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ABSTRACT

Feature lifting has emerged as a crucial component in 3D scene understanding,
enabling the attachment of rich image feature descriptors (e.g., DINO, CLIP) onto
splat-based 3D representations. The core challenge lies in optimally assigning
rich general attributes to 3D primitives while addressing the inconsistency issues
from multi-view images. We present a unified, kernel- and feature-agnostic for-
mulation of the feature lifting problem as a sparse linear inverse problem, which
can be solved efficiently in closed form. Our approach admits a provable upper
bound on the global optimal error under convex losses for delivering high qual-
ity lifted features. To address inconsistencies and noise in multi-view observa-
tions, we introduce two complementary regularization strategies to stabilize the
solution and enhance semantic fidelity. Tikhonov Guidance enforces numerical
stability through soft diagonal dominance, while Post-Lifting Aggregation filters
noisy inputs via feature clustering. Extensive experiments demonstrate that our
approach achieves state-of-the-art performance on open-vocabulary 3D segmen-
tation benchmarks, outperforming training-based, grouping-based, and heuristic-
forward baselines while producing lifted features in minutes. Our code is available
in the appendix. Our webpage can also be found in the appendix, as well as the
video.

1 INTRODUCTION

Recent advances in splat representations—such as 3D Gaussian Splatting (3DGS) Kerbl et al.
(2023), 2D Gaussian Splatting Huang et al. (2024), and Deformable Beta Splatting Liu et al.
(2025)—have enabled real-time, high-fidelity scene rendering by modeling geometry with compact,
explicit primitives. These splat-based methods combine differentiable projection, alpha composit-
ing, and efficient visibility-aware rasterization to preserve geometric detail and multi-view consis-
tency, supporting applications ranging from style transfer Liu et al. (2024); Galerne et al. (2025) to
scene understanding Guo et al. (2024); Qin et al. (2024); Shi et al. (2024); Jun-Seong et al. (2025);
Cheng et al. (2024); Cen et al. (2025); Dou et al. (2024); Gu et al. (2024); Zuo et al. (2025); Peng
et al. (2024b). Nevertheless, enriching these primitives with detailed descriptors—such as CLIP,
DINO, General ViT, and CNN features—remains challenging due to the inherent difficulty of co-
herently lifting 2D observations into consistent 3D representations.

To address this challenge, recent efforts have focused on lifting per-pixel semantic descriptors (e.g.,
CLIP, DINO) onto 3D primitives, enabling semantic tasks such as segmentation and querying. Ex-
isting semantic feature lifting methods broadly fall into three categories: training-based optimization
Shi et al. (2024); Qin et al. (2024); Zhou et al. (2024); Qiu et al. (2024); Zuo et al. (2025), which
pioneered in embedding semantic onto 3D primitives via multi-view training; grouping-based asso-
ciation Wu et al. (2025); Peng et al. (2024b); Gu et al. (2024); Liang et al. (2024), which improved
efficiency through feature clustering; and heuristic forward methods Guo et al. (2024); Joseph et al.
(2024); Dou et al. (2024); Chacko et al. (2025); Jun-Seong et al. (2025); Cheng et al. (2024), which
prioritize speed and directly project semantic features onto 3D primitives.

While existing methods have achieved promising results, a unified theoretical framework for fea-
ture lifting remains underexplored, especially concerning the heuristic forward methods that bypass
the training process. Building upon prior efforts, we identify several open challenges that limit
generalization and theoretical understanding. First, establishing a rigorous mathematical formula-
tion for defining feature lifting could be beneficial to enable formal analysis, generalization, and
optimization. Second, in the absence of a formal definition, existing approaches currently lack the-
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Figure 1: Overview of our Feature Lifting Framework. Our pipeline lifts dense 2D feature ob-
servations (e.g., MaskCLIP, DINO) onto general 3D splat representations by formulating the task as
a sparse linear inverse problem. The Solver incorporates Tikhonov Guidance to ensure numerical
stability and Post-Lifting Aggregation to filter noisy inputs. The resulting lifted feature parameters
enable high-fidelity downstream tasks, such as open-vocabulary 3D segmentation and localization.

oretical guarantees regarding the quality of the lifted features, leaving some uncertainty about their
proximity to a globally optimal solution. Third, all aforementioned methods are exclusively focus on
”SAM+CLIP” features and ”3DGS” kernels, which may limit generalization across broader settings.
Finally, most prior works do not explicitly account for the inherently noisy nature of collected data,
where multi-view inconsistencies and observational noise can introduce ambiguity. Our formulation
accounts for these challenges through a theoretically grounded linear inverse framework.

Our key contributions are summarized below:

• Propose the formulation of feature lifting as a sparse linear inverse problem, where each
per-primitive descriptor is recovered via a global consistent solution to the systemAX = B

• Prove that, under convex losses and the assumption that our proposed linear system has a
unique solution, our solver admits a provable upper bound on the global optimal error

• Introduce two complementary modules to filter noisy input and stabilize the proposed linear
system: Tikhonov Guidance and Post-Lifting Feature Refinement

• Provide a generalized implementation for feature lifting to multiple primitive kernels and
different dense features

• Achieve state-of-the-art performance on the downstream task of open-vocabulary 3D se-
mantic segmentation.

As illustrated in Figure 1, our framework inputs precomputed splats, sensor parameters, and dense
observations. These are mapped to the feature lifting equation AX = B, where the Splats Sensor
Matrix (A) is derived from the geometry and camera parameters, and the observations form the target
vector (B). To solve for the feature parameters (X), we enhance stability by polarizing alpha val-
ues to encourage diagonal dominance (Tikhonov Guidance) and employ Post-Lifting Aggregation
to discard inconsistent masks. Our formulation is the first to formalize the feature lifting problem as
a general linear inverse problem, and can therefore be applied across diverse splat primitives (e.g.,
3DGS, 2DGS, Beta Splats) and dense feature modalities (e.g., CLIP, DINO, ViT, ResNet features).
Moreover, it establishes a new state-of-the-art on downstream tasks such as open-vocabulary 3D se-
mantic segmentation, outperforming existing training-based, grouping-based, and heuristic-forward
baselines in mIoUs.

2 RELATED WORK

Prior feature-lifting techniques for 3D tasks can be grouped into three families, each with distinct
trade-offs between accuracy and efficiency.
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Joint Training-based Methods—such as LangSplat Qin et al. (2024), LeGaussian Shi et al. (2024),
FMGS Zuo et al. (2025), and FeatureSplats Qiu et al. (2024)—jointly optimize scene geometry
and high-dimensional feature embeddings to directly learn splat-wise semantic descriptors. While
effective, end-to-end optimization over large descriptor sets and primitives can be computationally
intensive, often requiring significant memory and training time. To alleviate resource demands, these
approaches employ descriptor compression (e.g., PCA in LangSplat Qin et al. (2024), quantization
in LeGaussian Shi et al. (2024), and deep auto-encoders in FeatureSplats Qiu et al. (2024)) or reduce
the number of primitives (FMGS Zuo et al. (2025)). These strategies help manage resource usage,
though they may introduce trade-offs in terms of geometric detail or feature precision.

