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ABSTRACT

The brain can only be fully understood through the lens of the behavior it generates–
a guiding principle in modern neuroscience research that nevertheless presents
significant technical challenges. Many studies capture behavior with cameras, but
video analysis approaches typically rely on specialized models requiring extensive
labeled data. We address this limitation with BEAST (BEhavioral Analysis via
Self-supervised pretraining of Transformers), a novel and scalable framework that
pretrains experiment-specific vision transformers for diverse neuro-behavior anal-
yses. BEAST combines masked autoencoding with temporal contrastive learning
to effectively leverage unlabeled video data. Through comprehensive evaluation
across multiple species, we demonstrate improved performance in three critical
neuro-behavioral tasks: extracting behavioral features that correlate with neural
activity, and pose estimation and action segmentation in both the single- and multi-
animal settings. Our method establishes a powerful and versatile backbone model
that accelerates behavioral analysis in scenarios where labeled data remains scarce.

1 INTRODUCTION

Understanding the relationship between brain and behavior is a fundamental challenge across a
wide range of medical and scientific disciplines (Krakauer et al., 2017; Datta et al., 2019). Precise
methods for extracting meaningful information from behavioral videos are essential for advancing
these fields (Pereira et al., 2020). Self-supervised learning has revolutionized image and video
understanding through large-scale foundation models (Chen et al., 2020; Caron et al., 2021; He et al.,
2022), offering powerful tools that are beginning to transform scientific analyses (Huang et al., 2023a;
Lastufka et al., 2024). However, these models have yet to be effectively translated to specialized
domains like animal behavior analysis, creating a significant opportunity for methods that bridge
cutting-edge machine learning with the specific demands of neuroscience and behavioral research.

Animal behavior videos present unique characteristics and challenges distinct from general video
understanding. Controlled experiments generate large quantities of videos with static backgrounds and
consistent camera angles, where the primary variation arises from animal movements and interactions.
These videos enable numerous downstream analyses, and here we focus on three fundamentally
different applications that collectively address a large proportion of behavioral neuroscience use cases:
(1) neural activity prediction (or “neural encoding”), which requires extracting behavioral features
that correlate with simultaneously recorded brain activity (Datta et al., 2019; Pereira et al., 2020; Urai
et al., 2022); (2) pose estimation, which tracks specific anatomical landmarks for quantitative analysis
of movement patterns (Mathis and Mathis, 2020; Pereira et al., 2020); and (3) action segmentation,
which classifies distinct behavioral states like grooming, rearing or social interactions on every
frame (Datta et al., 2019; Pereira et al., 2020). Each task demands different representations of the
same underlying behavioral data, and current approaches typically require task-specific models and
extensive labeled datasets (von Ziegler et al., 2021). Furthermore, most approaches fail to leverage the
vast amounts of unlabeled data generated by behavior experiments, a significant untapped resource
that, if harnessed properly, could substantially improve performance on these downstream tasks.

We address these challenges through a novel self-supervised pretraining framework for raw videos
that produces a robust backbone for multiple downstream neuro-behavioral tasks. BEAST (BEhavioral
Analysis via Self-supervised pretraining of Transformers) leverages the unique properties of exper-
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imental videos by combining masked autoencoding (He et al., 2022) to capture rich frame-level
appearance information with temporal contrastive learning (Hyvarinen and Morioka, 2016) to model
behavioral dynamics. We introduce a novel frame sampling strategy for the contrastive loss, designed
to focus on learning representations of animal behavior against static backgrounds. BEAST trains on
videos from a single experimental setup, creating tailored, versatile models that can be fine-tuned
for multiple analytical needs specific to that experimental context. We demonstrate the value of
this approach through comprehensive evaluation on three downstream tasks: (1) neural encoding
in three mouse datasets; (2) pose estimation across four datasets spanning two species and single-
and multi-view setups; and (3) action segmentation in both single- and multi-animal setups. BEAST
achieves competitive or superior performance for the neural encoding and action segmentation tasks,
while eliminating the need for the pose estimation step typically required by existing methods, dra-
matically reducing manual labeling effort. At the same time, pose estimation remains valuable for
producing interpretable features critical to understanding movement dynamics, and BEAST enables
significantly improved pose estimation for a given labeling budget. These results establish BEAST
as a simple yet powerful foundation that can accelerate behavioral understanding across disciplines
where fine-grained analysis is essential.

2 RELATED WORK

Neural encoding models. Neural encoding measures how observable signals predict neural activity,
and provide a quantitative framework for interrogating neural representations. Earlier approaches
applied generalized linear models to single neurons using controlled stimuli such as visual or auditory
inputs (Paninski, 2004; Truccolo et al., 2005; Pillow et al., 2008; McFarland et al., 2013). More
recently, deep learning methods have shown great promise in predicting neural population responses
to sensory stimuli, including visual (Yamins et al., 2014; Schrimpf et al., 2018; Wang et al., 2025),
auditory (Kell et al., 2018; Li et al., 2023), and tactile (Zhuang et al., 2017) inputs. The widespread
adoption of video monitoring during experiments has demonstrated that video-based behavioral
covariates explain significant neural variability in both spontaneous (Stringer et al., 2019; Syeda et al.,
2024) and task-driven behaviors (Musall et al., 2019; IBL et al., 2025a; Wang et al., 2023; Chen et al.,
2024; Zhang et al., 2025). For example, Musall et al. (2019) showed that uninstructed movements
explain a substantial fraction of cortical neural variance, and the International Brain Lab leveraged
large-scale, region-resolved encoding analyses to chart the distribution of task-related information
across the brain (IBL et al., 2025a). However, extracting rich spatiotemporal information from video
remains challenging. Most studies rely on either a small set of keypoints (Syeda et al., 2024; IBL
et al., 2025a; Wang et al., 2023; Chen et al., 2024) or latent dimensions using PCA (Stringer et al.,
2019; Musall et al., 2019) or autoencoders (Batty et al., 2019; Wang et al., 2023; Chen et al., 2024),
with limited efforts to predict neural activity directly from raw video (but see Wang et al. (2023)).

Large-scale models for behavioral video analysis. Large-scale models for animal behavior analysis
have predominantly focused on single tasks. For pose estimation, methods differ in how they
balance flexibility and labeling requirements. DeepLabCut (Mathis et al., 2018) leverages ImageNet-
pretrained backbones for fine-tuning on experiment-specific labeled datasets, offering flexibility
but requiring more manual labeling. This work inspired a range of other general-purpose animal
pose estimation tools including LEAP (Pereira et al., 2019), DeepPoseKit (Graving et al., 2019),
TRex (Walter and Couzin, 2021), SLEAP (Pereira et al., 2022), and Lightning Pose (Biderman et al.,
2024). In contrast, several specialized pose estimation tools provide tailored solutions for common
experimental setups, such as top-down views of freely moving mice (Ye et al., 2024) and facial
analysis of head-fixed rodents (Syeda et al., 2024), significantly reducing labeling requirements.
Similarly, in action segmentation, specialized systems developed for resident-intruder assays (Segalin
et al., 2021; Goodwin et al., 2024) achieve high performance but remain limited to a specific
experimental paradigm. While VideoPrism (Zhao et al., 2024) offers a general foundation model
supporting multiple behavioral tasks (Sun et al., 2024), it relies on a frozen backbone trained on
generic internet data rather than domain-specific content. Despite these advances, no accessible
solutions exist for creating general behavior analysis models that leverage unlabeled data across
multiple tasks. BEAST addresses this gap by enabling individual labs to develop experiment-specific
models from their own unlabeled videos for diverse analyses.

Self-supervised learning for images and videos. Contrastive learning has emerged as a power-
ful self-supervised representation learning framework; among its many predecessors and variants,
SimCLR (Chen et al., 2020) popularized a simple and effective recipe that maximizes agreement
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between differently augmented views of the same sample via a contrastive loss in latent space. The
contrastive method has also been extended to the temporal (Hyvarinen and Morioka, 2016) and video
domain (Qian et al., 2021; Recasens et al., 2021; Dave et al., 2022). Another line of self-supervised
approaches uses knowledge distillation, where a student network learns to match the outputs of a
teacher network, such as DINO (Caron et al., 2021; Oquab et al., 2023; Siméoni et al., 2025). Masked
modeling is a complementary approach that has demonstrated remarkable success, particularly
masked autoencoding (MAE) (He et al., 2022), which revolutionized visual self-supervised learning
by adapting BERT-style masked prediction to images using Vision Transformers (Dosovitskiy et al.,
2020). VideoMAE (Tong et al., 2022) and BEVT (Wang et al., 2022) extended this approach to video
data by leveraging spatiotemporal dependencies. Various works have combined contrastive and MAE
objectives as a more efficient alternative for capturing spatiotemporal dependencies, as video models
can require much more compute for training and inference (Mishra et al., 2022; Huang et al., 2023b;
Lu et al., 2023; Lehner et al., 2024). Of note is VIC-MAE (Hernandez et al., 2024), which uses
patch-based features for a masked autoencoding loss. The local features are also pooled into a global
feature vector which is used with a contrastive loss computed across frames from multiple videos.
The efficiency of contrastive-based methods compared to native video models is of particular interest
in our application domain, where labs often do not have access to extensive compute resources.

3 METHODS

BEAST uses a combination of an image-based masked autoencoding (MAE) loss–which excels at
capturing per-frame appearance details–and temporal contrastive loss–which captures dependencies
across frames (Fig. 1A). This integration enables a single backbone to excel across diverse downstream
tasks, from precise keypoint localization to predicting complex structure in neural activity (Fig. 1B).

BEAST builds upon VIC-MAE (Hernandez et al., 2024), which combines masked autoencoding and
contrastive losses, but introduces key adaptations for neuroscience applications. The most significant
modification is how frames are sampled for the contrastive loss. VIC-MAE allows any two frames
from the same video to be a positive pair, and frames from different videos are negative pairs (Xu and
Wang, 2021). While this may be appropriate for benchmark datasets with short clips, animal behavior
experiments generate long-duration recordings where behaviors repeat across time. We instead define
positive frames within a narrow temporal window around the anchor (±1 frame), while allowing
negative frames to be either distant and dissimilar frames in the same video, or from different videos.
Crucially, this strategy outperforms that of VIC-MAE (Table 6). See Appendix B for more details on
our frame selection strategy and additional training and architecture simplifications of VIC-MAE.

Vision transformer (VIT). The standard image VIT (Dosovitskiy et al., 2020) data pipeline starts
with a 2D image x ∈ RH×W×C (H , W , C are height, width, channels) and splits it into 2D patches,
each with shape (P × P × C), where the patch size P is typically 16. Each patch is reshaped to
a vector of length P 2C, and all patches are concatenated into a sequence of the N flattened 2D
patches xp ∈ RN×(P 2C). Each flattened patch is mapped with a trainable linear projection to a
“patch token,” a vector of size D. We add 1D position embeddings to the patch tokens to retain patch
location information. We add a learnable CLS token to the patch token sequence, which serves as a
global representation for the image. The resulting patch tokens augmented with position embeddings
(t ∈ RN×D) and the concatenated CLS token serve as the input to the standard VIT encoder.

