
ates on an incorrect answer. The limit T is
set to prevent excessively long inferences.
As shown in Figure 4, the number of LLM
queries increases linearly with the number
of thoughts, leading to significant financial
or time costs for extensive thought processes.
Typically, our methods find the correct an-
swer within 20 thoughts, as indicated by the
accuracy plateau in Figure 4. In contrast,
the oracle score accuracy rises to 88% with
25 thoughts. Takeaway: LLMs may need
an excessive number of thought generation
steps to pivot, exceeding an acceptable cost.

Ablation study: Comparing the MCTS or-
acle with and without IR shows that access
to retrieved documents accounts for a 37%
increase in final performance. Surprisingly, a similar experiment in an Open-Domain public data
setting (see Appendix D) also demonstrates that IR boosts performance. This result is unexpected, as
the LLM has been extensively trained on Wikipedia articles, suggesting little benefit from retrieving
documents from this source. However, this can be explained by the imperfect memory of LLMs
(Delétang et al., 2023) and their propensity for hallucination (Zhang et al., 2023). It is widely recog-
nised that prompting LLMs with relevant factual documents helps reduce hallucinations (Yu et al.,
2023; Gao et al., 2024), thereby enhancing performance. In Appendix E, we present an additional
experiment demonstrating the impact of IR on improving the general thought quality. Takeaway: IR
improves performance, even when the LLM has been trained on the knowledge base.

Moreover, we use the ToT with IR method to highlight the performance gains brought by the MCTS
algorithm. Unlike standard thought processes, which solely follow the scoring model’s guidance,
MCTS optimizes an exploration-exploitation trade-off modelled by the UCT equation. This allows
it to develop poorly scored thoughts as well, leading to two interesting properties: a) Robustness
against scoring system flaws, as a thought mistakenly flagged as irrelevant has a non-zero probability
of being developed. b) It fosters more ”creativity” by allowing concurrent and/or connected lines of
thought. Takeaway: the MCTS algorithm demonstrates superior performance compared to other
thought process algorithms.

Table 3 demonstrates the effectiveness of the offline model-based estimator. It matches the perfor-
mance of the self-critic score while being significantly faster, requiring fewer LLM queries compared
to its self-critic equivalent (see Figure 4).

High transparency. Finally, we wish to highlight the high transparency of RATP. As demonstrated
in the inference example in Figure 16, for each answer provided by our system, the entire thought
process sπ = (ϕ0, a0, ϕ1, ..., ϕT ) is accessible. The final thought ϕT provides the rationale behind the
generated answer, and additionally, we can trace the source of the information through the retrieved
documents.
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4.3 BENCHMARK

Self-RAG(Asai et al., 2023). This method relies on teaching the model to use a new ¡retrieval¿ token
and a self-reflection thought process to assess the relevancy of the retrieved documents. Self-RAG
resorts to LLM fine-tuning but can be evaluated on documents outside of its training corpus.

RATT(Zhang et al., 2024). This method generates multiple thoughts from the initial query, retrieves
a document for each thought, and combines all documents and thoughts into a prompt to generate the
final thought. This process iterates multiple times.

Table 4: Benchmark of LLM and Information Retrieval pairing methods on both Public and Private
dataset. We report the binary accuracy (%) for the BoolQA dataset and the Exact Match accuracy (%) for the
emrQA dataset and EhrQA datasaet. The margins of error are computed by bootstrapped student-t tests (95%).
Additional details on the implementation of each method are given in Appendix B. This experiment has been
conducted with Mixtral8x7B deployed locally.

Dataset LLM RAG Self-RAG RATT RATP
Private (emrQA) 34 (±0.6) 24 (±0.4) 35 (±0.5) 28 (± 0.9) 71 (±0.5)
Private (EhrQA) 48 (± 0.7) 56 (± 0.7) 48 (± 0.7) 56 (± 1.4) 60 (± 0.7)
Public (BoolQA) 66 (±0.8) 67 (±0.6) 67 (±0.7) 71 (±1.1) 72 (±0.8)