Grouping-based Methods first extract 2D region or instance masks using models such as SAM
Kirillov et al. (2023) and SAM2 Ravi et al. (2024). Following that, each mask is linked to 3D
Gaussians via a lightweight training process. Finally, features are aggregated into 3D either by
additional optimization or by direct unprojection Wu et al. (2025); Peng et al. (2024b); Gu et al.
(2024); Liang et al. (2024); Cen et al. (2025). While these approaches reduce the cost of joint
optimization, they still require one to two hours of scene-specific optimization. Furthermore, these
methods depend on SAM’s per-view masks, while powerful, are designed primarily for instance
segmentation and may not be directly suited for noisy, dense, pixel-wise feature lifting.

In particular, LAGA Cen et al. (2025) uses per-view SAM masks Kirillov et al. (2023) and trains an
affinity model to cluster 3D Gaussian splats, subsequently associating splat clusters across views.
However, this approach assumes that feature variance reflects true semantic differences and is there-
fore view-dependent, introducing a dynamic K-means clustering step that adds complexity and may
increase memory and computational requirements. In contrast, our analysis suggests that such dis-
crepancies often stem from mask inaccuracies—such as one mask isolating only the target while
another over-segments and includes adjacent objects—rather than from genuine viewpoint changes.
Our convex-regularized inverse problem solver suppresses this noise directly—without requiring
additional training, multi-level clustering algorithms, or view-dependent features assigned to one
primitive.

Heuristic Forward Methods-e.g., Argmax Lifting Chacko et al. (2025), Occam’s LGS Cheng et al.
(2024), Semantic Gaussian Guo et al. (2024), gradient-guided splitting Joseph et al. (2024), Coseg-
Gaussians Dou et al. (2024), and DrSplats Jun-Seong et al. (2025)—are analytic and training-free,
offer high efficiency and simplicity. However, they often lack a formal mathematical foundation and
sensitive to noisy inputs. Interestingly, three recent heuristic pipelines—CosegGaussians Dou et al.
(2024), Occam’s LGS Cheng et al. (2024), and DrSplats Jun-Seong et al. (2025)—independently
proposed the identical row-sum weighting rule (row-sum preconditioner), underscoring its broad
practical effectiveness. However, while CosegGaussians applied the row-sum weighting scheme
xi =

∑
j wi,jbj/

∑
j wi,j , it did so without an accompanying theoretical interpretation. Occam’s

LGS later offered a maximum-likelihood interpretation of the same weighted-average rule but pro-
vided no error bound. Dr. Splat simplifies the preconditioner further by summing only the top-k
contributions per primitive, trading off some theoretical rigor for computational efficiency.

None of the three families of methods explicitly address that feature lifting is fundamentally a
sparse, row-stochastic, linear inverse problem subject to noise(has misleading masks) and in-
completeness—i.e., it is singular and requires careful regularization or preconditioning to ensure
stability and obtain a reliable solution approximation. Building on this observation, we model fea-
ture lifting as a linear system, which allows us to derive theoretical bounds for any convex loss and
demonstrate applicability across a range of embeddings (e.g., DINO, ViT, CNN) and splat’s kernels.

3 FEATURE SPLAT SOLVER

In this section, we begin by formally defining the feature lifting problem, enabling the transfer of
various downstream tasks into a mathematical framework. We then establish optimality bounds
for the row-sum preconditioner under the linear inverse problem setting. Finally, we derive two
regularization terms to stabilize the solution in the presence of noise, particularly in downstream
tasks such as lifting SAM-generated masks embedded with CLIP features.

3
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3.1 PROBLEM DEFINITION

3.1.1 SPLATS RENDERING

To justify formulating the Feature Lifting problem as a linear inverse problem, we first review the
core splats rendering process. Most splats primitives, including planar 2D Gaussian Splats Huang
et al. (2024), volumetric 3D Gaussian Splats Yu et al. (2024); Kerbl et al. (2023), and Deformable
Beta Splats Liu et al. (2025), employ a fixed, depth-sorted alpha-blending pipeline. Concretely, for
each viewing ray r, there is a sequence of primitives ordered from front to back, with their respective
contribution to the final color denoted as ωp. The background color is Cb. The rendered ray color
Cr is given below:

ωp = σp

p−1∏
j=1

(
1− σj

)
, σp = αpδpr, αp =

1

1 + e−θ
(1)

Cr =
∑
p

ωp cp +

(
1−

∑
p

ωp

)
Cb (2)

σp and cp denote the opacity and color (or feature) of the p-th primitive. For fully opaque primitives
(e.g., meshes under standard z-buffering), setting ∀p, σp = 1 reduces Equ.2 to a simple depth test.
Here, θ is the raw opacity term inputted into a sigmoid activation function to produce the final
opacity. The primitive difference only affects the kernel function that calculates the δpr of ray r on
primitive p, which is agnostic to the calculation of the final rendered color C(r). There are several
notable properties:
Property 1. ωp is highly sparse in Cr

Property 2.
∑
ωp = 1

Property 3. The rendered color Cr is usually very close (i.e. PSNR is more than 24 according to
Yu et al. (2024); Kerbl et al. (2023); Liu et al. (2025)) to the given observation Ĉr in the training
data set.

The first property arises from the tile-based rendering design of Gaussian SplatsKerbl et al. (2023).
Since the tile size is typically set to 16× 16, most splats are excluded from rendering on any given
tile.

The second property is the row stochastic property. It is less than one because the standard alpha-
blending heuristic of terminating ray integration once the composite opacity approaches one. It is
close to one based on the assumption that scene geometry should block any further contribution from
background color during training. In practice, we randomize the background color during training,
forcing splats to fully occlude the randomly colored background from all viewing directions. Further
justification of this property can be found in the appendix.G.

The third observation is noted in a recent splats training method Yu et al. (2024); Huang et al. (2024);
Kerbl et al. (2023); Liu et al. (2025). Those properties will be used to justify our formulation.

3.1.2 FEATURE LIFTING EQUATION

Here, we introduce the feature lifting equation.

Ax = B, A ∈ RR×P , x ∈ RP×F , B ∈ RR×F (3)

R is the number of rays in the observation, F is the dimension of the observation data, and P is the
number of primitives. Each row of A represents the observation wp mentioned in Equ.2 at particular
ray r. Therefore, we have the following assignment:

Aij = ωrp, xj = cp, Bi = Ĉr, (i = r, j = p) (4)

Note how A becomes a fixed matrix once the geometry-related attributes are given. Likewise, B
becomes fixed once the observation (Features such as CLIP, DINO, or other general features per
pixel) has been given. The goal is to solve x, or in other words, to determine the feature vector asso-
ciated with each geometric primitive. We refer to the solution x as the lifted feature representation
of primitive P and observations O.