Masked autoencoding loss. The masked autoencoding (MAE) loss randomly masks out a high
proportion of the patch tokens (here, 0.75 (He et al., 2022)). We call the resulting unmasked tokens
tum ∈ RL×D, where L = 0.25 × N is the number of unmasked tokens. The unmasked tokens
are processed by the VIT to produce embeddings zum = VIT(tum). The masked embeddings
zm ∈ R(N−L)×D (consisting of all zeros) are then combined with the unmasked embeddings
processed by VIT to form a complete patch sequence z ∈ RN×D, which is passed through a
transformer decoder to produce a reconstruction x̂p ∈ RN×P 2C trained via mean square error:
LMSE = 1

N

∑N
p=1(xp − x̂p)

2. We refer to the model trained only with this MAE loss as VIT-M.

Temporal contrastive loss. The masked autoencoding loss is sufficient for reconstructing low-level
features on individual frames. To imbue our embeddings with temporal information (which may be
required for certain downstream tasks), we employ a contrastive loss that produces similar embeddings
for frames close in time, and distinct embeddings for frames far apart in time or from different videos.
To achieve this, each batch with B samples contains B/2 anchor frames, and each anchor frame xv

t
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Figure 1: BEAST framework. A: Our self-supervised pretraining framework BEAST combines masked
autoencoding (He et al., 2022) with temporal contrastive learning (Chen et al., 2020). An anchor frame at time t
is paired with a positive frame from t± 1, while more distant frames from the same video, or frames from other
videos, serve as negative examples. Frames are divided into patches, with most patches randomly masked. A
vision transformer (VIT) processes the remaining patches, which must reconstruct all patches. The VIT CLS
tokens, which serve as a global representation of each frame, are nonlinearly projected to a new space where the
contrastive loss pulls anchor-positive pairs together and pushes anchor-negative pairs apart. B: BEAST supports
various downstream neuro-behavioral tasks including neural encoding, pose estimation, and action segmentation.

(from time t and video v) has a randomly chosen positive frame from xv
t±1. All remaining B − 2

frames are treated as negative frames. Note this approach differs from other temporal contrastive
losses that allow any frame from the anchor frame’s video to be a positive frame (Xu and Wang, 2021;
Hernandez et al., 2024), which does not perform well with temporally-extended behavioral videos
(Table 6). To improve the robustness of this approach, we select the initial set of anchor frames from
a given video to be as visually distinct from each other as possible (Table 5). We utilize the InfoNCE
loss (Oord et al., 2018) computed on nonlinear projections of the CLS embeddings (which outperform
other frame aggregation methods, Table 8) that are output by the VIT. The projector outputs {zpb} are

used for the contrastive learning, calculated as LInfoNCE = − 2
B

∑
i∈A log

exp(zp
i ·z

p

i′ )∑
j ̸=i exp(z

p
i ·z

p
j )

, where i′ is

the positive example associated with i and A is the set of B/2 anchor frames. We refer to the model
trained with both the masked autoencoding and contrastive losses as BEAST.

Training and finetuning. We initialize our models with pretrained ImageNet weights (Deng et al.,
2009; He et al., 2022). Details of dataset construction, data augmentations, and batch construction are
provided in Appendix B. We define the loss as LMSE + λ · LInfoNCE, where λ balances the two losses
and is selected using the validation sets of the various datasets. Models are trained for 800 epochs
using the AdamW optimizer (Loshchilov and Hutter, 2017) with a cosine annealing learning rate
scheduler (Loshchilov and Hutter, 2016), taking approximately 25 hours on 8 Nvidia A40 GPUs.

4 RESULTS

We demonstrate the versatility of BEAST through comprehensive evaluation across three downstream
neuro-behavioral tasks: (1) neural encoding, which challenges the model to extract spatiotemporal
features that can predict patterns in neural activity; (2) pose estimation, which assesses the model’s
ability to extract fine-grained appearance details; and (3) action segmentation, which evaluates the
model’s capacity to extract spatiotemporal features required for predicting behavioral sequences.
Throughout these evaluations, we present systematic ablation experiments that demonstrate the critical
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Figure 2: BEAST improves neural encoding. A: Example video frame from each dataset. B: Encoding
performance is evaluated across multiple baseline features with both linear models (hatched bars; reduced rank
regression, RRR) and nonlinear models (solid bars; temporal convolution network, TCN). CEBRA uses a
contrastive loss to embed video frames in a latent feature space. “Motion energy” for the IBL-whisker dataset is
a 1D estimate of movement calculated as the sum of the absolute pixel differences between successive frames.
BEAST features outperform all baselines in both linear and nonlinear regimes. Boxplot showing variability
across five test sessions. C: Scatterplot comparison of BEAST vs keypoint-based model performance in an
example session. Each dot corresponds to an individual neuron. The values in the bottom-right corner represent
the session-averaged BPS. D: Top, middle: comparison of the predicted trial-averaged firing rates for BEAST
and keypoints (lines) and single-trial variability obtained by subtracting the neuron’s average firing rate on each
trial (heatmaps). Bottom: comparison of predicted neural principal components for the Facemap dataset.

importance of our combined loss functions, and explore various adaptation strategies, including the
use of CLS tokens or patch embeddings from a frozen backbone, as well as end-to-end fine-tuning.

4.1 NEURAL ENCODING

Predicting neural activity from behavior videos represents a significant challenge with promising im-
plications for understanding the relationship between brain and behavior (Musall et al., 2019; Stringer
et al., 2019; Wang et al., 2023). Traditional approaches often rely on keypoints (IBL et al., 2025b;
Syeda et al., 2024), potentially missing critical behavioral features that are not included in tracking or
are obscured by fur or feathers. While several studies have employed Principal Component Analysis
(PCA) (Musall et al., 2019; Stringer et al., 2019), this linear technique may inadequately capture
subtle behavioral nuances. Transformer embeddings offer a compelling alternative, potentially out-
performing linear approaches without being constrained by predefined keypoints, thereby providing
richer representations that could reveal previously undetectable neuro-behavioral correlations.

Datasets We present results on three high-quality neuro-behavioral datasets employing diverse neural
recording technologies (Fig. 2). The first dataset is a head-fixed mouse performing a decision-making
task from the International Brain Laboratory (IBL et al., 2025b). This dataset, “IBL,” features
simultaneous behavioral video and neural activity monitoring at single-cell, single-spike resolution
using Neuropixels probes (Jun et al., 2017) spanning multiple brain regions (average of 168 neurons
per session). The second dataset, “IBL-whisker,” reuses the same sessions but utilizes a cropped area
around the whisker pad in the video, a particularly salient behavioral feature for predicting neural
activity (Stringer et al., 2019; Whiteway et al., 2021; Syeda et al., 2024). The third dataset comes
from the Facemap study (Syeda et al., 2024), where neural activity is captured through two-photon
calcium imaging, a technique capable of resolving a large number of individual cells, but unable to
detect individual spikes. Following the authors’ approach, we predict the principal components of the
neural activity to capture predominant variance patterns across the large recorded neural populations.
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Models We first describe various feature representations used for neural encoding, followed by two
models (linear and nonlinear) that we fit to each representation. The first representation for IBL
and Facemap are keypoints tracked across the face and body (11 for IBL, 12 for Facemap). For the
IBL-whisker dataset, which lacks keypoints, we instead utilize a 1D estimate of whisker pad motion
energy (Appendix C). The second representation utilizes PCA applied to raw video frames, while the
third leverages CEBRA (Schneider et al., 2023) (which employs a contrastive loss to embed inputs
in a latent feature space) applied to raw video frames. Finally, we present results (using the CLS
token) from BEAST, which is initialized with ImageNet weights then fine-tuned separately on each
test session. Table 4 shows additional baselines that use frozen features from pretrained MAE (He
et al., 2022), DINOv2 (Oquab et al., 2023) and CLIP (Radford et al., 2021) models. We train two
encoders: linear encoders, which reveal how directly accessible information is within the features, and
nonlinear encoders, which better determine the upper bounds of information content in the features.
The linear encoder is a reduced rank regression model (Zhang et al., 2024). The nonlinear encoder is
the temporal convolution network (TCN) proposed in the Facemap study (Syeda et al., 2024).

Evaluation All model hyperparameters are tuned to ensure robust baseline performance (Appendix C).
To evaluate our neural encoding approaches, we utilize the Bits Per Spike (BPS) metric (Pei et al.,
2021) on the spike-resolved IBL dataset (higher values better), and the R2 metric on the neural
principal components in the Facemap dataset. All models are evaluated on five test sessions.

Results We find that nonlinear encoders consistently outperform their linear counterparts across all
datasets and feature representations (Fig. 2 and Table 14). Notably, non-keypoint representations
surpass keypoint-based approaches in both IBL and Facemap datasets, confirming our hypothe-
sis that behavior videos contain richer information than what pose estimation typically captures.
BEAST shows consistent improvements in neural encoding quality across all datasets and a range of
dimensionalities (Fig. 6), indicating that BEAST’s exceptional performance is not limited to high-
dimensional embedding spaces. Interestingly, the comparable BPS values for BEAST in both IBL and
IBL-whisker datasets suggest that a substantial portion of the neurally-relevant behavior information
is captured by the whisker pad activity, at least in the recorded brain regions.

Table 1: Zero-shot neural encoding performance (BPS±1 SD).

Method (TCN) IBL IBL-whisker

VIT-M (IN) 0.325± 0.091 0.307± 0.068
VIT-M (IN+PT) 0.334± 0.098 0.316± 0.073
VIT-C (IN+PT) 0.321± 0.099 0.286± 0.055
BEAST (IN+PT) 0.337± 0.103 0.317± 0.083
BEAST (IN+PT+FT) 0.352± 0.106 0.335± 0.079

The VIT-based models in Fig. 2 are
fine-tuned individually for each ses-
sion to enable direct comparison with
baseline approaches. We investigated
whether pretraining provides additional
benefits (Table 1). Strikingly, models
pretrained on ImageNet using only the
MAE loss, “VIT-M (IN)”, outperform
baselines without any fine-tuning. Fur-
ther pretraining on 77 IBL sessions, “VIT-M (IN+PT)”, improves performance on both IBL datasets,
validating the importance of domain-specific pretraining. By incorporating the contrastive objective,
BEAST achieves superior zero-shot performance: BEAST (IN+PT) outperforms the MAE-only variant,
as well as a contrastive-only variant VIT-C. Session-specific fine-tuning, “BEAST (IN+PT+FT)”,
provides additional significant gains, reaching performance levels comparable to models fine-tuned
directly from ImageNet weights (Table 14). Notably, even without fine-tuning, domain-specific pre-
trained models remain highly competitive, offering researchers a practical option when computational
resources for fine-tuning are limited. Finally, we experimented with using the patch embeddings as
input to the neural encoder, but found superior performance with the CLS tokens (Table 13).

4.2 POSE ESTIMATION

Pose estimation is a fundamental technique in animal behavior analysis (Pereira et al., 2020), enabling
precise quantification of posture and movement. Unlike human pose estimation, which benefits
from extensive labeled datasets and standardized anatomy, animal pose estimation presents unique
challenges such as scarcity of large annotated datasets and significant morphological diversity across
species. Pretraining models on large volumes of unlabeled behavior videos can potentially reduce the
labeled data requirements for accurate keypoint localization in various experimental paradigms.

Datasets We present results on four distinct datasets (Fig. 3): (1) a head-fixed mouse performing
a decision-making task (IBL et al., 2025a); (2) a head-fixed mouse running on a treadmill, seen
from two views (Warren et al., 2021); (3) the Caltech Resident-Intruder Mouse (CRIM13) dataset,
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Figure 3: BEAST improves pose estimation. A: Example frame from each dataset overlaid with ground truth
annotations. Green stars indicate the highlighted keypoint in panel B. B: Example traces from the ResNet-50
(gray) and BEAST (green) models for a single keypoint in a held-out video. BEAST traces evolve more smoothly
in time and do not contain erroneous jumps like the ResNet-50 baseline. C: Pixel error as a function of keypoint
difficulty (see main text; smaller is better): left-hand side shows performance across all keypoints; moving to
the right drops the easier keypoints defined by inter-seed and -model prediction variance. Vertical dashed lines
indicate the percentage of data used for the pixel error computation. VIT-M (IN) is a VIT backbone pretrained
on ImageNet with a masked autoencoding loss; VIT-M (IN+PT) uses the same architecture and loss but is
initialized with ImageNet-pretrained weights then further pretrained on experiment-specific unlabeled frames.

consisting of two freely interacting mice (Burgos-Artizzu et al., 2012); and (4) a freely moving
weakly electric fish, seen from three views (Biderman et al., 2024; Pedraja et al., 2025).