Difference between the private and public knowledge setting : This benchmark highlights the
unique aspects of the private knowledge setting, which is rarely studied. As expected, the LLM
baseline performance is much lower for questions requiring knowledge it hasn’t been trained on,
emphasising the importance of IR in the private setting. Additionally, the LLM shows greater
confusion with RAG in the private setting, indicated by a larger drop in accuracy. We interpret this
as a greater reliance on retrieved documents in the private setting, where the LLM cannot rely on
its prior knowledge. This increased confusion may also be due to out-of-distribution formatting,
such as the technical jargon, abbreviations, and layouts of EMRs and discharge summaries, which
differ significantly from the text the LLM has been trained on. Similarly, Self-RAG performs poorly
because the documents to be retrieved and processed differ greatly from its fine-tuning dataset. While
Self-RAG realises multiple thought processes of depth 1, RATP performs one deep thought process
which provides additional context and enables queries on information that might not be explicitly
stated in the initial question. In RATT, queries to retrieve documents are derived from the same
initial thought, leading to poor diversity and fewer different documents. Additionally, While RATP’s
scoring model filters the noise, RATT’s aggregation method retains it, corrupting the thought process.
Finally, we observe that RATP’s final accuracy is similar in both settings, suggesting that performance
depends more on the reasoning abilities of the LLMs than on the knowledge setting, as shown by a
comparison of different LLM sizes in Appendix I. This benchmark validates the effectiveness of our
approach on both public and private data. For the Question Answering task on Electronic Medical
Records, RATP a 35% improvement in accuracy.

Limitations. One significant limitation of our work is the difficulty in obtaining publicly available
large-scale datasets that are guaranteed not to have been part of the LLMs’ training set. This
increasingly challenging condition poses a problem for machine learning researchers aiming to
conduct research on LLM in Healthcare. Furthermore, while the performance of our two scoring
systems is similar, each has distinct limitations. The self-critic score is computationally intensive,
effectively doubling the number of LLM calls required (see Figure 4). In contrast, the estimation score
is more computationally efficient but requires a training dataset composed of questions and samples
from the knowledge base. We also want to clarify that our focus is on one specific privacy concern:
sensitive data leakage from the training set. Other threats, such as interception of retrieved data
(Zeng et al., 2024b), profiling individuals (Staab et al., 2024), or contextual privacy (Mireshghallah
et al., 2023), are beyond the scope of this paper. Finally, while our method may appear complex with
several components, it is actually easy to apply and generalise to new datasets. We provide a guide
for practitioners in Appendix H, demonstrating that the method only requires two steps and minimal
tuning to be implemented

5 CONCLUSION

In this work, we introduced RATP, a new framework that pairs LLMs with private information
using a Markovian multi-step decision process. Our method meets the four criteria outlined in the
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introduction for such approaches. 1. It does not rely on LLM training, ensuring that patient-sensitive
data will not be leaked. 2. By dividing the retrieval into a multi-step process, it can handle knowledge
well beyond its context window size. 3. It leverages MCTS to enhance the self-reflection and
self-critique abilities of LLMs across many documents, making it robust to unsuccessful or noisy
retrievals. This allows it to be twice as performant as other methods in navigating real EMRs. 4. The
entire process occurs in natural language, enabling each step to be verified by the practitioner.

RATP enables the safe integration of new sensitive private knowledge into LLMs. This inclusion of
private data, previously excluded due to ethical or safety reasons, facilitates personalised applications
of LLMs tailored to each patient’s medical context. Moreover, its transparent reasoning across
multiple documents of diverse natures and origins supports multifactorial decision-making, which
is crucial for complex medical scenarios: additional healthcare applications enabled by RATP can
be found in Appendix A. Furthermore, by eliminating the need for extensive training, our approach
reduces barriers to LLM utilisation, making them more accessible for various scenarios, especially
for organisations, institutions, or countries with limited resources.

Future work: Applying the RATP framework directly to other data modalities, such as images
or tables, using multimodal LLMs and alternative retriever models would broaden the method’s
applicability. Table 3 highlights the importance of guiding thought generation with a scoring model
trained on medical data. Thus, developing robust scoring models using larger fine-tuned LLMs, while
preserving data privacy, is a significant research direction. Moreover, clinicians might still be the best
scoring model, making a ”human in the loop” approach particularly valuable. This method, being
transparent and providing reasoning steps in natural language, is well-suited for such an approach.

Ethics Statement: Given the medical context, the use of LLMs must be carefully regulated and
validated to avoid errors and ensure patient safety. To address this, we implemented two safeguards:
(1) A multidisciplinary team of clinicians from various specialties and countries supervised the work
to ensure adherence to healthcare best practices. (2) In Appendix J, we identified and examined
potential biases in the data and LLM output across different subgroups, with no significant biases
detected.

Reproducibility Statement: The methodology is detailed in Section 3.2. Code and instructions for
accessing datasets (emrQA, EHRQA, and BoolQ) are provided in the supplementary materials. These
datasets are publicly available for research purposes. Additional experimental details, including
prompts and implementations of baselines and models, are presented in Appendices B and C. A guide
to practitioners is included in Appendix H to help apply the method to new datasets.
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Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree search. In H. Jaap
van den Herik, Paolo Ciancarini, and H. H. L. M. (Jeroen) Donkers (eds.), Computers and Games,
pp. 72–83, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.
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A LARGE LANGUAGE APPLICATIONS IN HEALTHCARE ENABLED BY RATP

Table 5: Examples of current healthcare issues that could be addressed using large language
model applications with access to private and sensitive data. RATP enables such applications.