4
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3.1.3 INVERSE PROBLEM

First, we ask whether Equ.3 admits a solution, and, whether the given solution is unique. In typical
settings—where A ∈ RR×P with R ≫ P— the system is overdetermined and generally inconsis-
tent, meaning no exact X satisfies equation 3. Instead, we consider the least squares formulation (or
more generally, a convex loss minimization problem):

X⋆ = argmin
X

∥AX −B∥2F , (5)

where the minimizer exists for any B and lies in the column space of A. In our context, Prop-
erty 3 guarantees that real-world observations B , such as RGB color, approximately lie within
range(A). As a result, the least-squares residual is small, and a near-exact lift exists. Intuitively,
any observation derived from the same RGB signal should have a near-exact lift. From a semantic
viewpoint, we also require a one-to-one mapping. Each geometric primitive should admit a single
descriptor, mirroring an ideal embedding (e.g. a perfect 3D CLIP) that assigns one feature per ob-
ject. Thus, uniqueness in equation 5 is not just for mathematical convenience, but for the purpose
of aligning with downstream task requirements. Any deviation from uniqueness signals is either
due to noisy inputs or suboptimal solvers—precisely the singular, and misleading-mask problem we
address through our convex regularization and preconditioning strategies.

When the observed signal varies smoothly with the camera parameters (intrinsics and extrinsics),
the inverse problem satisfies the afore-mentioned three-pronged criteria: a solution exists, is unique,
and depends continuously on the data. However, when the signal is discontinuous or corrupted by
noise— for example, if one view’s segmentation mask captures only the noodles of a ramen bowl,
while the next view’s mask includes both the bowl and noodles—the resulting CLIP embeddings
jump abruptly. In such cases, there is no exact solution. The optimal ”solution” will be the least
square ”solution”. our proposed solver then served as a bounded approximation to the least square
solution. Our proposed regularizer will filter out the misleading signals.

3.2 SOLVER

In this session, we will introduce our solver under the well-posedness condition and give an optimal
upper bound of our solver. In our setting, the least-squares problem in Eq. equation 5 is convex,
so stochastic methods such as SGD provably converge to the global minimizer Esser et al. (2010);
Saad (2003). However, cold-start training can be prohibitively slow. Prior works (e.g. Chacko
et al. (2025); Dou et al. (2024); Jun-Seong et al. (2025); Cheng et al. (2024); Joseph et al. (2024))
have explored efficient one-shot approximations that show practical value but do not offer formal
guarantees. To address this, we introduce the row-sum preconditioner as a, closed-form solver. We
then develop an analytical framework that (i) quantifies its (1 + β)-approximation error under both
L2 and general convex losses, and (ii) interprets the behavior of existing heuristics as special cases.

D
1
2 (ATA) =

√
D(ATA) x = D− 1

2 (ATA)e×D
1
2 (ATA)B xj =

∑
iAijBi∑
iAij

(6)

The proposed initial solution is given in Equ.6, whereD
1
2 is the diagonal operator containing square

roots of the row sums, and e is all-ones vector. The expression on the right-hand side is the element-
wise formulation. We now proceed to analyze the optimality of the proposed solution.

L(x) =
R∑
i=1

∥∥∥∥∥∥
P∑

j=1

Aijxj −Bi

∥∥∥∥∥∥ J (x) =
∑
i

∑
j

Aij ∥xj −Bi∥ (7)

∑
j

Aij =1 ⇒ L(x)
Jensen
≤ J (x) (8)

Here, we start with the original loss function L(x), and calculate a surrogate loss function J (x). The
norm || · || represents any convex loss function such as L1, L2, or a Huber loss. From Property.2, we
apply the Jensen’s inequality. This means the surrogate loss function J is larger than L and serves
as an upper bound for the true loss. For the sake of argument, we consider a special case where
|| · || is the L2 loss. If J attains a minimum, it occurs where the gradient is zero, as shown in Equ.9.

5
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Figure 2: Qualitative comparison on the LeRF-OVS Ramen scene. We compare our method
against DrSplats and the Ground Truth. As shown in the legend, distinct colors represent different
semantic classes (e.g., egg, chopsticks). Our method performs better compared to recent SOTA Jun-
Seong et al. (2025). More qualitative result could be found in Fig. 3, Fig. 7, and Fig. 8

Therefore, we obtain an optimal solution on the surrogate loss function J .
∂J
∂xj

=
∑
i

Aij (xj −Bi) ,
∂J
∂xj

= 0 ⇒ x′j =

∑
iAijBi∑
iAij

(9)

We now define β, which intuitively measures the dispersion of the lifted feature along a viewing ray
at the global optimal lift. Suppose the optimal lift yields a solution x̂. We define β at Equ.11.

∆ij = ∥x̂j −Bi∥ , µi =
∑
j

Aij∆ij (10)

σ2
i =

∑
j

Aij

(
∆2

ij − µ2
i

)
, βi =

σ2
i

µ2
i

, β = max
i

(βi) (11)

Property 4 (Diagonal Dominance Reduces β). If each row of A becomes increasingly diagonally
dominant—i.e., one entry in each row satisfies ATAjj ≫ ATAjk for all k ̸= j—then the dispersion
β is smaller. In other words, stronger diagonal dominance results in a smaller beta.

Notice that usually x′ ̸= x̂. Therefore, x′ is not optimal in J . By Equ.8, we have the following
equation under the L2 loss:

L(x′) ≤ J (x′) ≤ J (x̂) (12)

J (x̂) =
∑
i

∑
j

Aij∆
2
ij

∑
(1 + βi)µ

2
i ≤ (1 + β)L(x̂) ⇒ L(x′) ≤ (1 + β)L(x̂) (13)

While our 1+β-approximation is proven under the L2 loss for any convex loss l(·) that is Lipschitz-
smooth or strongly convex, the proposed solution is bounded above by a function of β. This gen-
eralizes the stability and approximation behavior of our method beyond the Euclidean norm. To be
more specific, the Jensen equation always hold if we are using any convex loss function. While it is
not strictly bounded by the 1 + β, one can always find a finite transform of 1 + β that is bounded
according to proposed loss function.