Models We implemented pose estimation models using Lightning Pose (Biderman et al., 2024).
We established a strong baseline utilizing a ResNet-50 backbone pretrained on AP-10K (Yu et al.,
2021), which outperforms a DeepLabCut baseline (ImageNet-pretrained ResNet-50) on all but the
CRIM13 dataset (Fig. 14). Our second baseline is a Vision Transformer (VIT-B/16) pretrained on
ImageNet (He et al., 2022) using our own implementation of ViTPose (Xu et al., 2022), enabling
assessment of potential improvements when transitioning from convolutional- to transformer-based
architectures. Our own VIT-based models utilize this same architecture. In the Appendix we provide
additional baselines that use fine-tuned DINO (Caron et al., 2021), DINOv2 (Oquab et al., 2023),
and Segment Anything (Kirillov et al., 2023) encoders (which BEAST consistently outperforms;
Fig. 7). For consistency across all model variants, we employ an identical pose estimation head that
transforms backbone features into keypoint heatmaps. Given the spatial nature of the task, we use
patch embeddings rather than CLS tokens in the transformers, and train all models end-to-end.

Evaluation To rigorously evaluate our pose estimation models, we designed a challenging limited-data
scenario with only 100 labeled training frames, a realistic constraint for many research settings where
extensive annotation is impractical. We measured pixel error between predicted keypoints and ground
truth on a test set of novel subjects. For each backbone, we fit three models on different 100-frame
subsets. Results are presented as pixel error relative to ensemble standard deviation (e.s.d.) across all
seeds and backbones following Biderman et al. (2024), with error curves showing performance at
varying difficulty thresholds. Each point corresponds to keypoints with e.s.d. exceeding the threshold
value, with the leftmost portion showing error across all keypoints and rightward movement including
only increasingly challenging keypoints (those with higher inter-model variability).
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Figure 4: BEAST improves action segmentation. A: Example frame from each dataset; performance evaluated
across multiple baseline features with both TCN (solid) and ensembled (hatched) models. Error bars represent
standard error of the mean across five random initializations. B: Confusion matrices for TCN models based on
keypoints and BEAST patch embeddings. C: Example behavior sequences with feature traces (single seed shown
for BEAST models), ensemble probabilities, ensembled model ethograms, ground truth ethograms, and error
frames. PCs of SimBA and BEAST features are shown for illustration, but the models utilize the full feature set.

Results We find robust improvements in pose estimation quality across all datasets when utilizing
BEAST (Fig. 3). The ImageNet-pretrained VIT outperforms the AP-10K-pretrained ResNet-50 on
all datasets except the fish, demonstrating the effectiveness of transformers even with limited labels.
Notably, pretraining the transformer with the MAE objective on experiment-specific data yields
substantial performance gains across all datasets, including the challenging fish dataset. Augmenting
MAE with the contrastive objective (BEAST) produces additional performance improvements for some
datasets, with particularly pronounced benefits observed in the IBL dataset. However, pretraining
only on the contrastive objective leads to significantly worse results (Fig. 15), consistent with the
different learning objectives: the temporal contrastive loss emphasizes high-level temporal structure,
whereas the MAE loss emphasizes low-level, pixel-level features. Consequently, MAE-pretrained
representations are better suited for pixel-level prediction tasks like pose estimation, though addition
of the contrastive loss in BEAST still provides complementary benefits. We also find BEAST’s
performance advantages persist when scaling to larger training datasets (Fig. 8).
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4.3 ACTION SEGMENTATION

Action segmentation classifies discrete behaviors using spatiotemporal video features (Pereira et al.,
2020). Similar to pose estimation, a central challenge in animal action segmentation is the lack of
large annotated datasets, as behaviors of interest often vary across species and experimental contexts.
Many current approaches rely on keypoints (Branson et al., 2009; Kabra et al., 2013; Segalin et al.,
2021; Gabriel et al., 2022; Goodwin et al., 2024), requiring an initial labor-intensive and error-prone
preprocessing step. Vision transformer embeddings eliminate this preprocessing requirement and
provide an attractive alternative if they match or exceed the performance of keypoint-based methods.

Datasets We present results on two datasets (Fig. 4): (1) the “IBL” dataset (IBL et al., 2025a), which
contains four behavior classes for the paw nearest the camera; and (2) the Caltech Mouse Social
Interactions (CalMS21) dataset (Sun et al., 2021a), a resident–intruder assay of interacting mouse
pairs that contains four social behavior classes.

Models We implemented models using two types of embeddings from frozen VIT models: (1) CLS
tokens and (2) per-patch embeddings. For CLS embeddings, we tested both a linear model and a
TCN (Lea et al., 2016), enriching the input with inter-frame differences (Blau et al., 2024). We
used a sliding window over this feature sequence to predict the action class of the central frame.
For patch embeddings, we applied multi-head attention pooling (Lee et al., 2019; Yu et al., 2022;
Sun et al., 2024) to integrate information across patches, then concatenated the resulting frame-level
embeddings with their inter-frame differences before processing them through a TCN (Fig. 9).

For IBL, we compared against three baseline features: (1) a single paw keypoint, obtained using
five pose estimation networks (each trained with 7,000 labeled frames) post-processed with an
Ensemble Kalman Smoother (Biderman et al., 2024); (2) principal components of the video frames;
and (3) the CLS and patch embeddings extracted from a frozen-weight ImageNet-pretrained VIT.
For CalMS21, we compared against four baseline features: (1) Trajectory Embedding for Behavior
Analysis (TREBA) (Sun et al., 2021b), a self-supervised feature extraction method for keypoint
trajectories; (2) Simple Behavioral Analysis (SimBA) (Goodwin et al., 2024), which extracts hundreds
of hand-crafted features from the keypoint trajectories; (3) principal components of video frames;
and (4) the CLS and patch embeddings from a frozen-weight ImageNet-pretrained VIT. The pose
estimator used for TREBA and SimBA was trained with 15,000 labeled frames (Sun et al., 2021a).
For all baselines except SimBA, we also concatenated inter-frame differences.

Evaluation All model hyperparameters are tuned to ensure robust baseline performance (Appendix E).
We evaluate performance on held-out animals using the macro-averaged F1 score. For the CalMS21
dataset, following Sun et al. (2021a), we average the F1 score over the attack, investigation and mount
classes. For all models we train five networks using different random initializations. We also report
the results of model ensembles by averaging logits across seeds before applying softmax.

Results BEAST demonstrates strong action segmentation performance across all datasets (Fig. 4).
Remarkably, ImageNet-pretrained VIT-M patch embeddings nearly match keypoint-based methods
despite utilizing a frozen, general-purpose backbone. This establishes a competitive baseline without
requiring the thousands of labels needed to train pose estimation networks. On IBL, BEAST improves
upon ImageNet baselines. The keypoint-based model excels here due to action classes corresponding
to paw movements easily captured by pose estimation, but this advantage disappears with ensembling:
BEAST ensemble F1 matches the keypoint ensemble. CalMS21 better demonstrates BEAST’s
abilities, which surpasses the SimBA baseline and substantially outperforms the TREBA baseline
(Table 2). The ensembled F1 score of 0.84 places our result in the top 15 of the Multi-Agent
Behavior Challenge on AIcrowd.com (top score of 0.89). Additional experiments confirm domain-
specific pretraining benefits: BEAST CLS tokens consistently outperform their ImageNet-pretrained
counterparts (Table 2), though patch-based models perform significantly better due to their enhanced
spatial resolution and multi-headed attention pooling. An ablation experiment on BEAST’s loss
terms show that backbones pretrained with a contrastive-only (VIT-C) or MAE-only (VIT-M) loss
do not perform as well as their combination (Table 16). Across all experiments, nonlinear models
consistently outperform their linear counterparts, except for PCA features on CalMS21 (Table 16).
All evaluations use frozen backbones with only linear/TCN heads fine-tuned, suggesting further gains
may be possible through full backbone fine-tuning.
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Table 2: Action segmentation performance (F1±S.E.M.).

Method (TCN) IBL CalMS21

TREBA – 0.72± 0.01
VIT-M (IN) (CLS) 0.79± 0.00 0.60± 0.00
VIT-M (IN) (patch) 0.84± 0.00 0.74± 0.00
BEAST (IN+PT) (CLS) 0.81± 0.00 0.63± 0.00
BEAST (IN+PT) (patch) 0.87± 0.01 0.81± 0.01

BEAST’s advantages extend beyond abso-
lute F1 improvements. Pose estimation-
based approaches require both extensive
labeling and iterative training and vali-
dation of pose estimation models before
action segmentation, often a months- or
even years-long process (IBL et al., 2022).
BEAST eliminates this entire pipeline, achieving competitive or superior performance using only
unlabeled video for pretraining.

5 DISCUSSION

This work introduces BEAST, a framework for self-supervised vision transformer pretraining leverag-
ing domain-specific video data. We demonstrated BEAST’s significant benefits across neural encoding,
pose estimation, and action segmentation tasks. Our frame-based approach is an efficient alternative to
native video models like VIDEOMAE (Tong et al., 2022), which require significantly more compute
for training and inference (Table 9); however BEAST still outperforms a frozen VIDEOMAE on the
neural encoding task (Table 4), demonstrating the power of domain-specific pretraining.

Our work establishes a foundation for several promising future directions. Investigation of transformer
attention and learned features could clarify how BEAST operates across different tasks. The black-box
nature of ViT embeddings presents interpretability challenges in scientific contexts where transparent
representations like pose estimates are often preferred. Visualization methods (Appendix H.1) provide
initial insights, but systematic analysis of what features drive performance on different tasks would
strengthen our understanding of when and why BEAST succeeds.

While we have demonstrated BEAST’s performance across diverse experimental contexts—including
head-fixed and freely moving animals, single- and multi-view setups, and solitary or social be-
haviors—validation across more environments and species is needed. The success of masked
autoencoding and contrastive losses in general computer vision suggests BEAST should adapt well
to naturalistic settings (e.g., home cages, zoos, field studies). The primary challenge will be adjusting
the frame sampling strategy to accommodate different visual statistics and behavioral distributions in
these less controlled environments.

Finally, we see two complementary paths toward making powerful self-supervised models more
accessible to individual labs. First, using smaller transformer architectures will reduce training,
inference, and fine-tuning costs, but may sacrifice performance. Second, BEAST’s framework
could enable foundation models of animal behavior trained across diverse datasets, rather than the
dataset-specific pretraining we present here. Such foundation models would allow labs to finetune
already-powerful pretrained models rather than pretraining themselves. Together, these approaches
would lower barriers to adoption and enable wider application of self-supervised learning across the
neuroscience community.
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REPRODUCIBILITY STATEMENT

We have attempted to provide sufficient detail to foster reproducibility of all analyses presented in
this manuscript.

Data availability. All datasets are sourced from public repositories, with links and accompanying
licenses provided in Appendix A.

Code availability.

• Pretraining: Code for BEAST pretraining, frame selection, training, and inference will be
released on Github upon acceptance.

• Neural encoding:
– Reduced Rank Regression for IBL: https://github.com/realwsq/
brainwide-RRR-encoding-model

– Reduced Rank Regression for Facemap: https://github.com/MouseLand/
facemap/blob/v1.0.7/facemap/neural_prediction/prediction_
utils.py#L110

– Temporal Convolution Network: https://github.com/MouseLand/
facemap/blob/v1.0.7/facemap/neural_prediction/neural_
model.py

• Pose estimation: https://github.com/paninski-lab/lightning-pose/
tree/v1.7.1

• Action segmentation code will be released on Github upon acceptance.