Healthcare Problem Usecase for LLM Required Private
Data

Reference

The administrative burden
of documentation, e.g.

discharge letters, requires
significant physician time

(Becker et al., 2010))

LLMs can rapidly summarize
information on a patient’s

history and treatment

EHR data, patient
name, date of birth,

address etc.

(Thirunavukarasu
et al., 2023;
Clusmann

et al., 2023;
Becker et al.,

2010)

Language and knowledge
barriers between clinicians
and patients are difficult to
overcome due to limited

time or skills

LLMs can translate medical
documents into different

languages or from medical
terminology to plain language

Medical records,
discharge letters, and

other documents, which
often contain personal

patient information

(Zaretsky
et al., 2024;

Thirunavukarasu
et al., 2023)

To discuss a challenging
case, clinicians often

require a partner.
Colleagues with necessary

expertise are rarely
unavailable ad hoc

Using the encoded medical
knowledge, access to medical
research material, and patient
data, LLMs can iteratively and
on-demand engage in informed
discussions with clinicians and

augment medical reasoning

EHR data including but
not limited to

laboratory results,
reports, personal

characteristics of the
patient (e.g., age,

sex,. . . ), medication etc.

(Lee et al.,
2023a)

Pre-screening of patients
for clinical trials

LLMs are able to extract patient
data, such as demographic

information, comorbidities, and
treatments, to determine if they
are eligible to be included in a

clinical trial on trial
inclusion/criteria.

Medical health records,
demographic data,

comorbidities, clinical
trial selection criteria

and protocols

(Idnay et al.,
2021)

Discovering and exploring
clinical phenotypes

Phenotyping patients with
postpartum haemorrhage (PPH)

using discharge notes from
electronic health records
Identifying these granular

concepts accurately allows the
development of interpretable,

complex phenotypes and
subtypes.

Clinical notes,
discharge summaries

(Alsentzer
et al., 2023)

Efficient triage through
patient profile
summarisation

These findings suggest that
LLMs could accurately identify

higher-acuity patient
presentation using data extracted
from patients’ first Emergency

Department documentation.

Clinical documentation,
medical records

(Williams
et al., 2024)

Clinical prediction Predicting hospital length of
stay, in-hospital mortality, and

hospital readmissions

Unstructured Clinical
Notes (site-specific

data)

(Jiang et al.,
2023)

B EXPERIMENTAL DETAILS

For all our experiments, the large language model used is Mixtral8x7B (Jiang et al., 2024) locally
deployed on 4 A100 GPU accelerators with 80GB VRAM. The batch of document retrieval from
the knowledge base is performed by a Contriever model (Izacard et al., 2022a) in its standard
configuration. This model has been pre-trained on CC-net and English Wikipedia.
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B.1 PRIVATE KNOWLEDGE: UNSTRUCTURED ELECTRONIC MEDICAL RECORDS

To realise our experiment on private knowledge, we use the question with fine-grained answers from
the emrQA (Pampari et al., 2018) dataset. These are questions of the type “What is the dosage of
—medication—?”. We only keep the questions whose answers are of the form ”X mg” with X a
number. The 4436 questions filtered are split into a training set (3110 questions) and a test set (1000
questions). The knowledge base for this dataset is composed of unstructured electronic medical
reports which are gathered in patient records. For each patient, we re-split this patient record (Figure
5 provides examples) into 100-word chunks. During the retrieval step, the patient associated with the
query is identified and the retrieved documents are these 100-word passages from its medical record.
For this experiment, we directly embed the initial question as the input for Contriever.

Discharge Diagnosis:
Anterior left rib fractures [**2-6**]
Left pneumothorax
Bilateral pulmonary contusions
Left zygomatic arch fracture
Left lateral pterygoid plate fracture
Left lateral orbital wall fracture
Left minimally displaced orbital floor fracture
Bilateral lateral wall maxillary sinus fractures
Left ear skin avulsion

Physical Exam: VS: 95.6 90 138/77 18 98
GA: alert and oriented x 2, no acute distress
CVS: normal S1, S2, no murmurs
Resp: mild bibasilar crackles
[**Last Name (un) **]: soft, nontender, nondistended
Ext: warm, no edema, well perfused