From the analysis, we can conclude that the methods inDou et al. (2024); Cheng et al. (2024) are also
bounded by the 1 + β term. The method Chacko et al. (2025) is bounded when a l∞ norm function
is applied. The approach in Joseph et al. (2024) is bounded only when the input observations are
unit vectors. Jun-Seong et al. (2025) does not provide a theoretical bound, as it selects the top-K
splats based solely on depth ordering. Although our solver can lift any 2D feature into high-
dimensional primitives, few benchmarks exist to evaluate such capability. We evaluate our approach
on the LeRF-OVS Qin et al. (2024) and 3D-OVS Liu et al. (2023) datasets, using the segmentation
masks annotated from Qin et al. (2024); Kerr et al. (2023), and report mean Intersection-over-Union
(mIoU) according to the protocols of Cen et al. (2025); Jun-Seong et al. (2025). As Dr. Splat’s
official code was not available at the time of writing, we follow the evaluation protocol provided by
LAGA for consistency. CosegGS and Occam’s LGS Dou et al. (2024); Cheng et al. (2024), both
based on the same naı̈ve solver (Eq. 6), are represented here by a single baseline. As shown in Tab.1,
we group the methods into four categories: 2D- and NeRF-based, training-based, grouping-based,
and heuristic forward-lifting. First, second, and third place in the benchmark are highlighted in light
red, light pink, and light yellow, respectively. Results for the 3D-OVSLiu et al. (2023) dataset is
provided in the appendix.F

6
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3.3 REGULARIZER

We have shown that our solution is β-bounded. However, because this approximation does not
rely on any continuity assumptions, it can become quite coarse in the presence of strong noise. In
particular, if the linear operator A is rank-deficient (or nearly so) and thus fails to satisfy continuity
requirements, the resulting solution will be noisy. To address this, we introduce two regularization
strategies: one to regularize the operator A itself, and another to filter the observations B. By
removing noisy components and reinforcing diagonal dominance, our solver produces more stable
feature-lifting results in downstream tasks.

3.3.1 TIKHONOV GUIDANCE

According to property.4 and inspired by A. & V. (1977); A. (1963), we observe that emphasizing
diagonal dominance helps mitigate noise from linear system A. Therefore, we propose a carefully
designed regularizer applied during solving without sacrificing the RGB rendered result. Specifi-
cally, we first convert Equ.6 into a fully diagonal row-sum version. . Briefly speaking, stabilizing
the linear system ATA involves avoiding small eigenvalues. Mathematically, by adding a diagonal
matrix ,which is strictly non-singular to the original ATA as shown in Equ.14, we obtain matrix Ã
with larger eigenvalues. Intuitively, one extreme way to decrease the value of β would be to make
splats either transparent, or fully opaque. In this extreme case, each row in Ã would contain only a
single non-zero entry with a value of one, yielding a globally optimal solution. We employed such
regularization by carefully adjusting the opacity activation term during feature lifting. Compare to a
linear adjustment like original Tikhonov Regularizer, our method utilizes a non-linear soft guidance
without undermine the visual quality. We introduce more implementation details about the Tikhonov
Guidance in the appendix.B.

min
(
||Ax̃− b||2 + ||λI||2

)
(14)

3.3.2 POST AGGREGATION FILTERING

Inspired by LAGA Cen et al. (2025), we cluster the lifted features to identify and remove noise
from SAM-generated masks, as shown as Equ.15, where -1 denotes unclassified splats, and K + 1
is the number of clusters. Unlike LAGA, which learns separate affinity features, we simply reuse
the Tikhonov-Guided solution x̃ from Eq. 14 as our clustering feature. This immediately assigns
each splat to a cluster. We then encode each Gaussian’s cluster ID as a one-hot signal and render
this signal back to 2D. By applying an argmax operation, we recover a 2D mask for each cluster,
establishing a pixel-level correspondence between the clusters and the original SAM masks as shown
in Equ.15 and Equ.15 (Note: Any orthogonal encoding-decoding System could be used here).

The remaining masks—denoted asB′—are significantly more self-consistent and better aligned with
the underlying decomposition of splat primitives. The visualization of the alignment is displayed
in the technical appendix.C. This produces a well–posed data set that further boosts downstream
semantic-segmentation and object-querying performance to state-of-the-art levels. In contrast to
LAGA’s complex view-dependent clustering, our simpler Post Aggregation Filtering approach re-
veals that most apparent “view-dependent” variations stem from mask noise rather than useful multi-
view information. Noisy masks can be found in Fig.1 as well as Fig.10. We further provide many
mis-leading masks’ visualization and trust worthy masks in the appendix.C.

γ = Agg
(
x
)

∈ {−1, . . . ,K}P , Γ = onehot(γ) ∈ {0, 1}P×(K+1), (15a)

κ = argmax
(
AΓ
)
− 1 ∈ {−1, . . . ,K}R, (15b)

The functionM identifies the binary mask corresponding to ray rj based on the original observation
in B, and similarly finds the mask for the projected label κ associated with the same ray rj . More
explicitly, the function M gathers all pixels within the same image that share the same label and
constructs a binary mask. We then calculate the Intersection over Union (IoU) between each SAM
mask and its corresponding cluster mask. Masks with an overlap below a predefined threshold are
discarded, as detailed in Equation 16.

M(j, B) = mj ∈ RH×W ,M(j, κ) = m′
j ∈ RH×W , B′

j =

{
Bj , IoU

(
mj ,m

′
j

)
≥ τ,

∅, otherwise.
(16)
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Table 1: LeRF OVS (left) vs. Multi-Feature & Ablation (right).

(a)IoU comparison on LeRF OVS. The symbol † denotes results
reported directly from the original papers, while ‡ indicates results
evaluated using their official implementations. Our mIoU evaluation
follows the LAGACen et al. (2025) implementation. For a fair com-
parison, we use the same 3D Gaussian model as the lifting prim-
itive, trained using the official repository provided by LAGACen
et al. (2025). The same trained model is used for LAGA, DrSplat,
Occam’LGS, and our method in all ‡ evaluations. F denotes Fig-
urines, T is Teatime, R is Ramen, W is Waldo kitchen. We use
SAM+OpenCLIP for encoding for fair comparison

Method/Scene F T. R. W. Mean

LSeg† Li et al. (2022) 7.6 21.7 7.0 29.9 16.6
LeRF† Kerr et al. (2023) 38.6 45.0 28.2 37.9 37.4
N2F2† Bhalgat et al. (2024) 47.0 69.2 56.6 47.9 54.4

LangSplat† Qin et al. (2024) 25.9 35.6 29.3 33.5 31.1
LeGaussian† Shi et al. (2024) 31.2 34.5 17.6 17.3 25.2
SuperGseg† Liang et al. (2024) 43.7 55.3 18.1 26.7 35.9
VLGS† Peng et al. (2024a) 58.1 73.5 61.4 54.8 62.0

SAGA† Cen et al. (2023) 36.2 19.3 53.1 14.4 30.7
OpenGaussian† Wu et al. (2025) 61.1 59.1 29.2 31.9 45.3
GS Grouping† Ye et al. (2023) 60.9 40.0 45.5 38.7 46.3
LAGA‡ Cen et al. (2025) 56.1 68.9 57.4 64.6 61.7
LAGA† Cen et al. (2025) 64.1 70.9 55.6 65.6 64.0

DrSplat‡ Jun-Seong et al. (2025) 47.5 66.2 36.7 47.5 49.5
DrSplat† Jun-Seong et al. (2025) 53.4 57.2 24.7 39.1 43.6
OccamLGS‡ Cheng et al. (2024) 60.1 68.3 55.3 47.7 57.8
OccamLGS† Cheng et al. (2024) 58.6 70.2 51.0 65.3 61.3

Ours 67.6 68.5 62.3 62.1 65.1

(b)Multi Feature Comparison on Cosine-Similarity. We evaluate
the feature-agnostic capability without Tikhonov guidance, post-
aggregation filtering, or automatic threshold selection. We apply
our method to dense features generated by FeatUp Fu et al. (2024),
including features from DINO, DINOv2, CLIP, MaskCLIP, ViT, and
ResNet. For a fair comparison, we use geometry provided by Gsplat
to obtain the geometry for all scenes. Notice that SAM + OpenCLIP
is follow exactly the LangSplatQin et al. (2024) implementation.