Analysis details.

• Pretraining (Appendix B): BEAST pretraining procedure and frame selection strategy.
• Neural encoding (Appendix C): Model architectures, training procedures, and hyperparame-

ter tuning details.
• Pose estimation (Appendix D): Training procedures and hyperparameter selection.
• Action segmentation (Appendix E): Model architectures, training procedures, and hyperpa-

rameter tuning details.
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Appendix

A DATASETS

All datasets used for this study were collected in compliance with the relevant ethical regulations (see
the references for each dataset).

A.1 IBL

This dataset (IBL, 2023) from the International Brain Lab (IBL) and consists of head-fixed mice
performing a decision-making task (IBL et al., 2021; 2025b;a). Two cameras–‘left’ (60 Hz) and
‘right’ (150 Hz)–capture roughly orthogonal side views of the mouse’s face and upper trunk dur-
ing each session. Frames are downsampled to 256 × 320 pixels for labeling and video storage.
We accessed the raw videos and neural activity under the CC-BY 4.0 license using these in-
structions: https://int-brain-lab.github.io/iblenv/notebooks_external/
data_release_brainwidemap.html. The data can also be visualized through a browser
at https://viz.internationalbrainlab.org.

Pose estimation Frames were reshaped during training to 256 × 256 pix-
els. Two keypoints were labeled per view, one for each paw. We accessed
the initial pose estimation labels from the public repository at https://
ibl-brain-wide-map-public.s3.amazonaws.com/aggregates/Tags/2023_
Q1_Biderman_Whiteway_et_al/_ibl_videoTracking.trainingDataPaw.
7e79e865-f2fc-4709-b203-77dbdac6461f.zip under the CC-BY 4.0 license. This
dataset contains 6,071 labeled train frames from 35 animals and 1,446 labeled test frames from 10
animals, all at 128 × 102 pixel resolution.

Despite the large number of labeled frames, we observed poor performance in sessions with bright
lights or other unusual distractors. Additionally, the low resolution often obscured fine details, for
example making it difficult to visually distinguish individual paws when they are close together. To
address these limitations, we retrieved the full-resolution frames (1280 × 1024 for left view, 640
× 512 for right) from the raw videos and downsampled them to 320 × 256 pixels. This higher
resolution revealed occasional labeling errors, which we manually corrected. We then added 1,437
newly labeled frames from 15 additional animals, creating an expanded training set of 7,609 frames
from 50 animals. We will publicly release these updated labels under a CC-BY 4.0 license upon
acceptance of this manuscript.

Action segmentation Four action classes are labeled for the paw closest to the camera: (1) still;
(2) grooming; (3) turning the wheel; and (4) fidget (any movement that is not grooming or wheel
turning). We accessed the initial action segmentation labels from https://doi.org/10.6084/
m9.figshare.27479760.v1 under the CC-BY 4.0 license. This dataset contains 1,000,000
frames from 10 animals, of which 14,107 are labeled.

We expanded this dataset as the original study (Blau et al., 2024) only used five animals each for
training and testing. First, we trained an ensemble of five TCN-based action segmentation models
on all 10 existing animals. We applied these models to a new batch of 53 sessions and calculated
the variance in predicted probabilities across all models for each frame. The 19 sessions with the
highest average ensemble variance (indicating where models disagreed most) were selected for further
labeling. We then labeled an additional 36,009 frames from these sessions. For the analyses in
this paper, we selected the subset of all labeled sessions that are included in the BEAST pretraining
sessions, and split these into train (32,521 frames from 18 animals) and test sets (7,786 frames from 5
animals). We will publicly release these updated labels under a CC-BY 4.0 license upon acceptance
of this manuscript.

Neural encoding For the neural analysis we use a subset of the IBL repeated site dataset (IBL et al.,
2025b). This dataset consists of Neuropixels recordings collected from 10 labs with standardized
experimental pipelines. The recordings target the same five brain regions across all mice: VISa
(primary visual cortex), CA1 and DG (hippocampus), and LP and PO (thalamic nuclei). We evaluate
neural encoding models on five randomly selected sessions. Moreover, we used the trial-aligned
neural activity data, taking 2 seconds of activity aligned to wheel movement onset. We binned the

19
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spikes every 20 ms to get a total of 100 bins per trial. We also filtered out the low firing rate neurons
by setting a minimum threshold of 2 Hz. For each trial we randomly select 100 video frames (out of
a possible 120) to fit the downstream neural encoding models, resulting in an effective sampling rate
of 50 Hz to match the neural data.

A.2 IBL-WHISKER

We localize the whisker pad using anchor keypoints on the nose and eye, following the procedure in
IBL et al. (2022). We use the same sessions and neural activity as the “IBL” dataset.

A.3 MIRROR-MOUSE

Head-fixed mice ran on a circular treadmill while avoiding a moving obstacle (Warren et al., 2021).
The treadmill had a transparent floor and a mirror mounted inside at 45°, allowing a single camera
to capture two roughly orthogonal views (side view and bottom view via the mirror) at 250 Hz.
The camera was positioned at a large distance from the subject (∼1.1 m) to minimize perspective
distortion. Frames are 406 × 396 pixels and reshaped during pose estimation training to 256 × 256
pixels. Seventeen keypoints were labeled across the two views including seven keypoints on the
mouse’s body per view, plus three keypoints on the moving obstacle. The full training dataset consists
of 789 labeled frames across 10 animals; the test dataset consists of 253 labeled frames across three
animals. We accessed the labeled pose estimation dataset from https://doi.org/10.6084/
m9.figshare.24993315.v1 under the CC-BY 4.0 license.

A.4 MIRROR-FISH

Mormyrid fish of the species Gnathonemus petersii swam freely in and out of an experimental tank,
capturing worms from a well (Biderman et al., 2024; Pedraja et al., 2025). The tank had a side
mirror and a top mirror, both at 45°, providing three different views seen from a single camera at
300 Hz. The camera was placed ∼1.7 m away from the center of the fish tank to reduce distortions.
Frames are 384 × 512 pixels and reshaped during training to 256 × 384 pixels. Seventeen body
parts were labeled across each of three views for a total of 51 keypoints. The full training dataset
consists of 373 frames across three animals; the test dataset consists of 94 frames across three
animals. We accessed the labeled pose estimation dataset from https://doi.org/10.6084/
m9.figshare.24993363.v1 under the CC-BY 4.0 license.

A.5 CRIM13

The Caltech Resident-Intruder Mouse (CRIM13) dataset (Burgos-Artizzu et al., 2012) consists
of two mice interacting in an enclosed arena, captured by top and side-view cameras at 30 Hz.
We only used the top view. Frames are 480 × 640 pixels and reshaped during training to 256
× 256 pixels. Seven keypoints were labeled on each mouse for a total of 14 keypoints (Segalin
et al., 2021). The full training dataset consists of 3,986 frames across four resident mice; the
test dataset consists of 1,274 frames across the same four resident mice but a different set of
intruder mice. The original dataset is available at https://data.caltech.edu/records/
4emt5-b0t10. We accessed the labeled pose estimation dataset from https://doi.org/10.
6084/m9.figshare.24993384.v1 under the CC-BY 4.0 license.

A.6 CALMS21

The Caltech Mouse Social Interactions (CalMS21) dataset (Sun et al., 2021a), like CRIM13, consists
of two mice interacting in an enclosed arena, captured by a top-view camera at 30 Hz. The dataset
consists of many videos with tracked poses and corresponding frame-level behavior annotations.
Four behavior classes are labeled: attack, investigation, mount, and other (i.e., none of the above).
The full training dataset consists of 506,668 frames across 68 videos; the test dataset consists of
262,107 frames across 19 videos. We accessed the pose estimates, TREBA features (Sun et al.,
2021b), and behavior annotations from https://doi.org/10.22002/D1.1991 under the
CC-BY 4.0 license.

A.7 FACEMAP

Head-fixed mice were free to run on an air-floating ball in darkness (Syeda et al., 2024). A single
infrared camera captured one of several side or front views of the mouse’s face and upper trunk
during each session at 50 Hz. Fifteen keypoints were labeled across the face (mouse, nose, whiskers,
eyes) and paw. Neural activity was recorded across visual and sensorimotor areas using two-
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photon calcium imaging at 3 Hz. Approximately 30,000 to 50,000 cells were recorded in a given
session. In our encoding task, we predict the 128 neural principal components following Syeda
et al. (2024). We evaluate neural encoding models on five randomly selected sessions. The publicly
available data did not contain additional videos, so we only fine-tuned neural encoding models
with this dataset. We accessed the raw videos, pose estimates, and neural activity from https:
//doi.org/10.25378/janelia.23712957 under the CC-BY-NC 4.0 license.

Table 3: Number of training/validation/test frames utilized across tasks, with number of source videos in
parentheses. Pretraining frames are unlabeled. Pose estimation and action segmentation frames are labeled;
these models are trained across multiple videos. Neural encoding frames have matched neural activity (output)
for each time point of behavior (input); these models are trained on single videos, since the neural populations
change from one session to the next.

Pretraining
Pose estimation Action segmentation Neural encoding

train/val test train/val test train/val test

IBL (IBL et al., 2025a) 138,600 (77) 7,609 (128) 1,446 (19) 35,521 (18) 7,786 (5) 338,760 (5) 42,720 (5)
Mirror-mouse (Warren et al., 2021) 94,252 (17) 789 (17) 253 (5) - - - -
Mirror-fish (Biderman et al., 2024) 47,921 (28) 373 (28) 94 (10) - - - -

CRIM13 (Burgos-Artizzu et al., 2012) 99,914 (37) 3,986 (37) 1,274 (19) - - - -
CalMS21 (Sun et al., 2021a) 103,544 (37) - - 506,668 (68) 262,107 (19) - -
Facemap (Syeda et al., 2024) - - - - - 1,790,200 (5) 447,550 (5)

B BEAST IMPLEMENTATION

BEAST utilizes a standard VIT-B/16 architecture (Dosovitskiy et al., 2020), and combines a masked
autoencoding and temporal contrastive learning loss. This approach is also taken by VIC-MAE (Her-
nandez et al., 2024), and we introduce key adaptations and simplifications to make BEAST suitable
for applications in behavioral neuroscience, which we elaborate on more in the following sections.

B.1 ARCHITECTURE

We selected the “base” VIT-B/16 architecture over other VIT variants for two reasons: it is expressive
enough to capture rich frame-level information, while remaining computationally efficient for training
and inference on long videos.

Our architecture differs from the standard VIT in its use of a nonlinear projector for the contrastive
loss. While VIC-MAE employs a pooled attention layer to transform patch embeddings into a
768-dimensional vector for their contrastive loss, we take a different approach. We use the standard
CLS token as our global image representation rather than pooled patch embeddings (Table 8). This
CLS token passes through a nonlinear projector with four components: a linear layer, Batch Norm
(necessary for stable training, Fig. 5), ReLU activation, and a final linear layer.

The BEAST backbone is initialized using weights pretrained on ImageNet with a masked autoencoding
loss. This model has exceptional zero-shot performance on neural encoding, outperforming all other
baselines, and is further improved with domain-specific pretraining (Table 1). We find other pretrained
backbones–DINOv2 (Oquab et al., 2023) pretrained on ImageNet and CLIP (Radford et al., 2021)–
also have strong zero-shot performance, but do not significantly improve upon MAE+ImageNet
(Table 4), indicating this is a reasonable pretrained backbone from which to start our own domain-
specific pretraining (see Fig. 7 and Table 16 for similar results on pose estimation and action
segmentation, respectively).