Pertinent Results:
[**2113-1-22**] 01:23PM GLUCOSE-107* LACTATE-2.5* NA+-143 K+-4.6 CL–95* TCO2-31*
[**2113-1-22**] 01:21PM PT-13.1 PTT-24.1 INR(PT)-1.1
[**2113-1-22**] 01:21PM PLT COUNT-201
[**2113-1-22**] 01:21PM WBC-9.1 RBC-4.44* HGB-15.3 HCT-43.1 MCV-97 MCH-34.7* MCHC-35.8* RDW-13.1
[**2113-1-22**] 01:21PM ASA-NEG ETHANOL-NEG ACETMNPHN-NEG bnzodzpn-NEG barbitrt-NEG tricyclic-NEG
[**2113-1-22**] 01:22PM LIPASE-74*
[**2113-1-22**] 01:22PM UREA N-17 CREAT-1.1
[**2113-1-26**] 03:00AM BLOOD WBC-7.4 RBC-2.60* Hgb-9.0* Hct-24.7* MCV-95 MCH-34.8* MCHC-36.7* RDW-14.8 Plt
Ct-135*
[**2113-1-26**] 03:00AM BLOOD Plt Ct-135*
[**2113-1-25**] 03:10AM BLOOD Glucose-84 UreaN-11 Creat-0.8 Na-137 K-3.0 Cl-102 HCO3-29 AnGap-10
[**2113-1-25**] 03:10AM BLOOD Calcium-8.1* Phos-2.6* Mg-2.1
[**2113-1-22**] CT SINUS/MANDIBLE/MAXIL: 1. Numerous facial fractures as enumerated before corresponding most closely to
a Le Fort type III on the right and anterior,lateral and superior walls of the maxillary sinus on the left including the inferior orbital rim.
2. Hemorrhage contained within the maxillary sinuses. 3. Chronic non-displaced fracture of the tip of the dens.
[**2113-1-21**] CHEST (PORTABLE AP): Small right apical pneumothorax at the level of the second posterior interspace, slightly
smaller than on [**3-26**]. Small right pleural effusion has probably developed. Lungs low in volume but clear. Moderate
cardiomegaly unchanged. Healed right lower and lateral rib fractures.

Service: SURGERY
Allergies: No Known Allergies / Adverse Drug Reactions
Chief Complaint: left hemopneumothorax, bilateral pulmonary contusions, right rib fractures, multiple facial fractures, degloving
injury to ear
Major Surgical or Invasive Procedure: left chest tube placement
History of Present Illness: 60M was struck by his car after attempting to do some mechanical work on it. Car rolled over him and
dragged him several feet. He was brought to the ED by ambulance. He had concerns of RUQ pain, chest pain and a laceration to
the head. He denied loss of consciousness. A chest tube was placed in the ED for hemopneumothorax. Following the chest tube
placement, the patient had an episode of hematemesis and hypotension, but this resolved spontaneously. At baseline the patient is
functional at home and take no anticoagulant medications. He suffered multiple facial fractures, an ear laceration, bilateral pulmonary
contusions, multiple right sided rib fractures and a dens fracture.

Figure 5: Examples of Unstructured Electronic Medical Records. For privacy reasons, we present
simulated EMRs resembling the actual dataset.

The prompts used to build the thought process in this experiment are the following.

The MCTS is configured with the following hyperparameters: exploration rate:
√
2, pick document

probability: 1, thought sample size: 5, maximum thought process size: 25, score threshold to stop the
thought process : (oracle: 0.5, self-critic: 0.49, model-based estimation: 0.9), retrieved document
batch size: 5.
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Using the given CONTEXT,
answer

the following QUESTION. The
unit

is in mg. Only output a
number.

Exemples of answer: 30/900/10

CONTEXT : "{context}"

QUESTION : "{query}"

OUTPUT :

Figure 6: This prompt template is employed with
the final thought to obtain the answer to the ques-
tion. This is the same prompt template used in
the RAG baseline.

Answer the following QUESTION.

The unit is in mg.
Only output a number.

QUESTION : "{query}"

OUTPUT :

Figure 7: This prompt template is employed to
obtain the answer to the question when no ad-
ditional context is provided. This is the prompt
used in the LLM baseline.

Table 6: Complete results for the Self-RAG method in both settings.
Method Public dataset (BoolQ) Private dataset (emrQA)

Self-RAG (long) 67 20
Self-RAG (short) 57 35

B.2 PUBLIC KNOWLEDGE : BOOLQ DATASET

The experiments on public knowledge have been realised by running our methods on the validation
split from the Hugginface Boolq dataset. The knowledge base includes all the articles from the
English Wikipedia. To create this database, we filter the most recent Wikipedia dump (December
2023) to only keep the body of the articles. Then, we merge and split these articles to create 500-word
chunks of text. Thus, a retrieved document in this experiment is one of this 500-word passage.
Moreover, the embedded query used as input to Contriever to retrieve a new batch of documents is
the LLM’s output from the ”query” prompt template with the best-scored thought (see Figure 10).