Features/Scene F. T R W. Mean

SAM+OpenCLIP Kirillov et al. (2023) 89.3 90.7 90.6 91.0 90.4
MaskCLIP Dong et al. (2023) 92.4 94.0 94.5 94.7 93.9
CLIP Radford et al. (2021) 91.9 93.7 94.6 94.9 93.8
DINO Caron et al. (2021) 78.7 80.2 83.0 82.0 81.0
DINOv2 Oquab et al. (2023) 83.5 85.6 89.6 89.2 87.0
ViT Dosovitskiy et al. (2020) 84.6 83.7 86.4 88.0 85.7
ResNet He et al. (2016) 95.8 94.8 96.2 97.0 96.0

(c)Ablation Study. We evaluate the impact of each module on the
LeRF data set in a step-by-step manner. Ti denotes Tikhonov Guid-
ance, P denotes Post Aggregation Filtering, and A represents Auto-
matic threshold selection. The baseline corresponds to the row-sum
formulation in Equ.18. To further understand which components is
effective We provide a full ablation study shown in the appendix,
Tab.3.
Method F. T R W. Mean

Ours w/o (TiPA) 60.1 68.3 55.3 47.7 57.8
Ours w/o (PA) 61.7 67.8 53.8 49.6 58.2
Ours w/o (TiA) 65.5 72.0 58.6 50.4 61.6
Ours w/o (A) 64.8 71.6 61.7 54.7 63.2
Ours (full) 67.6 62.3 68.5 62.1 65.1

Table 2: Multi-Kernel and Runtime Comparison. Left: Multi-Kernel across different splats.
Right: end-to-end runtime.

(a)Multi Kernel Comparison on mIoU. For this comparison, we
use our method without Tikhonov-Guidance, Post Aggregation Fil-
tering, or auto threshold selection to illustrate its kernel agnostic ca-
pability. We evaluate performance using DBS, 2DGS, as well as
3DGS, # represents the inriaKerbl et al. (2023) implementation tuned
hyper parameters exactly according to LAGACen et al. (2025) re-
leased code, * represents GsplatTancik et al. (2023) implementation
with no additional hyper parameters changed except set the back-
ground color to random.

Method F. T R W. Mean

DBS Liu et al. (2025) 49.5 50.8 51.2 61.3 53.2
3DGS∗ Tancik et al. (2023) 55.3 63.5 47.8 49.8 54.1
3DGS# Kerbl et al. (2023) 60.1 68.3 55.3 47.7 57.8
2DGS∗ Huang et al. (2024) 62.0 66.3 56.0 51.1 58.9

(b)Runtime Comparison. We compare the runtime of our lifting
method with LAGA and DrSplats, along with the ability to preserve
the full feature dimensionality. Here Ti denotes Tikhonov Guidance,
P denotes Post Aggregation Filtering. All timings are measured on
a single RTX 4090 GPU using CUDA Toolkit 12.8 for consistency.
Notice that the runtime of lifting-based methods scales linearly with
the number of views, whereas training-based and grouping-based
methods are determined by predefined training steps. For DrSplats,
we report results using Top-40 follow their implementation.

Method F. T R W. Mean

Ours w/o (TiP) 00:03:29 00:02:06 00:01:28 00:02:13 00:02:12
Ours w/o (P) 00:03:14 00:02:05 00:01:12 00:01:47 00:02:05
Ours full 00:05:22 00:02:37 00:01:59 00:03:02 00:03:15
DrSplat 00:02:55 00:01:19 00:01:03 00:01:33 00:01:43
LAGA 01:43:33 01:23:22 01:20:48 01:30:16 01:29:30

3.3.3 AUTO THRESHOLD SELECTION

We observe that threshold selection can significantly alter the final result. Rather than manually
choosing thresholds per object (as in Qin et al. (2024)), we leverage the high contrast of the raw
attention map for automatic selection. As shown in Fig. 12, even though the ideal hard threshold for
correctly isolating chopsticks shifts from 0.225 to 0.30 in the raw attention values, the first valley in
the attention histogram remains clearly identifiable. We therefore derive our threshold directly from
the histogram’s local extrema. We first locate its largest peak and then take the adjacent, smaller
valley as the threshold. Further details are provided in the Appendix.I

4 EXPERIMENT

We demonstrate our kernel-agnostic capability with a multi-kernel comparison Tab.2. In this study,
the 2DGS implementation outperforms all other representations due to its specially designed kernel
that encourages high opacity values, yielding a naturally lower β as a result.

For downstream segmentation tasks, qualitative results in Fig.2, Fig.8, Fig. 3 and Fig. 7 demonstrate
that our method generates significantly clearer and more localized attention maps for object queries.
In contrast, while the baseline (Dr. Splat) identifies the general location of objects, its activations
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Ground Truth Ours Dr. Splat

RGB Ground Truth

RGB Ground Truth Green apple Jake the dog Miffy 

Pink ice cream Red toy chairRed applePorcelain hand

RGB Ground Truth Red toy chairRed applePorcelain hand

Green apple Jake the dog Miffy 

Segmentation Mask Comparisons

Dr. Splat’s Attention Maps

Our Attention Maps

Figure 3: Qualitative Comparison of Attention Maps and Segmentation Masks. We present a
qualitative comparison between our proposed method (top row) and the baseline, Dr. Splat (middle
row). The heatmaps visualize the model’s attention response, or affinity feature projection, to various
text prompts (e.g., ”Green apple,” ”Jake the dog,” ”Miffy”). The bottom row compares the final
semantic segmentation masks for the entire scene against the ground truth.

are more diffuse and less uniform. This lack of precision leads to lower performance in down-
stream segmentation. As observed, our focused attention maps translate into segmentation masks
that closely match the ground truth, exhibiting fewer false positives and less noise than the baseline.
These qualitative observations align well with the quantitative mIoU results reported in Table 1.