BEAST incorporates time through its temporal contrastive loss, which efficiently captures information
across frames. We explored the performance of VIDEOMAE (Tong et al., 2022), a related video model
pretrained on Kinetics-400 (Kay et al., 2017). We found that the frozen VIDEOMAE backbone does
outperform the frame-based VIT-MAE on the neural encoding task (Table 4). Interestingly BEAST,
which applies additional domain-specific pretraining to VIT-MAE, still outperforms VIDEOMAE.
This raises the intriguing question of whether further domain-specific pretraining of VIDEOMAE
could surpass BEAST performance. We view this as an important direction for future work.
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Figure 5: Effect of Batch Normalization on contrastive training accuracy. Training contrastive accuracy
improves significantly with the use of Batch Normalization (BatchNorm) in the nonlinear projection head.
Models trained with BatchNorm exhibit smoother learning curves and achieve higher final accuracy compared
to those without BatchNorm. “Accuracy” is defined as the fraction of anchor frames in a batch where the
corresponding positive frame has a logit score higher than that of all other negative frames.

Table 4: Performance of frozen pretrained backbones. We evaluate the representations of these models using
zero-shot performance (except for the pretrained BEAST model) on the neural encoding task using the bits per
spike (BPS) metric. We report the mean and standard deviation of BPS across five test sessions.

Method IBL IBL-whisker

TCN RRR TCN RRR

DINOv2 (IN) 0.329± 0.095 0.207± 0.068 0.302± 0.072 0.151± 0.031
CLIP 0.326± 0.095 0.195± 0.061 0.300± 0.076 0.143± 0.027
VIT-MAE (IN) 0.325± 0.091 0.201± 0.070 0.307± 0.068 0.142± 0.051
VIDEOMAE (Kinetics-400) 0.332± 0.055 − 0.311± 0.087 −
BEAST 0.337± 0.103 0.277± 0.076 0.317± 0.083 0.138± 0.029

B.2 TRAINING

We discuss frame selection and sampling strategies, data augmentations, and global pooling strategies
below. We apply the MAE loss uniformly across all frame types (anchor, positive, negative), whereas
VIC-MAE only applies the MAE loss to anchor frames. The global batch size is set to 2048,
distributed across 8 Nvidia A40 GPUs. We use the AdamW optimizer with a weight decay of 0.05.
The learning rate is scheduled using PyTorch’s OneCycleLR scheduler, with a base learning rate
of 5 × 10−5. The maximum learning rate is computed as max_lr = base_lr × global_batch_size

256 , with
pct_start set to 0.15 and div_factor set to 10. We train all models for 800 epochs.

Frame selection strategy Animal behavior videos often contain extended periods of inactivity
or repetitive behaviors. Pretraining VIT models on all available frames would capture redundant
information and increase computation time unnecessarily. Instead, we focus on extracting diverse
frames that showcase distinct poses (to optimize the masked autoencoding loss) while preserving
meaningful temporal relationships in local neighborhoods (to leverage the temporal contrastive loss).
Our approach begins by downsampling all video frames to 32 × 32 pixels and calculating motion
energy, defined as the absolute pixel-wise differences between consecutive frames. We eliminate
frames in the bottom 50th percentile of motion energy, retaining only those with significant movement.
We then apply k-means clustering to the remaining downsampled frames, with the number of clusters
matching our target number of anchor frames per video (e.g., 600). For each cluster, we select the
frame closest to the cluster center, along with its immediate predecessor and successor in time, which
serve as positive examples for the contrastive loss (for a total of, e.g., 1800 frames per video). This
methodology ensures a high-quality, diverse dataset for efficient pretraining. We find this method
outperforms a random frame selection strategy in the neural encoding task (Table 5).

Frame sampling strategy during training Once we have a diverse set of training frames, we must
construct batches during training. As stated in Sec. 3, for a batch of size B we randomly select B/2
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Table 5: Frame selection strategy ablation. We pretrain models using either a random frame selection strategy
(“Random”) or the PCA+k-means strategy described above (“Selected”). We evaluate the representations of
these models using zero-shot performance on the neural encoding task using the bits per spike (BPS) metric. We
report the mean and standard deviation of BPS across five test sessions.

Method IBL IBL-whisker

TCN RRR TCN RRR

VIT-M (Random) 0.311± 0.107 0.168± 0.091 0.319± 0.084 0.147± 0.026
BEAST (Random) 0.319± 0.104 0.176± 0.094 0.319± 0.081 0.138± 0.035
BEAST (Selected) 0.337± 0.103 0.177± 0.076 0.317± 0.083 0.138± 0.029

anchor frames, which can originate from any and all videos. For BEAST, each anchor frame xv
t is

paired with a positive frame randomly selected from xv
t±1. All other frames serve as negative frames,

including frames from the same video. Due to the frame selection strategy described above, even
frames from the same video will be visually distinct and not interfere with the contrastive loss. This
batch construction procedure is distinct from VIC-MAE, which allows any two frames from the
same video to be a positive pair, while only frames from different videos are negative pairs. We
find our approach outperforms the VIC-MAE approach in the neural encoding task (Table 6). This
sampling strategy only applies to BEAST; the VIT-M models do not contain the contrastive loss, and
we only train them with the anchor frames.

Table 6: Frame sampling strategy ablation. We pretrain models using either the VIC-MAE or BEAST frame
sampling strategy; both models use the superior “Selected” frame selection strategy. We evaluate the representa-
tions of these models using zero-shot performance on the neural encoding task using the bits per spike (BPS)
metric. We report the mean and standard deviation of BPS across five test sessions.

Method IBL IBL-whisker

TCN RRR TCN RRR

ViC-MAE (IN+PT) 0.331± 0.103 0.141± 0.080 0.289± 0.055 0.127± 0.033
BEAST (IN+PT) 0.337± 0.103 0.177± 0.076 0.317± 0.083 0.138± 0.029

Data augmentation The default data augmentation procedure (He et al., 2022) applies a random
resized crop to 244×244 pixels with a crop ratio between 0.2 and 1.0, followed by a random horizontal
flip with probability 50%. We also explore an extended augmentation strategy that adds further
random transformations: rotation up to 45 degrees and color jittering (brightness=0.4, contrast=0.4,
saturation=0.4, hue=0.1), in addition to the crop and flip. We compare the performance of BEAST
using both the default and the extended augmentation strategy. The additional augmentations achieve
performance similar to the default setting (Table 7), so we use the default augmentation throughout
the paper.

Table 7: Data augmentation ablation. We pretrain models using either default or extended data augmentations.
We evaluate the representations of these models using zero-shot performance on the neural encoding task using
the bits per spike (BPS) metric. We report the mean and standard deviation of BPS across five test sessions.

Method IBL IBL-whisker

TCN RRR TCN RRR

BEAST (default data aug) 0.337± 0.103 0.177± 0.076 0.317± 0.083 0.138± 0.029
BEAST (extend data aug) 0.328± 0.102 0.163± 0.081 0.314± 0.077 0.150± 0.042

Pooling strategy The CLS token serves as a global frame representation, effectively pooling informa-
tion across all spatial positions into a single latent vector. To explore alternative pooling strategies
during pretraining, we conducted additional experiments by pretraining models using mean pooling
and attention pooling of the patch embeddings, then evaluating performance on the neural encoding
task (Table 8). The ablation results clearly demonstrate that the CLS token is the most effective
aggregation method for pretraining.
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Table 8: Pooling ablation. We pretrain models using either the CLS token, or mean or attention pooling of the
patch embeddings, to aggregate information across the image for the temporal contrastive loss. We evaluate the
representations of these models using zero-shot performance on the neural encoding task using the bits per spike
(BPS) metric. We report the mean and standard deviation of BPS across five test sessions.

Method IBL IBL-whisker

TCN RRR TCN RRR

BEAST (mean pooling) 0.321± 0.104 0.159± 0.080 0.302± 0.082 0.128± 0.025
BEAST (attention pooling) 0.323± 0.100 0.141± 0.076 0.307± 0.072 0.130± 0.031
BEAST (CLS token) 0.337± 0.103 0.277± 0.076 0.317± 0.083 0.138± 0.029

B.3 HYPERPARAMETER DETAILS

The BEAST objective combines two losses: the reconstruction loss and the contrastive loss. During
the early stages of training, it is important for the model to focus on accurately reconstructing the
input, so the reconstruction loss should dominate. As training progresses and the model learns to
capture low-level pixel structure, the contrastive loss gradually becomes more important. It acts
as a regularizer, encouraging the model to learn higher-level temporal representations rather than
overfitting to local pixel patterns.

The weighting factor for the contrastive loss, λ, plays a crucial role during pretraining; too large and
the model will not reconstruct the input well; too small and the model does not reap its regularizing
benefits. Through hyperparameter tuning based on neural encoding performance (on the validation
set), we set λ = 0.03 for all datasets, except CRIM13, where we set λ = 0.01. This choice ensures
the reconstruction loss is emphasized in the early phases of training, while the contrastive loss
naturally takes over as reconstruction error decreases toward the end, eliminating the need for an
annealing schedule.

The masking strategy for the reconstruction loss also significantly impacts performance. We found
that an aggressive mask ratio of 0.75 works effectively across various tasks, for both VIT-M and
BEAST. When fine-tuning BEAST for neural encoding models (IN+FT or IN+PT+FT), we tested
mask ratios of 0.75 and 0.9, with 0.9 performing better on validation data. These 0.9-ratio models are
used for the final fine-tuning results presented in our tables and figures.

B.4 COMPUTATIONAL EFFICIENCY COMPARISON

To compare the computational efficiency of image (VIT-M, BEAST) versus video models
(VIDEOMAE), we recorded three metrics for each model: runtime (ms per batch), Giga Float-
ing Point Operations per Second (GFLOPS), and memory required for a forward pass with batch
size one. All experiments were run using the fvcore library on a single A100 GPU. Since runtime
varies across batches while GFLOPS and memory are deterministic, we report mean and standard
deviation of runtime across 32 batches. We benchmark two modes: “pretrain”, which uses patch
masking (0.75 for image models, 0.9 for VideoMAE, following optimal settings from the respective
papers); and “finetune”, which omits patch masking as relevant for our downstream tasks.

BEAST and VIT-M show comparable performance across all metrics, with BEAST having a slightly
longer runtime and larger memory footprint due to the nonlinear projector used in the contrastive loss
(not substantial enough to affect GFLOPS). VIDEOMAE requires substantially more resources due
to processing 16 consecutive frames per batch element: during pretraining, it requires 2.5× runtime,
3.5× GFLOPS, and >2× memory compared to BEAST. These differences are even more pronounced
during finetuning when patches are not masked: VIDEOMAE requires 11× runtime, 11× GFLOPS,
and 7× memory.

C NEURAL ENCODING

C.1 FEATURE REPRESENTATIONS

Keypoints For the IBL dataset we use 11 keypoints in the publicly available dataset: left and right
paws, two edges of the tongue, two edges of the lick spout, nose, and four edges of the pupil. For the
Facemap dataset we use 12 keypoints in the publicly available dataset: three whiskers, four points on
the nose, four corners of the eye, and the one visible paw.
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Table 9: Computational efficiency comparison. We benchmark runtime (mean and standard deviation across 32
batches), GFLOPS, and memory usage for BEAST, VIT-M, and VIDEOMAE during pretraining (with patch
masking) and finetuning (without patch masking). All measurements are for a forward pass with batch size of
one on a single A100 GPU.

Model Runtime (ms/batch) GFLOPS Memory (MB)

Finetune Pretrain Finetune Pretrain Finetune Pretrain

ViT-M 5.43± 0.70 7.6± 2.43 17.59 9.80 369.0 332.72
BEAST 6.21± 0.94 7.9± 2.26 17.59 9.80 409.1 333.40
VideoMAE 71.51± 3.50 20.16± 2.47 199.49 35.24 2955.1 831.61

Whisker pad motion energy We localize the whisker pad in the IBL dataset using anchor keypoints
on the nose and eye. We then compute the motion energy of the whisker pad as the absolute pixel-wise
differences between consecutive frames, resulting in a one-dimensional representation at each time
point (IBL et al., 2022).