The MCTS is configured with the following hyperparameters: exploration rate:
√
2, pick document

probability: 0.5, thought sample size: 5, maximum thought process size: 10, score threshold to
stop the thought process : (oracle: 0.5, self-critic: 0.49, model-based estimation: 0.21), retrieved
document batch size: 2.

B.3 ADDITIONAL METHODS

Self-RAG: the Self-RAG implementation relies on the official Self-RAG codebase. The largest
model offered by the authors (Llama-13B) is being used on both our public and private dataset. The
two settings proposed by the self-RAG authors (short-form and long-form text generation) have been
tested with the default parameters. Only the best results are reported in Section 4.3. Full results are
presented in table 6.

ToT w\ IR: We use standard hyperparameters that match the size of our thought processes (25) for
ToT: step limit: 6, breadth limit: 2, size limit: 2. Pdoc that controls the integration of information
retrieval is set to 1 for EmrQA and 0.7 for BoolQ.
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As a thought generation agent,

your task is to analyze
previous

THOUGHTS and a PATIENT RECORD.

From this information,
generate

a new thought that compiles
relevant elements needed to
answer the following QUESTION.

Focus on identifying a
quantity,

expressed in milligrams (mg),
as

it appears in the PATIENT
RECORD

or the THOUGHTS, before
considering the dosage.

THOUGHTS : "{thoughts}"

PATIENT RECORD : "{documents
}"

QUESTION : "{query}"

RESPONSE :

Figure 8: This prompt template is employed to
generate new thoughts for the amrQA experi-
ment.

You are an agent that rates
the

information contained in
CONTEXT.

If the information contains
in

the CONTEXT is accurate and
you

have all the information
required

to answer the QUESTION, you
output 1. If the CONTEXT is

not
accurate or you don’t have

all
the information required to
answer the QUESTION, you

output 0.

QUESTION : "{query}"

CONTEXT : "{thought}"

OUTPUT NUMBER :

Figure 9: This prompt template is employed by
the self-critic scoring model.

C SCORING MODELS

C.1 SCORING MODEL IMPLEMENTATION

Training of the offline model-based score. For both datasets the method to build a dataset and train
the score estimation model is similar. We collect complete thought processes by answering questions
from the training split of the dataset with our MCTS-oracle method. Thus, we are able to link every
thought ϕt collected with its parents i.e. the thoughts or documents that have been used to generate
ϕt. The parents of ϕt are indicated by the action at−1 = (ϕt,1, ϕt,2) because ϕt = ℓthought(at−1).
As the thoughts processes have been generated by the MCTS-oracle policy, we also have the true
score R(ℓout(ϕt), xi), yi) = R(ℓout(ℓthought(ϕ

t,1, ϕt,2), xi), yi) = r(t,1,t,2). Hence, we effectively
have a dataset D = {ϕ(i), ϕ(j), r(i,j)}(i,j).
In practice, in the dataset D, the feature vectors are the concatenations of the embedded versions
of thoughts ϕ(i) and ϕ(j). These embeddings are generated by Contriever (Izacard et al., 2022a).
The size of the dataset D is typically around 4000 samples. We trained gradient-boosting or MLP
models on these datasets to perform the score estimations. The thresholds to compute the accuracy
are chosen to maximize the precision on the training set. Finally, they are tested on the test split of
their respective dataset.

Self-critic scoring model. The self-critic method entails prompting the LLM to reflect on its previous
outputs. In our case, we combine the initial question and a given thought with a prompt template (see
Figure 9) to query a frozen LLM about the accuracy and adequacy of the thought.
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You are an agent that
formulates

a document query. Given
previous

THOUGHTS, formulate a query
in

English to retrieve the
relevant

information required to
answer the

QUESTION.

THOUGHTS : "{thoughts}"

QUESTION : "{query}"

QUERY :

Figure 10: ”This prompt template is employed
to generate queries to retrieve documents with
Contriever.”

You are a thought-generation
agent. Given previous

THOUGHTS
and factual DOCUMENTS,

generate
a new thought that gathers

the
relevant elements required to
answer the following QUESTION.

THOUGHTS : "{thoughts}"

DOCUMENTS : "{documents}"

QUESTION : "{query}"

RESPONSE :

Figure 11: This prompt template is employed to
generate new thoughts for the Boolq experiment.

Using the given CONTEXT,
answer the following True
or False QUESTION. If the
answer is YES output 1. If
the answer is NO output 0.

CONTEXT : "{context}"

QUESTION : "{query}"

OUTPUT NUMBER :

Figure 12: This prompt template is employed
with the final thought to obtain the answer to the
question. This is the same prompt template used
in the RAG baseline.

Answer to the QUESTION. If
the answer is YES output 1.
If the answer is NO output 0.