To compare feature lifting quality more broadly, we project a variety of descriptorsFu et al.
(2024)—MaskCLIP, CLIP, ViT, DINO, and ResNet—through our solver (prior to any post-
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aggregation filtering) and visualize the results using cosine similarity and PCA (see the appendix.H
for details). We avoid PSNR for evaluation since MSE-based metrics scale with the number of fea-
ture channels. For example, DINO features (384 channels) yield consistently lower PSNR than that
of CLIP features (512 channels) despite having comparable perceptual quality. Instead, we demon-
strate both quantitatively via cosine similarity as mentioned in Tab.1, and qualitatively via PCA
visualization that our lifted projections consistently outperform the raw descriptors, making direct
PSNR comparisons potentially misleading. While we conduct experiments with different types of
primitives—including 2DGS, 3DGS, and DBS, for comparing feature descriptors we use only 3DGs
as the standard primitive to ensure fairness.

To compare runtimes, we report times for lifting, and post-processing using standard
SAM+OpenCLIP as the encoder as mentioned in Tab.2. Additionally, we perform further experi-
ments using MaskCLIP as an encoder, which are included in the appendix.E. The motivation behind
this choice is that standard SAM+OpenCLIP typically takes approximately one hour to pre-process
the dataset, whereas MaskCLIP completes the same pre-processing task within minutes. Additional
mIoU results for MaskCLIP are also provided in the appendix.E. The splats training time per scene
is roughly 20 minutes for the Gsplats Tancik et al. (2023) training pipeline and approximately 40
minutes for the Inria-based pipeline. Regarding memory consumption, our implementation can lift
features with over 512 channels without encountering CUDA out-of-memory (OOM) errors. In
contrast, in our testing environment, DrSplat’s implementation could only handle up to 32 channels
before hitting memory limitations. Lifting-based methods exhibit linear complexity with respect to
the number of feature channels. , view images, and witness splats per ray.

Finally, our ablation study isolates the impact of each component—naı̈ve preconditioner, full
Tikhonov (as shown in Table 3)—and post-aggregation filtering. We also examine implementation
details, including feature scaling, multi-level SAM mask integration, and segmentation-threshold
selection. All qualitative results and additional engineering notes are provided in the appendix.E

5 DISCUSSION

Our method provides a framework to distinguish meaningful 3D clusters from noise, offering a
foundation for building more robust feature lifting pipelines in 3D scene understanding. In practice,
the noises and inconsistency in sensing process also poses a challenge in feature lifting process.
Our method addresses such issues via regularization and could inform the development of sensing
mechanisms that yield more consistent observations.

From a theoretical standpoint, averaging features across views helps suppress view-dependent com-
ponents while preserving view-independent structures. Such view dependence information can then
be quantified by subtracting the lifted (3D) features from the original 2D features to obtain any
structured residual patterns correspond to view-specific information.

Finally, while our method focuses on lifting dense features, it will also be feasible to lift sparse
descriptors (e.g., SIFT) by embedding them into a dense representation using auxiliary signals. That
being said, visualizing sparse 3D splats remains an open challenge.

6 CONCLUSION

In this work, we formulate feature lifting as a sparse linear inverse problem and derive a general
approximation to its core equation. We prove that our solution achieves a globally bounded error. To
further refine the reconstructed features, we introduce two complementary modules: (1) Tikhonov
Guidance and (2) Post-Lifting Aggregation. Our implementation completes the lifting process in
under 10 minutes.

The method is designed to be broadly applicable to any dense feature representation and splat-based
kernel. Experiments on multiple 3D semantic segmentation benchmarks demonstrate state-of-the-
art performance. We also quantitatively evaluate the quality of lifted features using cosine similarity
metrics to demonstrate the method’s effectiveness across different feature descriptors. Together, the
method provides a scalable and theoretically framework for enrichment of 3D representations with
2D dense features to support scene understandings and other downstream tasks.
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RGB Rendered Observation

SAM+OpenCLIP
Figure 4: Feature Map Comparison: Since, except for our proposed method, all other methods
require compressing the features, it is difficult to align the projected features from these methods
with the ground truth. Therefore, we only provide a comparison between our projected features and
the ground truth 2D features. The current feature is for SAM+OpenCLIP pipeline

A MULTIMEDIA SUPPLEMENTARY

In the supplementary we submitted, we have additional embedding website. The website is local,
so one needs to open it by uncompressing the website package and click the index.html. We have

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

RGB Rendered Observation

DINOV2

Figure 5: Feature Map Comparison: Since, except for our proposed method, all other methods
require compressing the features, it is difficult to align the projected features from these methods
with the ground truth. Therefore, we only provide a comparison between our projected features and
the ground truth 2D features. The current feature is for dino2 pipeline
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Figure 6: Further Visualization results, we are using Teatime, ramen, figurines, waldo kitchen results
from different scenes. More visualization results could be found in the supplementary materials
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Ground Truth Ours Dr. Splat

RGB Ground Truth

RGB Ground Truth Bowl Chopsticks Egg 

Kamaboko Red toy chairNori Napkin 

Kamaboko Sake cupNori Napkin 

Bowl Chopsticks Egg  

Segmentation Mask Comparisons

Dr. Splat’s Attention Maps

Our Attention Maps

Figure 7: Attention Map Comparison: As demonstrated in the figures, our implementation pro-
duces clearer attention maps and segmentation masks compared to Dr. Splat.
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chopsticks sake cup wavy noodles corn

egg napkin kamaboko onion segments

RGB Ours DrSplat GT

rubber duck with hat green apple pikachu waldo

rubics cube jake the dog porcelain hand pirate hat

toy elephant toy cat statue red apple

tea in a glass yellow pouf three cookies dalle brand

apple sheep plate

plastic ladle refrigerator pot spatula

Figure 8: Additional Qualitative Segmentation Results. Scenes from top to bottom: Figurines,
Ramen, Teatime, and Waldo’s Kitchen (LeRF-OVS dataset). Our method consistently produces
sharper, less noisy segmentation masks compared to DrSplat and aligns closely with the Ground
Truth.
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t

Ours LAGA

Figure 9: The left column shows the results from our method, while the right column (yellow-
purple mask) shows the results generated by LAGA for the 3DOVS ’room’ scene. Although the
3DOVS ground truth considers the wooden table as part of the wooden wall, our model is able to
clearly distinguish between the two. While LAGA’s result appears to achieve a higher mIoU on this
particular scene, it actually generates misleading masks.

additional code zip file with detail README guidance. To preview the overall result, one can ckeck
our video.

B TIKHONOV GUIDANCE

First, let us discuss why Tikhonov regularization is theoretically important for stability, and why
our system can become unstable. Instability arises when the matrix A contains nearly identical
rows. In our setting, adjacent pixels often undergo almost the same rendering and alpha-blending
processes, leading to duplicated weights. Redundant rows with similar observation values typically
pose no problem (as in the RGB domain), but if identical rows correspond to different observations,
the system becomes singular and no exact solution exists. Even nearly identical rows introduce large
errors in B due to near-singularity in A.