Principal Component Analysis We compute PCA on a per-session basis using all frames in the
video. A subset of the resulting PCs are used for neural encoding. See Sec. C.6 for information on
our dimensionality ablation experiment.

CEBRA CEBRA (Schneider et al., 2023) is a contrastive learning approach that provides a baseline
which is complementary to the VIT-M models pretrained on ImageNet with a masked autoencoding
objective. Similar to our PCA approach, we train an individual unsupervised CEBRA model for each
session using the convolutional neural network option and the default offset10-model.

DINOv2 For the DINOv2 model (Oquab et al., 2023), we extract the CLS embedding for each
frame using a frozen pretrained backbone, and use these as input to the encoding models. We
did not pretrain this model ourselves, but rather used the model checkpoint available at https:
//huggingface.co/facebook/dinov2-base.

ViT-M variants For the VIT-M models, we extract the CLS embedding for each frame using a
frozen pretrained backbone, and use these as input to the encoding models. Alternative approaches
could include: (1) using patch embeddings with a multi-head attention pooling layer (as in our
action segmentation work), or (2) fine-tuning the backbone itself while using either CLS or patch
embeddings (similar to our approach for pose estimation). We expect these alternative approaches
would improve performance and plan to explore them in future work.

• VIT-M (IN): VIT-M model pretrained on ImageNet using a masked autoencoding loss.
We did not pretrain this model ourselves, but rather used the model checkpoint available at
https://huggingface.co/facebook/vit-mae-base.

• VIT-M (IN+PT): Initialized with the ImageNet-pretrained weights, then further pretrained
on dataset-specific frames.

• VIT-M (IN+PT+FT): Initialized with the dataset-specific pretrained weights (IN+PT), and
then further fine-tuned on a single session.

All training (except VIT-M (IN)) is performed as described in Appendix B.

BEAST variants The BEAST model variants follow the same naming pattern as VIT-M, with one
exception: there is no “BEAST (IN)” variant, as BEAST requires video frames rather than just static
images for pretraining.

C.2 REDUCED RANK REGRESSION

IBL For the IBL dataset, we followed the Reduced Rank Regression (RRR) setup described in (Posani
et al., 2025). We trained all models using the L-BFGS optimizer and set the rank constraint to 3. To
denoise the neural signals, we applied a 1-dimensional smoothing filter to the neural activity. The
hyperparameter search (Sec. C.4) was conducted over the ranges specified in Table 10.

Facemap For the Facemap dataset, we followed the setup described in (Syeda et al., 2024), using
the implementation provided in the official Facemap repository. To deal with different neural and
behavioral sampling rates, this model first resamples the behavioral timestamps to match the neural
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Table 10: RRR model hyperparameters for IBL dataset.

Hyperparameter Value Range

Output Dim Number of Neurons
Rank 3
Optimizer L-BFGS
Learning Rate Log-Uniform(0.1, 2)
L2 100

timestamps, and then fits a Reduced Rank Regression model using low-rank SVD. We adopted
the default rank of 32 as used in the original implementation. The Lambda parameter refers to
the regularization strength, which we set to a relatively low value to avoid over-penalizing the
weights. The output dimensionality was set to 128, corresponding to the number of neural principal
components used in the model. Model parameters are estimated via a closed-form least squares
approach. The hyperparameters we used are specified in Table 11.

Table 11: RRR model hyperparameters for Facemap dataset.

Hyperparameter Value Range

Output Dim 128
Rank 32
Lambda 1e-6

C.3 TEMPORAL CONVOLUTION NETWORK

We used the same implementation of the Temporal Convolution Network (TCN) to process frame
embeddings for both the IBL and Facemap datasets, based on the official Facemap repository. The
convolutional kernel operates along the temporal dimension of the input (behavioral) data. To
deal with different neural and behavioral sampling rates, this model resamples the resulting latent
representation at neural timestamps using nearest-neighbor indexing. The TCN model was trained for
300 epochs using the AdamW optimizer, with learning rate decimation (multiplied by 0.1) applied at
epochs 120 and 200. The hyperparameter search (Sec. C.4) was conducted over the ranges specified
in Table 12.

Table 12: TCN model hyperparameters; ∗IBL dataset; ∗∗Facemap dataset

Hyperparameter Value Range

Output Dim Number of Neurons∗, 128∗∗

Learning Rate Log-Uniform(5e-5, 2e-3)
Optimizer AdamW
Weight Decay 1e-4

C.4 HYPERPARAMETER SELECTION

For the IBL data, we divided the trials into train (80%), validation (10%), and test (10%) sets. For the
Facemap data we followed the experimental setup as described in the original study (Syeda et al.,
2024): the session is split into ten blocks; the first 75% of each block is assigned to the training set;
the following 3 seconds are excluded to remove data leakage due to autocorrelation in behavior and
neural activity; and the final set of frames from the block are assigned to the test set. There is no
validation set. For both the RRR and TCN models, we conducted hyperparameter searches separately
for each feature type to identify the best-performing configurations. Specifically, we performed 30
runs of randomly selected hyperparameters per model type, evaluating performance on the validation
set (IBL) or test set (Facemap) using an evaluation metric specific to each dataset: bits per spike
(BPS) for IBL and variance explained for Facemap. The only exception was the RRR model for
Facemap, where the parameters were fixed according to the original implementation. We select the
model with the best performance on the validation (IBL) or test (Facemap) set, and report results on
the test set.
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C.5 PATCH EMBEDDINGS

The output of the VIT encoder consists of a CLS token embedding zCLS ∈ RD and patch token
embeddings z ∈ RN×D, where D = 768 is the embedding dimension and N is the total number of
image patches (N = 196 for a 224× 224 input frame). We compare the CLS token and attention-
pooled patch embeddings as inputs for neural encoding (see implementation details in E.4), and find
that the CLS token outperforms the patch embeddings (Table 13). Given its lower dimensionality and
superior results, we adopt the CLS token representation for all subsequent encoding tasks.

Table 13: Comparison of CLS and patch embeddings with a TCN encoder. We report the mean and standard
deviation of BPS across five test sessions.

Method IBL IBL-whisker

BEAST (CLS) 0.337± 0.103 0.317± 0.083
BEAST (patch) 0.278± 0.065 0.288± 0.070

C.6 DIMENSIONALITY ABLATION EXPERIMENTS

One of the most important hyperparameters for the PCA, CEBRA, and VIT models is the la-
tent/embedding dimensionality. To thoroughly explore performance across this parameter, we tested
these models using various dimensionality values. For a given dimensionality k, we used different
approaches: (1) for PCA, we selected the top k principal components; (2) for CEBRA, we retrained
the model with k latent dimensions; and (3) for VIT models, due to computational constraints, we
first trained the full 768-dimensional models, then applied PCA to the embedding space and selected
the top k VIT principal components. For each feature, model type, and dimensionality k, we fit
downstream neural encoding models using the complete hyperparameter search described previously.
Figure 2 reports the best result for each model, though notably BEAST outperforms all baselines
across all dimensionality values (Fig. 6).

A

B

Figure 6: Encoding performance as a function of embedding dimension. BEAST outperforms all other
baselines over embedding dimensions spanning several orders of magnitude, demonstrating the superiority of its
representations for any given dimensionality. Results for Keypoints and Motion Energy are included at their
respective dimensionalities for each dataset. The Facemap encoding results for 1-dimensional data performed
poorly and included NaN values in some sessions, so we excluded them from the figure.
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C.7 EXTENDED NEURAL ENCODING RESULTS

We collect all neural encoding results in Table 14. The values for PCA and CEBRA correspond
to the 100-dimensional results in Fig. 6; the values for VIT-M and BEAST correspond to the full
768-dimensional models.

Table 14: Neural encoding results across feature types and models. All VIT-based models use a frozen backbone.
“IN” refers to a model pretrained with ImageNet weights; “IN+PT” refers to models that are initialized with
ImageNet-pretrained weights then further pretrained on experiment-specific data; “+FT” refers to models that
are initialized with pretrained weights based on what comes before “+” then fine-tuned on individual sessions.
We report the mean and standard deviation of BPS across five test sessions.

Features
IBL IBL-whisker Facemap

RRR TCN RRR TCN RRR TCN

Keypoints 0.173± 0.029 0.271± 0.054 – – 0.224± 0.047 0.403± 0.077

Motion energy – – 0.087± 0.023 0.117± 0.028 – –
PCA 0.266± 0.054 0.312± 0.078 0.220± 0.038 0.281± 0.065 0.177± 0.064 0.407± 0.090

CEBRA 0.245± 0.036 0.295± 0.049 0.209± 0.265 0.265± 0.034 0.143± 0.046 0.278± 0.064

VIT-M (IN) 0.201± 0.070 0.325± 0.091 0.142± 0.051 0.307± 0.068 0.254± 0.061 0.446± 0.100s

VIT-M (IN+PT) 0.182± 0.071 0.334± 0.098 0.156± 0.032 0.316± 0.073 – –
VIT-M (IN+FT) 0.242± 0.089 0.349± 0.106 0.219± 0.048 0.336± 0.075 0.260± 0.051 0.461± 0.099

VIT-M (IN+PT+FT) 0.293± 0.082 0.351± 0.106 0.244± 0.042 0.335± 0.092 – –
BEAST (IN+PT) 0.277± 0.076 0.337± 0.103 0.138± 0.029 0.317± 0.083 – –
BEAST (IN+FT) 0.276± 0.088 0.351± 0.106 0.251± 0.051 0.337± 0.088 0.281± 0.054 0.464± 0.089

BEAST (IN+PT+FT) 0.291± 0.087 0.352± 0.106 0.243± 0.048 0.335± 0.079 – –

D POSE ESTIMATION

D.1 MODELS

The pose estimation models consist of a backbone and a head. The backbone is either a ResNet-50
(He et al., 2016) or a VIT-B/16 (Dosovitskiy et al., 2020), both producing feature maps of shape
[N,H,W ] for a given image, where N denotes the feature dimension and H , W denote the height and
width of the feature maps. All models employ an identical linear upsampling head that begins with
a PixelShuffle layer, reshaping the feature maps to [N/4, 2H, 2W ]. These reshaped features
then pass through two consecutive 2D convolutional transpose layers with kernel size (3, 3) and
stride (2, 2), doubling the spatial resolution after each layer. The head architecture omits batch
normalization and nonlinearities between these layers. The output passes through a 2D softmax
function, generating a normalized heatmap for each keypoint.

D.2 TRAINING

We divided the labeled data into training (95%) and validation (5%) sets, with test frames coming
from entirely held-out videos. We used a batch size of eight frames. Data augmentations include
random crops, rotations, motion blur and histogram equalization. Models were trained for 300 epochs,
with validation loss recorded every five epochs. For final evaluation, we selected the model with
the lowest validation loss. Training utilized an Adam optimizer (Kingma and Ba, 2014) with an
initial learning rate of 0.001, which was halved at epochs 150, 200, and 250. To facilitate feature
learning, we kept the backbone frozen during the first 20 epochs of training before allowing for full
end-to-end optimization. The loss function is the mean square error between each predicted heatmap
and a ground truth heatmap constructed from labeled data.

D.3 PRETRAINED BACKBONES

We test several additional VIT backbones on pose estimation to validate our BEAST results:

• Segment Anything (SAM) (Kirillov et al., 2023); checkpoint from https://
huggingface.co/facebook/sam-vit-base

• DINO (Caron et al., 2020); checkpoint from https://huggingface.co/
facebook/dino-vitb16
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• DINOv2 (Oquab et al., 2023); checkpoint from https://huggingface.co/
facebook/dinov2-base

These backbones are trained using the same procedure as the ResNet-50 and BEAST models (see
above). We find other pretrained backbones mostly outperform the ResNet-50 baseline (Fig. 7).
SAM is generally the least performant backbone. DINOv2 consistently outperforms DINO across all
datasets, and BEAST achieves the lowest pixel error in most cases (only outperformed by DINOv2
in the Mirror-fish dataset). These results demonstrate BEAST’s experiment-specific pretraining
framework can surpass state-of-the-art general purpose vision foundation models for pose estimation.