QUESTION: "{query}"

OUTPUT NUMBER :

Figure 13: This prompt template is employed
to obtain the answer to the question when no
additional context is provided. This is the prompt
used in the LLM baseline.

In our framework, the LLM is constrained to respond with either 0(indicating the response is
insufficient or inaccurate) or 1 (indicating adequacy and accuracy).To derive a more nuanced self-
critic score, we examine the relative softmax probabilities assigned to the tokens “0” and “1” by the
LLM. The self-critic score is calculated using the formula:

Self-Critic Score =
Softmax Score of Token 1

Softmax Score of Token 1 + Softmax Score of Token 0
. (3)

C.2 SCORING MODEL COMPARISON

As detailed in section 3.3, we proposed two different scoring models to estimate the potential of the
thoughts. These models should predict the oracle score which is not available at inference time. Thus,
to assess the performance of these scores, we answer a subset of queries from the Boolq test set using
our MCTS with the oracle score as the policy π. By doing so, we generate a set of pairs (question,
thought-process) : {xi, sπ,i}. For every generated thought of these thought processes, we compute
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its score using the two scoring models. Finally, we compare how well these models predict the oracle
score in Table 7.

In Table 7, it is evident that the model-based estimators outperform the self-critic model. The main
reason for this disparity is that the estimation score model is specifically trained for this task while
the self-critic score prompts a frozen LLM.

However, we also want to highlight that the weak performance of the self-critic model can be
explained by its over-confidence. As depicted in Figure 14, the distribution of self-critic scores is
more skewed towards 1 (indicating confidence that the thought contains the required information to
answer the query) compared to the oracle score, which is skewed towards 0 (suggesting the thought
is inaccurate or lacks information).

Figure 14: Histograms of Score Distributions. Each scoring system’s score value is on the horizontal
axis, and the vertical axis is the number of samples for the value. The dashed lines correspond to the
thresholds used to compute the accuracy .

Table 7: Comparison of Scoring Models. These scoring models predict the oracle score for each
thought from multiple runs of our MCTS method. The queries are from the Boolq test set, and
we retrieved documents from Wikipedia. Accuracy is computed using thresholds computed on the
training set (0.9 for self-critic, 0.21 for the model-based estimation).

Models Self-critics Estimation
MSE 0.60 0.12

Accuracy 42% 73%

The unbalanced distribution of oracle scores is a consequence of our MCTS implementation: we stop
the generation of the thought process sπ = (ϕ0, a0, ϕ1, a1, ...ϕT ) when the oracle score indicates
that a thought ϕT has been generated which successfully answers the query. Therefore, in each run,
only the last thought ϕT receives a high score, while preceding thoughts ϕ0, ϕ1, ..., ϕT−1 that led to
this final thought – either partially answering the query or being irrelevant – receive low scores.

However, if using LLMs as self-critics causes hallucinations in evaluating thoughts, the self-critic
performance should improve with higher quality LLMs (more parameters). To verify how the quality
of the LLM impacts the self-critic score’s tendency to hallucinate and affects RATP’s performance,
we experimented with GPT-3.5-turbo and GPT-4, which are stronger general-purpose LLMs known
to suffer less from hallucinations. This experiment was limited to the BoolQA dataset, as feeding
sensitive data from emrQA to a non-locally deployed LLM raises ethical issues.

Table 8 supports our conclusion that the performance of RATP improves with stronger LLMs and
fewer hallucinations in acting as self-critics. In addition, if LLMs that are better aligned with humans
yield better results, it shows that leveraging human feedback would be an interesting way of improving
the method.

D ADDITIONAL ABLATION STUDY : PUBLIC KNOWLEDGE SETTING

As seen in Table 9, IR still enhances performance even though the LLM has been trained on the
knowledge base. There are two main differences compared to the private knowledge setting. First,
the limited performance gain from RAG can be attributed to the nature of the retrieved documents,
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Table 8: Comparison of RATP (MCTS self-critic) performance using different LLMs as critic
models. The thought generation LLM is consistently Llama 70B.

Self-critic Model Accuracy
Llama-2 70B 70

GPT3.5-turbo 73
GPT4 81
Oracle 83

Table 9: Ablation study for the Open Domain Question Answering task. This comparison was
conducted on the Boolq test set. The knowledge base was a Wikipedia dump from 2023. We report
the binary accuracy. The margins of error are computed by bootstrapped student-t tests (95%). This
experiment has been conducted with Llama-2 70B.

Baseline Oracle RATP
LLM RAG MCTS oracle

w\o IR
MCTS
oracle

MCTS
self-critic

ToT \w IR MCTS
Estimation

64 (±0.3) 65 (±0.2) 80 (±0.5) 83 (±0.4) 70 (±0.3) 68 (±0.7) 70 (±0.3)

which are Wikipedia articles. Both the retriever model and the LLM have been trained on Wikipedia,
leading to more successful retrievals and better handling of the documents by the LLM. Second, the
performance gain from IR is much lower; the difference for the Oracle method with and without IR is
only 3%, which is expected given the nature of the knowledge base.