Mathematically, a common remedy is to strengthen the diagonal. Specifically, we first convert Equa-
tion 6 into a fully diagonal, row-sum preconditioner by squaring the original weights. We then adjust
the opacity activation term λ by compressing the sigmoid function to polarize each splat’s opacity.
Because lifting is performed without modifying any geometry-training parameters, this approach
does not compromise image-based evaluation metrics. We choose λ = 1.2 for both the lifting
equation and the attention-map projection, as shown by the results in Table 5.

There are a few notes about the polarization. To be specific, after we get the original training figure,
the first thing we need to do is to convert it to a Regularized version, by injecting our λ in this stage,
we get a polarized alpha value. And after lifting, when we do the 3D segmentation, or localization,
we can directly use the feature generated. But the challenge is, when we project the attention queried
back to 2D to do the segmentation, what alpha should we use. Experiments shows that, using the
same λ is the best for the 2D attention map generation.
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Good Masks

Bad Masks

Clustered Mask Only SAM Mask Only Overlapped

Figure 10: Here we display the figure for post lifting aggregation examples. The first row is display-
ing the right mask generated in the SAM, while the second row is the mis-leading masks generated
in the SAM model. We compare our clustered masks displayed in green with the SAM generated
mask which displayed in red. And we will filter out the low yellow region (overlapping region)
masks through mIoU thresholding. This observation shows that view-dependent information might
due to the mis-leading masks generated by SAM.
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3DGS Feature PCA / RGB Renders2DGS Feature PCA / RGB Renders

Figure 11: The left column shows the results obtained using Gsplat with 2D Gaussian Splatting
(2DGS) for feature lifting, while the right column shows the results using Gsplat with 3D Gaussian
Splatting (3DGS). It appears that better reconstruction quality leads to improved PCA outcomes.
The lifted features are based on SAM-OpenCLIP embeddings.
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Ãij = ω̃ij , α̃p =
1

1 + e−λθ
(17)

x = D−1(ÃT Ã)e×D(ÃT Ã)B xj =

∑
i Ã

2
ijBi∑

i Ã
2
ij

(18)

C POST LIFTING AGGREGATION DETAILS

We use the cuML implementation of HDBSCAN for clustering, and the initial results are generally
reliable. However, as noted in the “Tikhonov Guidance” section of the appendix, small noise in the
observations—manifesting as nearly identical rows—can produce large errors. A straightforward
remedy is to identify and discard those unreliable observations.

Why can we safely discard them? Recall our problem definition: “each primitive should admit
a single descriptor.” In other words, nearly identical rows should yield nearly identical features.
When they do not, the discrepancy must arise either from the solver or from corrupted observations.
Because our subsequent queries compare cluster-level attention scores, noise that affects all clusters
equally (cluster-independent noise) merely shifts every cluster’s score by a constant and does not
alter their relative ordering.

By contrast, cluster-dependent noise—often introduced by nearby objects, as illustrated in Fig.
10—does change those relative scores. After clustering, we therefore generate a pseudo-mask
for each cluster and compute its mIoU against the original masks, filtering out any clusters whose
pseudo-mask indicates unreliability.

Table 3: Mean IoU (mIoU%) on LeRF OVS for various methods. These are additional experimental
results using our data for the ablation study. We use different backbones to train the splats and
evaluate the resulting mIoUs

Method Figurines Ramen Teatime Waldo Kitchen Means

DrSplat (3D Query) 47.48 36.66 66.16 47.48 49.45
Gsplat (3DGS) W/o P W/o T (Threshold = 0.65) 55.30 47.81 63.48 49.78 54.09
Gsplat 2DGS Backbone W/o P W/o (Threshold = 0.65) 62.00 56.04 66.34 51.07 58.86
Gsplat (3DGS) W/P w/o T (Threshold = 0.65) 56.55 62.24 68.04 53.01 59.96
Gsplat (2DGS) W/P W/o T (Threshold = 0.65) 67.83 60.20 66.96 47.44 60.62
Inria Trained Result W/o P, Naive (W/o Tikhonov) (Threshold) 60.06 55.30 68.33 47.73 57.85
Inria Trained Result W/o P, (Threshold=0.65) 61.30 54.20 67.60 45.01 57.03
Inria Trained W/p W/ Tikhonov (1.2 / 1.2) 61.70 53.75 67.80 49.60 58.21
Inria Trained Result W/p w/ (Tikhonov square, no sigmoid) 71.96 58.16 69.29 52.73 63.03
Inria Trained Result W/p (Threshold 0.65) + W/T 64.76 61.70 71.63 54.71 63.20
Inria Trained W/p W/o Tikhonov Square, w/o sigmoid 65.45 58.55 72.04 50.38 61.61
Inria Trained W/p W/o (Tikhonov λ w/o squeer) W/ hist selection 72.19 64.28 66.08 56.69 64.81
Inria Trained W/o T W/p W/ Dynamic Threshold 69.42 63.89 69.53 61.55 66.10
Inria Trained W/ T W/ P W/ Dynamic Threshold 67.64 62.34 68.48 62.11 65.14

D TRAINING PIPELINE SETTING

Achieving high-quality reconstruction is not the primary focus of our study. While our code includes
components for training, the reconstruction results are less accurate compared to those obtained
using the LAGA training code. Therefore, in the main comparison table, we use LAGA’s pre-trained
model. For visualization experiments, we adopt the Gsplat implementation for both 2DGS and
3DGS to ensure a fair comparison. As shown in Fig.11, the visualizations suggest that reconstruction
quality does influence the feature lifting results.

E LIFTING IMPLEMENTATION

Our code is publicly available in the supplementary material and on the project website. We adopt
the original rendering pipeline for feature lifting, with a modification to the final alpha-blending step:
instead of projecting each splat’s color into the 2D image, we back-project 2D feature information
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Table 4: Effect of Tikhonov Guidance (λsquare/λreg) on mIoU (%). λ Equ denotes the λ parameters
used when solving the Feature Lifting Equation. When using a text query to generate the attention
map, we apply λ Proj to obtain the 2D attention map. The experiments show that setting both λ
values to 1.2 yields optimal results.

λ Equ / λ Proj Figurines Ramen Teatime Waldo Kitchen Means

0.5 / 1.0 59.93 53.77 66.43 41.32 55.36
0.8 / 1.0 62.77 54.02 67.38 43.90 57.02
1.0 / 1.0 61.30 54.20 67.60 45.01 57.03
1.1 / 1.1 61.59 53.96 68.93 47.72 58.05
1.2 / 1.2 61.70 53.75 67.80 49.60 58.21
1.35 / 1.35 61.80 53.44 65.56 50.36 57.79
1.5 / 1.5 61.80 53.40 65.53 50.40 57.78

Table 5: Our methods generated masks versus LAGA generated mask on 3D-OVS dataset, as we
mentioned in Fig.9, room scene is not labeled correctly in ground truth, therefore, we provide two
results on room scene. The former one is the result measured on original 3DOVS dataset, and the
left one is the fixed results. In both comparison, we are at least the same compare to the current state
of the art method.