ResNet-50 (AP10K) DINO DINOv2 BEAST

P
ix

el
 E

rr
or

SAM

Figure 7: Pose estimation of fine-tuned vision foundation model backbones. We evaluated ResNet-50
(pretrained on AP10K), SAM, DINO, DINOv2, and BEAST backbones on pose estimation datasets. We evaluate
the these models using pixel error at various ensemble standard deviation thresholds, with values in the table
representing the percentage of keypoints at the chosen threshold. Smaller values indicate smaller but more
challenging subsets of keypoints (see main text).

ResNet-50 (AP10K) ViT-M (IN) ViT-M (IN+PT) BEAST

Figure 8: Pose estimation performance with more training frames. The results in Fig. 3 demonstrate pose
estimation performance of various models using just 100 labeled frames. To ensure those comparisons hold on
larger datasets we trained models (three random seeds per backbone) using the maximum number of frames in
the training dataset or 1000 frames, whichever is smaller. We still see consistent gains for both the transformer
architecture pretrained on ImageNet (red) and our pretraining strategy (blue, green).

E ACTION SEGMENTATION

For action segmentation we consider a variety of input feature types and modeling approaches. We
first consider a range input features: keypoints, PCA on the raw video frames (fit on the same frames
as ViT pretraining; we use 768 PCs for downstream models), and VIT-based CLS tokens. For each
of these feature types we fit both linear and nonlinear (temporal convolution network, TCN) models.
We also train a TCN model on the VIT patch embeddings, with a multi-head attention pooling layer
to reduce the dimensionality of the features before entering the TCN.

E.1 MODELS

Linear model The linear action segmentation model uses a 1D temporal convolution layer, followed
by a linear layer that maps from the number of features the the number of action classes, followed by
a softmax. There are no other forms of nonlinearity in the model.
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Temporal convolution network The nonlinear action segmentation model is a dilated TCN (Lea
et al., 2016) with 2 dilation blocks. Each dilation block consists of a sequence of 2 sub-blocks (1D
convolution layer → leaky ReLU nonlinearity → dropout with probability=0.10), as well as a residual
connection between the input and output of the dilation block. The dilation of the convolutional filters
starts with 1 for the first dilation block, then increases by a factor of 2 for each additional dilation
block. This results in a larger temporal receptive field as the model gets deeper, allowing for learning
of longer range dependencies (Yu and Koltun, 2015).

Both models utilize a weighted cross entropy loss function, with class weights inversely proportional
to the class frequency in the training data.

E.2 TRAINING

Each video is split into sequences of 500 (IBL) or 100 (CalMS21) frames. We divide the data into
training (90%) and validation (10%) sets, with test frames coming from entirely held-out videos. We
use a batch size of 16 sequences. Models were trained for 500 epochs using the Adam optimizer
(Kingma and Ba, 2014).

E.3 HYPERPARAMETER DETAILS

For each model type–linear and nonlinear–and each feature type, we run a hyperparameter search
across all combinations of parameters in Table 15 using three random weight initializations. The
hyperparameter combination with the best F1 score on the validation data, averaged across the three
seeds, is selected for evaluation on the test set. For this hyperparameter combination, we train with
two additional seeds and report results in the figures and tables averaged across five seeds.

Table 15: Action segmentation hyperparameters. ∗TCN only

Hyperparameter Value Range

Learning rate 1e-3, 1e-4, 1e-5
Dropout 0.1
Temporal filter length 9, 17, 33
Number of hidden units∗ 16, 32, 64, 96
Number of hidden layers∗ 2

E.4 TEMPORAL CONVOLUTION NETWORK WITH MULTI-HEAD ATTENTION POOLING

We aggregate the patch embeddings from the BEAST encoder using a multi-head attention pooling
layer (Lee et al., 2019), which produces a single pooled embedding per frame as input to the TCN.
This layer uses a learnable query S ∈ R1×D with patch embeddings z ∈ RN×D as keys and values.
To capture motion-related features, we further concatenate the frame-to-frame difference of the
pooled embeddings as additional input to the TCN (Fig. 9). We fixed the number of attention heads
in the pooling layer to 8 for all models.

Our previous model utilized CLS embeddings, which allowed for an efficient workflow: we processed
videos through the transformer backbone and saved the CLS embedding from each frame as a separate
file. These pre-computed embeddings could then be directly loaded to train the downstream TCN
classifier without requiring video reading during training. However, patch embeddings present
significantly larger memory requirements, making disk storage infeasible. To address this challenge,
we developed a data loading pipeline that performs end-to-end processing: it loads video frames,
passes them through the transformer backbone, and feeds the resulting patch embeddings directly
to the TCN model within the same training loop. This integrated approach, while computationally
more intensive, eliminates the need for intermediate storage. Due to these increased computational
demands, we modified the training procedure for the multi-head attention pooling models as follows.

The pooling layer and TCN classifier were trained jointly for 200 epochs on CalMS21 and 100 epochs
on IBL using the Adam optimizer (Kingma and Ba, 2014) with an initial learning rate of 1e−3. The
epoch counts were determined through a separate experiment that withheld a subset of validation
videos and monitored the validation F1 score until convergence. Training followed a cosine-annealing
schedule with warm restarts (Loshchilov and Hutter, 2016) configured with T0 = 34, Tmult = 2
and ηmin = 5e−5. We used 6 or 8 NVIDIA A40 GPUs for the training, each with a batch size of 2,
giving an effective batch size of 12 or 16. The sequence length was fixed at 500. Due to the increased
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compute required to train these models, we fixed the TCN hyperparameters to be those found for the
CLS-based model for each dataset.

→

Multi-head attention
pooling

…

Time
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VIT

temporal convolutional
network
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→

pooled embedding
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Figure 9: Multi-head attention pooling TCN head for action segmentation. A: Per-patch embeddings from
the BEAST encoder are pooled using a multi-head attention layer, where a learnable query token attends to the
patch embeddings to produce a single pooled embedding for each frame. B: Temporal differences between
consecutive pooled embeddings are concatenated as additional input to the TCN, which predicts the behavior
class of the center frame in the sliding window. A window size of 3 is shown for illustration; the actual window
size was tuned as a hyperparameter.

Table 16: Action segmentation results on IBL and CalMS21 datasets across feature types and models. All
VIT-based models use frozen a frozen backbone; “CLS” indicates models trained on the global CLS embeddings,
while “patch” indicates models trained with a multi-head attention pooling layer applied to the patch embeddings.
“IN” refers to a model pretrained with ImageNet weights, “IN+PT” refers to models that are initialized with
ImageNet-pretrained weights then further pretrained on experiment-specific data. We report the mean and
standard deviation of F1 on test data across five random train/val splits.

Dataset Features
Linear TCN

Features Features, ∆ Features Features Features, ∆ Features

IBL Keypoints 0.54± 1.4e−3 0.55± 1.5e−3 0.86± 1.4e−3 0.88± 2.2e−3

PCA 0.54± 4.6e−3 0.55± 6.3e−3 0.64± 1.0e−2 0.71± 2.8e−3

VIT-M (IN) (CLS) 0.68± 1.4e−3 0.68± 7.0e−4 0.78± 7.4e−3 0.79± 2.7e−3

VIT-M (IN+PT) (CLS) 0.74± 2.5e−3 0.72± 2.0e−3 0.78± 4.0e−3 0.80± 4.6e−3

BEAST (IN+PT) (CLS) 0.70± 7.9e−3 0.69± 2.5e−3 0.80± 3.0e−3 0.81± 6.9e−4

DINOv2 (patch) - - - 0.77± 2.7e−3

VIT-C (patch) - - - 0.79± 4.6e−3

VIT-M (IN) (patch) - - - 0.84± 3.7e−3

VIT-M (IN+PT) (patch) - - - 0.85± 3.6e−3

BEAST (IN+PT) (patch) - - - 0.87± 5.1e−3

CalMS21 SimBA (Goodwin et al., 2024) 0.75± 5.1e−4 0.53± 8.1e−3 0.78± 3.8e−3 0.79± 2.9e−3

TREBA (Sun et al., 2021b) 0.29± 1.4e−3 0.30± 1.5e−3 0.70± 4.6e−3 0.72± 7.4e−3

PCA 0.10± 3.1e−3 0.10± 3.2e−3 0.16± 5.1e−3 0.18± 4.5e−3

VIT-M (IN) (CLS) 0.50± 2.2e−2 0.52± 1.3e−3 0.53± 1.2e−2 0.60± 2.8e−3

VIT-M (IN+PT) (CLS) 0.60± 5.5e−3 0.60± 1.1e−3 0.60± 9.1e−3 0.65± 2.2e−3

BEAST (IN+PT) (CLS) 0.53± 4.6e−3 0.51± 4.0e−2 0.58± 5.2e−3 0.63± 2.7e−3

DINOv2 (patch) - - - 0.68± 4.4e−3

VIT-M (IN) (patch) - - - 0.74± 2.9e−3

VIT-M (IN+PT) (patch) - - - 0.82± 9.5e−3

BEAST (IN+PT) (patch) - - - 0.81± 7.7e−3
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F BEAST WORKFLOW

We give an overview of the BEAST workflow for a new user, highlighting steps where BEAST
enhances a traditional workflow.

STAGE 1: DATA COLLECTION

• Collect behavioral videos
• Optionally collect simultaneous neural recordings

The use of BEAST does not affect this step of the workflow.

STAGE 2: BEAST PRETRAINING

This step will be skipped in a traditional workflow.

• Extract frames from unlabeled videos (typically ∼100K frames)
• Train BEAST transformer backbone on these frames (∼30 hours on 8 GPUs)
• This step does not require manual annotation

STAGE 3: DOWNSTREAM APPLICATIONS

Option A: Pose estimation

• Annotate 100-1000 frames from 5-50 videos with keypoints (can be different from pretrain-
ing set)

• Fine-tune pose estimation model using BEAST backbone
Key advantage: improved performance over existing backbones (Fig. 3)

• Run inference on new videos to extract keypoints

Option B: Action segmentation

• Annotate 1000-5000 frames per behavior, ideally across 5-10 videos, with action labels
(independent of pose annotation)

• Fine-tune action segmentation model using BEAST backbone
Key advantage 1: skip pose estimation pipeline entirely
Key advantage 2: equivalent or better performance compared to pose estimates (Fig. 4)

• Run inference on new videos to extract frame-by-frame actions

Option C: Neural encoding

• No manual annotation (neural activity provides the “labels”)
• Fine-tune neural encoding model using BEAST backbone (video input, neural activity output)

Key advantage 1: skip pose estimation pipeline entirely
Key advantage 2: improved performance over existing behavioral features (Fig. 2)

• Predict neural activity from video
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G BROADER IMPACTS

The BEAST framework enables more efficient extraction of meaningful information from video
data, potentially accelerating behavioral neuroscience research with several beneficial outcomes. By
reducing the need for extensive human labeling while improving accuracy, BEAST can democratize
advanced video analysis capabilities for laboratories with limited resources. This efficiency could
accelerate basic science discoveries that underlie advances in biomedical applications, neurological
disorder treatments, and improved understanding of brain function.

While BEAST is developed primarily for behavioral neuroscience studies using animal subjects, the
underlying technology could potentially be repurposed for human video analysis, raising several
concerns:

• Surveillance capabilities: The improved ability to track and categorize behaviors could
enhance surveillance technologies, potentially infringing on privacy rights if deployed
without appropriate oversight.