E HALLUCINATION EXPERIMENT

To demonstrate the impact of IR (even for public knowledge base), an additional experiments has
been conducted to explicitly quantify the extent of hallucination in the generated thoughts. In these
experiments, we evaluate the quality of thoughts produced by the MCTS+oracle scoring method,
both with and without the integration of IR. The assessment uses the BoolQA test split as the dataset.

To effectively measure hallucination, we establish three proxy scores: A. The oracle score, as defined
in the paper, which pertains to the downstream QA task performance of a frozen LLM prompted
with the generated thought. B. F1 and ROUGE-L similarity metrics, which compare the generated
thoughts with the gold standard paragraphs associated with the queries in the BoolQA dataset.

Table 10: Assessement of the thought quality with and without IR. The frozen LLM used is
Mixtral8x7B.

Metric MCTS Oracle w/ IR MCTS Oracle w/o IR
F1 0.134 0.080

Rouge-L 0.082 0.052
Oracle 0.317 0.255

Table 10 shows that across all these measures, the inclusion of IR in our method demonstrates a marked
improvement in the quality of thought generation. There is a clear indication that IR contributes to
generating higher-quality thoughts with reduced instances of hallucination and enhanced accuracy.

F COMPARISON WITH EXISTING THOUGHTS PROCESSES AND BASELINES

In this section, we contrast different thought processes with their graphical models.
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Figure 15: Comparison with other popular types of thought process

Vanilla LLM for QA The naive approach is to directly query the LLMs for the answers. In this
approach, there is no decision, and the answer is generated with a single-round dialogue with the
LLMs.

Retrieval Augmented Generation (RAG) In RAG, an external document can be used to alleviate
the hallucination of the LLMs. The limitation of such an approach is the length of the document
can be restricted by the context window size. In RAG, the LLMs answer the query within a single
interaction. By formulating RAG as an MDP, the decision is 1-step, and the action can be defined as
selecting the most relevant document form an external database.

Tree of Thought (ToT) In ToT, the thought process is generated in a tree structure with specifically
designed prompts that ask the LLMs to generate multiple thoughts at each timestep. To search over
the generated tree-of-thought structure, either DFS or BFS can be used. Such a search is over the
entire thought generation process, hence can be extremely high-dimensional and computationally
challenging.

Graph of Thought (GoT) In GoT, the thought process is generated as a directional graph. If we
consider the thought generation process in GoT as an MDP, the action space is defined as the graph
operators, such as aggregating or reflecting, and the exploration over such actions is conducted by
LLMs.

RATP in RATP, we solve the decision-making problem with an external planning policy learned
with MCTS. Moreover, RATP has a more general State space where external documents are also
considered to be thoughts. In addition, RATP can work with model-based return estimation such
that in inference time the value of thoughts can be effectively estimated with light machine learning
model — without using LLMs for self reflection.

G MONTE-CARLO TREE SEARCH IMPLEMENTATION

Algorithm 1 Overview of the MCTS algorithm that builds our thought process. The algorithms
of the functions Selection, Expansion, Simulation and Backpropagation can be found in section G.

Input: query
Initialization : documents,thoughts = [], [query]
while not thoughts[-1].is terminal() do

sThought = Selection(thoughts[0])
nThought = Expansion(sThought)
score = Simulation(nThought)
Backpropagation(nThought, score)
thoughts.append(nThought)

end while
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Algorithm 2 Selection
Input: thought
if thought.is leaf() then

Return thought
else

Selection(maxt[t.UCT |t ∈ thought.children])
end if

Algorithm 3 Expansion
Input: sThought
Initialization : r = random float in [0,1[
if r > pDocument then

if len(documents) = 0 then
documents = RetrieveDoc(sThought)

end if
nThought = LLM.generate([sThought, documents.pop(0)]
sThought.children.append(nThought)

else
pThought = SampleFromExistingThoughts(1)
nThought = LLM.generate([sThought, pThought])
sThought.children.append(nThought)
pThought.children.append(nThought)

end if
Return nThought

Algorithm 4 Simulation
Input: nThought
score = ScoringModel(nThought)
Return score

Algorithm 5 Backpropagation
Input: nThought, score
parents = nThought.parents
for p in parents do

p.UCT.update(score)
Backpropagation(p,score)

end for
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H GUIDE FOR PRACTIONNER

In this section, we present a concise guide for implementing our method with new datasets.