Methods Bed Bench Lawn Room Sofa Means

LAGA 84.9 83.3 93.6 93.1/86.2 76.5 86.3/84.9
Ours 90.2 93.2 89.0 85.5/92.7 73.6 86.3/87.7

Table 6: Weight Summation of each rows statistic property. In the Property.2, we assume that the
row summation is 1, and in the main thesis, we state that this property usually holds in the splats
rendering. Here is experimental results regarding the final weight summation of each pixel. The
number is with a %. The dataset we are using is LeRF

Method Metrics Figurines Ramen Teatime Waldo Kitchen Means

3DGS(means) Black Background 99.49 97.92 99.40 99.86 99.17
3DGS(Std) Black Background 1.37 1.54 0.67 0.18 0.94
3DGS(means) 99.74 99.85 99.83 99.91 99.17
3DGS(Std) 0.01 0.04 0.02 0.05 0.04
2DGS(means) 99.86 99.46 99.83 99.91 99.77
2DGS(Std) 0.04 0.45 0.05 0.05 0.15

Table 7: Weight Summation of each rows statistic property. In the Property.2, we assume that the
row summation is 1, and in the main thesis, we state that this property usually holds in the splats
rendering. Here is experimental results regarding the final weight summation of each pixel. The
number is with a %. The dataset we are using is 3DOVS

Methods Bed Bench Lawn Room Sofa Means

3DGS(means) 99.92 99.80 99.67 99.64 99.93 99.79
3DGS(Std) 0.01 0.04 0.08 0.04 0.01 0.04
2DGS(means) 99.92 99.93 99.95 99.92 99.92 99.93
2DGS(Std) 0.01 0.01 0.00 0.01 0.01 0.01
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into the corresponding 3D splat feature and record the blending weights at runtime. This approach
is more memory-efficient than DrSplats, which explicitly constructs pixel-to-splat correspondences.
As a result, DrSplats may encounter CUDA out-of-memory (OOM) errors when the maximum depth
increases, whereas our method is capable of handling significantly larger inputs. In principle, any
3D image produced by the rendering pipeline can be lifted in a similar way by slicing its rendered
features.

F 3D SEGMENTATION

For 3D segmentation, splats can be selected by comparing attention scores associated with target
(’positive’) words against those linked to background words. To avoid the complexity of explicit
background-word selection, we compute direct attention scores for each splat and render them as
one-dimensional features in the 2D image—thereby minimizing background interference. Since the
raw attention scores typically fall outside the [0,1] interval, we rescale them for visualization and
manual thresholding. However, during the dynamic threshold selection step, we operate directly on
the un-normalized attention scores to determine the optimal threshold. Further visualization results
can be found in the appended video.

G PROPERTY JUSTIFICATION

Recall from property.2, this property means for each ray, there should be nearly no influence of the
background color. Let us first justify why this property is necessary. If without the above property,
even the optimized lift will depend on the background feature. When we utilize random feature
background, the error has a lower bound which is the left out alpha for each ray. This justification
will also hold true if we are utilizing color as a feature. To justify this property, we first scratch a
theoretical proof, and then, we give out experimental results.

THEORETICAL

C ′
b ∼ U(−1, 1) (19)

Cr =
∑
p

ωpcp +

(
1−

∑
p

ωp

)
C ′

b (20)

s =
∑
p

ωp L(ω) = MSE(Cr, Ĉr) (21)

L(ω) = EC′
b

[(
Cr − Ĉr

)2 ]
(22)

= EC′
b

[(∑
p

ωp cp − Ĉr + (1− s)C ′
b

)2]
. (23)

Here we define the ground truth for per ray color as Ĉr, we use MSE as a loss function to calculate
the loss between observed color and rendered color. The goal of the proof is to show that under any
gradient descent based method, if the loss converges, s approaches to one. Notice that here we define
the background color C ′

b as a random background that has a uniform distribution on the normalized
color definition. Let us take the stochastic gradient with respect to weight ω, and the summation of
weight s.

∂L

∂ωp
= 2(Cr − C̃r)(Cp − C ′

b) (24)

∂L

∂s
=
∑
p

∂L

∂ωp
= 2

(
Cr − C̃r

)∑
p

(Cp − C ′
b) (25)
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Here we substitute the residual ϵ back to the Equ.24:

ϵ =
∑
p

ωpCp − C̃r, Cr − C̃r = ϵ+ (1− s)C ′
b (26)

E
[
∂L

∂s

]
= 2E

[(
ε+ (1− s)C ′

b

)∑
p

(
Cp − C ′

b

)]
. (27)

When we expand the above equation, we get the expectation of the gradient is the Equ.28

E
[∂L
∂s

]
= E

[
2 ε
∑
p

cp − 2 ε
∑
p

(
cp − C ′

b

)
+ (1− s)C ′

b

∑
p

cp + (s− 1) (C ′
b)

2
]
.

(28)

And apparently, we can get everything canceled out, except this term shown in Equ.29

E
[∂L
∂s

]
= (s− 1)σ2 (29)

Therefore, to converge, s − 1 must be zero, i.e.
∑

p ωp = 1 Q.E.D. According to Property.3, we
usually have a converged system at least on RGB, therefore this property holds.

EXPERIMENTAL

To experimentally validate our theoretical prediction, we conducted the following experiment. We
trained both 3D Gaussian Splats and 2D Gaussian Splats separately using random backgrounds, then
computed the mean and variance of their final alpha distributions. If the mean exceeds a threshold ψ
= 99.6, our theory is confirmed. We selected ψ = 99.6 because color values are quantized into 256
levels, and additional floating-point precision does not improve RGB rendering. For comparison,
we also ran the 3D Gaussian Splats experiment with a black background. As shown in Tables 6 and
7, the results align well with our theoretical proof.

ψ = (1− 1

Quantize Scale
)× 100 = 99.6 (30)

H FEATURE VISUALIZATION

Details of the feature visualization, one can check Fig.4, Fig.5 and Fig.6. For multiple kernel feature
visualization, one can check Fig.11. There are plenty of the content in the appended video. Please
feel free to check

I THRESHOLD

We can refer directly to Fig. 12. The basic idea is to trace the gradient from top to bottom, then use
the first local maximum and the preceding local minimum to determine the threshold. In this way,
the threshold adapts dynamically and is independent of the background words.
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Figure 12: This figure is from the Ramen scene in the LeRF dataset. The query word is ”chopsticks”
for the first row, and ”eggs” for the second row. The first column represents the attention maps’
histograms while the second column is the actual attention map. A simple gradient-based dynamic
threshold selection strategy can be readily envisioned for downstream tasks such as 3D segmenta-
tion.
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