• Bias and fairness: As with any AI system trained on specific datasets, BEAST-derived
models may perform differently across demographic groups if applied to human subjects,
potentially perpetuating biases in downstream applications.

• Resource inequality: While a pretrained BEAST model can improve the efficiency of
downstream tasks, the computational requirements for pretraining itself may limit access to
this technology for under-resourced institutions, potentially widening existing disparities in
research capabilities.
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H REVIEWER RESPONSES

H.1 FEATURE VISUALIZATIONS

We computed PCA on the patch embeddings extracted from 100 randomly selected frames within the
same dataset, using only test-set frames that none of the models were trained on. We visualized the
first three PCA components as RGB channels, and each model produced distinct spatial structures in
its patch embeddings, as shown in Fig. 10.

Mouse perceptual decision-making
(IBL 2023)

Mouse location
(Warren et al., 2021)

Resident-intruder assay
(Burgos-Artizzu et al., 2012)

Freely swimming mormyrid fish
(Biderman et al., 2024)

Figure 10: Visualization of the first three PCA components across models. We computed PCA on patch
embeddings from 100 randomly sampled frames in the test set and visualized the first three components as
RGB channels of two example frames. Compared to DINOv2—whose embeddings emphasize broader semantic
structures—the BEAST pre-trained model captures finer-grained details that are critical for neural encoding,
pose estimation and behavior segmentation. In contrast, the ViT-M model pretrained only on ImageNet produces
patch embeddings that appear noisier and less structurally coherent.
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H.2 SELF-SUPERVISED LEARNING METHODS FOR ANIMAL BEHAVIOR

Self-supervised learning (SSL) techniques from computer vision have increasingly been adapted to
the study of animal behavior. These approaches use SSL to extract useful feature representations from
pose, image, or video data, which are then applied to downstream tasks such as action segmentation.

Pose-based approaches. Trajectory Embedding for Behavior Analysis (TREBA) (Sun et al., 2021b)
employs a multi-task self-supervised framework that uses trajectory reconstruction as its primary
objective through Trajectory Variational Autoencoders (Co-Reyes et al., 2018; Zhan et al., 2020).
TREBA additionally requires the TVAE embedding to decode various auxiliary tasks consisting
of simple data transformations designed by domain experts, with the resulting embeddings serv-
ing as input to downstream action segmentation models. Variational Animal Motion Embedding
(VAME) (Luxem et al., 2022) uses a sequential variational autoencoder to embed pose sequences
into a latent space by reconstructing both current and subsequent time steps. Unlike TREBA, VAME
applies clustering to the learned embeddings, creating a fully unsupervised action segmentation
pipeline. ContrastivePose (Zhou et al., 2022) leverages geometric augmentations (flipping, rota-
tion, translation) of pose coordinates to generate positive pairs for contrastive learning, followed
by fine-tuning on action segmentation tasks. Bootstrap Across Multiple Scales (BAMS) (Azabou
et al., 2023) employs dual temporal convolutional networks with different receptive field sizes to
create complementary short- and long-term embedding spaces. BAMS introduces a novel training
objective requiring prediction of future action distributions rather than specific action sequences,
with validation on the MABe benchmark (Sun et al., 2023) across multiple tasks including action
segmentation and mouse strain classification.

Image and video-based approaches. Selfee (Jia et al., 2022) constructs composite RGB frames from
3-frame grayscale video sequences (assigning each frame to a separate color channel) and applies
standard image-based contrastive learning techniques, demonstrating effectiveness on action segmen-
tation and anomaly detection. Mueller et al. (2025) adapt a pretrained V-JEPA model (Bardes et al.,
2023), an SSL approach specialized for video understanding, through domain-adaptive pretraining on
primate behavior datasets, validating their approach on behavior recognition tasks. Similarly, Animal-
JEPA (Zheng et al., 2024) modifies the V-JEPA training strategy with domain-specific masking
techniques and validates on mouse behavior classification tasks.

Distinction from prior work. While these methods share conceptual similarities with BEAST,
our approach is distinguished by its general frame-based training objectives and comprehensive
evaluation across neural activity prediction and pose estimation tasks, in addition to the standard
action segmentation task. Furthermore, since the pose-based methods described above rely on pose
estimates as input, BEAST could potentially enhance their performance by providing higher-quality
pose estimation as a preprocessing step.
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H.3 PRETRAINING TIME

We pretrain BEAST models per-dataset for 800 epochs starting from ImageNet-pretrained weights.
We find reasonable zero-shot reconstruction quality given the out-of-distribution nature of this data,
but there are clear block artifacts and blurriness (Fig. 11, Epoch 0). Pretraining for 200 epochs
reduces both of these effects but does not remove them completely. Pretraining for 400 and 800
epochs continues to reduce artifacts and improve reconstruction quality, but even after 800 epochs
some artifacts remain, indicating that further pretraining may be necessary for optimal performance.
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Figure 11: Reconstruction quality during BEAST pretraining. We evaluate the reconstruction quality at
various epochs during pretraining on the IBL dataset. Epoch 0 represents zero-shot reconstruction quality from a
model pretrained with Masked Autoencoding on ImageNet.
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H.4 NEURAL ENCODING STATISTICS

To measure the statistical differences between models on the full neural populations with the IBL
dataset, we performed a two-sided Wilcoxon signed-rank test (using the pingouin package) at the
level of individual neurons (N = 842 pairs) for the following models:

• DINOv2
• VIT-M (IN): a ViT pretrained on Image-Net with MAE loss
• VIT-C (IN+PT): ViT-M further pretrained on domain-specific data with the contrastive-only

loss
• VIT-M (IN+PT): ViT-M further pretrained on domain-specific data with the MAE loss
• BEAST (IN+PT): ViT-M with additional domain-specific pretraining using MAE and con-

trastive losses

We find that BEAST (IN+PT) generally significantly outperforms all other models, though it is not
significantly different from VIT-M (IN+PT) on either dataset when using the TCN. We also report
effect sizes using matched pairs rank-biserial correlation (Kerby, 2014).
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Figure 12: Encoding statistics table of IBL dataset.
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IBL-Whisker Pairwise Model 
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Figure 13: Encoding statistics table of IBL-whisker dataset.

Table 17: Neural encoding results across feature types and models. All VIT-based models use a frozen backbone.
“IN” refers to a model pretrained with ImageNet weights; “IN+PT” refers to models that are initialized with
ImageNet-pretrained weights then further pretrained on experiment-specific data. We report the mean and S.E.M.
of BPS across 842 neurons from five test sessions.

Features
IBL IBL-whisker

RRR TCN RRR TCN

Keypoints 0.169± 0.008 0.269± 0.011 – –
Motion energy – – 0.086± 0.006 0.113± 0.007

PCA 0.260± 0.010 0.309± 0.012 0.212± 0.009 0.272± 0.011

CEBRA 0.239± 0.010 0.293± 0.012 0.204± 0.009 0.260± 0.011

DINOv2 0.183± 0.008 0.294± 0.013 0.138± 0.007 0.269± 0.012

VIT-M (IN) 0.192± 0.009 0.321± 0.013 0.129± 0.007 0.301± 0.012

VideoMAE (Kinetics-400) – 0.330± 0.013 – 0.307± 0.012

VIT-M (IN+PT) 0.172± 0.008 0.331± 0.013 0.148± 0.007 0.311± 0.013

VIT-C (IN+PT) 0.137± 0.008 0.314± 0.013 0.120± 0.006 0.283± 0.011

VideoMAE (Kinetics-400+PT) – 0.334± 0.013 – 0.307± 0.012

BEAST (IN+PT) 0.268± 0.009 0.335± 0.013 0.136± 0.006 0.309± 0.013

BEAST (IN+PT+FT) 0.282± 0.011 0.347± 0.014 0.234± 0.010 0.326± 0.013
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H.5 DEEPLABCUT BASELINE FOR POSE ESTIMATION

For the DeepLabCut baseline (version 3.0.0) we trained models using an ImageNet-pretrained ResNet-
50 backbone. To properly isolate differences between DeepLabCut and Lightning Pose algorithms, we
matched training frames, batch size, learning rate schedule, and number of epochs (see Appendix D
for details). For all other hyperparameters we used the DeepLabCut package defaults (e.g., data
augmentation). We train models using three different train/val data splits, and ensure these splits
exactly match those used for the Lightning Pose models.

Lightning Pose outperforms DeepLabCut on the IBL, Mirror-mouse, and Mirror-fish datasets, while
DeepLabCut outperforms Lightning Pose on CRIM13 (Fig. 14). Notably, our pretrained BEAST
backbones outperform both DeepLabCut and Lightning Pose across all four datasets.
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Figure 14: Pose estimation of DeepLabCut (DLC).
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H.6 BEAST LOSS ABLATIONS

To ablate the BEAST losses, we pretrained a model on the IBL data using only the masked au-
toencoding (MAE) loss and another using only the contrastive loss (but with patch masking, to
make the comparison to the other models that use MAE more straightforward). We then evaluated
the pretrained model on the neural encoding task. We find the mask-only model outperforms the
contrastive-only model across both linear (RRR) and nonlinear (TCN) probes, for both IBL and
IBL-whisker datasets, while the combined loss for BEAST remains the best performer (except for the
linear probe in the IBL-whisker dataset).

Table 18: Training objective ablation. We pretrain models using either only the temporal contrastive loss, only
the masked autoencoding (MAE) loss, or both losses combined. We evaluate the representations using zero-shot
performance on the neural encoding task with the bits per spike (BPS) metric. We report the mean and standard
deviation of BPS across five test sessions.

Method IBL IBL-whisker

RRR TCN RRR TCN

Contrast only 0.142± 0.073 0.321± 0.099 0.127± 0.033 0.286± 0.055
Mask only 0.182± 0.071 0.334± 0.098 0.156± 0.032 0.316± 0.073
Combined 0.277± 0.076 0.337± 0.103 0.138± 0.029 0.317± 0.083

We next evaluated these models on the pose estimation task and find that the contrastive-only backbone
(VIT-C) performs considerably worse than the MAE-only backbone VIT-M (Fig. 15). This result is
consistent with the different learning objectives: the temporal contrastive loss emphasizes high-level
temporal structure, whereas the MAE loss emphasizes low-level, pixel-level features. Consequently,
MAE-pretrained representations are better suited for pixel-level prediction tasks like pose estimation,
while the contrastive loss provides complementary benefits for tasks requiring temporal coherence
(as evidenced by the improved neural encoding performance when both losses are combined).
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Figure 15: Pose estimation with BEAST training objective ablations.

40



2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

H.7 TEMPORAL CONTRASTIVE LOSS VISUALIZATIONS

We visualize the UMAP embeddings of the first 32 principal components (PCs) of all anchor frames
used for pretraining on the IBL dataset (Fig. 16). During training, only the frames immediately
adjacent to each anchor were selected as positive pairs, while frames from different sessions or
from more distant points within the same session served as negative samples. Frames from different
sessions are highly dissimilar, owing to differences in mouse appearance, experimental equipment,
and lighting. Frames within a session exhibit a high level of diversity, even frames next to each other
in UMAP space (e.g., frames B and C, or D and E, on the left-hand side of Fig. 16). As a result, the
frames that co-occur with an anchor in the same batch are typically visually dissimilar and therefore
appropriate for our contrastive loss.

cross-session same sessionEmbeddings colored by session
A

B

C

D

E

Figure 16: Anchor-frame PC UMAP. Each anchor frame is colored by the session it was sampled from. The left
and right columns show example frames drawn from the same session and from different sessions, respectively.
As shown, the sampled frames are largely visually distinct.
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H.8 ACTION SEGMENTATION: ADDITION RESULTS

Non-normalized confusion matrices to complement the normalized confusion matrices in Fig. 4.
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Figure 17: Non-normalized confusion matrices for patch-based BEAST models.
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