1. Choosing a Retriever Mode and LLM: In our experiments, we use a pre-trained Contriever [4]
with default parameters from its official GitHub repo. This model has been pre-trained on Wikipedia
but can be used for any textual database as shown by our results on the electronic medical record.
Moreover, as our method is built to be robust to unreliable retrievals, the choice of the retriever model
should have a low impact. Similarly, while we provide the implementation for Llama-2, Gemma, and
Mixtral, our method is directly compatible with any Large Language Models.

2. Customizing Prompts: Our methods use different prompt templates for the different steps (final
answer, thought generation, self-critic). While we provide general-purpose prompts (see Appendix
B.2), you can customize these prompts by incorporating expert knowledge (see Appendix B.1). This
is particularly useful to enforce a desired shape for the output.

3. (Optional) Training an Oracle Score Estimator: The practitioner might want to use an estimator
of the oracle score as a scoring model because it is cheaper in LLM queries with similar performance
(see section 4.2). They would only need to provide a left-out dataset. The methods can then be run
with the oracle scoring method and save every score thought. It will then train a model on such
collected data points. We provide the training script for XGboost models.

4. (Optional) Fine-Tuning MCTS Parameters: To improve the performance of the method on a
particular dataset, it is possible to adapt the values of some parameters.

• Pdoc : the probability of pairing a thought with a retrieved document or another previous
thought.

• c : the exploration parameter in the UCT formula, a higher value will favor the exploration
of unseen thoughts, lower value favors the exploitation of highly scored thoughts.

• Early stopping : There are two mechanisms to stop the thought process. First a threshold,
we stop the process when a thought has a score higher than a given value. Second, a finite
size stops the thought process when a given amount of thoughts is reached.
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I GENERALISATION TO OTHER LARGE LANGUAGE MODELS

This section provides empirical evidence to support that RAPT can use any LLM models by perform-
ing a complete re-run of our experimental setup for Gemma 2B, Llama-2 70B and Mixtral8x7B.

Table 11 findings align with our expectations that larger models exhibit enhanced performance.
Interestingly, the Gemma 2B model, being relatively smaller, does not exhibit significant gains from
the RAPT method on the BoolQA dataset. This observation is attributed to the limitations of smaller
language models in executing complex reasoning processes akin to self-reflection or chain-of-thought,
which are critical for RATP’s efficacy.

Table 11: Comparison of RATP performance for different Large Language Models. Unlike table
8, in this experiment the different LLMs are also used to generate the thought. We report the binary
accuracy (%) for the BoolQA dataset and the Exact Match accuracy (%) for the emrQA dataset.

Large language
Model

Method Private dataset
(emrQA)

Public dataset
(BoolQ)

Gemma 2B
Baseline LLM 10 52

MCTS self-critic 22 52
MCTS estimation 38 40

Llama-2 70B
Baseline LLM 38 64

MCTS self-critic 62 70
MCTS estimation 65 70

Mixtral 8x7B
Baseline LLM 34 66

MCTS self-critic 67 72
MCTS estimation 71 65

J ANALYSIS OF THE DATA BIAS

In this section, we analyse bias in the EMRQA dataset. Our method relies on LLMs, which have
been demonstrated to have biases such as geographic bias (Manvi et al., 2024) or gender bias (Kotek
et al., 2023). From the EmrQA case study, we identify three potential biases:

• Geographic bias: EMRs were collected at Partners HealthCare System in Boston.
• Temporal bias: EMRs were collected between 2004 and 2014.
• Age bias: The dataset excludes EMRs concerning minors.

Additionally, we provide further analysis of the data used regarding two criteria: age and sex (as the
EMRs have been pre-processed to prevent identification, these are the only criteria we can reliably
infer from the data). The results of these analyses are presented in Tables 12 and 13 13 of the
supplementary PDF.

Table 12: Accuracy of the method depending on the sex of the patient. The sex of a subset of
patients was manually retrieved from their EMRs. We report the accuracy (ExactMatch metric) of the
answers to questions related to these patients.

Sex Proportion Accuracy
Male 60% 69% (± 2.6)

Female 39% 64% (± 2.6)

From this analysis, we conclude that the data used for the case study are slightly biased toward aged
males. Some bias can be observed in the method’s accuracy, as the method performs slightly better
for younger patients and male patients.
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Table 13: Accuracy of the method depending on the age of the patient. The age of a subset of
patients was manually retrieved from their EMRs. We report the accuracy (ExactMatch metric) of the
answers to questions related to these patients.

Age Proportion Accuracy
26-54 24% 81% (± 3.2)
55-65 24% 67% (± 3.4)
66-76 24% 60% (± 3.2)
77-90 24% 71% (± 2.5)

K EXAMPLE

Figure 16: Example of question answering by RATP. It has been realized by the self-critic MCTS
method on a question from the Boolq test set.
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